1
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
2
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
3
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Li J, Duan XY, Ren X, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 3] Annulation of 5-Aminopyrazoles with Enals: Enantioselective Synthesis of Pyrazolo[3,4- b]pyridones. J Org Chem 2023; 88:16621-16632. [PMID: 37967027 DOI: 10.1021/acs.joc.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
An enantioselective construction of pyrazolo[3,4-b]pyridones was achieved via N-heterocyclic carbene-catalyzed [3 + 3] annulation of enals with 5-aminopyrazoles. This protocol not only offers a highly efficient synthetic approach for the preparation of various substituted pyrazolo[3,4-b]pyridones but also provides an effective method for the rapid synthesis of enantiopure spirooxindone derivatives.
Collapse
Affiliation(s)
- Jiahan Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Xiao-Yong Duan
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xiaojie Ren
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanting Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jing Qi
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Sarratea MB, Alberti AS, Redolfi DM, Truant SN, Iannantuono Lopez LV, Bivona AE, Mariuzza RA, Fernández MM, Malchiodi EL. Zika virus NS4B protein targets TANK-binding kinase 1 and inhibits type I interferon production. Biochim Biophys Acta Gen Subj 2023; 1867:130483. [PMID: 37802371 DOI: 10.1016/j.bbagen.2023.130483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND During viral infections, nucleic acid sensing by intracellular receptors can trigger type I interferon (IFN-I) production, key mediators in antiviral innate immunity. However, many flaviviruses use non-structural proteins to evade immune sensing favoring their survival. These mechanisms remain poorly characterized. Here, we studied the role of Zika virus (ZIKV) NS4B protein in the inhibition of IFN-I induction pathway and its biophysical interaction with host proteins. METHODS Using different cell-based assays, we studied the effect of ZIKV NS4B in the activation of interferon regulatory factors (IRFs), NF-κB, cytokines secretion and the expression of interferon-stimulating genes (ISG). We also analyzed the in vitro interaction between recombinant ZIKV NS4B and TANK-binding kinase 1 (TBK1) using surface plasmon resonance (SPR). RESULTS Transfection assays showed that ZIKV NS4B inhibits IRFs activation involved in different nucleic acid sensing cascades. Cells expressing NS4B secreted lower levels of IFN-β and IL-6. Furthermore, early induction of ISGs was also restricted by ZIKV NS4B. For the first time, we demonstrate by SPR assays that TBK1, a critical component in IFN-I production pathway, binds directly to ZIKV NS4B (KD of 3.7 × 10-6 M). In addition, we show that the N-terminal region of NS4B is directly involved in this interaction. CONCLUSIONS Altogether, our results strongly support that ZIKV NS4B affects nucleic acid sensing cascades and disrupts the TBK1/IRF3 axis, leading to an impairment of IFN-β production. SIGNIFICANCE This study provides the first biophysical data of the interaction between ZIKV NS4B and TBK1, and highlights the role of ZIKV NS4B in evading the early innate immune response.
Collapse
Affiliation(s)
- Maria B Sarratea
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Daniela M Redolfi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sofía Noli Truant
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Laura V Iannantuono Lopez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Augusto E Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Marisa M Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
6
|
Wu Q, Han J, Huang J, Zhang H, Ren M, Zhang X, Fu Z. Asymmetric synthesis of chiral pyrazolo[3,4- b]pyridin-6-ones under carbene catalysis. Org Biomol Chem 2023; 21:6898-6902. [PMID: 37581413 DOI: 10.1039/d3ob01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A structurally diverse set of chiral pyrazolo[3,4-b]pyridin-6-ones was efficiently prepared in excellent yields with excellent enantioselectivities via N-heterocyclic carbene-catalyzed oxidative [3 + 3] annulation of enals with pyrazol-5-amines. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Qianqian Wu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinna Han
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jie Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Hailong Zhang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Min Ren
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoxiang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenqian Fu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
- Ningbo Institute, Chongqing Technology Innovation Center, Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
7
|
Sedenkova KN, Sazonov AS, Vasilenko DA, Andriasov KS, Eremenko MG, Grishin YK, Khvatov EV, Goryashchenko AS, Uvarova VI, Osolodkin DI, Ishmukhametov AA, Averina EB. 3-[ N,N-Bis(sulfonyl)amino]isoxazolines with Spiro-Annulated or 1,2-Annulated Cyclooctane Rings Inhibit Reproduction of Tick-Borne Encephalitis, Yellow Fever, and West Nile Viruses. Int J Mol Sci 2023; 24:10758. [PMID: 37445937 DOI: 10.3390/ijms241310758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Spirocyclic compounds containing heterocyclic moieties represent promising 3D scaffolds for modern drug design. In the search for novel anti-flaviviral agents, we have obtained a series of 3-[N,N-bis(sulfonyl)amino]isoxazolines containing spiro-annulated cyclooctane rings and assessed their antiviral activity against tick-borne encephalitis (TBEV), yellow fever (YFV), and West Nile (WNV) viruses. The structural analogs of spirocyclic compounds with a single sulfonyl group or 1,2-annulated cyclooctane ring were also investigated. Almost all the studied 3-[N,N-bis(sulfonyl)amino]isoxazolines revealed antiviral activity against TBEV and WNV. The most active against TBEV was spiro-isoxazoline derivative containing p-nitrophenyl groups in the sulfonyl part (EC50 2.0 ± 0.5 μM), while the highest potency against WNV was found for the compounds with lipophilic substituents in sulfonyl moiety, naphtyl being the most favorable one (EC50 1.3 ± 0.5 μM). In summary, two novel scaffolds of anti-flaviviral agents based on N,N-bis(sulfonyl)amino]isoxazoline were proposed, and the compounds of this type demonstrated activity against TBEV and WNV.
Collapse
Affiliation(s)
- Kseniya N Sedenkova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Artem S Sazonov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Vasilenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Kristian S Andriasov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina G Eremenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | | | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow 119991, Russia
| | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Nie G, Sun J, Mou C, Tang K, Chi YR, Li T. Enantioselective Synthesis of Pyrazolo[3,4- b]pyridone Derivatives with Antifungal Activities against Phytophthora capsici and Colletotrichum fructicola. Org Lett 2023; 25:134-139. [PMID: 36563315 DOI: 10.1021/acs.orglett.2c03945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A chiral NHC-catalyzed [3 + 3] cycloaddition reaction is developed for the efficient synthesis of pyrazolo[3,4-b]pyridones in generally excellent yields and optical purities. The R, S, and racemic forms of these molecules are systematically studied via in vitro tests that detect antifungal activity against Phytophthora capsici and Colletotrichum fructicola. Chiral compounds (R)-3i, (R)-3j, and (R)-3p are identified to have excellent inhibitory effects against P. capsici and C. fructicola.
Collapse
Affiliation(s)
- Guihua Nie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Kun Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Tingting Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
9
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
10
|
Pan LN, Sun J, Liu XY, Yan CG. Efficient construction of diverse spiro[indoline-3,4'-pyrrolo[3,4- b]pyridines] via [3 + 3] cycloaddition of MBH carbonates of isatins with β-enamino maleimides. Org Biomol Chem 2022; 20:7099-7104. [PMID: 36040323 DOI: 10.1039/d2ob01257j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient method to construct unique spiro[indoline-3,4'-pyrrolo[3,4-b]pyridines] was successfully developed via a DABCO promoted formal [3 + 3] cycloaddition reaction of MBH carbonates of isatins with β-enamino maleimides in acetonitrile at room temperature. This reaction afforded multifunctionalized spiro[indoline-3,4'-pyrrolo[3,4-b]pyridines] and spiro[dipyrrolo[3,4-b:3',4'-e]pyridine-8,3'-indolines] in good yields and with lower diastereoselectivity. The relative configuration of the two diasteromers of the spiro compounds was clearly elucidated by the determination of eight single crystal structures.
Collapse
Affiliation(s)
- Liu-Na Pan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xue-Yan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
11
|
Li Q, Kang C. Dengue virus NS4B protein as a target for developing antivirals. Front Cell Infect Microbiol 2022; 12:959727. [PMID: 36017362 PMCID: PMC9398000 DOI: 10.3389/fcimb.2022.959727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is an important pathogen affecting global population while no specific treatment is available against this virus. Effort has been made to develop inhibitors through targeting viral nonstructural proteins such as NS3 and NS5 with enzymatic activities. No potent inhibitors entering clinical studies have been developed so far due to many challenges. The genome of dengue virus encodes four membrane-bound nonstructural proteins which do not possess any enzymatic activities. Studies have shown that the membrane protein-NS4B is a validated target for drug discovery and several NS4B inhibitors exhibited antiviral activities in various assays and entered preclinical studies.. Here, we summarize the recent studies on dengue NS4B protein. The structure and membrane topology of dengue NS4B derived from biochemical and biophysical studies are described. Function of NS4B through protein-protein interactions and some available NS4B inhibitors are summarized. Accumulated studies demonstrated that cell-based assays play important roles in developing NS4B inhibitors. Although the atomic structure of NS4B is not obtained, target-based drug discovery approach become feasible to develop NS4B inhibitors as recombinant NS4B protein is available.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
12
|
Xiao Y, Yang J, Zou L, Wu P, Li W, Yan Y, Li Y, Li S, Song H, Zhong W, Qin Y. Synthesis of 10,10′-bis(trifluoromethyl) marinopyrrole A derivatives and evaluation of their antiviral activities in vitro. Eur J Med Chem 2022; 238:114436. [DOI: 10.1016/j.ejmech.2022.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
|
13
|
Zhang S, Liu H, Yang N, Xiong L, Wang B. Synthesis and evaluation of novel xanthine-acrylamides and xanthine-acrylates as insecticidal agents. PEST MANAGEMENT SCIENCE 2022; 78:2086-2095. [PMID: 35142104 DOI: 10.1002/ps.6834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The design and discovery of novel pesticidal agents according to bioactive natural products is an important aspect of agrochemical innovation. New xanthine derivatives derived from natural xanthine or methylxanthines are rich resources that possess great potential to afford new active pesticidal molecules. Herein novel xanthine derivatives were designed through a strategy of combining the methylxanthine caffeine skeleton with the acrylamide or acrylate motif of cinnamic acid derivatives. RESULTS A series of novel (E)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)acrylic acid derivatives, caffeine-(E)-acrylamides and caffeine-(E)-acrylates, were synthesized and confirmed via melting points, 1 H NMR, 13 C NMR and high-resolution mass spectrometry. A single crystal of compound I12 was obtained to illustrate the trans-configuration of the vinyl double bond. Preliminary insecticidal evaluations showed that some of the compounds had favorable insecticidal potentials against Mythimna separata Walker at 200 mg L-1 . Some of the compounds exhibited excellent insecticidal activity against Plutella xylostella L. at low test concentrations, e.g. I18 and I24 with LC50 values of 0.0435 and 0.0133 mg L-1 , respectively, were found to be more potent than the insecticide control triflumuron. The structure-activity relationship (SAR) analysis is also given in detail. CONCLUSION Compounds I12, I18, I24 and I26 generated from the integration of natural methylxanthine (caffeine) and acrylate moieties could be novel insecticidal leading compounds for further structural optimization. The SAR analysis may bring a new inspiration to the extensive and deep investigations on new xanthine derivatives in the agrochemical area.
Collapse
Affiliation(s)
- Shuyun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Hang Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Li Q, Kang C. Structures and Dynamics of Dengue Virus Nonstructural Membrane Proteins. MEMBRANES 2022; 12:231. [PMID: 35207152 PMCID: PMC8880049 DOI: 10.3390/membranes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
Dengue virus is an important human pathogen threating people, especially in tropical and sub-tropical regions. The viral genome has one open reading frame and encodes one polyprotein which can be processed into structural and nonstructural (NS) proteins. Four of the seven nonstructural proteins, NS2A, NS2B, NS4A and NS4B, are membrane proteins. Unlike NS3 or NS5, these proteins do not harbor any enzymatic activities, but they play important roles in viral replication through interactions with viral or host proteins to regulate important pathways and enzymatic activities. The location of these proteins on the cell membrane and the functional roles in viral replication make them important targets for antiviral development. Indeed, NS4B inhibitors exhibit antiviral activities in different assays. Structural studies of these proteins are hindered due to challenges in crystallization and the dynamic nature of these proteins. In this review, the function and membrane topologies of dengue nonstructural membrane proteins are presented. The roles of solution NMR spectroscopy in elucidating the structure and dynamics of these proteins are introduced. The success in the development of NS4B inhibitors proves that this class of proteins is an attractive target for antiviral development.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 10 Biopolis Road, #5-01, Singapore 138670, Singapore
| |
Collapse
|
15
|
Mahesha, Udaya Kumar AH, Vindya KG, Pampa KJ, Rangappa KS, Lokanath NK. Structure-property relationship in thioxotriaza-spiro derivative: Crystal structure and molecular docking analysis against SARS-CoV-2 main protease. J Mol Struct 2022; 1250:131746. [PMID: 34697506 PMCID: PMC8520729 DOI: 10.1016/j.molstruc.2021.131746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Detailed structural and non-covalent interactions in thioxotriaza-spiroderivative (DZ2) are investigated by single crystal structure anslysis and computational approaches. Its results were compared with the previously reported spiroderivative (DZ1). The crystal structure analysis revealed various C–H…O, N–H…O, C–H…N and N–H…S hydrogen bonds involved in constructing several dimeric motifs to stabilize the crystal packing. The differences and similarities in the relative contribution of non-covalent interactions in DZ1 and DZ2 compounds are compared using the Hirshfeld surface analysis and 2D fingerprint plots. The binding energies of specific molecular pairs and homodimers have been obtained using molecule–molecule interaction energy calculation. The hierarchy and topology of pair-wise intermolecular interactions are visualized through energy frameworks. The nature and strength of intra and intermolecular interactions were characterized using non-covalent interaction index analysis and the quantum theory of atoms in molecule approach. Further, molecular docking of compounds (DZ1 and DZ2) with SARS-CoV-2 main protease for COVID-19 is performed. And the superposition of these ligands and inhibitor N3, which is docked into the binding pocket of 7BQY, is presented. The binding affinity of −6.7 kcal/mol is observed, attributed to hydrogen bonding and hydrophobic interactions between the ligand and the amino acid residues of the receptor.
Collapse
Affiliation(s)
- Mahesha
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - A H Udaya Kumar
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - K G Vindya
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - K J Pampa
- Department of Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - K S Rangappa
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - N K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| |
Collapse
|
16
|
Elsaman T, Mohamed MS, Eltayib EM, Abdel-aziz HA, Abdalla AE, Munir MU, Mohamed MA. Isatin derivatives as broad-spectrum antiviral agents: the current landscape. Med Chem Res 2022; 31:244-273. [PMID: 35039740 PMCID: PMC8754539 DOI: 10.1007/s00044-021-02832-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
In recent decades, several viruses have resulted in large outbreaks with serious health, economic and social consequences. The current unprecedented outbreak of the new coronavirus, SARS-COV-2, necessitates intensive efforts for delivering effective therapies to eradicate such a deadly virus. Isatin is an opulent heterocycle that has been proven to provide tremendous opportunities in the area of drug discovery. Over the last fifty years, suitably functionalized isatin has shown remarkable and broad-spectrum antiviral properties. The review herein is an attempt to compile all of the reported information about the antiviral activity of isatin derivatives with an emphasis on their structure-activity relationships (SARs) along with mechanistic and molecular modeling studies. In this regard, we are confident that the review will afford the scientific community a valuable platform to generate more potent and cost-effective antiviral therapies based on isatin templates.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hatem A. Abdel-aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622 Egypt
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
17
|
Norshidah H, Vignesh R, Lai NS. Updates on Dengue Vaccine and Antiviral: Where Are We Heading? Molecules 2021; 26:molecules26226768. [PMID: 34833860 PMCID: PMC8620506 DOI: 10.3390/molecules26226768] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Approximately 100–400 million people from more than 100 countries in the tropical and subtropical world are affected by dengue infections. Recent scientific breakthroughs have brought new insights into novel strategies for the production of dengue antivirals and vaccines. The search for specific dengue inhibitors is expanding, and the mechanisms for evaluating the efficacy of novel drugs are currently established, allowing for expedited translation into human trials. Furthermore, in the aftermath of the only FDA-approved vaccine, Dengvaxia, a safer and more effective dengue vaccine candidate is making its way through the clinical trials. Until an effective antiviral therapy and licensed vaccine are available, disease monitoring and vector population control will be the mainstays of dengue prevention. In this article, we highlighted recent advances made in the perspectives of efforts made recently, in dengue vaccine development and dengue antiviral drug.
Collapse
Affiliation(s)
- Harun Norshidah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Ramachandran Vignesh
- Faculty of Medicine, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Correspondence:
| |
Collapse
|
18
|
Botta L, Cesarini S, Zippilli C, Bizzarri BM, Fanelli A, Saladino R. Multicomponent reactions in the synthesis of antiviral compounds. Curr Med Chem 2021; 29:2013-2050. [PMID: 34620058 DOI: 10.2174/0929867328666211007121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Silvia Cesarini
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Claudio Zippilli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | | | - Angelica Fanelli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Raffaele Saladino
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| |
Collapse
|
19
|
Silvestri IP, Colbon PJJ. The Growing Importance of Chirality in 3D Chemical Space Exploration and Modern Drug Discovery Approaches for Hit-ID: Topical Innovations. ACS Med Chem Lett 2021; 12:1220-1229. [PMID: 34413951 PMCID: PMC8366003 DOI: 10.1021/acsmedchemlett.1c00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Modern-day drug discovery is now blessed with a wide range of high-throughput hit identification (hit-ID) strategies that have been successfully validated in recent years, with particular success coming from high-throughput screening, fragment-based lead discovery, and DNA-encoded library screening. As screening efficiency and throughput increases, this enables the viable exploration of increasingly complex three-dimensional (3D) chemical structure space, with a realistic chance of identifying highly specific hit ligands with increased target specificity and reduced attrition rates in preclinical and clinical development. This minireview will explore the impact of an improved design of multifunctionalized, sp3-rich, stereodefined scaffolds on the (virtual) exploration of 3D chemical space and the specific requirements for different hit-ID technologies.
Collapse
Affiliation(s)
- Ilaria Proietti Silvestri
- Department of Chemistry University
of Liverpool, Liverpool ChiroChem, Ltd., Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Paul J. J. Colbon
- Department of Chemistry University
of Liverpool, Liverpool ChiroChem, Ltd., Crown Street, Liverpool L69 7ZD, United
Kingdom
| |
Collapse
|
20
|
Gallo FN, Enderle AG, Pardo LA, Leal ES, Bollini M. Challenges and perspectives in the discovery of dengue virus entry inhibitors. Curr Med Chem 2021; 29:719-740. [PMID: 34036904 DOI: 10.2174/0929867328666210521213118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
Dengue virus (DENV) disease has become one of the major challenges in public health. Currently, there is no antiviral treatment for this infection. Since human transmission occurs via mosquitoes of the Aedes genus, most efforts have been focused on controlling this vector. However, these control strategies have not been totally successful, as reflected in the increasing number of DENV infections per year, becoming an endemic disease in more than 100 countries worldwide. Consequently, the development of a safe antiviral agent is urgently needed. In this sense, rational design approaches have been applied in the development of antiviral compounds that inhibit one or more steps in the viral replication cycle. The entry of viruses into host cells is an early and specific stage of infection. Targeting either viral components or cellular protein targets is an affordable and effective strategy for therapeutic intervention of viral infections. This review provides an extensive overview of the small organic molecules, peptides, and inorganic moieties that have been tested so far as DENV entry direct-acting antiviral agents. The latest advances based on computer-aided drug design (CADD) strategies and traditional medicinal chemistry approaches in the design and evaluation of DENV virus entry inhibitors will be discussed. Furthermore, physicochemical drug properties such as solubility, lipophilicity, stability, and current results of pre-clinical and clinical studies will also be discussed in detail.
Collapse
Affiliation(s)
- Facundo N Gallo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana G Enderle
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Lucas A Pardo
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, Canada
| | - Emilse S Leal
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
21
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
22
|
Abstract
Spirocyclic scaffolds are incorporated in various approved drugs and drug candidates. The increasing interest in less planar bioactive compounds has given rise to the development of synthetic methodologies for the preparation of spirocyclic scaffolds. In this Perspective, we summarize the diverse synthetic routes to obtain spirocyclic systems. The impact of spirocycles on potency and selectivity, including the aspect of stereochemistry, is discussed. Furthermore, we examine the changes in physicochemical properties as well as in in vitro and in vivo ADME using selected studies that compare spirocyclic compounds to their nonspirocyclic counterparts. In conclusion, the value of spirocyclic scaffolds in medicinal chemistry is discussed.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
23
|
Affiliation(s)
- Xi‐Qiang Hou
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 People's Republic of China
| | - Da‐Ming Du
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 People's Republic of China
| |
Collapse
|
24
|
Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020; 43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed.
Collapse
Affiliation(s)
- Berit Troost
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
A series of octahydroquinazoline-5-ones as novel inhibitors against dengue virus. Eur J Med Chem 2020; 200:112318. [DOI: 10.1016/j.ejmech.2020.112318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
|
26
|
Yokokawa F. Recent progress on phenotype-based discovery of dengue inhibitors. RSC Med Chem 2020; 11:541-551. [PMID: 33479655 DOI: 10.1039/d0md00052c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue fever is the world's most prevalent mosquito-borne viral disease caused by the four serotypes of dengue virus, which are widely spread throughout tropical and sub-tropical countries. There has been an urgent need to identify an effective and safe dengue inhibitor as a therapeutic and a prophylactic agent for dengue fever. Most clinically approved antiviral drugs for the treatment of human immunodeficiency syndrome-1 (HIV-1) and hepatitis C virus (HCV) target virally encoded enzymes such as protease or polymerase. Inhibitors of these enzymes were typically identified by target-based screening followed by optimization via structure-based design. However, due to the lack of success to date of research efforts to identify dengue protease and polymerase inhibitors, alternative strategies for anti-dengue drug discovery need to be considered. As a complementary approach to the target-based drug discovery, phenotypic screening is a strategy often used in identification of new chemical starting points with novel mechanisms of action in the area of infectious diseases such as antibiotics, antivirals, and anti-parasitic agents. This article is an overview of recent reports on dengue phenotypic screens and discusses phenotype-based hit-to-lead chemistry optimization. The challenges encountered and the outlook on dengue phenotype-based lead discovery are discussed at the end of this article.
Collapse
Affiliation(s)
- Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases , Emeryville , CA 94608 , USA .
| |
Collapse
|
27
|
Xu J, Xie X, Chen H, Zou J, Xue Y, Ye N, Shi PY, Zhou J. Design, synthesis and biological evaluation of spiropyrazolopyridone derivatives as potent dengue virus inhibitors. Bioorg Med Chem Lett 2020; 30:127162. [PMID: 32247736 DOI: 10.1016/j.bmcl.2020.127162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022]
Abstract
The effective treatment for dengue virus infection continues to be a challenge. We herein reported our continued SAR exploration on the spiropyrazolopyridone scaffold. Introducing different substituents at the 3́- or 5́-site of the pyrazolopyridone core or moving the benzyl chain to the adjacent nitrogen led to a significant loss of potency on DENV-2. While a narrow range of substitutions were tolerated at the para-position of the phenyl ring, di-substitution on the phenyl ring is beneficial for DENV-2 potency and has variable influences on DENV-3 potency depending on the exact compound. Among these molecules, compounds 22 (JMX0376) with 4-chloro-3-fluorobenzyl and 24 (JMX0395) with 2,4-bis(trifluoromethyl)benzyl showed the most potent and broadest inhibitory activities against DENV-1 to -3 with nanomolar to low micromolar EC50 values.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
28
|
Gandhi D, Sethiya A, Agarwal DK, Prajapat P, Agarwal S. Design, Synthesis and Antimicrobial Study of Novel 1-(1,3-benzothiazol-2- yl)-3-chloro-4H-spiro[azetidine-2,3'-indole]-2',4(1'H)-diones Through Ketene– imine Cycloaddition Reaction. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190705153224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
:
The present study deals with the synthesis of novel 1-(1,3-benzothiazol-2-yl)-3-chloro-4Hspiro[
azetidine-2,3'-indole]-2',4(1'H)-dione derivatives from the reaction of 3-(1,3-benzothiazol-2-
ylimino)-1,3-dihydro-2H-indol-2-one derivatives with chloroacetyl chloride in the presence of triethylamine
(TEA). The mechanism involved simple acid or base catalysed reaction through the formation of
Schiff base followed by cyclisation via ketene–imine cycloaddition reaction. All synthesized compounds
were characterized by FT-IR, 1H-NMR, 13C-NMR, and elemental analysis. The antimicrobial
activities of the synthesized derivatives 5a-5g were examined via Micro Broth Dilution method against
bacterial strains Bacillius subtilis, Staphylcoccus aureus, E. coli, P. aeruginosa, and fungal strain Candida
albicans for determining MIC values. Ampicillin, chloramphenicol, and griseofulvin were used as
standard drugs.
:
The MIC values for antimicrobial activity of synthesized compounds were examined using Micro
Broth Dilution method. Compounds 5a, 5b, and 5c were found effective against E. coli (MTCC 442)
and P.aeruginosa (MTCC 441) and all compounds showed moderate to excellent activity against
Streptococcus aureus (MTCC 96) and Bacillius subtilis (MTCC 441). Regarding the antifungal screening,
compounds 5a, 5b, and 5c exhibited excellent activity against Candida albicans MTCC 227.
1-(1,3-benzothiazol-2-yl)-3-chloro-4H-spiro[azetidine-2,3'-indole]-2',4(1'H)-dione derivatives may be
used as potential lead molecules as effective antimicrobial agents.
Collapse
Affiliation(s)
- Divyani Gandhi
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, India
| | | | - Prakash Prajapat
- Department of Chemistry, Ganpat University, Mehsana, Gujarat, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, India
| |
Collapse
|
29
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
30
|
Xu J, Xie X, Ye N, Zou J, Chen H, White MA, Shi PY, Zhou J. Design, Synthesis, and Biological Evaluation of Substituted 4,6-Dihydrospiro[[1,2,3]triazolo[4,5- b]pyridine-7,3'-indoline]-2',5(3 H)-dione Analogues as Potent NS4B Inhibitors for the Treatment of Dengue Virus Infection. J Med Chem 2019; 62:7941-7960. [PMID: 31403780 DOI: 10.1021/acs.jmedchem.9b00698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of substituted 4,6-dihydrospiro[[1,2,3]triazolo[4,5-b]pyridine-7,3'-indoline]-2',5(3H)-dione analogues were synthesized and evaluated as potent dengue virus inhibitors. Throughout a structure-activity relationship exploration on the amide of the indolone moiety, a wide range of substitutions were found to be well tolerated for chemical optimization at this position. Among these compounds, 15 (JMX0254) displayed the most potent and broad inhibitory activities, effective against DENV-1 to -3 with EC50 values of 0.78, 0.16, and 0.035 μM, respectively, while compounds 16, 21, 27-29, 47, and 70 exhibited relatively moderate to high activities with low micromolar to nanomolar potency against all four serotypes. The biotinylated compound 73 enriched NS4B protein from cell lysates in pull-down studies, and the findings together with the mutation investigations further validated dengue NS4B protein as the target of this class of compounds. More importantly, compound 15 exhibited good in vivo pharmacokinetic properties and efficacy in the A129 mouse model, indicating its therapeutic potential against the dengue virus infection as a drug candidate for further preclinical development.
Collapse
|
31
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
32
|
Balwe SG, Lim KT, Cho BG, Jeong YT. One-pot four-component domino reaction for the synthesis of bifunctionalized spiro[indazolo[3,2-b]quinazoline-7,3′-indoline hybrids: A green approach. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1566475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandip Gangadhar Balwe
- Department of Image Science and Engineering, Pukyong National University , Busan , Republic of Korea
| | - Kwon Taek Lim
- Department of Image Science and Engineering, Pukyong National University , Busan , Republic of Korea
| | - Byung Gwon Cho
- Department of Image Science and Engineering, Pukyong National University , Busan , Republic of Korea
| | - Yeon Tae Jeong
- Department of Image Science and Engineering, Pukyong National University , Busan , Republic of Korea
| |
Collapse
|
33
|
De Moraes Gomes PAT, Pena LJ, Leite ACL. Isatin Derivatives and Their Antiviral Properties Against Arboviruses: A Review. Mini Rev Med Chem 2019; 19:56-62. [PMID: 29692243 DOI: 10.2174/1389557518666180424093305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/25/2018] [Accepted: 04/22/2018] [Indexed: 12/17/2022]
Abstract
Arboviruses have been spreading rapidly throughout the Western Hemisphere in recent decades. Among the arboviruses with high morbidity and mortality are the members of the Alphavirus and Flavivirus genera. Within the first genus, Chikungunya Virus (CHIKV) is considered one of the most challenging human arboviral infection worldwide, against which there is no specific antivirals. Flaviviruses are some of the main viruses responsible for encephalitis, haemorrhagic disease and developmental defects. Dengue virus (DENV), Japanese Encephalitis Virus (JEV), West Nile Virus (WNV) and Zika Virus (ZIKV) are examples of flaviviruses without clinically approved antiviral agents. Thus, the search for new antivirals becomes highly important. One of the strategies that can be employed to obtain new drugs is the identification and utilization of privileged structures. Isatin is an example of a privileged molecular framework, displaying a broad spectrum of biological activities, including antiviral action. Obtaining and studying the antiviral properties of isatin derivatives have helped to identify important agents with potential activity against different arboviruses. This article reviews some of these isatin derivatives, their structures and antiviral properties reported against this important group of viruses.
Collapse
Affiliation(s)
- Paulo André Teixeira De Moraes Gomes
- Medicinal Chemistry Planning Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife-PE, Brazil.,Department of Virology and of Experimental Therapeutics, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife-PE, Brazil
| | - Lindomar J Pena
- Department of Virology and of Experimental Therapeutics, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife-PE, Brazil
| | - Ana C Lima Leite
- Medicinal Chemistry Planning Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife-PE, Brazil
| |
Collapse
|
34
|
Mishra R, Jana A, Panday AK, Choudhury LH. Synthesis of spirooxindoles fused with pyrazolo-tetrahydropyridinone and coumarin-dihydropyridine-pyrazole tetracycles by reaction medium dependent isatin-based multicomponent reactions. NEW J CHEM 2019. [DOI: 10.1039/c8nj05465g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A reaction medium dependent three-component reaction of isatin, 4-hydroxycoumarin and aminopyrazole/aminoisoxazole has been reported under microwave heating conditions for the synthesis of two different types of fused spirooxindoles.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801103
- India
| | - Asim Jana
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801103
- India
| | - Anoop Kumar Panday
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801103
- India
| | - Lokman H. Choudhury
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801103
- India
| |
Collapse
|
35
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|
36
|
Gao S, Zheng J, Ge G, Luo J. Cu–Catalyzed Tandem Oxidation of
N
‐Substituted Indolines to Isatins. ChemistrySelect 2018. [DOI: 10.1002/slct.201803312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shanshan Gao
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Junliang Zheng
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Guoping Ge
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Junfei Luo
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
37
|
Bardiot D, Koukni M, Smets W, Carlens G, McNaughton M, Kaptein S, Dallmeier K, Chaltin P, Neyts J, Marchand A. Discovery of Indole Derivatives as Novel and Potent Dengue Virus Inhibitors. J Med Chem 2018; 61:8390-8401. [PMID: 30149709 DOI: 10.1021/acs.jmedchem.8b00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Acyl-indole derivative 1 was identified as a novel dengue virus (DENV) inhibitor from a DENV serotype 2 (DENV-2) phenotypic antiviral screen. Extensive SAR studies led to the discovery of new derivatives with improved DENV-2 potency as well as activity in nanomolar to micromolar range against the other DENV serotypes. In addition to the potency, physicochemical properties and metabolic stability in rat and human microsomes were improved during the optimization process. Chiral separation of the racemic mixtures showed a clear preference for one of the two enantiomers. Furthermore, rat pharmacokinetics of two compounds will be discussed in more detail, demonstrating the potential of this new series of pan-serotype-DENV inhibitors.
Collapse
Affiliation(s)
- Dorothée Bardiot
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Mohamed Koukni
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Wim Smets
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Gunter Carlens
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Michael McNaughton
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Suzanne Kaptein
- Laboratory of Virology, Rega Institute for Medical Research , KU Leuven , Herestraat 49 , Box 1030, 3000 Leuven , Belgium
| | - Kai Dallmeier
- Laboratory of Virology, Rega Institute for Medical Research , KU Leuven , Herestraat 49 , Box 1030, 3000 Leuven , Belgium
| | - Patrick Chaltin
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium.,Centre for Drug Design and Discovery , KU Leuven , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Johan Neyts
- Laboratory of Virology, Rega Institute for Medical Research , KU Leuven , Herestraat 49 , Box 1030, 3000 Leuven , Belgium
| | - Arnaud Marchand
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| |
Collapse
|
38
|
Yadav A, Banerjee J, Arupula SK, Mobin SM, Samanta S. Lewis-Base-Catalyzed Domino Reaction of Morita-Baylis-Hillman Carbonates of Isatins with Enolizable Cyclic Carbonyl Compounds: Stereoselective Access to Spirooxindole-Pyrans. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anubha Yadav
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Joyanta Banerjee
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sanjeeva K. Arupula
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Shaikh M. Mobin
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| |
Collapse
|
39
|
Hussain W, Qaddir I, Mahmood S, Rasool N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening. Virusdisease 2018; 29:147-156. [PMID: 29911147 PMCID: PMC6003060 DOI: 10.1007/s13337-018-0446-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/24/2018] [Indexed: 01/08/2023] Open
Abstract
Dengue fever is one of the most prevalent disease in tropical and sub-tropical regions of the world. According to the World Health Organisation (WHO), approximately 3.5 billion people have been affected with dengue fever. Four serotypes of dengue virus (DENV) i.e. DENV1, DENV2, DENV3 and DENV4 have up to 65% genetic variations among themselves. dengue virus 4 (DENV4) was first reported from Amazonas, Brazil and is spreading perilously due to lack of awareness of preventive measures, as it is the least targeted serotype. In this study, non-structural protein 4B of dengue virus 4 (DENV4-NS4B) is computationally characterised and simulations are performed including solvation, energy minimizations and neutralisation for the refinement of predicted model of the protein. The spiropyrazolopyridone is considered as an effective drug against NS4B of DENV2, therefore, a total of 91 different analogues of spiropyrazolopyridone are used to analyse their inhibitory action against DENV4-NS4B. These compounds are docked at the binding site with various binding affinities, representing their efficacy to block the binding pocket of the protein. Pharmacological and pharmacokinetic assessment performed on these inhibitors shows that these are suitable candidates to be used as a drug against the dengue fever. Among all these 91 compounds, Analogue-I and Analogue-II are analysed to be the most effective inhibitor having potential to be used as drugs against dengue virus.
Collapse
Affiliation(s)
- Waqar Hussain
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| | - Iqra Qaddir
- Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Sajid Mahmood
- Department of Informatics and System, University of Management and Technology, Lahore, Pakistan
| | - Nouman Rasool
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| |
Collapse
|
40
|
Tian YS, Zhou Y, Takagi T, Kameoka M, Kawashita N. Dengue Virus and Its Inhibitors: A Brief Review. Chem Pharm Bull (Tokyo) 2018; 66:191-206. [PMID: 29491253 DOI: 10.1248/cpb.c17-00794] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The global occurrence of viral infectious diseases poses a significant threat to human health. Dengue virus (DENV) infection is one of the most noteworthy of these infections. According to a WHO survey, approximately 400 million people are infected annually; symptoms deteriorate in approximately one percent of cases. Numerous foundational and clinical investigations on viral epidemiology, structure and function analysis, infection source and route, therapeutic targets, vaccines, and therapeutic drugs have been conducted by both academic and industrial researchers. At present, CYD-TDV or Dengvaxia® is the only approved vaccine, but potent inhibitors are currently under development. In this review, an overview of the viral life circle and the history of DENVs is presented, and the most recently reported antiviral candidates and newly discovered promising targets are focused and summarized. We believe that these successes and failures have enabled progress in anti-DENV drug discovery and hope that our review will stimulate further innovation in this area.
Collapse
Affiliation(s)
- Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yi Zhou
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences
| | - Norihito Kawashita
- Graduate School of Pharmaceutical Sciences, Osaka University.,Faculty of Sciences and Engineering, Kindai University
| |
Collapse
|
41
|
Arupula SK, Guin S, Yadav A, Mobin SM, Samanta S. Stereoselective Synthesis of 3,3-Disubstituted Oxindoles and Spirooxindoles via Allylic Alkylation of Morita–Baylis–Hillman Carbonates of Isatins with Cyclic Sulfamidate Imines Catalyzed by DABCO. J Org Chem 2018; 83:2660-2675. [DOI: 10.1021/acs.joc.7b03090] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sanjeeva K. Arupula
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore-453552, Madhya Pradesh, India
| | - Soumitra Guin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore-453552, Madhya Pradesh, India
| | - Anubha Yadav
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore-453552, Madhya Pradesh, India
| | - Shaikh M. Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore-453552, Madhya Pradesh, India
| | - Sampak Samanta
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore-453552, Madhya Pradesh, India
| |
Collapse
|
42
|
Lu D, Liu J, Zhang Y, Liu F, Zeng L, Peng R, Yang L, Ying H, Tang W, Chen W, Zuo J, Tong X, Liu T, Hu Y. Discovery and optimization of phthalazinone derivatives as a new class of potent dengue virus inhibitors. Eur J Med Chem 2018; 145:328-337. [PMID: 29335200 DOI: 10.1016/j.ejmech.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
Using a dengue replicon cell line-based screening, we identified 3-(dimethylamino)propyl(3-((4-(4-fluorophenyl)-1-oxophthalazin-2(1H)-yl)methyl)phenyl)carbamate (10a) as a potent DENV-2 inhibitor, with an IC50 value of 0.64 μM. A series of novel phthalazinone derivatives based on hit 10a were synthesized and evaluated for their in vitro anti-DENV activity and cytotoxicity. The subsequent SAR study and optimization led to the discovery of the most promising compound 14l, which displayed potent anti-DENV-2 activity, with low IC50 value against DENV-2 RNA replication of 0.13 μM and high selectivity (SI = 89.2) with acceptable pharmacokinetics profiles.
Collapse
Affiliation(s)
- Dong Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yunzhe Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feifei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Limin Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Runze Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Li Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Huazhou Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wuhong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jianping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiankun Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Tao Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Youhong Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| |
Collapse
|
43
|
Kaur J, Chimni SS. Catalytic synthesis of 3-aminooxindoles via addition to isatin imine: an update. Org Biomol Chem 2018; 16:3328-3347. [DOI: 10.1039/c7ob03002a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3-Substituted-3-aminooxindoles have attracted the attention of organic chemist to develop different synthetic methodologies for their synthesis using catalysts. This review covers the recent developments.
Collapse
Affiliation(s)
- Jasneet Kaur
- Department of Chemistry
- U.G.C. Centre of Advance Study-II
- Guru Nanak Dev University
- Amritsar
- India
| | - Swapandeep Singh Chimni
- Department of Chemistry
- U.G.C. Centre of Advance Study-II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
44
|
Wang CP, Jiang GF. An efficient method based on indoles for the synthesis of isatins by taking advantage of I 2 O 5 as oxidant. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Kounde CS, Yeo HQ, Wang QY, Wan KF, Dong H, Karuna R, Dix I, Wagner T, Zou B, Simon O, Bonamy GM, Yeung BK, Yokokawa F. Discovery of 2-oxopiperazine dengue inhibitors by scaffold morphing of a phenotypic high-throughput screening hit. Bioorg Med Chem Lett 2017; 27:1385-1389. [DOI: 10.1016/j.bmcl.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/20/2023]
|
46
|
Pennington LD, Moustakas DT. The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. J Med Chem 2017; 60:3552-3579. [PMID: 28177632 DOI: 10.1021/acs.jmedchem.6b01807] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a continued desire in biomedical research to reduce the number and duration of design cycles required to optimize lead compounds into high-quality chemical probes or safe and efficacious drug candidates. The insightful application of impactful molecular design elements is one approach toward achieving this goal. The replacement of a CH group with a N atom in aromatic and heteroaromatic ring systems can have many important effects on molecular and physicochemical properties and intra- and intermolecular interactions that can translate to improved pharmacological profiles. In this Perspective, the "necessary nitrogen atom" is shown to be a versatile high-impact design element for multiparameter optimization, wherein ≥10-, 100-, or 1000-fold improvement in a variety of key pharmacological parameters can be realized.
Collapse
Affiliation(s)
- Lewis D Pennington
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| | - Demetri T Moustakas
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| |
Collapse
|
47
|
Guo F, Wu S, Julander J, Ma J, Zhang X, Kulp J, Cuconati A, Block TM, Du Y, Guo JT, Chang J. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein. J Virol 2016; 90:10774-10788. [PMID: 27654301 PMCID: PMC5110185 DOI: 10.1128/jvi.01253-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023] Open
Abstract
Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past 2 decades, which highlights the pressing need for antiviral therapeutics. In a high-throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV-infected cultures with 2 μM BDAA reduced the virion production by greater than 2 logs, the compound was not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug-resistant viruses revealed that replacement of the proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine, or alanine conferred YFV with resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, replacement of P219 with glycine conferred BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 amino acid is localized at the endoplasmic reticulum lumen side of the fifth putative transmembrane domain of NS4B, and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed an important role and the structural basis for the NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs, and attenuated virus infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. IMPORTANCE Yellow fever is an acute viral hemorrhagic disease which threatens approximately 1 billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than 7 decades, the low vaccination rate fails to prevent outbreaks in at-risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 deaths. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of a YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever.
Collapse
Affiliation(s)
- Fang Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Shuo Wu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Justin Julander
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Julia Ma
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Xuexiang Zhang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - John Kulp
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Andrea Cuconati
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Timothy M Block
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| |
Collapse
|
48
|
Abstract
Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Eric A. Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Pei-Yong Shi
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| |
Collapse
|
49
|
Abstract
The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents.
Collapse
Affiliation(s)
- Mira A M Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Veaceslav Boldescu
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.,Laboratory of Organic Synthesis, Institute of Chemistry of the Academy of Sciences of Moldova , Academiei 3, 2028 Chisinau, Moldova
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Abstract
The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50,>20 M). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients.
Collapse
|