1
|
Mbese Z, Choene M, Morifi E, Nwamadi M, Adeyemi S, Kolawole Oyebamiji A, Adeyinka AS, George B, Aderibigbe BA. Hybrid Molecules Containing Methotrexate, Vitamin D, and Platinum Derivatives: Synthesis, Characterization, In Vitro Cytotoxicity, In Silico ADME Docking, Molecular Docking and Dynamics. Chem Biodivers 2024:e202400373. [PMID: 39278836 DOI: 10.1002/cbdv.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Designing hybrid-based drugs is one promising strategy for developing effective anticancer drugs that explore combination therapy to enhance treatment efficacy, overcome the development of drug resistance, and lower treatment duration. Bisphosphonates and Vitamin D are commonly administered drugs for the treatment of bone diseases and the prevention of bone metastases. Platinum-based and methotrexate are widely used anticancer drugs in clinics. However, their use is hampered by adverse side effects. Hybrid-based compounds containing either bisphosphonate, vitamin D, platinum-based, or methotrexate were synthesized and characterized using FTIR, 1H-,31P, 13C-NMR, and UHPLC-HRMS which confirmed their successful synthesis. The hydroxyapatite bone binding assay revealed a promising percentage binding affinity of the bisphosphonate hybrid compounds. In vitro cytotoxicity assays on MCF-7 and HT-29 cell lines revealed a promising cytotoxic effect of hybrid 19 at 50 and 100 μg/mL on HT-29 and hybrid 15 on MCF-7 at 100 μg/mL. Molecular docking and dynamics simulation analysis revealed a binding affinity of -9.70 kcal/mol for hybrid 15 against Human 3 alpha-hydroxysteroid dehydrogenase type 3, showing its capability to inhibit Human 3 alpha-hydroxysteroid dehydrogenase type 3. The Swiss ADME, ProTox-II, GUSAR (General Unrestricted Structure-Activity Relationships), and molecular docking and dynamics studies revealed that these compounds are promising anticancer compounds.
Collapse
Affiliation(s)
- Zintle Mbese
- Department of Chemistry, University of Fort Hare, Alice Campus, 5700, Alice, Eastern Cape, South Africa
| | - Mpho Choene
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, Auckland Park, 2006, Johannesburg, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of Witwatersrand, 2050, Johannesburg, South Africa
| | - M Nwamadi
- Department of Chemistry, University of Johannesburg, Auckland Park Campus, 2006, Johannesburg, South Africa
| | - Samson Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, 5700, Alice, Eastern Cape, South Africa
| |
Collapse
|
2
|
Hitting drug-resistant malaria infection with triazole-linked flavonoid-chloroquine hybrid compounds. Future Med Chem 2022; 14:1865-1880. [PMID: 36622669 DOI: 10.4155/fmc-2022-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Malaria represents the major parasitic disease in tropical regions, and the development of new potent drugs is of pivotal importance. In this study, a series of hybrid molecules were designed by linking the 7-chloroquinoline core of chloroquine to different fluorinated flavonoid-related scaffolds. Materials & methods: Compounds were prepared by exploiting the click chemistry approach, allowing the introduction of a 1,2,3-triazole, a privileged structural motif in antiparasitic dug discovery. Results: Compounds 1b and 1c were the most interesting and were endowed with the highest in vitro activity, mainly against a resistant Plasmodium falciparum strain. They also inhibited hemozoin formation, and 1c was more effective than chloroquine against stage V gametocytes. Conclusion: The homoisoflavone core is a new, promising antimalarial scaffold that deserves further investigation.
Collapse
|
3
|
Bąchor U, Lizak A, Bąchor R, Mączyński M. 5-Amino-3-methyl-Isoxazole-4-carboxylic Acid as a Novel Unnatural Amino Acid in the Solid Phase Synthesis of α/β-Mixed Peptides. Molecules 2022; 27:molecules27175612. [PMID: 36080386 PMCID: PMC9457529 DOI: 10.3390/molecules27175612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The hybrid peptides consisting of α and β-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural β-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, including classical and ultrasonic agitated solid-phase synthesis. All the synthesized compounds were characterized by tandem mass spectrometry. The obtained results present the possibility of the application of this β-amino acid in the synthesis of a new class of bioactive peptides.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (U.B.); (R.B.); Tel.: +48-78-406-34 (U.B.); +48-71-375-7218 (R.B.); Fax: +48-71-328-2348 (R.B.)
| | - Agnieszka Lizak
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Remigiusz Bąchor
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
- Correspondence: (U.B.); (R.B.); Tel.: +48-78-406-34 (U.B.); +48-71-375-7218 (R.B.); Fax: +48-71-328-2348 (R.B.)
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Poje G, Pessanha de Carvalho L, Held J, Moita D, Prudêncio M, Perković I, Tandarić T, Vianello R, Rajić Z. Design and synthesis of harmiquins, harmine and chloroquine hybrids as potent antiplasmodial agents. Eur J Med Chem 2022; 238:114408. [DOI: 10.1016/j.ejmech.2022.114408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
|
5
|
Çapcı A, Herrmann L, Sampath Kumar HM, Fröhlich T, Tsogoeva SB. Artemisinin-derived dimers from a chemical perspective. Med Res Rev 2021; 41:2927-2970. [PMID: 34114227 DOI: 10.1002/med.21814] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Considerable progress has been made with the rather recently developed dimer approach, which has already found applications in the development of new effective artemisinin-derived antimalarial, anticancer, and antiviral agents. One observation common to these potential applications is the significant (i.e., much more than double) improvement in activity of artemisinin based dimers, which are not toxic to normal cells and have fewer or less harmful side effects, with respect to monomers against parasites, cancer cells and viruses. Due to the high potential of the dimerization concept, many new artemisinin-derived dimer compounds and their biological activities have been recently reported. In this review an overview of the synthesis of dimer drug candidates based on the clinically used drug artemisinin and its semisynthetic derivatives is given. Besides the highlighting of biological activities of the selected dimers, the main focus is set on different synthetic approaches toward the dimers containing a broad variety of symmetric and nonsymmetric linking moieties.
Collapse
Affiliation(s)
- Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.,CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|
7
|
Ishmail FZ, Melis DR, Mbaba M, Smith GS. Diversification of quinoline-triazole scaffolds with CORMs: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2020; 215:111328. [PMID: 33340802 DOI: 10.1016/j.jinorgbio.2020.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
A discrete series of tricarbonyl manganese and rhenium complexes conjugated to a quinoline-triazole hybrid scaffold were synthesised and their inhibitory activities evaluated against Plasmodium falciparum. In general, the complexes show moderate activity with improved inhibitory activities for the photoactivatable manganese(I) tricarbonyl complexes in the malaria parasite. All complexes are active in the dark against the NF54 CQS (chloroquine-sensitive) and K1 MDR (multidrug-resistant) strains of Plasmodium falciparum, with IC50 values in the low micromolar range. Of significance, the complexes retain their activity in the MDR strain with resistance indices ranging between 1.1 and 2.1. The Mn(I) analogues display photodissociation of all three CO ligands upon irradiation at 365 nm. More importantly, the complexes show increased antimalarial activity in vitro upon photoactivation, something not observed by the clinically used reference drug, chloroquine. As a purported mechanism of action, the compounds were evaluated as β-haematin inhibitors. To further understand the interactions of the complexes, in silico hemozoin docking simulations were performed, attesting to the fact that CO-release could be vital for blocking the hemozoin formation pathway. These results show that this strategy may be a valuable, novel route to design antimalarial agents with higher efficacy.
Collapse
Affiliation(s)
- Fatima-Zahra Ishmail
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| |
Collapse
|
8
|
Dana S, Valissery P, Kumar S, Gurung SK, Mondal N, Dhar SK, Mukhopadhyay P. Synthesis of Novel Ciprofloxacin-Based Hybrid Molecules toward Potent Antimalarial Activity. ACS Med Chem Lett 2020; 11:1450-1456. [PMID: 32676153 DOI: 10.1021/acsmedchemlett.0c00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022] Open
Abstract
Antimalarial drug resistance is a serious obstacle in the persistent quest to eradicate malaria. There is a need for potent chemical agents that are able to act on drug-resistant Plasmodium falciparum populations at reasonable concentrations without any related toxicity to the host. By rational drug design, we envisaged to address this issue by generating a novel hybrid drug possessing two pharmacophores that can act on two unique and independent targets within the cell. We synthesized a new class of ciprofloxacin-based hybrid molecules, which have been integrated with acridine, quinolone, sulphonamide, and cinnamoyl pharmacophores (1-4). We realized a potent chloroquinolone-ciprofloxacin-based antimalarial hybrid (2, CQ-CFX) whose mechanism of action is unlike that of its parent molecules indicating a unique biological target. CQ-CFX is not only potent against CQ-resistant and susceptible strains of Plasmodium falciparum at low nanomolar concentrations (IC50 values are 63.17 ± 1.2 nM and 25.52 ± 4.45 nM, respectively) but is also not toxic to mammalian and bacterial systems up to 20 μM and 1 μM, respectively.
Collapse
Affiliation(s)
- Srikanta Dana
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi − 110067, India
| | | | - Sharvan Kumar
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi − 110067, India
| | | | | | | | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi − 110067, India
| |
Collapse
|
9
|
Joshi MC, Egan TJ. Quinoline Containing Side-chain Antimalarial Analogs: Recent Advances and Therapeutic Application. Curr Top Med Chem 2020; 20:617-697. [DOI: 10.2174/1568026620666200127141550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023]
Abstract
The side-chains of quinoline antimalarial agents are the major concern of focus to build
novel and efficaciaous bioactive and clinical antimalarials. Bioative antimalarial analogs may play a
critical role in pH trapping in the food vacuole of RBC’s with the help of fragmented amino acid, thus
lead to β-hematin inhibition. Here, the authors tried to summarize a useful, comprehensive compilation
of side-chain modified ACQs along with their synthesis, biophysical and therapeutic applications etc.
of potent antiplasmodial agents and therefore, opening the door towards the potential clinical status.
Collapse
Affiliation(s)
- Mukesh C. Joshi
- Department of Chemistry, Motilal Nehru College, Benito Juarez Marg, South Campus, University of Delhi, New Delhi- 110021, India
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
10
|
Tibon NS, Ng CH, Cheong SL. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur J Med Chem 2019; 188:111983. [PMID: 31911292 DOI: 10.1016/j.ejmech.2019.111983] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Discovery and development of antimalarial drugs have long been dominated by single-target therapy. Continuous effort has been made to explore and identify different targets in malaria parasite crucial for the malaria treatment. The single-target drug therapy was initially successful, but it was later supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has warranted a review of current antimalarial pharmacotherapy. This has led to the development of the new concept of covalent biotherapy, in which two or more pharmacophores are chemically bound to produce hybrid antimalarial drugs with multi-target functionalities. Herein, the review initially details the current pharmacotherapy for malaria as well as the conventional and novel targets of importance identified in the malaria parasite. Then, the rationale of multi-targeted therapy for malaria, approaches taken to develop the multi-target antimalarial hybrids, and the examples of hybrid molecules are comprehensively enumerated and discussed.
Collapse
Affiliation(s)
- Natasha Stella Tibon
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chew Hee Ng
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
12
|
Marella A, Verma G, Shaquiquzzaman M, Khan MF, Akhtar W, Alam MM. Malaria Hybrids: A Chronological Evolution. Mini Rev Med Chem 2019; 19:1144-1177. [PMID: 30887923 DOI: 10.2174/1389557519666190315100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/27/2018] [Accepted: 11/03/2018] [Indexed: 01/13/2023]
Abstract
Malaria, an upsetting malaise caused by a diverse class of Plasmodium species affects about 40% of the world's population. The distress associated with it has reached colossal scales owing to the development of resistance to most of the clinically available agents. Hence, the search for newer molecules for malaria treatment and cure is an incessant process. After the era of a single molecule for malaria treatment ended, there was an advent of combination therapy. However, lately there had been reports of the development of resistance to many of these agents as well. Subsequently, at present most of the peer groups working on malaria treatment aim to develop novel molecules, which may act on more than one biological processes of the parasite life cycle, and these scaffolds have been aptly termed as Hybrid Molecules or Double Drugs. These molecules may hold the key to hitherto unknown ways of showing a detrimental effect on the parasite. This review enlists a few of the recent advances made in malaria treatment by these hybrid molecules in a sequential manner.
Collapse
Affiliation(s)
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| |
Collapse
|
13
|
Rossier J, Nasiri Sovari S, Pavic A, Vojnovic S, Stringer T, Bättig S, Smith GS, Nikodinovic-Runic J, Zobi F. Antiplasmodial Activity and In Vivo Bio-Distribution of Chloroquine Molecules Released with a 4-(4-Ethynylphenyl)-Triazole Moiety from Organometallo-Cobalamins. Molecules 2019; 24:molecules24122310. [PMID: 31234469 PMCID: PMC6630517 DOI: 10.3390/molecules24122310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023] Open
Abstract
We have explored the possibility of using organometallic derivatives of cobalamin as a scaffold for the delivery of the same antimalarial drug to both erythro- and hepatocytes. This hybrid molecule approach, intended as a possible tool for the development of multi-stage antimalarial agents, pivots on the preparation of azide-functionalized drugs which, after coupling to the vitamin, are released with a 4-(4-ethynylphenyl)-triazole functionality. Three chloroquine and one imidazolopiperazine derivative (based on the KAF156 structure) were selected as model drugs. One hybrid chloroquine conjugate was extensively studied via fluorescent labelling for in vitro and in vivo bio-distribution studies and gave proof-of-concept for the design. It showed no toxicity in vivo (zebrafish model) as well as no hepatotoxicity, no cardiotoxicity or developmental toxicity of the embryos. All 4-(4-ethynylphenyl)-triazole derivatives of chloroquine were equally active against chloroquine-resistant (CQR) and chloroquine-sensitive (CQS) Plasmodium falciparum strains.
Collapse
Affiliation(s)
- Jeremie Rossier
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Sara Nasiri Sovari
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Tameryn Stringer
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Sarah Bättig
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
14
|
Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67. [DOI: 10.1007/s11274-019-2642-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
|
15
|
Almahboub SA, Narancic T, Fayne D, O'Connor KE. Single point mutations reveal amino acid residues important for Chromobacterium violaceum transaminase activity in the production of unnatural amino acids. Sci Rep 2018; 8:17397. [PMID: 30478262 PMCID: PMC6255834 DOI: 10.1038/s41598-018-35688-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Unnatural amino acids (UAAs) are chiral amines with high application potential in drug discovery and synthesis of other valuable chemicals. Biocatalysis offers the possibility to synthesise novel optically pure UAAs with different physical and chemical properties. While the biocatalytic potential of transaminases in the synthesis of UAAs has been demonstrated, there is still a need to improve the activity with non-native substrates and to understand which amino acids residues are important for activity with these UAAs. Using a rational design approach, six variants of Chromobacterium violaceum DSM30191 transaminase (CV_TA) carrying a single and one variant carrying two substitutions were generated. Among the variants with a single substitution, CV_Y168F showed a 2 to 2.6-fold increased affinity for 2-oxooctanoic acid (2-OOA) and 3-oxobutyric acid (3-OBA) methyl ester used to synthesise an α- and β-UAA. Analysis of the first half of the transaminase reaction showed no change in the activity with the donor (S)-1-phenylethylamine. The combination of W60C and Y168F substitutions improved the CV_TA affinity for 2-OOA 10-fold compared to the wild type. Other substitutions showed no change, or reduced activity with the tested substrates. Our findings provide structural information on CV_TA and demonstrate the potential of rational design for biosynthesis of UAAs.
Collapse
Affiliation(s)
- Sarah A Almahboub
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland. .,BEACON - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin E O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.,BEACON - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Giang LNT, Anh DTT, Phuong HT, Thanh NH, Van Tuyen N. Synthesis of novel artemisinin-triazole hybrids. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Le Nhat Thuy Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Dang Thi Tuyet Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Hoang Thi Phuong
- Institute of Chemistry, Vietnam Academy of Science and Technology
| | - Nguyen Ha Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| |
Collapse
|
17
|
Choudhary S, Singh PK, Verma H, Singh H, Silakari O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur J Med Chem 2018; 151:62-97. [PMID: 29605809 DOI: 10.1016/j.ejmech.2018.03.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Complex diseases comprises of highly complicated etiology resulting in limited applicability of conventional targeted therapies. Consequently, conventional medicinal compounds suffer major failure when used for such disease conditions. Additionally, development of multidrug resistance (MDR), adverse drug reactions and clinical specificity of single targeted drug therapy has increased thrust for novel drug therapy. In this rapidly evolving era, natural product-based discovery of hybrid molecules or multi-targeted drug therapies have shown promising results and are trending now a days. Historically, nature has blessed human with different sources viz. plant, animal, microbial, marine and ethnopharmaceutical sources which has given a wide variety of medicinally active compounds. These compounds from natural origin are always choice of interest of medicinal chemists because of their minimum side effects. Hybrid molecules synthesized by fusing or conjugating different active molecules obtained from these sources are reported to synergistically block different pathways which contribute in the pathogenesis of complex diseases. This review strives to encompass all natural product-derived hybrid molecules which act as multi-targeting agents striking various targets involved in different pathways of complex diseased conditions reported in literature.
Collapse
Affiliation(s)
- Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | | | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
18
|
Nqoro X, Tobeka N, Aderibigbe BA. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules 2017; 22:molecules22122268. [PMID: 29257067 PMCID: PMC6149725 DOI: 10.3390/molecules22122268] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Naki Tobeka
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
19
|
Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 2017; 139:22-47. [DOI: 10.1016/j.ejmech.2017.07.061] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
|
20
|
Janicki M, Lozynski M. Toward an ab initio potential energy surface for paclitaxel: A C-13 isoserine side chain conformational study. J Mol Graph Model 2017; 73:94-100. [PMID: 28242582 DOI: 10.1016/j.jmgm.2017.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/03/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
(S)-3-Methyl-3-butenyl-(2R,3S)-N-benzoyl-3-phenylisoserinate is used as a model of the C-13 side chain, an essential subunit for the cytotoxicity of the diterpenoid paclitaxel, a chemotherapeutic drug used in the treatment of cancer. The potential energy surface (PES), calculated using a density functional theory method (DFT) and refined with MP2 single-point energy calculations, based on B3LYP geometries, was evaluated. Twelve intramolecular hydrogen bond patterns were identified for 103 in vacuo conformers. The most stable subset of these structures was found to have cooperative NH ⋯ OH ⋯ OC(O) motifs and six minima of importance that lie within 1.2kcal/mol of each other. The oxygen atoms of the ester groups effectively compete with the 2'-oxygen as a proton acceptor of NH to form stable internal hydrogen bonded structures. Additionally, the conventional OH ⋯ OC(N) hydrogen bond, which is represented by almost one third of the located minima, donates a number of stable conformers. However, the PES of the conformationally flexible model is highly dependent on the polarity of the environment. For example, the OH ⋯ OC(N) feature dominates over the cooperative motif in water. The side chain of the experimental T-taxol shaped structure agrees nicely with the respective theoretical lowest energy minimum. The π-π interactions of the phenyl rings and ethylene moiety of this structure are also discussed.
Collapse
Affiliation(s)
- Maciej Janicki
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, 61-614 Poznan, Poland
| | - Marek Lozynski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, 60-965 Poznan, Poland.
| |
Collapse
|
21
|
Faist J, Hinteregger C, Seebacher W, Saf R, Mäser P, Kaiser M, Weis R. New derivatives of 7-chloroquinolin-4-amine with antiprotozoal activity. Bioorg Med Chem 2017; 25:941-948. [DOI: 10.1016/j.bmc.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
|
22
|
A simplified and scalable synthesis of artesunate. MONATSHEFTE FUR CHEMIE 2016; 148:63-68. [PMID: 28127092 PMCID: PMC5225229 DOI: 10.1007/s00706-016-1865-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
Abstract
Abstract An efficient and economically viable approach for the large-scale conversion of artemisinin into the antimalarial frontline drug artesunate was developed. This advanced synthesis includes an NaBH4-induced reduction, followed by an esterification with succinic anhydride under basic conditions. The entire conversion follows the principles of green chemistry, i.e., application of reusable solvents. Graphical abstract ![]()
Collapse
|
23
|
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers. Molecules 2016; 21:molecules21091230. [PMID: 27649131 PMCID: PMC6273872 DOI: 10.3390/molecules21091230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022] Open
Abstract
Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.
Collapse
|
24
|
2-Methyl-4/5-nitroimidazole derivatives potentiated against sexually transmitted Trichomonas: Design, synthesis, biology and 3D-QSAR study. Eur J Med Chem 2016; 124:820-839. [PMID: 27643640 DOI: 10.1016/j.ejmech.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
Trichomoniasis is the most prevalent, non-viral sexually transmitted diseases (STD) caused by amitochondriate protozoan Trichomonas vaginalis. Increased resistance of T. vaginalis to the marketed drug Metronidazole necessitates the development of newer chemical entities. A library of sixty 2-methyl-4/5-nitroimidazole derivatives was synthesized via nucleophilic ring opening reaction of epoxide and the efficacies against drug-susceptible and -resistant Trichomonas vaginalis were evaluated. All the molecules except two were found to be active against both susceptible and resistant strains with MICs ranging 8.55-336.70 μM and 28.80-1445.08 μM, respectively. Most of the compounds were remarkably more effective than the standard Metronidazole. This study analyzes the in vitro and in vivo activities of the new 5-nitroimidazoles, which were found to be safe against human cervical HeLa cells with good selectivity index. The exploration of SAR by the synthesis of four different prototypes and 3D-QSAR study has shown the importance of prototype 1 over other prototypes.
Collapse
|
25
|
Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines. Bioorg Med Chem Lett 2016; 26:4223-32. [DOI: 10.1016/j.bmcl.2016.07.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 11/21/2022]
|
26
|
Thelingwani R, Leandersson C, Bonn B, Smith P, Chibale K, Masimirembwa C. Characterisation of artemisinin–chloroquinoline hybrids for potential metabolic liabilities. Xenobiotica 2015; 46:234-40. [DOI: 10.3109/00498254.2015.1070975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Joubert JP, Smit FJ, du Plessis L, Smith PJ, N’Da DD. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin–acridine hybrids. Eur J Pharm Sci 2014; 56:16-27. [DOI: 10.1016/j.ejps.2014.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 01/16/2023]
|