1
|
Kruschel RD, Malone K, Walsh AN, Waeber C, McCarthy FO. Discovery of Sphingosine Kinase Inhibition by Modified Quinoline-5,8-Diones. Pharmaceuticals (Basel) 2025; 18:268. [PMID: 40006080 DOI: 10.3390/ph18020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Sphingosine kinase (SphK) overexpression is observed in many cancers, including breast, renal and leukaemia, which leads to increased cellular proliferation, survival and growth. SphK inhibition has been an attractive target for anticancer drug development for the past decade, with SphK inhibitors such as PF-543 and opaganib exhibiting clinical antitumour effects. By exploiting both CB5468139 and PF-543 as structural leads, we hereby report on the first quinoline-5,8-dione-based SphK inhibitor using a fragment-based approach. Methods: The quinoline-5,8-dione framework was developed to incorporate two defined regions, namely a polar quinoline core, which links to an aryl lipophilic chain. All synthetic molecules were characterized by NMR and HRMS and assayed against SphK 1 and 2, and molecular docking studies were performed. A subset of compounds was screened for anticancer activity. Results: As the binding site of SphK accommodates the lipophilic tail of sphingosine, we initially set out to explore the substitution of the C(7) aryl moiety to attain eight novel C(7) ether-linked quinoline-5,8-diones, which were screened for SphK1 and SphK2 activity with good potency identified. To improve SphK binding, structural fragments were adapted from PF-543 to participate in hydrogen bonding within the binding site of SphK1. A model study was performed to yield novel compounds through activated C(2) formyl intermediates. Two pyrrolidine-based quinoline-5,8-diones were assayed for SphK activity, with 21 revealing an improvement of SphK1 binding efficacy relative to the parent compound and 20 (and its precursor 4). Molecular modelling on the pyrrolidine quinoline-5,8-dione construct revealed favourable docking, low binding energies and opportunities for further improvement. Conclusions: Although the screening of anticancer activity was inconclusive, low micromolar dual SphK1/2 inhibition with the quinoline-5,8-dione framework has been identified for the first time, and a plausible new binding mode has been identified.
Collapse
Affiliation(s)
- Ryan D Kruschel
- School of Chemistry and ABCRF, University College Cork, Western Road, T12K8AF Cork, Ireland
| | - Kyle Malone
- School of Pharmacy, University College Cork, Pharmacy Building, College Road, T12K8AF Cork, Ireland
| | - Alison N Walsh
- School of Chemistry and ABCRF, University College Cork, Western Road, T12K8AF Cork, Ireland
| | - Christian Waeber
- School of Pharmacy, University College Cork, Pharmacy Building, College Road, T12K8AF Cork, Ireland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, T12XF62 Cork, Ireland
| | - Florence O McCarthy
- School of Chemistry and ABCRF, University College Cork, Western Road, T12K8AF Cork, Ireland
| |
Collapse
|
2
|
Baek JS, Lee JH, Kim JH, Cho SS, Kim YS, Yang JH, Shin EJ, Kang HG, Kim SJ, Ahn SG, Park EY, Baek DJ, Yim SK, Kang KW, Ki SH, Kim KM. An inducible sphingosine kinase 1 in hepatic stellate cells potentiates liver fibrosis. Biochem Pharmacol 2024; 229:116520. [PMID: 39236934 DOI: 10.1016/j.bcp.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2023] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hepatic stellate cells (HSCs) play a role in hepatic fibrosis and sphingosine kinase (SphK) is involved in biological processes. As studies on the regulatory mechanisms and functions of SphK in HSCs during liver fibrosis are currently limited, this study aimed to elucidate the regulatory mechanism and connected pathways of SphK upon HSC activation. The expression of SphK1 was higher in HSCs than in hepatocytes, and upregulated in activated primary HSCs. SphK1 was also increased in liver homogenates of carbon tetrachloride-treated or bile duct ligated mice and in transforming growth factor-β (TGF-β)-treated LX-2 cells. TGF-β-mediated SphK1 induction was due to Smad3 signaling in LX-2 cells. SphK1 modulation altered the expression of liver fibrogenesis-related genes. This SphK1-mediated profibrogenic effect was dependent on SphK1/sphingosine-1-phosphate/sphingosine-1-phosphate receptor signaling through ERK. Epigallocatechin gallate blocked TGF-β-induced SphK1 expression and hepatic fibrogenesis by attenuating Smad and MAPK activation. SphK1 induced by TGF-β facilitates HSC activation and liver fibrogenesis, which is reversed by epigallocatechin gallate. Accordingly, SphK1 and related signal transduction may be utilized to treat liver fibrosis.
Collapse
Affiliation(s)
- Jin Sol Baek
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Ji Hyun Lee
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Ji Hye Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Sam Seok Cho
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea; Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do 58245, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyeon-Gu Kang
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Seok-Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Republic of Korea
| | - Keon Wook Kang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Hwan Ki
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
3
|
Dhanabalan AK, Devadasan V, Haribabu J, Krishnasamy G. Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1. Mol Divers 2024:10.1007/s11030-024-10997-4. [PMID: 39417979 DOI: 10.1007/s11030-024-10997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapó, Chile
- Chennai Institute of Technology (CIT), Chennai, Tamil Nadu, 600069, India
| | - Gunasekaran Krishnasamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
4
|
Vettorazzi M, Díaz I, Angelina E, Salido S, Gutierrez L, Alvarez SE, Cobo J, Enriz RD. Second generation of pyrimidin-quinolone hybrids obtained from virtual screening acting as sphingosine kinase 1 inhibitors and potential anticancer agents. Bioorg Chem 2024; 144:107112. [PMID: 38237390 DOI: 10.1016/j.bioorg.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Iván Díaz
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Emilio Angelina
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Departamento de Química, Área de Química Física, Laboratorio de Estructura Molecular y Propiedades, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Sofía Salido
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Lucas Gutierrez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Sergio E Alvarez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Justo Cobo
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina.
| |
Collapse
|
5
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
6
|
Wang S, Huo Y, Zhang J, Li L, Cao F, Song Y, Zhang Y, Yang K. Design, synthesis, antitumor activity, and molecular dynamics simulations of novel sphingosine kinase 2 inhibitors. Bioorg Med Chem 2023; 93:117441. [PMID: 37586181 DOI: 10.1016/j.bmc.2023.117441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Targeting sphingosine kinase 2 (SphK2) has become a novel strategy for the treatment of cancer. However, potent and selective SphK2 inhibitors are rare. In our work, a series of novel SphK2 inhibitors were innovatively designed, synthesized and screened. Compound 12e showed the best inhibitory activity. Molecular dynamics simulations were carried out to analyze the detailed interactions between the SphK2 and its inhibitors. Moreover, 12e exhibited anti-proliferative activity in various cancer cells, and inhibited the migration of human breast cancer cells MCF-7.
Collapse
Affiliation(s)
- ShaSha Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jinmiao Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Shahwan M, Hassan N, Ashames A, Alrouji M, Alhumaydhi F, Al Abdulmonem W, Muhsinah AB, Furkan M, Khan RH, Shamsi A, Atiya A. PF543-like compound, a promising sphingosine kinase 1 inhibitor: Structure-based virtual screening and molecular dynamic simulation approaches. Int J Biol Macromol 2023; 245:125466. [PMID: 37348582 DOI: 10.1016/j.ijbiomac.2023.125466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Sphingosine kinase 1 (SphK1) has been widely recognized as a significant contributor to various types of cancer, including breast, lung, prostate, and hematological cancers. This research aimed to find a potential SphK1 inhibitor through a step-by-step virtual screening of PF543 (a known SphK1 inhibitor)-like compounds obtained from the PubChem library with the Tanimoto threshold of 80 %. The virtual screening process included several steps, namely physicochemical and ADMET evaluation, PAINS filtering, and molecular docking, followed by molecular dynamics (MD) simulation and principal component analysis (PCA). The results showed that compound CID:58293960 ((3R)-1,1-dioxo-2-[[3-[(4-phenylphenoxy)methyl]phenyl]methyl]-1,2-thiazolidine-3-carboxylic acid) demonstrated high potential as SphK1 inhibitor. All-atom MD simulations were performed for 100 ns to evaluate the stability and structural changes of the docked complexes in an aqueous environment. The analysis of the time evolution data of structural deviations, compactness, PCA, and free energy landscape (FEL) indicated that the binding of CID:58293960 with SphK1 is relatively stable throughout the simulation. The results of this study provide a platform for the discovery and development of new anticancer therapeutics targeting SphK1.
Collapse
Affiliation(s)
- Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Akram Ashames
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia; Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Akhtar Atiya
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia.
| |
Collapse
|
8
|
Barnawi J. Molecular docking analysis of sphingosine kinase 1 inhibitors for cancer management. Bioinformation 2023; 19:571-576. [PMID: 37886152 PMCID: PMC10599685 DOI: 10.6026/97320630019571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 10/28/2023] Open
Abstract
Sphingosine kinase 1 (SK1) catalyses the conversion of sphingosine to the signalling mediator sphingosine 1-phosphate. This is essential for cell survival and proliferation. SK1 is frequently overexpressed in various cancer types, promoting tumor progression. SK1 has been well documented as a promising target for anticancer therapy. In this study, a virtual screening approach was used to screen a total of 1068 natural compounds, with the aim of identifying potential inhibitors of SK1. The top hit compounds, namely CNP0296172, CNP0368143, CNP0380570, and CNP0290815, were selected based on their strong binding affinity and specificity towards the SK1 binding pocket. Notably, these selected hit compounds exhibited a higher affinity towards the SK1 binding pocket when compared to the positive control compound (PF-543). Furthermore, these compounds were found to meet the necessary drug like criteria, thus rendering them suitable candidates for further experimental validation as potential anticancer agents.
Collapse
Affiliation(s)
- Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
9
|
Yi X, Tang X, Li T, Chen L, He H, Wu X, Xiang C, Cao M, Wang Z, Wang Y, Wang Y, Huang X. Therapeutic potential of the sphingosine kinase 1 inhibitor, PF-543. Biomed Pharmacother 2023; 163:114401. [PMID: 37167721 DOI: 10.1016/j.biopha.2023.114401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023] Open
Abstract
PF-543 is a sphingosine kinase 1(SPHK1)inhibitor developed by Pfizer and is currently considered the most potent selective SPHK1 inhibitor. SPHK1 catalyses the production of sphingosine 1-phosphate (S1P) from sphingosine. It is the rate-limiting enzyme of S1P production, and there is substantial evidence to support a very important role for sphingosine kinase in health and disease. This review is the first to summarize the role and mechanisms of PF-543 as an SPHK1 inhibitor in anticancer, antifibrotic, and anti-inflammatory processes, providing new therapeutic leads and ideas for future research and clinical trials.
Collapse
Affiliation(s)
- Xueliang Yi
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China
| | - Xuemei Tang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianlong Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- University of Electronic Science and Technology of China, China
| | - Hongli He
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China
| | - Xiaoxiao Wu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunlin Xiang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Cao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zixiang Wang
- University of Electronic Science and Technology of China, China
| | - Yi Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| | - Yiping Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| |
Collapse
|
10
|
Sah RK, Anand S, Dar W, Jain R, Kumari G, Madan E, Saini M, Gupta A, Joshi N, Hada RS, Gupta N, Pati S, Singh S. Host-Erythrocytic Sphingosine-1-Phosphate Regulates Plasmodium Histone Deacetylase Activity and Exhibits Epigenetic Control over Cell Death and Differentiation. Microbiol Spectr 2023; 11:e0276622. [PMID: 36744922 PMCID: PMC10100792 DOI: 10.1128/spectrum.02766-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2022] [Accepted: 01/08/2023] [Indexed: 02/07/2023] Open
Abstract
The evolution of resistance to practically all antimalarial drugs poses a challenge to the current malaria elimination and eradication efforts. Given that the epigenome of Plasmodium falciparum governs several crucial parasite functions, pharmaceutical interventions with transmission-blocking potential that target epigenetic molecular markers and regulatory mechanisms are likely to encounter drug resistance. In the malaria parasite, histone deacetylases (HDACs) are essential epigenetic modulators that regulate cellular transcriptional rearrangements, notably the molecular mechanisms underlying parasite proliferation and differentiation. We establish "lipid sequestration" as a mechanism by which sphingolipids, specifically Sphingosine-1-Phosphate (S1P) (a metabolic product of Sphingosine Kinase 1 [SphK-1]), regulate epigenetic reprogramming in the parasite by interacting with, and modulating, the histone-deacetylation activity of PfHDAC-1, thereby regulating Plasmodium pathogenesis. Furthermore, we demonstrate that altering host S1P levels with PF-543, a potent and selective Sphk-1 inhibitor, dysregulates PfHDAC-1 activity, resulting in a significant increase in the global histone acetylation signals and, consequently, transcriptional modulation of genes associated with gametocytogenesis, virulence, and proliferation. Our findings point to a hitherto unrecognized functional role for host S1P-mediated sphingolipid signaling in modulating PfHDAC-1's enzymatic activity and, as a result, the parasite's dynamic genome-wide transcriptional patterns. The epigenetic regulation of parasite proliferation and sexual differentiation offers a novel approach for developing host-targeted therapeutics to combat malaria resistance to conventional regimens. IMPORTANCE Sphingolipid is an 18-carbon amino-alcohol-containing lipid with a sphingosine backbone, which when phosphorylated by sphingosine kinase 1 (SphK-1), generates sphingosine-1-phosphate (S1P), an essential lipid signaling molecule. Dysregulation of S1P function has been observed in a variety of pathologies, including severe malaria. The malaria parasite Plasmodium acquires a host S1P pool for its growth and survival. Here, we describe the molecular attuning of histone deacetylase-1 (PfHDAC-1), a crucial epigenetic modulator that contributes to the establishment of epigenetic chromatin states and parasite survival, in response to S1P binding. Our findings highlight the host lipid-mediated epigenetic regulation of malaria parasite key genes.
Collapse
Affiliation(s)
- Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Waseem Dar
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Nishant Joshi
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Rahul Singh Hada
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Gupta P, Kadamberi IP, Mittal S, Tsaih S, George J, Kumar S, Vijayan DK, Geethadevi A, Parashar D, Topchyan P, McAlarnen L, Volkman BF, Cui W, Zhang KYJ, Di Vizio D, Chaluvally‐Raghavan P, Pradeep S. Tumor Derived Extracellular Vesicles Drive T Cell Exhaustion in Tumor Microenvironment through Sphingosine Mediated Signaling and Impacting Immunotherapy Outcomes in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104452. [PMID: 35289120 PMCID: PMC9108620 DOI: 10.1002/advs.202104452] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/07/2021] [Revised: 02/10/2022] [Indexed: 05/13/2023]
Abstract
SPHK1 (sphingosine kinase-1) catalyzes the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P), is found to be highly expressed in solid tumors. Here, extracellular vesicles (EVs) are identified as the key transporters of SPHK1 to the tumor microenvironment. Consequently, SPHK1-packaged EVs elevate S1P levels in the tumor microenvironment, where S1P appears as an immunosuppressive agent. However, the exact mechanism of how S1P mediates its immunosuppressive effects in cancer is not understood. It is investigated that S1P can induce T cell exhaustion. S1P can also upregulate programmed death ligand-1 (PDL-1) expression through E2F1-mediated transcription. Notably, an SPHK1 inhibitor PF543 improves T cell-mediated cytotoxicity. Furthermore, combining PF543 with an anti-PD-1 antibody reduces tumor burden and metastasis more effectively than PF543 alone in vivo. These data demonstrate a previously unrecognized mechanism of how SPHK1-packaged EVs contribute to the progression of ovarian cancer and thus present the potential clinical application of inhibiting SPHK1/S1P signaling to improve immune checkpoint blockage (anti-PD-1 antibody) therapy in ovarian cancer.
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | | | - Sonam Mittal
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Shirng‐Wern Tsaih
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Jasmine George
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Sudhir Kumar
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Dileep K. Vijayan
- Laboratory for computational and structural biologyJubilee Center for Medical ResearchThrissurKerala680006India
- Laboratory for Structural BioinformaticsCenter for Biosystems Dynamics ResearchRiken230‐0045Japan
| | - Anjali Geethadevi
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Deepak Parashar
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Paytsar Topchyan
- Department of Microbiology and ImmunologyMCW and Versiti Blood Research InstituteMilwaukeeWisconsin53226USA
| | - Lindsey McAlarnen
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Brian F Volkman
- Department of BiochemistryMedical College of WisconsinMilwaukee53226USA
| | - Weiguo Cui
- Department of Microbiology and ImmunologyMCW and Versiti Blood Research InstituteMilwaukeeWisconsin53226USA
| | - Kam Y. J. Zhang
- Laboratory for Structural BioinformaticsCenter for Biosystems Dynamics ResearchRiken230‐0045Japan
| | - Dolores Di Vizio
- Department of SurgeryPathology and Laboratory MedicineSamuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Pradeep Chaluvally‐Raghavan
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Medical College of Wisconsin Cancer CenterMedical College of WisconsinMilwaukeeWisconsin53226USA
| | - Sunila Pradeep
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin53226USA
- Medical College of Wisconsin Cancer CenterMedical College of WisconsinMilwaukeeWisconsin53226USA
| |
Collapse
|
12
|
Zhang S, Chen X, Wu C, Xu H, Xie X, Feng M, Hu S, Bai H, Gao F, Tong L, Ding J, Liu H, Xie Z, Wang J. Novel Sphingosine Kinase 1 Inhibitor Suppresses Growth of Solid Tumor and Inhibits the Lung Metastasis of Triple-Negative Breast Cancer. J Med Chem 2022; 65:7697-7716. [PMID: 35439002 DOI: 10.1021/acs.jmedchem.2c00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Targeting sphingosine kinase 1 (SphK1) has become a novel strategy for the treatment of inflammatory bowel disease and cancer via the SphK1/S1P signaling pathway. However, exploration of SphK1 inhibitor therapeutic applications has been hampered by the poor pharmacokinetic properties of these SphK1 inhibitors. Herein, we report the structural optimization and structure-activity relationship studies of a series of novel SphK1 inhibitors. The novel compound 28 selectively inhibits SphK1 and exhibits higher anti-proliferative activity compared to the positive compound PF-543 in various cancer cells, which is associated with the induction of G0/G1 phase arrest and apoptosis; besides, it could also inhibit the cell migration. Further, compound 28 can suppress in vivo growth of both colon tumor and triple-negative breast tumor and inhibits the lung metastasis of triple-negative breast cancer with higher potency compared with that of PF-543. Collectively, compound 28 represents a promising lead compound for the treatment of solid tumor and the metastasis.
Collapse
Affiliation(s)
- Shurui Zhang
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaoxu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chenglin Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mingshun Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shulei Hu
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hudagula Bai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Feng Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linjiang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
13
|
Ding T, Chen H, Li Y, Li Y, Zhi Y, Qu Z, Sun Q, Yao Q, Liu B. Discovery of an SphK1 inhibitor: A hybrid approach involving a receptor–ligand-complex-based pharmacophore and docking-based virtual screening. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221089222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Sphingosine kinase is a lipid kinase that catalyzes the phosphorylation of sphingosine to sphingosine-1-phosphate. Sphingosine-1-phosphate is a bioactive lipid that regulates biological processes. The overexpression of sphingosine kinases is related to a variety of pathophysiological conditions. For example, SphK1 has been shown to be highly expressed in various cancer cells including ovarian, cervical, colon, stomach, lung, and brain cancer. Inhibition of sphingosine kinases is a promising way to treat diseases such as cancer. Through computer-aided drug design, we have discovered a new SphK1 inhibitor named Amb30572637 (SAMS10). In this report, we describe the discovery process and biological characteristics. In biochemical experiments, SAMS10 shows a prominent inhibitory effect on SphK1, with an IC50 value of 9.8 μM. Subsequent MTT experiments show that SAMS10 has anticancer effects toward A549, SKVO3, A375, and LOVO cell lines and has essentially no cytotoxicity against the healthy cell L929. SAMS10 has significant inhibitory activity against the A549 and LOVO cell lines, with IC50 values of 14.64 and 14.48 μM, respectively. It belongs to a moderately active SphK1 inhibitor with lower anticancer activity than the control compound cisplatin, but the effect of SAMS10 toward SphK1 and its anticancer activity indicate that it is a promising lead compound for the development of effective SphK1 anticancer inhibitors.
Collapse
Affiliation(s)
- Tiandi Ding
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - HaiJiao Chen
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Yan Li
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Ying Li
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Ying Zhi
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Zhiqiang Qu
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Qiang Sun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| |
Collapse
|
14
|
Sandhu G, Thelma BK. New Druggable Targets for Rheumatoid Arthritis Based on Insights From Synovial Biology. Front Immunol 2022; 13:834247. [PMID: 35265082 PMCID: PMC8899708 DOI: 10.3389/fimmu.2022.834247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized by chronic inflammation and destruction of multiple small joints which may lead to systemic complications. Altered immunity via pathogenic autoantibodies pre-date clinical symptom development by several years. Incompletely understood range of mechanisms trigger joint-homing, leading to clinically evident articular disease. Advances in therapeutic approaches and understanding pathogenesis have improved prognosis and likely remission. However, partial/non-response to conventional and biologic therapies witnessed in a subset of patients highlights the need for new therapeutics. It is now evident that joint disease chronicity stems from recalcitrant inflammatory synovial environment, majorly maintained by epigenetically and metabolically reprogrammed synoviocytes. Therefore, interference with effector functions of activated cell types seems a rational strategy to reinstate synovial homeostasis and complement existing anti-inflammatory interventions to mitigate chronic RA. Presenting this newer aspect of fibroblast-like synoviocytes and myeloid cells underlying the altered synovial biology in RA and its potential for identification of new druggable targets is attempted in this review. Major leads from i) molecular insights of pathogenic cell types from hypothesis free OMICS approaches; ii) hierarchy of their dysregulated signaling pathways; and iii) knowledge of druggability of molecular nodes in these pathways are highlighted. Development of such synovial biology-directed therapeutics hold promise for an enriched drug repertoire for RA.
Collapse
Affiliation(s)
| | - B. K. Thelma
- Department of Genetics, University of Delhi, New Delhi, India
| |
Collapse
|
15
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
16
|
Vitamin D3 Prevents the Deleterious Effects of Testicular Torsion on Testis by Targeting miRNA-145 and ADAM17: In Silico and In Vivo Study. Pharmaceuticals (Basel) 2021; 14:ph14121222. [PMID: 34959623 PMCID: PMC8703569 DOI: 10.3390/ph14121222] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Testicular torsion (TT) is the most common urological emergency in children and young adults that can lead to infertility in many cases. The ischemia-reperfusion (IR) injury due to TT has been implicated in the pathogenesis of testicular damage. The main pathological mechanisms of contralateral injury after ipsilateral TT are not fully understood. In the presented study, we investigated the molecular and microscopic basis of ipsilateral and contralateral testicular injury following ipsilateral testicular torsion detorsion (T/D) and explored the possible protective role of vitamin D3. The biochemical analysis indicated that IR injury following T/D significantly decreased the activity of testicular glutathione peroxidase (GPx) enzyme, level of serum testosterone, serum inhibin B, and expression of testicular miRNA145, while increased the activity of testicular myeloperoxidase (MPO) enzyme, level of testicular malondialdehyde (MDA), level of serum antisperm-antibody (AsAb), and expression of ADAM-17. The histological and semen analysis revealed that torsion of the testis caused damages on different tissues in testis. Interestingly, administration of vitamin D3 prior to the IR injury reversed the deterioration effect of IR injury on the testicular tissues as indicated by biochemical and histological analysis which revealed normal appearance of the seminiferous tubules with an apparent decrease in collagen fiber deposition in both ipsilateral and contralateral testes. Our results revealed that the protective effect of vitamin D3 treatment could be attributed to target miRNA145 and ADAM17 protein. To further investigate these findings, we performed a detailed molecular modelling study in order to explore the binding affinity of vitamin D3 toward ADAM17 protein. Our results revealed that vitamin D3 has the ability to bind to the active site of ADAM17 protein via a set of hydrophobic and hydrophilic interactions with high docking score. In conclusion, this study highlights the protective pharmacological application of vitamin D3 to ameliorate the damages of testicular T/D on the testicular tissues via targeting miRNA145 and ADAM17 protein.
Collapse
|
17
|
Bu Y, Wu H, Deng R, Wang Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front Pharmacol 2021; 12:733387. [PMID: 34737701 PMCID: PMC8560647 DOI: 10.3389/fphar.2021.733387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sphingosine kinase 1(SphK1) a key enzyme that catalyzes the conversion of sphingosine (Sph) to sphingosine 1-phosphate (S1P), so as to maintain the dynamic balance of sphingolipid-rheostat in cells and participate in cell growth and death, proliferation and migration, vasoconstriction and remodeling, inflammation and metabolism. The normal expression of SphK1 maintains the balance of physiological and pathological states, which is reflected in the regulation of inflammatory factor secretion, immune response in traditional immune cells and non-traditional immune cells, and complex signal transduction. However, abnormal SphK1 expression and activity are found in various inflammatory and immune related-diseases, such as hypertension, atherosclerosis, Alzheimer’s disease, inflammatory bowel disease and rheumatoid arthritis. In view of the therapeutic potential of regulating SphK1 and its signal, the current research is aimed at SphK1 inhibitors, such as SphK1 selective inhibitors and dual SphK1/2 inhibitor, and other compounds with inhibitory potency. This review explores the regulatory role of over-expressed SphK1 in inflammatory and immune related-diseases, and investigate the latest progress of SphK1 inhibitors and the improvement of disease or pathological state.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
18
|
Butler KJ, Castro AA, Dwyer TS, Hardwick LM, Iacino MC, Manore SG, Mays KM, McGlade CA, Hair LN, Parker EW, Smith MR, Turnow MT, Wilson MR, Woodson SR, Cotham WE, Walla MD, Hurlbert JC, Christian Grattan T. Design, synthesis and analysis of novel sphingosine kinase-1 inhibitors to improve oral bioavailability. Bioorg Med Chem Lett 2021; 50:128329. [PMID: 34418572 DOI: 10.1016/j.bmcl.2021.128329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
The sphingomyelin pathway is important in cell regulation and determining cellular fate. Inhibition of sphingosine kinase isoform 1 (SK1) within this pathway, leads to a buildup of sphingosine and ceramide, two molecules directly linked to cell apoptosis, while decreasing the intracellular concentration of sphingosine-1-phosphate (S1P), a molecule linked to cellular proliferation. Recently, an inhibitor capable of inhibiting SK1 in vitro was identified, but also shown to be ineffective in vivo. A set of compounds designed to assess the impact of synthetic modifications to the hydroxynaphthalene ring region of the template inhibitor with SK1 to obtain a compound with increased efficacy in vivo. Of these fifteen compounds, 4A was shown to have an IC50 = 6.55 μM with improved solubility and in vivo potential.
Collapse
Affiliation(s)
- Kendarius J Butler
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Angel A Castro
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Tiffany S Dwyer
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Louise M Hardwick
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Melody C Iacino
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Sara G Manore
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Kevin M Mays
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Caylie A McGlade
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Lisa N Hair
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Erin W Parker
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Mikala R Smith
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Morgan T Turnow
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Matthew R Wilson
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - Stephanie R Woodson
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - William E Cotham
- University of South Carolina, Department of Chemistry and Biochemistry, GSRC Rm 108M, Columbia, SC 29208, United States
| | - Michael D Walla
- University of South Carolina, Department of Chemistry and Biochemistry, GSRC Rm 108M, Columbia, SC 29208, United States
| | - Jason C Hurlbert
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| | - T Christian Grattan
- Winthrop University, Department of Chemistry, Physics and Geology, SIMS Building Rm 101, Rock Hill, SC 29733, United States
| |
Collapse
|
19
|
Novel N-bridged pyrazole-1-carbothioamides with potential antiproliferative activity: design, synthesis, in vitro and in silico studies. Future Med Chem 2021; 13:1743-1766. [PMID: 34427113 DOI: 10.4155/fmc-2021-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Thiazole-substituted pyrazole is an important structural feature of many bioactive compounds, including antiviral, antitubercular, analgesic and anticancer agents. Herein we describe an efficient and facile approach for the synthesis of two series of 36 novel N-bridged pyrazole-1-phenylthiazoles. The antiproliferative activity of a set of representative compounds was evaluated in vitro against different human cancer cell lines. Among the identified compounds, compound 18 showed potent anticancer activity against the examined cancer cell lines. The in silico molecular docking study revealed that compound 18 possesses high binding affinity toward both SK1 and CDK2. Overall, these results indicate that compound 18 is a promising lead anticancer compound which may be exploited for development of antiproliferative drugs.
Collapse
|
20
|
Shamshiddinova M, Gulyamov S, Kim HJ, Jung SH, Baek DJ, Lee YM. A Dansyl-Modified Sphingosine Kinase Inhibitor DPF-543 Enhanced De Novo Ceramide Generation. Int J Mol Sci 2021; 22:ijms22179190. [PMID: 34502095 PMCID: PMC8431253 DOI: 10.3390/ijms22179190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc. In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Maftuna Shamshiddinova
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Shokhid Gulyamov
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Hee-Jung Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Seo-Hyeon Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Dong-Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58628, Korea;
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
- Correspondence: ; Tel.: +82-43-261-2825
| |
Collapse
|
21
|
Galal SA, Omar MA, Khairat SHM, Ragab FAF, Roy S, Naqvi AAT, Hassan MI, El Diwani HI. Design and synthesis of new pyrazolylbenzimidazoles as sphingosine kinase-1 inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
22
|
Khairat SHM, Omar MA, Ragab FAF, Roy S, Turab Naqvi AA, Abdelsamie AS, Hirsch AKH, Galal SA, Hassan MI, El Diwani HI. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as sphingosine kinase 1 inhibitor. Arch Pharm (Weinheim) 2021; 354:e2100080. [PMID: 34128259 DOI: 10.1002/ardp.202100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Sphingosine kinase 1 (SphK1) has emerged as an attractive drug target for different diseases. Recently, discovered SphK1 inhibitors have been recommended in cancer therapeutics; however, selectivity and potency are great challenges. In this study, a novel series of benzimidazoles was synthesized and evaluated as SphK1 inhibitors. Our design strategy is twofold: It aimed first to study the effect of replacing the 5-position of the benzimidazole ring with a polar carboxylic acid group on the SphK1-inhibitory activity and cytotoxicity. Our second aim was to optimize the structures of the benzimidazoles through the elongation of the chain. The enzyme inhibition potentials against all the synthesized compounds toward SphK1 were evaluated, and the results revealed that most of the studied compounds inhibited SphK1 effectively. The binding affinity of the benzimidazole derivatives toward SphK1 was measured by fluorescence binding and molecular docking. Compounds 33, 37, 39, 41, 42, 43, and 45 showed an appreciable binding affinity. Therefore, the SphK1-inhibitory potentials of compounds 33, 37, 39, 41, 42, 43, and 45 were studied and IC50 values were determined, to reveal high potency. The study showed that these compounds inhibited SphK1 with effective IC50 values. Among the studied compounds, compound 41 was the most effective one with the lowest IC50 value and a high cytotoxicity on a wide spectrum of cell lines. Molecular docking revealed that most of these compounds fit well into the ATP-binding site of SphK1 and form hydrogen bond interactions with catalytically important residues. Overall, the findings suggest the therapeutic potential of benzimidazoles in the clinical management of SphK1-associated diseases.
Collapse
Affiliation(s)
- Sarah H M Khairat
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Mohamed A Omar
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ahmad A Turab Naqvi
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shadia A Galal
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hoda I El Diwani
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
23
|
A chemical screen for modulators of mRNA translation identifies a distinct mechanism of toxicity for sphingosine kinase inhibitors. PLoS Biol 2021; 19:e3001263. [PMID: 34033645 PMCID: PMC8183993 DOI: 10.1371/journal.pbio.3001263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2020] [Revised: 06/07/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class. In addition, we identified that inhibitors of sphingosine kinases (SPHKs) also reduce mRNA translation levels independently of mTOR. Mechanistically, this is explained by an effect of the compounds on the membranes of the endoplasmic reticulum (ER), which activates the integrated stress response (ISR) and contributes to the toxicity of SPHK inhibitors. Surprisingly, the toxicity and activation of the ISR triggered by 2 independent SPHK inhibitors, SKI-II and ABC294640, the latter in clinical trials, are also observed in cells lacking SPHK1 and SPHK2. In summary, our study provides a useful resource on the effects of medically used drugs on translation, identified compounds capable of reducing translation independently of mTOR and has revealed that the cytotoxic properties of SPHK inhibitors being developed as anticancer agents are independent of SPHKs.
Collapse
|
24
|
Dai L, Wang C, Song K, Wang W, Di W. Activation of SphK1 by adipocytes mediates epithelial ovarian cancer cell proliferation. J Ovarian Res 2021; 14:62. [PMID: 33931106 PMCID: PMC8088075 DOI: 10.1186/s13048-021-00815-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
Background Adipocytes, active facilitators of epithelial ovarian cancer (EOC) growth, have been implicated in the link between obesity and EOC. However, the current understanding of the mechanisms underlying adipocyte-induced EOC cell proliferation remains incomplete. Results We provide the first evidence showing that sphingosine kinase (SphK) 1 is critical for adipocyte-induced EOC cell proliferation. Adipocytes are capable of activating SphK1, which then leads to extracellular signal-regulated kinase (ERK) phosphorylation. Moreover, adipocyte-induced SphK1 activation is ERK dependent. Furthermore, sphingosine 1-phosphate receptor (S1PR) 1 and S1PR3, key components of the SphK1 signalling pathway, participate in adipocyte-mediated growth-promoting action in EOC cells. Conclusions Our study reveals a previously unrecognized role of SphK1 in adipocyte-induced growth-promoting action in EOC, suggesting a new target for EOC therapy.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Chen Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
25
|
Brown RDR, Veerman BEP, Oh J, Tate RJ, Torta F, Cunningham MR, Adams DR, Pyne S, Pyne NJ. A new model for regulation of sphingosine kinase 1 translocation to the plasma membrane in breast cancer cells. J Biol Chem 2021; 296:100674. [PMID: 33865856 PMCID: PMC8135045 DOI: 10.1016/j.jbc.2021.100674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
The translocation of sphingosine kinase 1 (SK1) to the plasma membrane (PM) is crucial in promoting oncogenesis. We have previously proposed that SK1 exists as both a monomer and dimer in equilibrium, although it is unclear whether these species translocate to the PM via the same or different mechanisms. We therefore investigated the structural determinants involved to better understand how translocation might potentially be targeted for therapeutic intervention. We report here that monomeric WT mouse SK1 (GFP-mSK1) translocates to the PM of MCF-7L cells stimulated with carbachol or phorbol 12-myristate 13-acetate, whereas the dimer translocates to the PM in response to sphingosine-1-phosphate; thus, the equilibrium between the monomer and dimer is sensitive to cellular stimulus. In addition, carbachol and phorbol 12-myristate 13-acetate induced translocation of monomeric GFP-mSK1 to lamellipodia, whereas sphingosine-1-phosphate induced translocation of dimeric GFP-mSK1 to filopodia, suggesting that SK1 regulates different cell biological processes dependent on dimerization. GFP-mSK1 mutants designed to modulate dimerization confirmed this difference in localization. Regulation by the C-terminal tail of SK1 was investigated using GFP-mSK1 truncations. Removal of the last five amino acids (PPEEP) prevented translocation of the enzyme to the PM, whereas removal of the last ten amino acids restored translocation. This suggests that the penultimate five amino acids (SRRGP) function as a translocation brake, which can be released by sequestration of the PPEEP sequence. We propose that these determinants alter the arrangement of N-terminal and C-terminal domains in SK1, leading to unique surfaces that promote differential translocation to the PM.
Collapse
Affiliation(s)
- Ryan D R Brown
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ben E P Veerman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Jeongah Oh
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Federico Torta
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Margaret R Cunningham
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK.
| |
Collapse
|
26
|
Shrestha J, Lee JY, Park EY, Baek DJ. Synthesis of PF-543 Derivatives Using Simple Synthetic Methods and Their Biological Effect Analysis for the Development of Anticolorectal Cancer Agents. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200908093524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Background:
Sphingolipids, even in extremely low doses, regulate various physiological
functions. Particularly, immune and cancer cells might be controlled by changes in the sphingosine-
1-phosphate (S1P) levels, and S1P has been studied for a long time as a major target for new drug
development. Sphingosine kinase (SK) phosphorylates sphingosine to produce S1P. An increase in
the S1P levels promotes the growth of cancer cells. SK has 2 isoforms, SK1 and SK2, both of which
are involved in the growth of cancer cells.
Objective:
PF-543 has been developed as an SK1 inhibitor and has a non-lipid structure that differs
from those of general SK inhibitors. While PF-543 has a potent SK1 inhibitory effect, and has low
anticancer activity in some types of cancer cells. Therefore, the development of other PF-543 derivatives
is needed.
Methods:
We designed a structurally simplified derivative of PF-543. To primarily demonstrate that
the designed structure was biologically active, 8 derivatives were synthesized by a 2-step method
using the commercial starting material, and their biological activities were evaluated.
Results:
The SK1-inhibitory effects of the synthesized derivatives were not higher than that of PF-
543. However, the anticancer activity and apoptotic effect of the derivatives were similar to those of
PF-543, despite their fabrication from a simple modification of the PF-543 structure. In a docking
study, the derivatives were found to bind SK1 in a form similar to PF-543.
Conclusion:
Our analogs, which are similar to PF-543, showed comparable anticancer activity, indicating
that the synthesized derivatives are structurally more efficient for anticancer activity than
PF-543. Therefore, our study provides important information that may be useful for developing new
anticancer substances that target SK1.
Collapse
Affiliation(s)
- Jitendra Shrestha
- College of Pharmacy, Mokpo National University, Jeonnam 58554, South Korea
| | - Joo-Youn Lee
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Jeonnam 58554, South Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58554, South Korea
| |
Collapse
|
27
|
Qi Y, Wang W, Song Z, Aji G, Liu XT, Xia P. Role of Sphingosine Kinase in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 11:627076. [PMID: 33633691 PMCID: PMC7899982 DOI: 10.3389/fendo.2020.627076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids are a class of essential lipids, functioning as both cell membrane constituents and signaling messengers. In the sphingolipid metabolic network, ceramides serve as the central hub that is hydrolyzed to sphingosine, followed by phosphorylation to sphingosine 1-phosphate (S1P) by sphingosine kinase (SphK). SphK is regarded as a "switch" of the sphingolipid rheostat, as it catalyzes the conversion of ceramide/sphingosine to S1P, which often exhibit opposing biological roles in the cell. Besides, SphK is an important signaling enzyme that has been implicated in the regulation of a wide variety of biological functions. In recent years, an increasing body of evidence has suggested a critical role of SphK in type 2 diabetes mellitus (T2D), although a certain level of controversy remains. Herein, we review recent findings related to SphK in the field of T2D research with a focus on peripheral insulin resistance and pancreatic β-cell failure. It is expected that a comprehensive understanding of the role of SphK and the associated sphingolipids in T2D will help to identify druggable targets for future anti-diabetes therapy.
Collapse
Affiliation(s)
- Yanfei Qi
- Lipid Cell Biology Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia
| | - Wei Wang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyu Song
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gulibositan Aji
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Tracy Liu
- Lipid Cell Biology Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Ding T, Zhi Y, Xie W, Yao Q, Liu B. Rational design of SphK inhibitors using crystal structures aided by computer. Eur J Med Chem 2021; 213:113164. [PMID: 33454547 DOI: 10.1016/j.ejmech.2021.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Sphingosine kinases (SphKs) are lipid kinases that catalyze the phosphorylation of sphingosine (Sph) to sphingosine-1-phosphate (S1P). As a bioactive lipid, S1P plays a role outside and inside the cell to regulate biological processes. The overexpression of SphKs is related to a variety of pathophysiological conditions. Targeting the S1P signaling pathway is a potential treatment strategy for many diseases. SphKs are key kinases of the S1P signaling pathway. The SphK family includes two isoforms: SphK1 and SphK2. Determination of the co-crystal structure of SphK1 with various inhibitors has laid a solid foundation for the development of small molecule inhibitors targeting SphKs. This paper reviews the differences and connections between the two isoforms and the structure of SphK1 crystals, especially the structure of its Sph "J-shaped" channel binding site. This review also summarizes the recent development of SphK1 and SphK2 selective inhibitors and the exploration of the unresolved SphK2 structure.
Collapse
Affiliation(s)
- Tiandi Ding
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Ying Zhi
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| |
Collapse
|
29
|
Ren R, Pang B, Han Y, Li Y. A Glimpse of the Structural Biology of the Metabolism of Sphingosine-1-Phosphate. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:2515256421995601. [PMID: 37366379 PMCID: PMC10243590 DOI: 10.1177/2515256421995601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/18/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/28/2023]
Abstract
As a key sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays crucial roles in vascular and immune systems. It regulates angiogenesis, vascular integrity and homeostasis, allergic responses, and lymphocyte trafficking. S1P is interconverted with sphingosine, which is also derived from the deacylation of ceramide. S1P levels and the ratio to ceramide in cells are tightly regulated by its metabolic pathways. Abnormal S1P production causes the occurrence and progression of numerous severe diseases, such as metabolic syndrome, cancers, autoimmune disorders such as multiple sclerosis, and kidney and cardiovascular diseases. In recent years, huge advances on the structure of S1P metabolic pathways have been accomplished. In this review, we have got a glimpse of S1P metabolism through structural and biochemical studies of: sphingosine kinases, S1P transporters and S1P receptors, and the development of therapeutics targeting S1P signaling. The progress we summarize here could provide fresh perspectives to further the exploration of S1P functions and facilitate the development of therapeutic molecules targeting S1P signaling with improved specificity and therapeutic effects.
Collapse
Affiliation(s)
- Ruobing Ren
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Bin Pang
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Yufei Han
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Yihao Li
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| |
Collapse
|
30
|
Congdon M, Fritzemeier RG, Kharel Y, Brown AM, Serbulea V, Bevan DR, Lynch KR, Santos WL. Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. Eur J Med Chem 2020; 212:113121. [PMID: 33445156 DOI: 10.1016/j.ejmech.2020.113121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
Elevated levels of sphingosine 1-phosphate (S1P) and increased expression of sphingosine kinase isoforms (SphK1 and SphK2) have been implicated in a variety of disease states including cancer, inflammation, and autoimmunity. Consequently, the S1P signaling axis has become an attractive target for drug discovery. Selective inhibition of either SphK1 or SphK2 has been demonstrated to be effective in modulating S1P levels in animal models. While SphK1 inhibitors have received much attention, the development of potent and selective SphK2 inhibitors are emerging. Previously, our group reported a SphK2 naphthalene-based selective inhibitor, SLC5081308, which displays approximately 7-fold selectivity for hSphK2 over hSphK1 and has a SphK2 Ki value of 1.0 μM. To improve SphK2 potency and selectivity, we designed, synthesized, and evaluated a series of indole-based compounds derived from SLC5081308. After investigating substitution patterns around the indole ring, we discovered that 1,5-disubstitution promoted optimal binding in the SphK2 substrate binding site and subsequent inhibition of enzymatic activity. Our studies led to the identification of SLC5101465 (6r, SphK2 Ki = 90 nM, >110 fold selective for SphK2 over SphK1). Molecular modeling studies revealed key nonpolar interactions with Val308, Phe548, His556, and Cys533 and hydrogen bonds with both Asp211 and Asp308 as responsible for the high SphK2 inhibition and selectivity.
Collapse
Affiliation(s)
- Molly Congdon
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Russell G Fritzemeier
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Anne M Brown
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - David R Bevan
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
31
|
Rojas S, Parravicini O, Vettorazzi M, Tosso R, Garro A, Gutiérrez L, Andújar S, Enriz R. Combined MD/QTAIM techniques to evaluate ligand-receptor interactions. Scope and limitations. Eur J Med Chem 2020; 208:112792. [PMID: 32949964 DOI: 10.1016/j.ejmech.2020.112792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022]
Abstract
In medicinal chemistry, it is extremely important to evaluate, as accurately as possible, the molecular interactions involved in the formation of different ligand-receptor (L-R) complexes. Evaluating the different molecular interactions by quantum mechanics calculations is not a simple task, since formation of an L-R complex is a dynamic process. In this case, the use of combined techniques of molecular dynamics (MD) and quantum calculations is one the best possible approaches. In this work we report a comparative study using combined MD and QTAIM (Quantum Theory of Atoms In Molecules) calculations for five biological systems with different levels of structural complexity. We have studied Acetylcholinesterase (AChE), D2 Dopamine Receptor (D2DR), beta Secretase (BACE1), Dihydrofolate Reductase (DHFR) and Sphingosine Kinase 1 (SphK1). In these molecular targets, we have analyzed different ligands with diverse structural characteristics. The inhibitory activities of most of them have been previously measured in our laboratory. Our results indicate that QTAIM calculations can be extremely useful for in silico studies. It is possible to obtain very accurate information about the strength of the molecular interactions that stabilize the formation of the different L-R complexes. Better correlations can be obtained between theoretical and experimental data by using QTAIM calculations, allowing us to discriminate among ligands with similar affinities. QTAIM analysis gives fairly accurate information for weak interactions which are not well described by MD simulations. QTAIM study also allowed us to evaluate and determine which parts of the ligand need to be modified in order to increase its interactions with the molecular target. In this study we have discussed the importance of combined MD/QTAIM calculations for this type of simulations, showing their scopes and limitations.
Collapse
Affiliation(s)
- Sebastián Rojas
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Oscar Parravicini
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Marcela Vettorazzi
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Rodrigo Tosso
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Adriana Garro
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Lucas Gutiérrez
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Sebastián Andújar
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Ricardo Enriz
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
32
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors’ therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Li H, Sibley CD, Kharel Y, Huang T, Brown AM, Wonilowicz LG, Bevan DR, Lynch KR, Santos WL. Lipophilic tail modifications of 2-(hydroxymethyl)pyrrolidine scaffold reveal dual sphingosine kinase 1 and 2 inhibitors. Bioorg Med Chem 2020; 30:115941. [PMID: 33385956 DOI: 10.1016/j.bmc.2020.115941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023]
Abstract
The sphingosine 1-phosphate (S1P) signaling pathway is an attractive target for pharmacological manipulation due to its involvement in cancer progression and immune cell chemotaxis. The synthesis of S1P is catalyzed by the action of sphingosine kinase 1 or 2 (SphK1 or SphK2) on sphingosine and ATP. While potent and selective inhibitors of SphK1 or SphK2 have been reported, development of potent dual SphK1/SphK2 inhibitors are still needed. Towards this end, we report the structure-activity relationship profiling of 2-(hydroxymethyl)pyrrolidine-based inhibitors with 22d being the most potent dual SphK1/SphK2 inhibitor (SphK1 Ki = 0.679 μM, SphK2 Ki = 0.951 μM) reported in this series. 22d inhibited the growth of engineered Saccharomyces cerevisiae and decreased S1P levels in histiocytic lymphoma myeloid cell line (U937 cells), demonstrating inhibition of SphK1 and 2 in vitro. Molecular modeling studies of 22d docked inside the Sph binding pocket of both SphK1 and SphK2 indicate essential hydrogen bond between the 2-(hydroxymethyl)pyrrolidine head to interact with aspartic acid and serine residues near the ATP binding pocket, which provide the basis for dual inhibition. In addition, the dodecyl tail adopts a "J-shape" conformation found in crystal structure of sphingosine bound to SphK1. Collectively, these studies provide insight into the intermolecular interactions in the SphK1 and 2 active sites to achieve maximal dual inhibitory activity.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | | | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Laura G Wonilowicz
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
34
|
Design and synthesis of analogues of the sphingosine-1-phosphate receptor 1 agonist IMMH001 with improved phosphorylation rate in human blood. Bioorg Med Chem 2020; 28:115722. [PMID: 33065444 DOI: 10.1016/j.bmc.2020.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022]
Abstract
IMMH001, which is a prodrug for sphingosine-1-phosphate receptor 1 (S1P1) agonist, is converted to the active form, its monophosphate ester (S)-IMMH001-P, by sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2) in vivo. In this study, we designed head-piece-modified analogues of IMMH001 based on structural information and prepared them with an efficient modular synthetic strategy. The analogues showed higher phosphorylation rates in human blood than the parent compound. These results indicated that the pro-R hydroxymethyl in the head-piece-moiety of IMMH001 prevents the pro-S hydroxymethyl from being phosphorylated by the kinase and ATP. The analogues may have better therapeutic potential.
Collapse
|
35
|
Adams DR, Pyne S, Pyne NJ. Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases. Cell Signal 2020; 76:109806. [PMID: 33035646 DOI: 10.1016/j.cellsig.2020.109806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
Abstract
The sphingosine kinases, SK1 and SK2, catalyse the formation of the bioactive signalling lipid, sphingosine 1-phosphate (S1P), from sphingosine. SK1 and SK2 differ in their subcellular localisation, trafficking and regulation, but the isoforms are also distinct in their selectivity toward naturally occurring and synthetic ligands as substrates and inhibitors. To date, only the structure of SK1 has been determined, and a structural basis for selectivity differences in substrate handling by SK2 has yet to be established. Here we present a structural rationale, based on homology modelling and ligand docking, to account for the capacity of SK2, but not SK1, to efficiently process the pharmacologically active substances, fingolimod (FTY720) and safingol, as substrates. We propose that two key residue differences in hSK2 (Ser305/Thr584 in place of Ala175/Ala339 in hSK1) facilitate conformational switching in the lipid head group anchor residue, Asp308 (corresponding to Asp178 in hSK1), to accommodate substrate diversity for SK2. Our analysis accounts for the contrasting behaviour of fingolimod and safingol as non-turnover inhibitors of SK1, but substrates for SK2, and the observed stereoselectivity for phosphorylation of the pro-S hydroxymethyl group of fingolimod to generate (S)-FTY720-P in vivo. We also rationalise why methylation of the pro-R hydroxymethyl of FTY720 switches the behaviour of the resulting compound, (R)-FTY720 methyl ether (ROMe), to SK2-selective inhibition. Whilst the pharmacological significance of (S)-FTY720-P is firmly established, as the active principle of fingolimod in treating relapsing-remitting multiple sclerosis, the potential importance of SK-mediated phosphorylation of other substrates, such as safingol and non-canonical naturally occuring substrates such as (4E,nZ)-sphingadienes, is less widely appreciated. Thus, the contribution of SK2-derived safingol 1-phosphate to the anti-cancer activity of safingol should be considered. Similarly, the biological role of sphingadiene 1-phosphates derived from plant-based dietary sphingadienes, which we also show here are substrates for both SK1 and SK2, merits investigation.
Collapse
Affiliation(s)
- David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| |
Collapse
|
36
|
Blankenbach KV, Claas RF, Aster NJ, Spohner AK, Trautmann S, Ferreirós N, Black JL, Tesmer JJG, Offermanns S, Wieland T, Meyer zu Heringdorf D. Dissecting G q/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Cells 2020; 9:cells9102201. [PMID: 33003441 PMCID: PMC7599897 DOI: 10.3390/cells9102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCβ3, but accelerated by wild-type PLCβ3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCβ3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100–105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCβ and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCβ/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.
Collapse
Affiliation(s)
- Kira Vanessa Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Ralf Frederik Claas
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Natalie Judith Aster
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Nerea Ferreirós
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Justin L. Black
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette, West Lafayette, IN 47907-2054, USA;
| | - Stefan Offermanns
- Abteilung für Pharmakologie, Max-Planck-Institut für Herz- und Lungenforschung, 61231 Bad Nauheim, Germany;
| | - Thomas Wieland
- Experimentelle Pharmakologie Mannheim, European Center for Angioscience, Universität Heidelberg, 68167 Mannheim, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
- Correspondence: ; Tel.: +49-69-6301-3906
| |
Collapse
|
37
|
Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. ACS OMEGA 2020; 5:21550-21560. [PMID: 32905276 PMCID: PMC7469376 DOI: 10.1021/acsomega.0c02165] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The sphingosine kinase-1/sphingosine-1-phosphate pathway is linked with the cancer progression and survival of the chemotherapy-challenged cells. Sphingosine kinase-1 (SphK1) has emerged as an attractive drug target, but their inhibitors from natural sources are limited. In this study, we have chosen harmaline, one of the β-carboline alkaloids, and report its mechanism of binding to SphK1 and subsequent inhibition. Molecular docking combined with fluorescence binding studies revealed that harmaline binds to the substrate-binding pocket of SphK1 with an appreciable binding affinity and significantly inhibits the kinase activity of SphK1 with an IC50 value in the micromolar range. The cytotoxic effect of harmaline on non-small-cell lung cancer cells by MTT assay was found to be higher for H1299 compared to A549. Harmaline induces apoptosis in non-small-cell lung carcinoma cells (H1299 and A549), possibly via the intrinsic pathway. Our findings suggest that harmaline could be implicated as a scaffold for designing potent anticancer molecules with SphK1 inhibitory potential.
Collapse
Affiliation(s)
- Sonam Roy
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahnaz Parveen
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
38
|
Roy S, Mahapatra AD, Mohammad T, Gupta P, Alajmi MF, Hussain A, Rehman MT, Datta B, Hassan MI. Design and Development of Novel Urea, Sulfonyltriurea, and Sulfonamide Derivatives as Potential Inhibitors of Sphingosine Kinase 1. Pharmaceuticals (Basel) 2020; 13:E118. [PMID: 32526899 PMCID: PMC7346089 DOI: 10.3390/ph13060118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is one of the well-studied drug targets for cancer and inflammatory diseases. Recently discovered small-molecule inhibitors of SphK1 have been recommended in cancer therapeutics; however, selectivity and potency of first-generation inhibitors are great challenge. In search of effective SphK1 inhibitors, a set of small molecules have been designed and synthesized bearing urea, sulfonylurea, sulfonamide, and sulfonyltriurea groups. The binding affinity of these inhibitors was measured by fluorescence-binding assay and isothermal titration calorimetry. Compounds 1, 5, 6, and 7 showed an admirable binding affinity to the SphK1 in the sub-micromolar range and significantly inhibited SphK1 activity with admirable IC50 values. Molecular docking studies revealed that these compounds fit well into the sphingosine binding pocket of SphK1 and formed significant number of hydrogen bonds and van der Waals interactions. These molecules may be exploited as potent and selective inhibitors of SphK1 that could be implicated in cancer therapeutics after the required in vivo validation.
Collapse
Affiliation(s)
- Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| |
Collapse
|
39
|
Kim SB, Lee T, Moon HS, Ki SH, Oh YS, Lee JY, Kim SB, Park JE, Kwon Y, Kim S, Baek DJ, Park EY. Verification of the Necessity of the Tolyl Group of PF-543 for Sphingosine Kinase 1 Inhibitory Activity. Molecules 2020; 25:molecules25112484. [PMID: 32471162 PMCID: PMC7321251 DOI: 10.3390/molecules25112484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
PF-543, the most potent sphingosine kinase (SK) inhibitor, does not demonstrate effective anticancer activity in some cancer cells, unlike other known SK1 inhibitors. PF-543 has a non-lipid structure with a unique toluene backbone; however, the importance of this structure remains unclear. Therefore, the purpose of this study was to investigate changes in SK inhibitory and anticancer activities and to explore the role of the tolyl group structure of PF-543 through various modifications. We transformed the methyl group of PF-543 into hydrogen, fluorine, and hydroxy. PF-543 derivatives in which the methyl group was substituted by hydrogen and fluorine (compound 5) demonstrated SK1 inhibitory and anticancer activities similar to PF-543. Moreover, we performed molecular modeling studies of PF-543 and compound 5. To assess the metabolic stability of PF-543 and compound 5, we determined their degree of degradation using the liver microsomes of four different animal species (human, dog, rat, and mouse). However, both PF-543 and compound 5 showed poor microsomal stability. Therefore, for the medical applications of PF-543, the structural modifications of its other parts may be necessary. Our results provide important information for the design of additional PF-543 analogs.
Collapse
Affiliation(s)
- Su Bin Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Korea; (S.B.K.); (H.S.M.)
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Hong Seop Moon
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Korea; (S.B.K.); (H.S.M.)
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Korea;
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea;
| | - Joo-Youn Lee
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Sang-Bum Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea; (S.-B.K.); (J.-E.P.)
| | - Jeong-Eun Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea; (S.-B.K.); (J.-E.P.)
| | - Yongseok Kwon
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Korea; (S.B.K.); (H.S.M.)
- Correspondence: (D.J.B.); (E.-Y.P.); Tel.: +82-61-450-2705 (D.J.B.); +82-61-450-2706 (E.-Y.P.)
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Korea; (S.B.K.); (H.S.M.)
- Correspondence: (D.J.B.); (E.-Y.P.); Tel.: +82-61-450-2705 (D.J.B.); +82-61-450-2706 (E.-Y.P.)
| |
Collapse
|
40
|
Papakyriakou A, Cencetti F, Puliti E, Morelli L, Tricomi J, Bruni P, Compostella F, Richichi B. Glycans Meet Sphingolipids: Structure-Based Design of Glycan Containing Analogues of a Sphingosine Kinase Inhibitor. ACS Med Chem Lett 2020; 11:913-920. [PMID: 32435405 PMCID: PMC7236250 DOI: 10.1021/acsmedchemlett.9b00665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2019] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator associated with diverse homeostatic and signaling roles. Enhanced biosynthesis of S1P, mediated by the sphingosine kinase isozymes (SK1 and SK2), is implicated in several pathophysiological conditions and diseases, including skeletal muscle fibrosis, inflammation, multiple sclerosis, and cancer. Therefore, therapeutic approaches that control S1P production have focused on the development of SK1/2 inhibitors. In this framework, we designed a series of natural monosaccharide-based compounds to enhance anchoring of the known SK1 inhibitor PF-543 at the polar head of the J-shaped substrate-binding channel. Herein, we describe the structure-based design and synthesis of new glycan-containing PF-543 analogues and we demonstrate their efficiency in a TGFβ1-induced pro-fibrotic assay.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, GR-15341 Agia Paraskevi, Athens, Greece
| | - Francesca Cencetti
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy
| | - Elisa Puliti
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy
| | - Laura Morelli
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
| | - Jacopo Tricomi
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy)
| | - Paola Bruni
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy
| | - Federica Compostella
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
- Federica Compostella,
| | - Barbara Richichi
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy)
- Barbara Richichi,
| |
Collapse
|
41
|
Synthesis and biological evaluation of 2-epi-jaspine B analogs as selective sphingosine kinase 1 inhibitors. Bioorg Chem 2020; 98:103369. [DOI: 10.1016/j.bioorg.2019.103369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
|
42
|
Investigating the binding mechanism of sphingosine kinase 1/2 inhibitors: Insights into subtype selectivity by homology modeling, molecular dynamics simulation and free energy calculation studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
43
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
44
|
Magli E, Corvino A, Fiorino F, Frecentese F, Perissutti E, Saccone I, Santagada V, Caliendo G, Severino B. Design of Sphingosine Kinases Inhibitors: Challenges and Recent Developments. Curr Pharm Des 2020; 25:956-968. [PMID: 30947653 DOI: 10.2174/1381612825666190404115424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to form the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P). S1P is an important lipid mediator with a wide range of biological functions; it is also involved in a variety of diseases such as inflammatory diseases, Alzheimer's disease and cancer. METHODS This review reports the recent advancement in the research of SphKs inhibitors. Our purpose is also to provide a complete overview useful for underlining the features needed to select a specific pharmacological profile. DISCUSSION Two distinct mammalian SphK isoforms have been identified, SphK1 and SphK2. These isoforms are encoded by different genes and exhibit distinct subcellular localizations, biochemical properties and functions. SphK1 and SphK2 inhibition can be useful in different pathological conditions. CONCLUSION SphK1 and SphK2 have many common features but different and even opposite biological functions. For this reason, several research groups are interested in understanding the therapeutic usefulness of a selective or non-selective inhibitor of SphKs. Moreover, a compensatory mechanism for the two isoforms has been demonstrated, thus leading to the development of dual inhibitors.
Collapse
Affiliation(s)
- Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Irene Saccone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
45
|
Sibley CD, Morris EA, Kharel Y, Brown AM, Huang T, Bevan DR, Lynch KR, Santos WL. Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity. J Med Chem 2020; 63:1178-1198. [PMID: 31895563 DOI: 10.1021/acs.jmedchem.9b01508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
The sphingosine-1-phosphate (S1P) signaling pathway is an attractive drug target due to its involvement in immune cell chemotaxis and vascular integrity. The formation of S1P is catalyzed by sphingosine kinase 1 or 2 (SphK1 or SphK2) from sphingosine (Sph) and ATP. Inhibition of SphK1 and SphK2 to attenuate levels of S1P has been reported to be efficacious in animal models of diseases such as cancer, sickle cell disease, and renal fibrosis. While inhibitors of both SphKs have been reported, improvements in potency and selectivity are still needed. Toward that end, we performed structure-activity relationship profiling of 8 (SLM6031434) and discovered a heretofore unrecognized side cavity that increased inhibitor potency toward SphK2. Interrogating this region revealed that relatively small hydrophobic moieties are preferred, with 10 being the most potent SphK2-selective inhibitor (Ki = 89 nM, 73-fold SphK2-selective) with validated in vivo activity.
Collapse
Affiliation(s)
- Christopher D Sibley
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Emily A Morris
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yugesh Kharel
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Anne M Brown
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Tao Huang
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - David R Bevan
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Kevin R Lynch
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Webster L Santos
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
46
|
Khan FI, Lai D, Anwer R, Azim I, Khan MKA. Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. J Enzyme Inhib Med Chem 2020; 35:172-186. [PMID: 31752564 PMCID: PMC6882459 DOI: 10.1080/14756366.2019.1692828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is a promising therapeutic target against several diseases including mammary cancer. The aim of present work is to identify a potent lead compound against breast cancer using ligand-based virtual screening, molecular docking, MD simulations, and the MMPBSA calculations. The LBVS in molecular and virtual libraries yielded 20,800 hits, which were reduced to 621 by several parameters of drug-likeness, lead-likeness, and PAINS. Furthermore, 55 compounds were selected by ADMET descriptors carried forward for molecular interaction studies with SphK1. The binding energy (ΔG) of three screened compounds namely ZINC06823429 (–11.36 kcal/mol), ZINC95421501 (–11.29 kcal/mol), and ZINC95421070 (–11.26 kcal/mol) exhibited stronger than standard drug PF-543 (–9.9 kcal/mol). Finally, it was observed that the ZINC06823429 binds tightly to catalytic site of SphK1 and remain stable during MD simulations. This study provides a significant understanding of SphK1 inhibitors that can be used in the development of potential therapeutics against breast cancer.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Iffat Azim
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohd Kalim Ahmad Khan
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| |
Collapse
|
47
|
Abstract
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK.
| |
Collapse
|
48
|
Vettorazzi M, Insuasty D, Lima S, Gutiérrez L, Nogueras M, Marchal A, Abonia R, Andújar S, Spiegel S, Cobo J, Enriz RD. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Bioorg Chem 2019; 94:103414. [PMID: 31757412 DOI: 10.1016/j.bioorg.2019.103414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Sphingosine-1-phosphate is now emerging as an important player in cancer, inflammation, autoimmune, neurological and cardiovascular disorders. Abundance evidence in animal and humans cancer models has shown that SphK1 is linked to cancer. Thus, there is a great interest in the development new SphK1 inhibitors as a potential new treatment for cancer. In a search for new SphK1 inhibitors we selected the well-known SKI-II inhibitor as the starting structure and we synthesized a new inhibitor structurally related to SKI-II with a significant but moderate inhibitory effect. In a second approach, based on our molecular modeling results, we designed new structures based on the structure of PF-543, the most potent known SphK1 inhibitor. Using this approach, we report the design, synthesis and biological evaluation of a new series of compounds with inhibitory activity against both SphK1 and SphK2. These new inhibitors were obtained incorporating new connecting chains between their polar heads and hydrophobic tails. On the other hand, the combined techniques of molecular dynamics simulations and QTAIM calculations provided complete and detailed information about the molecular interactions that stabilize the different complexes of these new inhibitors with the active sites of the SphK1. This information will be useful in the design of new SphK inhibitors.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Daniel Insuasty
- Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia; Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Lucas Gutiérrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Manuel Nogueras
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Marchal
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Sebastián Andújar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
49
|
Kelch-like protein 5-mediated ubiquitination of lysine 183 promotes proteasomal degradation of sphingosine kinase 1. Biochem J 2019; 476:3211-3226. [DOI: 10.1042/bcj20190245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2019] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Sphingosine kinase 1 (SK1) is a signalling enzyme that catalyses the phosphorylation of sphingosine to generate the bioactive lipid sphingosine 1-phosphate (S1P). A number of SK1 inhibitors and chemotherapeutics can induce the degradation of SK1, with the loss of this pro-survival enzyme shown to significantly contribute to the anti-cancer properties of these agents. Here we define the mechanistic basis for this degradation of SK1 in response to SK1 inhibitors, chemotherapeutics, and in natural protein turnover. Using an inducible SK1 expression system that enables the degradation of pre-formed SK1 to be assessed independent of transcriptional or translational effects, we found that SK1 was degraded primarily by the proteasome since several proteasome inhibitors blocked SK1 degradation, while lysosome, cathepsin B or pan caspase inhibitors had no effect. Importantly, we demonstrate that this proteasomal degradation of SK1 was enabled by its ubiquitination at Lys183 that appears facilitated by SK1 inhibitor-induced conformational changes in the structure of SK1 around this residue. Furthermore, using yeast two-hybrid screening, we identified Kelch-like protein 5 (KLHL5) as an important protein adaptor linking SK1 to the cullin 3 (Cul3) ubiquitin ligase complex. Notably, knockdown of KLHL5 or Cul3, use of a cullin inhibitor or a dominant-negative Cul3 all attenuated SK1 degradation. Collectively this data demonstrates the KLHL5/Cul3-based E3 ubiquitin ligase complex is important for regulation of SK1 protein stability via Lys183 ubiquitination, in response to SK1 inhibitors, chemotherapy and for normal SK1 protein turnover.
Collapse
|
50
|
Abstract
Pulmonary arterial hypertension (PAH), characterized by high morbidity and mortality, is a serious hazard to human life. Until now, the long-term survival of the PAH patients is still suboptimal. Recently, sphingosine kinase 1 (SPHK1) has drawn more and more attention due to its essential role in the pulmonary vasoconstriction, remodeling of pulmonary blood vessels and right cardiac lesions in PAH patients, and this enzyme is regarded as a new target for the treatment of PAH. Here, we discussed the multifarious functions of SPHK1 in PAH physiology and pathogenesis. Moreover, the structural features of SPHK1 and binding modes with different inhibitors were summarized. Finally, recent advances in the medicinal chemistry research of SPHK1 inhibitors are presented.
Collapse
|