1
|
Carriquí-Madroñal B, Lasswitz L, von Hahn T, Gerold G. Genetic and pharmacological perturbation of hepatitis-C virus entry. Curr Opin Virol 2023; 62:101362. [PMID: 37678113 DOI: 10.1016/j.coviro.2023.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Hepatitis-C virus (HCV) chronically infects 58 million individuals worldwide with variable disease outcome. While a subfraction of individuals exposed to the virus clear the infection, the majority develop chronic infection if untreated. Another subfraction of chronically ill proceeds to severe liver disease. The underlying causes of this interindividual variability include genetic polymorphisms in interferon genes. Here, we review available data on the influence of genetic or pharmacological perturbation of HCV host dependency factors on the clinically observed interindividual differences in disease outcome. We focus on host factors mediating virus entry into human liver cells. We assess available data on genetic variants of the major entry factors scavenger receptor class-B type I, CD81, claudin-1, and occludin as well as pharmacological perturbation of these entry factors. We review cell culture experimental and clinical cohort study data and conclude that entry factor perturbation may contribute to disease outcome of hepatitis C.
Collapse
Affiliation(s)
- Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lisa Lasswitz
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Thomas von Hahn
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Department of Gastroenterology, Hepatology and Interventional Endoscopy, Asklepios Hospital Barmbek, Semmelweis University, Campus Hamburg, 22307 Hamburg, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Weaver DF. Druggable targets for the immunopathy of Alzheimer's disease. RSC Med Chem 2023; 14:1645-1661. [PMID: 37731705 PMCID: PMC10507808 DOI: 10.1039/d3md00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading threats to the health and socioeconomic well-being of humankind. Though research to develop disease modifying therapies for AD has traditionally focussed on the misfolding and aggregation of proteins, this approach has failed to yield a definitively curative agent. Accordingly, the search for additional or alternative approaches is a medicinal chemistry priority. Dysfunction of the brain's neuroimmune-neuroinflammation axis has emerged as a leading contender. Neuroimmunity however is mechanistically complex, rendering the recognition of candidate receptors a challenging task. Herein, a review of the role of neuroimmunity in the biomolecular pathogenesis of AD is presented with the identification of a 'druggable dozen' targets; in turn, each identified target represents one or more discrete receptors centred on a common biochemical mechanism. The druggable dozen is composed of both cellular and molecular messenger targets, with a 'targetable ten' microglial targets as well as two cytokine-based targets. For each target, the underlying molecular basis, with a consideration of strengths and weaknesses, is considered.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Department of Chemistry, University of Toronto 60 Leonard Avenue Toronto ON M5T 0S8 Canada
| |
Collapse
|
3
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
4
|
Jia XJ, Du Y, Jiang HJ, Li YZ, Xu YN, Si SY, Wang L, Hong B. Identification of Novel Compounds Enhancing SR-BI mRNA Stability through High-Throughput Screening. SLAS DISCOVERY 2019; 25:397-408. [PMID: 31858876 DOI: 10.1177/2472555219894543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases. Reverse cholesterol transport (RCT) is a main mechanism of cholesterol homeostasis and involves the direct transport of high-density lipoprotein (HDL) cholesteryl ester by selective cholesterol uptake. Hepatic scavenger receptor class B member 1 (SR-BI) overexpression can effectively promote RCT and reduce atherosclerosis. SR-BI may be an important target for prevention or treatment of atherosclerotic disease. In our study, we inserted human SR-BI mRNA 3' untranslated region (3'UTR) downstream of the luciferase reporter gene, to establish a high-throughput screening model based on stably transfected HepG2 cells and to screen small-molecule compounds that can significantly enhance the mRNA stability of the SR-BI gene. Through multiple screenings of 25 755 compounds, the top five active compounds that have similar structures were obtained, with a positive rate of 0.19%. The five positive compounds could enhance the SR-BI expression and uptake of DiI-HDL in the hepatocyte HepG2. E238B-63 could also effectively extend the half-life of SR-BI mRNA and enhance the SR-BI mRNA and protein level and the uptake of DiI-HDL in hepatocytes in a time-dependent and dose-dependent manner. The structure-activity relationship analysis showed that the structure N-(3-hydroxy-2-pyridyl) carboxamide is possibly the key pharmacophore of the active compound, providing reference for acquiring candidate compounds with better activity. The positive small molecular compounds obtained in this study might become new drug candidates or lead compounds for the treatment of cardiovascular diseases and contribute to the further study of the posttranscriptional regulation mechanism of the SR-BI gene.
Collapse
Affiliation(s)
- Xiao-Jian Jia
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen University Health Science Center, Shenzhen, PR China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hua-Jun Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yong-Zhen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan-Ni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shu-Yi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
5
|
Chen MM, Shao LY, Lun LJ, Wu YL, Fu XP, Ji YF. Palladium-catalyzed late-stage mono-aroylation of the fully substituted pyrazoles via aromatic C–H bond activation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Abstract
PURPOSE OF REVIEW Scavenger receptor BI (SR-BI) is classically known for its role in antiatherogenic reverse cholesterol transport as it selectively takes up cholesterol esters from HDL. Here, we have highlighted recent literature that describes novel functions for SR-BI in physiology and disease. RECENT FINDINGS A large population-based study has revealed that patients heterozygous for the P376L mutant form of SR-BI showed significantly increased levels of plasma HDL-cholesterol and had increased risk of cardiovascular disease, demonstrating that SR-BI in humans is a significant determinant of cardiovascular disease. Furthermore, SR-BI has been shown to modulate the susceptibility to LPS-induced tissue injury and the ability of sphingosine 1 phosphate to interact with its receptor, linking SR-BI to the regulation of inflammation. In addition, important domains within the molecule (Trp-415) as well as novel regulators (procollagen C-endopeptidase enhancer protein 2) of SR-BI's selective uptake function have recently been identified. Moreover, relatively high expression levels of the SR-BI protein have been observed in a variety of cancer tissues, which is associated with a reduced overall survival rate. SUMMARY The HDL receptor SR-BI is a potential therapeutic target not only in the cardiovascular disease setting, but also in inflammatory conditions as well as in cancer.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands, , Tel: +31-71-5276582
| | - Mary Sorci-Thomas
- Division of Endocrinology, Associate in Pharmacology and Toxicology, Medical College of Wisconsin, Senior Adjunct Investigator at the Blood Research Institute, Blood Center of Wisconsin, , Tel: 414-955-5728
| |
Collapse
|
7
|
Solvent-free synthesis of bacillamide analogues as novel cytotoxic and anti-inflammatory agents. Eur J Med Chem 2016; 123:718-726. [DOI: 10.1016/j.ejmech.2016.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022]
|
8
|
Yu KK, Guo Y, Hu YH, Xu Z, Liu HW, Liao DH, Ji YF. Palladium-Catalyzed Diversemono-Acyloxylation of 5-Alkyl-4-aryl-thiazole-2-carboxylates. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kun-Kun Yu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ying Guo
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ya-Hua Hu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhi Xu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Hong-Wei Liu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Dao-Hua Liao
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ya-Fei Ji
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
9
|
Du Y, Wang L, Hong B. High-density lipoprotein-based drug discovery for treatment of atherosclerosis. Expert Opin Drug Discov 2015; 10:841-55. [PMID: 26022101 DOI: 10.1517/17460441.2015.1051963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Although there has been great progress achieved by the use of intensive statin therapy, the burden of atherosclerotic cardiovascular disease (CVD) remains high. This has initiated the search for novel high-density lipoprotein (HDL)-based therapeutics. Recent years have witnessed a shift from traditional raising HDL-C levels to enhancing HDL functionality, in which the process of reverse cholesterol transport (RCT) has acquired much attention. AREAS COVERED In this review, the authors describe the key factors involved in RCT process for potential drug targets to reduce the CVD risk. Furthermore, the review provides a summary of the effective screening methods that have been developed to target RCT and their applications. This review also introduces some new strategies currently being clinically developed, which have the potential to improve HDL function in the RCT process. EXPERT OPINION It is rational that the functionality of HDL is more important than the plasma HDL-C level in the evaluation of pharmacological treatment in atherosclerosis. HDL-based strategies designed to promote macrophage RCT are a major area of current drug discovery and development for atherosclerotic diseases. A better understanding of the functionality of HDL and its relationship with atherosclerosis will expand our knowledge of the role of HDL in lipid metabolism, holding promise for a future successful HDL-based therapy.
Collapse
Affiliation(s)
- Yu Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Tiantan Xili, Beijing 100050 , China
| | | | | |
Collapse
|
10
|
Dockendorff C, Faloon PW, Germain A, Yu M, Youngsaye W, Nag PP, Bennion M, Penman M, Nieland TJF, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Discovery of bisamide-heterocycles as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorg Med Chem Lett 2015; 25:2594-8. [PMID: 25958245 DOI: 10.1016/j.bmcl.2015.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/01/2022]
Abstract
A new series of potent inhibitors of cellular lipid uptake from HDL particles mediated by scavenger receptor, class B, type I (SR-BI) was identified. The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR) that measured the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is characterized by a linear peptidomimetic scaffold with two adjacent amide groups, as well as an aryl-substituted heterocycle. Analogs of the initial hit were rapidly prepared via Ugi 4-component reaction, and select enantiopure compounds were prepared via a stepwise sequence. Structure-activity relationship (SAR) studies suggest an oxygenated arene is preferred at the western end of the molecule, as well as highly lipophilic substituents on the central and eastern nitrogens. Compound 5e, with (R)-stereochemistry at the central carbon, was designated as probe ML279. Mechanistic studies indicate that ML279 stabilizes the interaction of HDL particles with SR-BI, and its effect is reversible. It shows good potency (IC50=17 nM), is non-toxic, plasma stable, and has improved solubility over our alternative probe ML278.
Collapse
Affiliation(s)
- Chris Dockendorff
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| | - Patrick W Faloon
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Andrew Germain
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Willmen Youngsaye
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Partha P Nag
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Melissa Bennion
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sivaraman Dandapani
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - José R Perez
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle A Palmer
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Dockendorff C, Faloon PW, Pu J, Yu M, Johnston S, Bennion M, Penman M, Nieland TJF, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorg Med Chem Lett 2015; 25:2100-5. [PMID: 25900219 DOI: 10.1016/j.bmcl.2015.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
We report a new series of 8-membered benzo-fused lactams that inhibit cellular lipid uptake from HDL particles mediated by Scavenger Receptor, Class B, Type I (SR-BI). The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR), measuring the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is part of a previously reported diversity-oriented synthesis (DOS) library prepared via a build-couple-pair approach. Detailed structure-activity relationship (SAR) studies were performed with a selection of the original library, as well as additional analogs prepared via solution phase synthesis. These studies demonstrate that the orientation of the substituents on the aliphatic ring have a critical effect on activity. Additionally, a lipophilic group is required at the western end of the molecule, and a northern hydroxyl group and a southern sulfonamide substituent also proved to be optimal. Compound 2p was found to possess a superior combination of potency (av IC50=0.10μM) and solubility (79μM in PBS), and it was designated as probe ML312.
Collapse
Affiliation(s)
- Chris Dockendorff
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| | - Patrick W Faloon
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jun Pu
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephen Johnston
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Melissa Bennion
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sivaraman Dandapani
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - José R Perez
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle A Palmer
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|