1
|
Katsuragawa M, Yagishita A, Takeda S, Minami T, Ohnuki K, Fujii H, Takahashi T. CdTe XG-Cam: A new high-resolution x-ray and gamma-ray camera for studies of the pharmacokinetics of radiopharmaceuticals in small animals. Med Phys 2024; 51:5308-5320. [PMID: 38762908 DOI: 10.1002/mp.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The recent emergence of targeted radionuclide therapy has increased the demand for imagers capable of visualizing pharmacokinetics in developing radiopharmaceuticals in the preclinical phase. Some radionuclides emit hard x-rays and gamma-rays below 100 keV, in which energy range the performance of conventional NaI scintillators is poor. Multipinhole collimators are also used for small animal imaging with a good spatial resolution but have a limited field of view (FOV). PURPOSE In this study, a new imager with high sensitivity over a wide FOV in the low-energy band ( < $<$ 100 keV) was developed for the pharmacokinetic study. METHODS We developed an x-ray and gamma-ray camera for high-resolution spectroscopy, named "CdTe XG-Cam," equipped with a cadmium telluride semiconductor detector and a parallel-hole collimator using a metal 3D printer. To evaluate the camera-system performance, phantom measurements with single and dual nuclides (99 m Tc $^{\rm 99m}{\rm Tc}$ ,111 In $^{111}{\rm In}$ , and125 I ) $^{125}{\rm I)}$ were performed. The performance for in vivo imaging was evaluated using tumor-bearing mice to which a nuclide (99 m Tc $^{\rm 99m}{\rm Tc}$ or125 I ) $^{125}{\rm I)}$ administered. RESULTS We simultaneously obtained information on111 In $^{111}{\rm In}$ and125 I $^{125}{\rm I}$ , which emit emission lines in the low-energy band with peak energies close to each other (23-26 keV for111 In $^{111}{\rm In}$ and 27-31 keV for125 I ) $^{125}{\rm I)}$ , and applied an analytical method based on spectral model fitting to determine the individual radioactivities accurately. In the small animal imaging, the distributions of the nuclide in tumors were accurately quantified and time-activity curves in tumors are obtained. CONCLUSIONS The demonstrated capability of our system to perform in vivo imaging suggests that the camera can be used for applications of pharmacokinetics research.
Collapse
Affiliation(s)
- Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- iMAGINE-X Inc., Shibuya-ku, Tokyo, Japan
| | - Shin'ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- iMAGINE-X Inc., Shibuya-ku, Tokyo, Japan
| | - Takahiro Minami
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunobu Ohnuki
- Division of Functional Imaging, The National Cancer Center Japan, Kashiwa, Chiba, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, The National Cancer Center Japan, Kashiwa, Chiba, Japan
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Naser IH, Zaid M, Ali E, Jabar HI, Mustafa AN, Alubiady MHS, Ramadan MF, Muzammil K, Khalaf RM, Jalal SS, Alawadi AH, Alsalamy A. Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3747-3770. [PMID: 38095649 DOI: 10.1007/s00210-023-02885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/02/2023] [Indexed: 05/23/2024]
Abstract
This comprehensive review delineates the latest advancements in stimuli-responsive drug delivery systems engineered for the targeted treatment of breast carcinoma. The manuscript commences by introducing mammary carcinoma and the current therapeutic methodologies, underscoring the urgency for innovative therapeutic strategies. Subsequently, it elucidates the logic behind the employment of stimuli-responsive drug delivery systems, which promise targeted drug administration and the minimization of adverse reactions. The review proffers an in-depth analysis of diverse types of stimuli-responsive systems, including thermoresponsive, pH-responsive, and enzyme-responsive nanocarriers. The paramount importance of material choice, biocompatibility, and drug loading strategies in the design of these systems is accentuated. The review explores characterization methodologies for stimuli-responsive nanocarriers and probes preclinical evaluations of their efficacy, toxicity, pharmacokinetics, and biodistribution in mammary carcinoma models. Clinical applications of stimuli-responsive systems, ongoing clinical trials, the potential of combination therapies, and the utility of multifunctional nanocarriers for the co-delivery of assorted drugs and therapies are also discussed. The manuscript addresses the persistent challenge of drug resistance in mammary carcinoma and the potential of stimuli-responsive systems in surmounting it. Regulatory and safety considerations, including FDA guidelines and biocompatibility assessments, are outlined. The review concludes by spotlighting future trajectories and emergent technologies in stimuli-responsive drug delivery, focusing on pioneering approaches, advancements in nanotechnology, and personalized medicine considerations. This review aims to serve as a valuable compendium for researchers and clinicians interested in the development of efficacious and safe stimuli-responsive drug delivery systems for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Muhaned Zaid
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | - Hayder Imad Jabar
- Department of Pharmaceutics, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | | | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq.
| |
Collapse
|
3
|
Subrahmanyam N, Yathavan B, Yu SM, Ghandehari H. Targeting Intratibial Osteosarcoma Using Water-Soluble Copolymers Conjugated to Collagen Hybridizing Peptides. Mol Pharm 2023; 20:1670-1680. [PMID: 36724294 PMCID: PMC10799843 DOI: 10.1021/acs.molpharmaceut.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone cancer in adolescents. Over the years, OS prognosis has greatly improved due to adjuvant and neoadjuvant (preoperative) chemotherapeutic treatment, increasing the chances of successful surgery and reducing the need for limb amputation. However, chemotherapeutic treatment to treat OS is limited by off-target toxicities and requires improved localization at the tumor site. Collagen, the main constituent of bone tissue, is extensively degraded and remodeled in OS, leading to an increased availability of denatured (monomeric) collagen. Collagen hybridizing peptides (CHPs) comprise a class of peptides rationally designed to selectively bind to denatured collagen. In this work, we have conjugated CHPs as targeting moieties to water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers to target OS tumors. We demonstrated increased accumulation of collagen-targeted HPMA copolymer-CHP conjugates compared to nontargeted HPMA copolymers, as well as increased retention compared to both nontargeted copolymers and CHPs, in a murine intratibial OS tumor model. Furthermore, we used microcomputed tomography analysis to evaluate the bone microarchitecture and correlated bone morphometric parameters (porosity, bone volume, and surface area) with maximum accumulation (Smax) and accumulation at 168 h postinjection (S168) of the copolymers at the tumor. Our results provide the foundation for the use of HPMA copolymer-CHP conjugates as targeted drug delivery systems in OS tumors.
Collapse
Affiliation(s)
- Nithya Subrahmanyam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - S Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Schraven S, Rosenhain S, Brueck R, Wiechmann TM, Pola R, Etrych T, Lederle W, Lammers T, Gremse F, Kiessling F. Dye labeling for optical imaging biases drug carriers' biodistribution and tumor uptake. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102650. [PMID: 36623712 DOI: 10.1016/j.nano.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023]
Abstract
Biodistribution analyses of nanocarriers are often performed with optical imaging. Though dye tags can interact with transporters, e.g., organic anion transporting polypeptides (OATPs), their influence on biodistribution was hardly studied. Therefore, this study compared tumor cell uptake and biodistribution (in A431 tumor-bearing mice) of four near-infrared fluorescent dyes (AF750, IRDye750, Cy7, DY-750) and dye-labeled poly(N-(2-hydroxypropyl)methacrylamide)-based nanocarriers (dye-pHPMAs). Tumor cell uptake of hydrophobic dyes (Cy7, DY-750) was higher than that of hydrophilic dyes (AF750, IRDye750), and was actively mediated but not related to OATPs. Free dyes' elimination depended on their hydrophobicity, and tumor uptake correlated with blood circulation times. Dye-pHPMAs circulated longer and accumulated stronger in tumors than free dyes. Dye labeling significantly influenced nanocarriers' tumor accumulation and biodistribution. Therefore, low-interference dyes and further exploration of dye tags are required to achieve the most unbiased results possible. In our assessment, AF750 and IRDye750 best qualified for labeling hydrophilic nanocarriers.
Collapse
Affiliation(s)
- Sarah Schraven
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Stefanie Rosenhain
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; Gremse-IT GmbH, Dennewartstrasse 25, 52068 Aachen, Germany
| | - Ramona Brueck
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Tim Marvin Wiechmann
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Wiltrud Lederle
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; Gremse-IT GmbH, Dennewartstrasse 25, 52068 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Fraunhofer MEVIS, Institute for Medical Image Computing, Aachen, Germany.
| |
Collapse
|
5
|
Hu B, Zhang Y, Zhang G, Li Z, Jing Y, Yao J, Sun S. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022; 350:377-388. [PMID: 36007681 DOI: 10.1016/j.jconrel.2022.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Bone metastases are common in malignant tumors and the effect of conventional treatment is limited. How to effectively inhibit tumor bone metastasis and deliver the drug to the bone has become an urgent issue to be solved. While bone targeting drug delivery systems have obvious advantages in the treatment of bone tumors. The research on bone-targeted anti-tumor therapy has made significant progress in recent years. We introduced the related tumor pathways of bone metastases. The tumor microenvironment plays an important role in metastatic bone tumors. We introduce a drug-loading systems based on different environment-responsive nanocomposites for anti-tumor and anti-metastatic research. According to the process of bone metastases and the structure of bone tissue, we summarized the information on bone-targeting molecules. Bisphosphate has become the first choice of bone-targeted drug delivery carrier because of its affinity with hydroxyapatite in bone. Therefore, we sought to summarize the bone-targeting molecule of bisphosphate to identify the modification effect on bone-targeting. And this paper discusses the relationship between bisphosphate bone targeting molecular structure and drug delivery carriers, to provide some new ideas for the research and development of bone-targeting drug delivery carriers. Targeted therapy will make a more outstanding contribution to the treatment of tumors.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China; State Key Laboratory Breeding Base-Hebei Province, Key Laboratory of Molecular Chemistry for Drug, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongkang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Guogang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Zhongqiu Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Jun Yao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| | - Shiguo Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| |
Collapse
|
6
|
Nozaki Y, Hidaka T, Ri J, Itami T, Tomita D, Okada A, Ashida C, Ikeda F, Yamamoto A, Funahashi K, Kinoshita K, Matsubara T, Funauchi M, Matsumura I. Real-World Methotrexate Dose on Clinical Effectiveness and Structural Damage of Certolizumab Pegol With Rheumatoid Arthritis. Front Med (Lausanne) 2021; 8:643459. [PMID: 33968956 PMCID: PMC8096982 DOI: 10.3389/fmed.2021.643459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
Objective: Rheumatoid arthritis (RA) treatments have markedly advanced with the introduction of biological agents, e. g., tumor necrosis factor (TNF) inhibitors. TNF inhibitors are demonstrated to be quite effective in combination with methotrexate (MTX), and sufficient doses of both agents are important to control RA's disease activity. However, not all RA patients can be treated with high-dose MTX due to contraindications related to the antimetabolite action of MTX or to tolerability concerns. In daily practice, this has resulted in reduced effectiveness of TNF inhibitors. We sought to determine whether the concomitant use of dose of MTX affected the clinical effectiveness, retention rate, and side effects of certolizumab pegol (CZP) for treating RA in a real-world setting. CZP is a pegylated-conjugated Fab' fragment of a humanized anti-TNF antibody that has high affinity to TNF. Patients and Methods: We divided Japanese RA patients treated with CZP (n = 95, 25-83 years old) into groups based on those with (n = 65) and without (n = 30) concomitant MTX and those treated with a high dose (≥8 mg, n = 41) or low dose (1- <8 mg, n = 24) of MTX. We retrospectively analyzed the concomitant MTX doses' effects and side effects and the patient retention rate. Results: There were no significant differences among the CZP groups with and without MTX or the groups receiving the high vs. low MTX doses in the retention rate, the low disease activity rate, or the inhibitory effect in radiographic joint damage. Conclusion: CZP has the potential to be a useful biological agent to control RA's disease activity and the bone destruction in patients who cannot tolerate a sufficient MTX dose.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshihiko Hidaka
- Institute of Rheumatology, Zenjinkai Shimin-No-Mori Hospital, Miyazaki, Japan
| | - Jinhai Ri
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tetsu Itami
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Daisuke Tomita
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akinori Okada
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Chisato Ashida
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Fusayo Ikeda
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Atsuhiro Yamamoto
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Keiko Funahashi
- Institute of Rheumatology, Zenjinkai Shimin-No-Mori Hospital, Miyazaki, Japan
| | - Koji Kinoshita
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | - Masanori Funauchi
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
7
|
Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med Res Rev 2020; 41:1221-1254. [PMID: 33347711 DOI: 10.1002/med.21759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Gaurav A Luther
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| | - Abolfazl Akbarzadeh
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| |
Collapse
|
8
|
Yamashita S, Katsumi H, Shimizu E, Nakao Y, Yoshioka A, Fukui M, Kimura H, Sakane T, Yamamoto A. Dendrimer-based micelles with highly potent targeting to sites of active bone turnover for the treatment of bone metastasis. Eur J Pharm Biopharm 2020; 157:85-96. [PMID: 33039547 DOI: 10.1016/j.ejpb.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023]
Abstract
Bone-drug targeting therapies using nanoparticles based on targeting ligands remain challenging due to their uptake clearance at non-target sites such as the liver, kidney, and spleen. Furthermore, the distribution sites of nanoparticles in bones have not been fully investigated, thus halting the development of more effective bone metastasis treatment strategies. In this study, we developed nanoparticles self-assembled from cholesterol-terminated, polyethylene glycol-conjugated, aspartic acid (Asp)-modified polyamidoamine dendrimer (Asp-PAMAM-Micelles) with targeting to active bone turnover sites associated with bone metastasis pathogenesis. On analysis through whole-body single photon emission computed tomography/computed tomography (SPECT/CT) imaging, 111In-Asp-PAMAM-Micelles showed high specificity to active bone turnover sites (especially the joints in the lower limbs, shoulder, and pelvis) after intravenous injection in mice. The lower limb bone uptake clearance for 111In-Asp-PAMAM-Micelles encapsulating paclitaxel (PTX) was 3.5-fold higher than that for 111In-unmodified PAMAM-Micelles (PTX). 3H-PTX encapsulated Asp-PAMAM-Micelles effectively accumulated in the lower limb bones in a similar manner as the 111In-Asp-PAMAM-Micelles (PTX). In a bone metastatic tumor mouse model, the tumor growth in the lower limb bones was significantly inhibited by injection of Asp-PAMAM-Micelles (PTX) compared to unmodified PAMAM-Micelles (PTX). Our results demonstrate that Asp-PAMAM-Micelles are sophisticated drug delivery systems for highly potent targeting to active bone turnover sites.
Collapse
Affiliation(s)
- Shugo Yamashita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Erika Shimizu
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuto Nakao
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Yoshioka
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Minako Fukui
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan; Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
9
|
Nielsen JJ, Low SA. Bone-Targeting Systems to Systemically Deliver Therapeutics to Bone Fractures for Accelerated Healing. Curr Osteoporos Rep 2020; 18:449-459. [PMID: 32860563 PMCID: PMC7560943 DOI: 10.1007/s11914-020-00604-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Compared with the current standard of implanting bone anabolics for fracture repair, bone fracture-targeted anabolics would be more effective, less invasive, and less toxic and would allow for control over what phase of fracture healing is being affected. We therefore sought to identify the optimal bone-targeting molecule to allow for systemic administration of therapeutics to bone fractures. RECENT FINDINGS We found that many bone-targeting molecules exist, but most have been developed for the treatment of bone cancers, osteomyelitis, or osteoporosis. There are a few examples of bone-targeting ligands that have been developed for bone fractures that are selective for the bone fracture over the body and skeleton. Acidic oligopeptides have the ideal half-life, toxicity profile, and selectivity for a bone fracture-targeting ligand and are the most developed and promising of these bone fracture-targeting ligands. However, many other promising ligands have been developed that could be used for bone fractures.
Collapse
Affiliation(s)
- Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA.
| | - Stewart A Low
- Novosteo Inc., West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Otaka A, Yamaguchi T, Saisho R, Hiraga T, Iwasaki Y. Bone-targeting phospholipid polymers to solubilize the lipophilic anticancer drug. J Biomed Mater Res A 2020; 108:2090-2099. [PMID: 32323471 DOI: 10.1002/jbm.a.36968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/31/2022]
Abstract
Current chemotherapy methods have limited effectiveness in eliminating bone metastasis, which leads to a poor prognosis associated with severe bone disorders. To provide regional chemotherapy for this metastatic tumor, a bone-targeting drug carrier was produced by introducing the osteotropic bisphosphonate alendronate (ALN) units into an amphiphilic phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate). The polymer can form nanoparticles with a diameter of less than 30 nm; ALN units were exposed to the outer layer of the particle. A simple mixing procedure was used to encapsulate a hydrophobic anticancer drug, known as docetaxel (DTX), in the polymer nanoparticle, providing a uniform solution of a polymer-DTX complex in the aqueous phase. The complex showed anticancer activities against several breast cancer cell lines, and the complex formation did not hamper the pharmacological effect of DTX. The fluorescence observations evaluated by an in vivo imaging system and fluorescence microscopy showed that the addition of ALN to the polymer-DTX complex enhanced bone accumulation. Bone-targeting phospholipid polymers are potential solubilizing excipients used to formulate DTX and deliver the hydrophobic drug to bone tissues by blood administration.
Collapse
Affiliation(s)
| | - Tomoki Yamaguchi
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Ryoya Saisho
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | - Yasuhiko Iwasaki
- ORDIST, Kansai University, Osaka, Japan.,Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| |
Collapse
|
12
|
Lima AC, Ferreira H, Reis RL, Neves NM. Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin Drug Deliv 2019; 16:795-813. [DOI: 10.1080/17425247.2019.1635117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Cláudia Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
13
|
Zeng Y, Hoque J, Varghese S. Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomater 2019; 93:152-168. [PMID: 30711659 PMCID: PMC6615988 DOI: 10.1016/j.actbio.2019.01.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
Abstract
Although bone tissues possess an intrinsic capacity for repair, there are cases where bone healing is either impaired or insufficient, such as fracture non-union, osteoporosis, osteomyelitis, and cancers. In these cases, treatments like surgical interventions are used, either alone or in combination with bioactive agents, to promote tissue repair and manage associated clinical complications. Improving the efficacy of bioactive agents often requires carriers, with biomaterials being a pivotal player. In this review, we discuss the role of biomaterials in realizing the local and systemic delivery of biomolecules to the bone tissue. The versatility of biomaterials enables design of carriers with the desired loading efficiency, release profile, and on-demand delivery. Besides local administration, systemic administration of drugs is necessary to combat diseases like osteoporosis, warranting bone-targeting drug delivery systems. Thus, chemical moieties with the affinity towards bone extracellular matrix components like apatite minerals have been widely utilized to create bone-targeting carriers with better biodistribution, which cannot be achieved by the drugs alone. Bone-targeting carriers combined with the desired drugs or bioactive agents have been extensively investigated to enhance bone healing while minimizing off-target effects. Herein, these advancements in the field have been systematically reviewed. STATEMENT OF SIGNIFICANCE: Drug delivery is imperative when surgical interventions are not sufficient to address various bone diseases/defects. Biomaterial-assisted delivery systems have been designed to provide drugs with the desired loading efficiency, sustained release, and on-demand delivery to enhance bone healing. By surveying recent advances in the field, this review outlines the design of biomaterials as carriers for the local and systemic delivery of bioactive agents to the bone tissue. Particularly, biomaterials that bear chemical moieties with affinity to bone are attractive, as they can present the desired bioactive agents to the bone tissue efficiently and thus enhance the drug efficacy for bone repair.
Collapse
Affiliation(s)
- Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Yan Y, Gao X, Zhang S, Wang Y, Zhou Z, Xiao J, Zhang Q, Cheng Y. A Carboxyl-Terminated Dendrimer Enables Osteolytic Lesion Targeting and Photothermal Ablation of Malignant Bone Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:160-168. [PMID: 30525391 DOI: 10.1021/acsami.8b15827] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Malignant bone tumor accompanied by tumor-associated osteolysis remains a challenging task in clinical practice. Nanomedicines engineered with bone-targeting ligands, such as alendronate and pamidronate, are developed for targeted delivery of therapeutic agents to bone tumors. However, these targeting strategies usually show relatively poor selectivity toward the healthy skeletons and the osteolytic lesions because of the high binding affinity of bisphosphonates with all the bone tissues. Here, we reported a carboxyl-terminated dendrimer as the candidate to preferentially deliver therapeutic nanoparticles to the osteolytic lesions in a malignant bone tumor model. The high density of carboxyl groups on dendrimer surface endow the polymer with natural bone-binding capability. The dendrimer encapsulated with platinum nanoparticle predominantly accumulates at the osteolytic lesions around bone tumors rather than at healthy bone tissues in vivo. The therapeutic experiments reveal that the dendrimer-mediated photothermal therapy efficiently suppresses bone tumors and osteolysis, and the anionic polymer exhibits minimal cytotoxicity and hematologic toxicity. The results suggest that the carboxyl-terminated dendrimer is a promising candidate for selective delivery of therapeutics to the osteolytic lesions and photothermal treatment of malignant bone tumors.
Collapse
Affiliation(s)
- Yang Yan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Xin Gao
- Department of Orthopaedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai 200003 , P. R. China
| | - Song Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yitong Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Zhengjie Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai 200003 , P. R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| |
Collapse
|
15
|
Zhu J, Huo Q, Xu M, Yang F, Li Y, Shi H, Niu Y, Liu Y. Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. NANOSCALE 2018; 10:18387-18397. [PMID: 30256367 DOI: 10.1039/c8nr03899f] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The treatment of metastatic tumors is highly desirable in clinics, which has also increased the interest in the design of nanoscale drug delivery systems. Bone metastasis is one of the most common pathways in the metastasis of breast cancer, and it is also an important cause for tumor recurrence and death. The aryl boronate group, as an acid-labile linker, has been introduced into nano-assemblies in recent years. Especially, as a proteasome inhibitor anticancer drug with a boric acid group, bortezomib can facilitate the formation of pH-sensitive aryl boric acid ester linkage with the catecholic group. In this study, bortezomib-loaded micelles with bone targeting properties were constructed for the treatment of breast cancer bone metastasis. The mixed micelles employed alendronate (ALN) as the bone-targeting ligand and encapsulated bortezomib-catechol conjugates as the cargo. In vitro and in vivo studies showed that compared with free drugs or control micelles, these prodrug micelles (ALN-NP) exhibited many favorable properties such as reduced systemic toxicity and improved therapeutic effects. Therefore, ALN-NP is promising as a nanovehicle for bone-targeting delivery of chemotherapeutic drugs. Furthermore, this study offers a novel strategy combining bone targeting and aryl boronate-based pH-responsive drug release for anti-metastasis therapy.
Collapse
Affiliation(s)
- Jianhua Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang K, Miron RJ, Bian Z, Zhang YF. A bone-targeting drug-delivery system based on Semaphorin 3A gene therapy ameliorates bone loss in osteoporotic ovariectomized mice. Bone 2018; 114:40-49. [PMID: 29883786 DOI: 10.1016/j.bone.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Osteoporosis is a serious health problem worldwide. Semaphorins (Sema) have been described as key molecules involved in the cross-talk between bone cells (osteoblasts/osteoclasts). In this study, we investigated whether plasmid containing Sema3a could ameliorate bone loss in an ovariectomized (OVX) mouse model via (AspSerSer)6, a selectively bone-targeting moiety. Plasmid pcDNA3.1(+)-Sema3a-GFP was fabricated and transfected cells with the plasmid demonstrated statistically higher levels of Sema3A in vitro (p < 0.001). Mice were ovariectomized and injected twice weekly with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP for four weeks. The aim of the study was twofold: firstly to design an effective bone-targeting drug-delivery system (AspSerSer)6. Secondly, the effects of Sem3A gene therapy on bone loss was investigated. Here, the targeting selectivity of pcDNA3.1(+)-Sema3a-GFP via (AspSerSer)6 to the trabecular bone surface was firstly verified by histological observation of frozen sections and immunofluorescence staining. Then, bone microstructure analysis by Micro-CT indicated significantly less bone loss in mice treated with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP compared to the control group (p < 0.05). Furthermore,H&E staining and Safranin O staining of the decalcified sections demonstrated statistically significantly higher bone area/total area in the mice that were injected with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP (p < 0.001, p < 0.01,respectively). TRAP staining and immunohistochemistry staining of COL I demonstrated lower numbers of osteoclasts and significantly increased numbers of osteoblasts in the bone-targeting moiety delivering pcDNA3.1(+)-Sema3a-GFP group, when compared to the control group (p < 0.01, p < 0.001,respectively). Together, our findings have identified that, (AspSerSer)6, a bone-targeting drug-delivery system based on semaphorin3A gene therapy, ameliorated bone loss in osteoporotic ovariectomized mice, by suppressing osteoclastic bone resorption and simultaneously increasing osteoblastic bone formation. Gene therapy by local site-specific Sema3A overexpression might be a potential new strategy for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- K Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - R J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, Cell Therapy Institute, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Y F Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Deshantri AK, Varela Moreira A, Ecker V, Mandhane SN, Schiffelers RM, Buchner M, Fens MHAM. Nanomedicines for the treatment of hematological malignancies. J Control Release 2018; 287:194-215. [PMID: 30165140 DOI: 10.1016/j.jconrel.2018.08.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022]
Abstract
Hematological malignancies (HM) are a collection of malignant transformations originating from cells in the primary or secondary lymphoid organs. Leukemia, lymphoma, and multiple myeloma comprise the three major types of HM. Current treatment consists of bone marrow transplantation, radiotherapy, immunotherapy and chemotherapy. Although, many chemotherapeutic drugs are clinically available for the treatment of HM, the use of these agents is limited due to dose-related toxicity and lack of specificity to tumor tissue. Moreover, the poor pharmacokinetic profile of most of the chemotherapeutics requires high dosage and frequent administration to maintain therapeutic levels at the target site, both increasing adverse effects. This underlines an urgent need for a suitable drug delivery system to improve efficacy, safety, and pharmacokinetic properties of conventional therapeutics. Nanomedicines have proven to enhance these properties for anticancer therapeutics. The most extensively studied nanomedicine systems are lipid-based nanoparticles and polymeric nanoparticles. Typically, nanomedicines are small sub-micron sized particles in the size range of 20-200 nm. The biocompatible and biodegradable nature of nanomedicines makes them attractive vehicles to improve drug delivery. Their small size allows them to extravasate and accumulate at malignant sites passively by means of the enhanced permeability and retention (EPR) effect, resulting from rapid angiogenesis and inflammation. Moreover, the specificity to the target tissue can be further enhanced by surface modification of nanoparticles. This review describes currently available therapies as well as limitations and potential advantages of nanomedicine formulations for treatment of various types of HM. Additionally, recent investigational and approved nanomedicine formulations and their limited applications in HM are discussed.
Collapse
Affiliation(s)
- Anil K Deshantri
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd, India
| | - Aida Varela Moreira
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Veronika Ecker
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sanjay N Mandhane
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd, India
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maike Buchner
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Marcel H A M Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Iwasaki Y, Yokota A, Otaka A, Inoue N, Yamaguchi A, Yoshitomi T, Yoshimoto K, Neo M. Bone-targeting poly(ethylene sodium phosphate). Biomater Sci 2018; 6:91-95. [PMID: 29184942 DOI: 10.1039/c7bm00930e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poly(ethylene sodium phosphate) (PEP·Na) showed excellent cytocompatibility and in vivo bone affinity. Moreover, PEP·Na did not interact with thrombin, which is a coagulation-related protein. Because immobilization of therapeutic agents and imaging probes on PEP·Na is easily performed, PEP·Na is a promising polymer for bone-targeted therapies.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang L, Huang J, Yang S, Cui W, Wang J, Zhang Y, Li J, Guo X. Bone Regeneration Induced by Local Delivery of a Modified PTH-Derived Peptide from Nanohydroxyapatite/Chitosan Coated True Bone Ceramics. ACS Biomater Sci Eng 2018; 4:3246-3258. [PMID: 33435063 DOI: 10.1021/acsbiomaterials.7b00780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Liang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| | - Jinghuan Huang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of China
| | - Shuyi Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| | - Wei Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| | - Jianping Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
| | - Yinping Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| |
Collapse
|
20
|
Newman MR, Russell SG, Schmitt CS, Marozas IA, Sheu TJ, Puzas JE, Benoit DSW. Multivalent Presentation of Peptide Targeting Groups Alters Polymer Biodistribution to Target Tissues. Biomacromolecules 2017; 19:71-84. [PMID: 29227674 DOI: 10.1021/acs.biomac.7b01193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug delivery to bone is challenging, whereby drug distribution is commonly <1% of injected dose, despite development of several bone-targeted drug delivery systems specific to hydroxyapatite. These bone-targeted drug delivery systems still suffer from poor target cell localization within bone, as at any given time overall bone volume is far greater than acutely remodeling bone volume, which harbors relevant cell targets (osteoclasts or osteoblasts). Thus, there exists a need to target bone-acting drugs specifically to sites of bone remodeling. To address this need, this study synthesized oligo(ethylene glycol) copolymers based on a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by osteoclasts during the bone resorption phase of bone remodeling, which provides greater specificity relevant for bone cell drugging. Gradient and random peptide orientations, as well as polymer molecular weights, were investigated. TRAP-targeted, high molecular weight (Mn) random copolymers exhibited superior accumulation in remodeling bone, where fracture accumulation was observed for at least 1 week and accounted for 14% of tissue distribution. Intermediate and low Mn random copolymer accumulation was lower, indicating residence time depends on Mn. High Mn gradient polymers were cleared, with only 2% persisting at fractures after 1 week, suggesting TRAP binding depends on peptide density. Peptide density and Mn are easily modified in this versatile targeting platform, which can be applied to a range of bone drug delivery applications.
Collapse
Affiliation(s)
- Maureen R Newman
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Steven G Russell
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Christopher S Schmitt
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Ian A Marozas
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Tzong-Jen Sheu
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - J Edward Puzas
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| |
Collapse
|
21
|
Yang Y, Fang S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol 2017; 456:16-35. [PMID: 27888003 PMCID: PMC7116989 DOI: 10.1016/j.mce.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Small non-coding RNAs, which are 20-25 nucleotide ribonucleic acids, have emerged as an important transformation in the biological evolution over almost three decades. microRNAs (miRNAs) and short interfering RNAs (siRNAs) are two significant categories of the small RNAs that exert important effects on bone endocrinology and skeletology. Therefore, clarifying the expression and function of these important molecules in bone endocrine physiology and pathology is of great significance for improving their potential therapeutic value for metabolism-associated bone diseases. In the present review, we highlight the recent advances made in understanding the function and molecular mechanism of these small non-coding RNAs in bone metabolism, especially their potentially therapeutic values in bone-related diseases.
Collapse
Affiliation(s)
- Ying Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Natfji AA, Osborn HM, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Wei X, Li F, Zhao G, Chhonker YS, Averill C, Galdamez J, Purdue PE, Wang X, Fehringer EV, Garvin KL, Goldring SR, Alnouti Y, Wang D. Pharmacokinetic and Biodistribution Studies of HPMA Copolymer Conjugates in an Aseptic Implant Loosening Mouse Model. Mol Pharm 2017; 14:1418-1428. [PMID: 28343392 DOI: 10.1021/acs.molpharmaceut.7b00045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-(2-Hydroxypropyl) methacrylamide (HPMA) copolymers were previously found to represent a versatile delivery platform for the early detection and intervention of orthopedic implant loosening. In this article, we evaluated the impact of different structural parameters of the HPMA copolymeric system (e.g., molecular weight (MW), drug content) to its pharmacokinetics and biodistribution (PK/BD) profile. Using 125I, Alexa Fluor 488, and IRDye 800 CW-labeled HPMA copolymer-dexamethasone (P-Dex) conjugates with different MW and dexamethasone (Dex) contents, we found the MW to be the predominant impact factor on the PK/BD profiles of P-Dex, with Dex content as a secondary impact factor. In gamma counter-based PK/BD studies, increased MW of P-Dex reduced elimination, leading to lower clearance, longer half-life, and higher systemic exposure (AUC and MRT). In the semiquantitative live animal optical imaging evaluation, the distribution of P-Dex to the peri-implant inflammatory lesion increased when MW was increased. This result was further confirmed by FACS analyses of cells isolated from peri-implant regions after systemic administration of Alexa Fluor 488-labeled P-Dex. Since the in vitro cell culture study suggested that the internalization of P-Dex by macrophages is generally independent of P-Dex's MW and Dex content, the impact of the MW and Dex content on its PK/BD profile was most likely exerted at physiological and pathophysiological levels rather than at the cellular level. In both gamma counter-based PK/BD analyses and semiquantitative optical imaging analyses, P-Dex with 6 wt % Dex content showed fast clearance. Dynamic light scattering analyses unexpectedly revealed significant molecular aggregation of P-Dex at this Dex content level. The underlining mechanisms of the aggregation and fast in vivo clearance of the P-Dex warrant further investigation.
Collapse
Affiliation(s)
- Xin Wei
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Fei Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Gang Zhao
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Yashpal Singh Chhonker
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Christine Averill
- Hospital for Special Surgery , New York, New York 10021, United States
| | - Josselyn Galdamez
- Hospital for Special Surgery , New York, New York 10021, United States
| | - P Edward Purdue
- Hospital for Special Surgery , New York, New York 10021, United States
| | - Xiaoyan Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Edward V Fehringer
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Kevin L Garvin
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Steven R Goldring
- Hospital for Special Surgery , New York, New York 10021, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Dong Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States.,Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
24
|
Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm 2016; 516:352-363. [PMID: 27887884 DOI: 10.1016/j.ijpharm.2016.11.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023]
Abstract
Because of the peculiarity of the bone microstructure, the uptake of chemotherapeutics often happens at non-targeted sites, which induces side effects. In order to solve this problem, we designed a bone-targeting drug delivery system that can release drug exclusively in the nidus of the bone. Alendronate (ALN), which has a high ability to target to hydroxyapatite, was used to fabricate double ALN-conjugated poly (ethylene glycol) 2000 material (ALN-PEG2k-ALN). The ALN-PEG2k-ALN was characterized using 1H NMR and 31P NMR and FTIR. ALN-PEG2k-ALN-modified calcium phosphate nanoparticles (APA-CPNPs) with an ALN targeting moiety and hydrophilic poly (ethylene glycol) arms tiled on the surface was prepared for bone-targeted drug delivery. The distribution of ALN-PEG2k-ALN was tested by X-ray photoelectron spectroscopy. Isothermal titration calorimetry data indicated that similar to free ALN, both ALN-PEG2k-ALN and APA-CPNPs can bind to calcium ions. The bone-binding ability of APA-CPNPs was verified via ex vivo imaging of bone fragments. An in vitro release experiment demonstrated that APA-CPNPs can release drug faster in an acid environment than a neutral environment. Cell viability experiments indicated that blank APA-CPNPs possessed excellent biocompatibility with normal cells. Methotrexate (MTX) loaded APA-CPNPs have the same ability to inhibit cancer cells as free drug at high concentrations, while they are slightly weaker at low concentrations. All of these experiments verified the prospective application of APA-CPNPs as a bone-targeting drug delivery system.
Collapse
|
25
|
Janzer M, Larbig G, Kübelbeck A, Wischnjow A, Haberkorn U, Mier W. Drug Conjugation Affects Pharmacokinetics and Specificity of Kidney-Targeted Peptide Carriers. Bioconjug Chem 2016; 27:2441-2449. [DOI: 10.1021/acs.bioconjchem.6b00397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Maria Janzer
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Gregor Larbig
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Armin Kübelbeck
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Artjom Wischnjow
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Uwe Haberkorn
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Walter Mier
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Zhang L, Zhang R, Yang J, Wang J, Kopeček J. Indium-based and iodine-based labeling of HPMA copolymer-epirubicin conjugates: Impact of structure on the in vivo fate. J Control Release 2016; 235:306-318. [PMID: 27266365 PMCID: PMC5061135 DOI: 10.1016/j.jconrel.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
Recently, we developed 2nd generation backbone degradable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-drug conjugates which contain enzymatically cleavable sequences (GFLG) in both polymeric backbone and side-chains. This design allows using polymeric carriers with molecular weights above renal threshold without impairing their biocompatibility, thereby leading to significant improvement in therapeutic efficacy. For example, 2nd generation HPMA copolymer-epirubicin (EPI) conjugates (2P-EPI) demonstrated complete tumor regression in the treatment of mice bearing ovarian carcinoma. To obtain a better understanding of the in vivo fate of this system, we developed a dual-labeling strategy to simultaneously investigate the pharmacokinetics and biodistribution of the polymer carrier and drug EPI. First, we synthesized two different types of dual-radiolabeled conjugates, including 1) (111)In-2P-EPI-(125)I (polymeric carrier 2P was radiolabeled with (111)In and drug EPI with (125)I), and 2) (125)I-2P-EPI-(111)In (polymeric carrier 2P was radiolabeled with (125)I and drug EPI with (111)In). Then, we compared the pharmacokinetics and biodistribution of these two dual-labeled conjugates in female nude mice bearing A2780 human ovarian carcinoma. There was no significant difference in the blood circulation between polymeric carrier and payload; the carriers ((111)In-2P and (125)I-2P) showed similar retention of radioactivity in both tumor and major organs except kidney. However, compared to (111)In-labeled payload EPI, (125)I-labeled EPI showed lower radioactivity in normal organs and tumor at 48h and 144h after intravenous administration of conjugates. This may be due to different drug release rates resulting from steric hindrance to the formation of enzyme-substrate complex as indicated by cleavage experiments with lysosomal enzymes (Tritosomes). A slower release rate of EPI(DTPA)(111)In than EPI(Tyr)(125)I was observed. It may be also due to in vivo catabolism and subsequent iodine loss as literature reported. Nevertheless, tumor-to-tissue uptake ratios of both radionuclides were comparable, indicating that drug-labeling strategy does not affect the tumor targeting ability of HPMA copolymer conjugates.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
Chiellini F, Dinucci D, Bartoli C, Piras AM, Chiellini E. Intracellular Fate Investigation of Bio-Eliminable Polymeric Nanoparticles by Confocal Laser Scanning Microscopy. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911507084821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This is a study of the in vitro cytotoxicity and intracellular fate of poly[(glycylglycinemethacrylamide)-co-N-(2-hydroxypropylmethacrylamide y)] bio-eliminable polymer samples and relative nanoparticles in Balb/c 3T3 cloned A31 mouse embryo fibroblasts cell line by using Confocal Laser Scanning Microscopy (CLSM). Nanoparticles were prepared by co-precipitating the polymers with fluorescein labeled human serum albumin (HSA-FITC) as the fluorescent probe and as the model protein drug. The toxicity of the polymers containing 25, 50 and 100%, respectively, of (glycylglycinemethacrylamide) x (GGMA) was investigated in terms of cytoskeleton morphology by exposing cells to various concentrations of polymers for 24 h. Under normal culture conditions, fibroblast cells exhibit characteristic spreading and shape, however, when the cell cultures were subjected to chemical, metabolic or physical stress, their morphology changed reducing their visibility. The polymers with the lower glycine content exert a lower toxicity even at high concentrations [8.5mg/mL]. The cellular uptake of nanoparticles was determined by incubating fibroblasts with HSA-FITC loaded particles and HSA-FITC alone at three different time points. The results indicate that nanoparticles were up-taken by the cells in a time dependent fashion. Preliminary evaluation of the intracellular fate of the prepared nanoparticles indicate their possible lysosomal escape.
Collapse
Affiliation(s)
- Federica Chiellini
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), UdR INSTM Department of Chemistry & Industrial Chemistry, University of Pisa Via Livornese 1291, 56010 S. Piero a Grado (Pisa), Italy
| | - Dinuccio Dinucci
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), UdR INSTM Department of Chemistry & Industrial Chemistry, University of Pisa Via Livornese 1291, 56010 S. Piero a Grado (Pisa), Italy
| | - Cristina Bartoli
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), UdR INSTM Department of Chemistry & Industrial Chemistry, University of Pisa Via Livornese 1291, 56010 S. Piero a Grado (Pisa), Italy
| | - Anna Maria Piras
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), UdR INSTM Department of Chemistry & Industrial Chemistry, University of Pisa Via Livornese 1291, 56010 S. Piero a Grado (Pisa), Italy
| | - Emo Chiellini
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), UdR INSTM Department of Chemistry & Industrial Chemistry, University of Pisa Via Livornese 1291, 56010 S. Piero a Grado (Pisa), Italy,
| |
Collapse
|
28
|
Alendronate-modified hydroxyapatite nanoparticles for bone-specific dual delivery of drug and bone mineral. Macromol Res 2016. [DOI: 10.1007/s13233-016-4094-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Chakravarty R, Hong H, Cai W. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Curr Drug Targets 2016; 16:592-609. [PMID: 25182469 DOI: 10.2174/1389450115666140902125657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called 'image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for the treatment of cancer but might also find utility in the management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
30
|
Ghadakzadeh S, Mekhail M, Aoude A, Hamdy R, Tabrizian M. Small Players Ruling the Hard Game: siRNA in Bone Regeneration. J Bone Miner Res 2016; 31:475-87. [PMID: 26890411 DOI: 10.1002/jbmr.2816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
Silencing gene expression through a sequence-specific manner can be achieved by small interfering RNAs (siRNAs). The discovery of this process has opened the doors to the development of siRNA therapeutics. Although several preclinical and clinical studies have shown great promise in the treatment of neurological disorders, cancers, dominant disorders, and viral infections with siRNA, siRNA therapy is still gaining ground in musculoskeletal tissue repair and bone regeneration. Here we present a comprehensive review of the literature to summarize different siRNA delivery strategies utilized to enhance bone regeneration. With advancement in understanding the targetable biological pathways involved in bone regeneration and also the rapid progress in siRNA technologies, application of siRNA for bone regeneration has great therapeutic potential. High rates of musculoskeletal injuries and diseases, and their inevitable consequences, impose a huge financial burden on individuals and healthcare systems worldwide.
Collapse
Affiliation(s)
- Saber Ghadakzadeh
- Experimental Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, Canada.,Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Mina Mekhail
- Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Ahmed Aoude
- Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Reggie Hamdy
- Experimental Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, Canada.,Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Liu X. Bone site-specific delivery of siRNA. J Biomed Res 2015; 30:264-71. [PMID: 26642236 PMCID: PMC4946317 DOI: 10.7555/jbr.30.20150110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/25/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNA) have enormous potential as therapeutics to target and treat various bone disorders such as osteoporosis and cancer bone metastases. However, effective and specific delivery of siRNA therapeutics to bone and bone-specific cells in vivo is very challenging. To realize the full therapeutic potential of siRNA in treating bone disorders, a safe and efficient, tissue- and cell-specific delivery system must be developed. This review focuses on recent advances in bone site-specific delivery of siRNA at the tissue or cellular level. Bone-targeted nanoparticulate siRNA carriers and various bone-targeted moieties such as bisphosphonates, oligopeptides (Asp)8 and (AspSerSer)6, and aptamers are highlighted. Incorporation of these bone-seeking targeting moieties into siRNA carriers allows for recognition of different sub-tissue functional domains of bone and also specific cell types residing in bone tissue. It also provides a means for bone-formation surface-, bone-resorption surface-, or osteoblast-specific targeting and transportation of siRNA therapeutics. The discussion mainly focuses on systemic and local bone-specific delivery of siRNA in osteoporosis and bone metastasis preclinical models.
Collapse
Affiliation(s)
- Xinli Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
32
|
Low SA, Galliford CV, Yang J, Low PS, Kopeček J. Biodistribution of Fracture-Targeted GSK3β Inhibitor-Loaded Micelles for Improved Fracture Healing. Biomacromolecules 2015; 16:3145-53. [PMID: 26331790 PMCID: PMC4800810 DOI: 10.1021/acs.biomac.5b00777] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone fractures constitute a major cause of morbidity and mortality especially in the elderly. Complications associated with osteoporosis drugs and the age of the patient slow bone turnover and render such fractures difficult to heal. Increasing the speed of fracture repair by administration of a fracture-targeted bone anabolic agent could find considerable application. Aspartic acid oligopeptides are negatively charged molecules at physiological pH that adsorb to hydroxyapatite, the mineral portion of bone. This general adsorption is the strongest where bone turnover is highest or where hydroxyapatite is freshly exposed. Importantly, both of these conditions are prominent at fracture sites. GSK3β inhibitors are potent anabolic agents that can promote tissue repair when concentrated in a damaged tissue. Unfortunately, they can also cause significant toxicity when administered systemically and are furthermore difficult to deliver due to their strong hydrophobicity. In this paper, we solve both problems by conjugating the hydrophobic GSK3β inhibitor to a hydrophilic aspartic acid octapeptide using a hydrolyzable bond, thereby generating a bone fracture-targeted water-soluble form of the drug. The resulting amphiphile is shown to assemble into micelles, extending its circulation time while maintaining its fracture-targeting abilities. For measurement of pharmacokinetics, an 125I was introduced at the location of the bromine in the GSK3β inhibitor to minimize any structural differences. Biodistribution studies demonstrate a greater than 4-fold increase in fracture accumulation over healthy bone.
Collapse
Affiliation(s)
- Stewart A. Low
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Chris V. Galliford
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jindřich Kopeček
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
33
|
Ye WL, Zhao YP, Li HQ, Na R, Li F, Mei QB, Zhao MG, Zhou SY. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep 2015; 5:14614. [PMID: 26419507 PMCID: PMC4588583 DOI: 10.1038/srep14614] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/02/2015] [Indexed: 11/29/2022] Open
Abstract
In order to increase the therapeutic effect of doxorubicin (DOX) on bone metastases, a multifunctional micelle was developed by combining pH-sensitive characteristics with bone active targeting capacity. The DOX loaded micelle was self-assembled by using doxorubicin-poly (ethylene glycol)-alendronate (DOX-hyd-PEG-ALN) as an amphiphilic material. The size and drug loading of DOX loaded DOX-hyd-PEG-ALN micelle was 114 nm and 24.3%. In pH 5.0 phosphate buffer solution (PBS), the micelle released DOX significantly faster than in pH 7.4 PBS. In addition, with the increase of incubation time, more red DOX fluorescence was observed in tumor cells and trafficked from cytoplasm to nucleus. The IC50 of DOX loaded DOX-hyd-PEG-ALN micelle on A549 cells was obviously lower than that of free DOX in 48 h. Furthermore, the in vivo image experimental results indicated that a larger amount of DOX was accumulated in the bone metastatic tumor tissue after DOX loaded DOX-hyd-PEG-ALN micelle was intravenously administered, which was confirmed by histological analysis. Finally, DOX loaded DOX-hyd-PEG-ALN micelle effectively delayed the tumor growth, decreased the bone loss and reduced the cardiac toxicity in tumor-bearing nude mice as compared with free DOX. In conclusion, DOX loaded DOX-hyd-PEG-ALN micelle had potential in treating bone metastatic tumor.
Collapse
Affiliation(s)
- Wei-liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-pu Zhao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Huai-qiu Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ren Na
- West Changle Sanatorium for Xi'an Army Retired Cadres of Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Qi-bing Mei
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Si-yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
34
|
Ossipov DA. Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering. Expert Opin Drug Deliv 2015; 12:1443-58. [PMID: 25739860 DOI: 10.1517/17425247.2015.1021679] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bisphosphonates (BPs) were introduced 45 years ago as anti-osteoporotic drugs and during the last decade have been utilized as bone-targeting groups in systemic treatment of bone diseases. Very recently, strategies of chemical immobilization of BPs in hydrogels and nanocomposites for bone tissue engineering emerged. These strategies opened new applications of BPs in bone tissue engineering. AREAS COVERED Conjugates of BPs to different drug molecules, imaging agents, proteins and polymers are discussed in terms of specific targeting to bone and therapeutic affect induced by the resulting prodrugs in comparison with the parent drugs. Conversion of these conjugates into hydrogel scaffolds is also presented along with the application of the resulting materials for bone tissue engineering. EXPERT OPINION Calcium-binding properties of BPs can be successfully extended via different conjugation strategies not only for purposes of bone targeting, but also in supramolecular assembly affording either new nanocarriers or bulk nanocomposite scaffolds. Interaction between carrier-linked BPs and drug molecules should also be considered for the control of release of these molecules and their optimized delivery. Bone-targeting properties of BP-functionalized nanomaterials should correspond to bone adhesive properties of their bulk analogs.
Collapse
Affiliation(s)
- Dmitri A Ossipov
- Uppsala University, Division of Polymer Chemistry, Department of Chemistry-Ångström, Science for Life Laboratory , Uppsala, SE 751 21 , Sweden +46 18 417 7335 ;
| |
Collapse
|
35
|
Paramjot, Khan NM, Kapahi H, Kumar S, Bhardwaj TR, Arora S, Mishra N. Role of polymer–drug conjugates in organ-specific delivery systems. J Drug Target 2015; 23:387-416. [DOI: 10.3109/1061186x.2015.1016436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Liu J, Dang L, Li D, Liang C, He X, Wu H, Qian A, Yang Z, Au DWT, Chiang MWL, Zhang BT, Han Q, Yue KKM, Zhang H, Lv C, Pan X, Xu J, Bian Z, Shang P, Tan W, Liang Z, Guo B, Lu A, Zhang G. A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials 2015; 52:148-60. [PMID: 25818421 DOI: 10.1016/j.biomaterials.2015.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
Abstract
Dysregulated microRNAs in osteoclasts could cause many skeletal diseases. The therapeutic manipulation of these pathogenic microRNAs necessitates novel, efficient delivery systems to facilitate microRNAs modulators targeting osteoclasts with minimal off-target effects. Bone resorption surfaces characterized by highly crystallized hydroxyapatite are dominantly occupied by osteoclasts. Considering that the eight repeating sequences of aspartate (D-Asp8) could preferably bind to highly crystallized hydroxyapatite, we developed a targeting system by conjugating D-Asp8 peptide with liposome for delivering microRNA modulators specifically to bone resorption surfaces and subsequently encapsulated antagomir-148a (a microRNA modulator suppressing the osteoclastogenic miR-148a), i.e. (D-Asp8)-liposome-antagomir-148a. Our results demonstrated that D-Asp8 could facilitate the enrichment of antagomir-148a and the subsequent down-regulation of miR-148a in osteoclasts in vivo, resulting in reduced bone resorption and attenuated deterioration of trabecular architecture in osteoporotic mice. Mechanistically, the osteoclast-targeted delivery depended on the interaction between bone resorption surfaces and D-Asp8. No detectable liver and kidney toxicity was found in mice after single/multiple dose(s) treatment of (D-Asp8)-liposome-antagomir-148a. These results indicated that (D-Asp8)-liposome as a promising osteoclast-targeting delivery system could facilitate clinical translation of microRNA modulators in treating those osteoclast-dysfunction-induced skeletal diseases.
Collapse
Affiliation(s)
- Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China
| | - Defang Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China
| | - Chao Liang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, 721000, China
| | - Xiaojuan He
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Heng Wu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China
| | - Airong Qian
- Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, 721000, China
| | - Zhijun Yang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Doris W T Au
- Department of Biology and Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Michael W L Chiang
- Department of Biology and Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Quanbin Han
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kevin K M Yue
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hongqi Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Changwei Lv
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaohua Pan
- Department of Orthopaedics & Traumatology, Shenzhen People's Hospital, Second Medical College of Ji'nan University, Shenzhen, 518020, China
| | - Jiake Xu
- Molecular Lab, School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Zhaoxiang Bian
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, 721000, China
| | - Weihong Tan
- Department of Chemistry, University of Florida, Gainesville, FA 32611-7200, USA; Department of Physiology and Functional Genomics, University of Florida, Gainesville, FA 32611-7200, USA; Center for Research at Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, FA 32611-7200, USA
| | - Zicai Liang
- Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, 721000, China.
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu 215347, China; Institute of Integrated Bioinformatic Medicine and Translational Sciences, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen 518057, China; Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, 721000, China.
| |
Collapse
|
37
|
Zhang Y, Wei L, Miron RJ, Shi B, Bian Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Res 2015; 30:286-96. [PMID: 25088728 DOI: 10.1002/jbmr.2322] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/25/2014] [Accepted: 07/31/2014] [Indexed: 12/30/2022]
Abstract
Semaphorins have been recently targeted as new molecules directly implicated in the cell-cell communication that occurs between osteoclasts and osteoblasts. Overexpression of certain semaphorins, such as semaphorin4D (sema4D), is found in an osteoporotic phenotype and plays a key role in osteoclast activity by suppressing osteoblast maturation, thus significantly altering the bone modeling cycle. In the present study, we fabricate a site-specific bone-targeting drug-delivery system from polymeric nanoparticles with the incorporation of siRNA interference molecule for sema4D and demonstrate their cellular uptake and intracellular trafficking within osteoclasts, thus preventing the suppression of osteoblast activity. We then demonstrate in an osteoporotic animal model induced by ovariectomy that weekly intravenous injections led to a significantly greater number of active osteoblasts at the bone surface, resulting in higher bone volume in compromised animals. The findings from the present study demonstrate a novel and promising site-specific therapeutic option for the treatment of osteoporosis via interference of the sema4D-plexin cell communication pathway between osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China, China; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China, China
| | | | | | | | | |
Collapse
|
38
|
Fu YC, Fu TF, Wang HJ, Lin CW, Lee GH, Wu SC, Wang CK. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater 2014; 10:4583-4596. [PMID: 25050775 DOI: 10.1016/j.actbio.2014.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/05/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022]
Abstract
Nanoparticles (NP) that target bone tissue were developed using PLGA-PEG (poly(lactic-co-glycolic acid)-polyethylene glycol) diblock copolymers and bone-targeting moieties based on aspartic acid, (Asp)(n(1,3)). These NP are expected to enable the transport of hydrophobic drugs. The molecular structures were examined by (1)H NMR or identified using mass spectrometry and Fourier transform infrared (FT-IR) spectra. The NP were prepared using the water miscible solvent displacement method, and their size characteristics were evaluated using transmission electron microscopy (TEM) and dynamic light scattering. The bone targeting potential of the NP was evaluated in vitro using hydroxyapatite affinity assays and in vivo using fluorescent imaging in zebrafish and rats. It was confirmed that the average particle size of the NP was <200 nm and that the dendritic Asp3 moiety of the PLGA-PEG-Asp3 NP exhibited the best apatite mineral binding ability. Preliminary findings in vivo bone affinity assays in zebrafish and rats indicated that the PLGA-PEG-ASP3 NP may display increased bone-targeting efficiency compared with other PLGA-PEG-based NP that lack a dendritic Asp3 moiety. These NP may act as a delivery system for hydrophobic drugs, warranting further evaluation of the treatment of bone disease.
Collapse
Affiliation(s)
- Yin-Chih Fu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Fun Fu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Jen Wang
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Che-Wei Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Gang-Hui Lee
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Kuang Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan.
| |
Collapse
|
39
|
Zhang Y, Wei L, Miron RJ, Zhang Q, Bian Z. Prevention of alveolar bone loss in an osteoporotic animal model via interference of semaphorin 4d. J Dent Res 2014; 93:1095-100. [PMID: 25252878 DOI: 10.1177/0022034514552676] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Semaphorin 4d (Sema4d) has been proposed as a novel target gene for the treatment of osteoporosis. Recently, we fabricated a site-specific bone-targeting system from polymeric nanoparticles that demonstrates an ability to prevent bone loss in an osteoporotic model by interfering with Sema4d gene expression using small interference RNA (siRNA) molecules. The aim of the present investigation was to determine the effects of this targeting system on the periodontium, an area of high bone turnover. We demonstrated, by single photon emission computed tomography, that intravenous injection of this molecule in ovariectomized Balb/C mice is able to target alveolar bone peaking 4 hr post-injection. We then compared, by histological analysis, the bone volume/total volume (BV/TV), alveolar bone height loss, immunohistochemical expression of Sema4d, and total number of osteoclasts in mandibular alveolar bone. Four treatment modalities were compared as follows: (1) sham-operated, (2) OVX-operated, (3) OVX+estrogen replacement therapy, and (4) OVX+siRNA-Sema4d animals. The results from the present study demonstrate that an osteoporotic condition significantly increases alveolar bone height loss, and that the therapeutic effects via bone-targeting systems featuring interference of Sema4d are able to partly counteract alveolar bone loss caused by osteoporosis. While the future therapeutic demand for the large number of patients suffering from osteoporosis faces many challenges, we demonstrate within the present study an effective drug-delivery moiety with anabolic effects on the bone remodeling cycle able to locate and target alveolar bone regeneration.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - L Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - R J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Q Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Z Bian
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| |
Collapse
|
40
|
Yu CY, Wang YM, Li NM, Liu GS, Yang S, Tang GT, He DX, Tan XW, Wei H. In Vitro and in Vivo Evaluation of Pectin-Based Nanoparticles for Hepatocellular Carcinoma Drug Chemotherapy. Mol Pharm 2014; 11:638-44. [DOI: 10.1021/mp400412c] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui-Yun Yu
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Yan-Mei Wang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Na-Mei Li
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Ge-Sha Liu
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Sa Yang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Guo-Tao Tang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Xiang-Wen Tan
- Department
of Laboratory Animal Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
41
|
Polymer–Drug Conjugate in Focal Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Efficiency of high molecular weight backbone degradable HPMA copolymer-prostaglandin E1 conjugate in promotion of bone formation in ovariectomized rats. Biomaterials 2013; 34:6528-38. [PMID: 23731780 DOI: 10.1016/j.biomaterials.2013.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/07/2013] [Indexed: 12/11/2022]
Abstract
Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by postpolymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate.
Collapse
|
43
|
Yewle JN, Puleo DA, Bachas LG. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity. Biomaterials 2013; 34:3141-9. [DOI: 10.1016/j.biomaterials.2013.01.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/08/2013] [Indexed: 01/16/2023]
|
44
|
Poly(ethylene glycol)-paclitaxel-alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials 2013; 34:3795-806. [PMID: 23434349 DOI: 10.1016/j.biomaterials.2013.01.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/11/2022]
Abstract
Paclitaxel (PTX) and alendronate (ALN) are effective drugs used for the treatment of breast cancer bone metastases. Growing evidence suggests that low-dose taxanes and bisphosphonates possess anti-angiogenic properties. However, PTX is water-insoluble and toxic, even if administered at anti-angiogenic dosing schedule. Polymer conjugation of PTX will increase water-solubility and improve its pharmacokinetic profile directing it to the tumor site. We further propose to combine it with ALN for active bone targeting. We conjugated ALN and PTX with poly(ethylene glycol) (PEG) forming self-assembled micelles where PTX molecules are located at the inner core and the water-soluble ALN molecules at the outer shell. PTX-PEG-ALN micelles exhibited similar in vitro cytotoxic and anti-angiogenic activity as the free drugs. Biodistribution analysis demonstrated preferential tumor accumulation of FITC-labeled PTX-PEG-ALN micelles. Pharmacokinetic studies revealed longer t1/2 of the conjugate than free PTX. PTX-PEG-ALN micelles achieved improved efficacy and safety profiles over free PTX in syngeneic and xenogeneic mouse models of mCherry-infected mammary adenocarcinoma in the tibia, as monitored intravitally non-invasively by a fluorescence imaging system. The described data warrants the potential use of PTX-PEG-ALN as bone-targeted anticancer and anti-angiogenic therapy for breast cancer bone metastases.
Collapse
|
45
|
Kopeček J. Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 2013; 65:49-59. [PMID: 23123294 DOI: 10.1016/j.addr.2012.10.014] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023]
Abstract
This overview focuses on bioconjugates of water-soluble polymers with low molecular weight drugs and proteins. After a short discussion of the origins of the field, the state-of-the-art is reviewed. Then research directions needed for the acceleration of the translation of nanomedicines into the clinic are outlined. Two most important directions, synthesis of backbone degradable polymer carriers and drug-free macromolecular therapeutics, a new paradigm in drug delivery, are discussed in detail. Finally, the future perspectives of the field are briefly discussed.
Collapse
|
46
|
Qiu L, Cheng W, Lin J, Chen L, Yao J, Luo S. Synthesis and biological evaluation of a series of99mTc-labeled diphosphonates as novel radiotracers with improved bone imaging. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ling Qiu
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Wen Cheng
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Liping Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Jun Yao
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Shineng Luo
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| |
Collapse
|
47
|
Low SA, Kopeček J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev 2012; 64:1189-204. [PMID: 22316530 DOI: 10.1016/j.addr.2012.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/13/2022]
Abstract
An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides a unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems.
Collapse
Affiliation(s)
- Stewart A Low
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
48
|
Yewle JN, Puleo DA, Bachas LG. Enhanced affinity bifunctional bisphosphonates for targeted delivery of therapeutic agents to bone. Bioconjug Chem 2011; 22:2496-506. [PMID: 22073906 PMCID: PMC3247145 DOI: 10.1021/bc2003132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Skeletal diseases have a major impact on the worldwide population and economy. Although several therapeutic agents and treatments are available for addressing bone diseases, they are not being fully utilized because of their uptake in nontargeted sites and related side effects. Active targeting with controlled delivery is an ideal approach for treatment of such diseases. Because bisphosphonates are known to have high affinity to bone and are being widely used in treatment of osteoporosis, they are well-suited for drug targeting to bone. In this study, a targeted delivery of therapeutic agent to resorption sites and wound healing sites of bone was explored. Toward this goal, bifunctional hydrazine-bisphosphonates (HBPs), with spacers of various lengths, were synthesized and studied for their enhanced affinity to bone. Crystal growth inhibition studies showed that these HBPs have high affinity to hydroxyapatite, and HBPs with shorter spacers bind more strongly than alendronate to hydroxyapatite. The HBPs did not affect proliferation of MC3T3-E1 preosteoblasts, did not induce apoptosis, and were not cytotoxic at the concentration range tested (10(-6)-10(-4) M). Furthermore, drugs can be linked to the HBPs through a hydrazone linkage that is cleavable at the low pH of bone resorption and wound healing sites, leading to release of the drug. This was demonstrated using hydroxyapatite as a model material of bone and 4-nitrobenzaldehyde as a model drug. This study suggests that these HBPs could be used for targeted delivery of therapeutic agents to bone.
Collapse
Affiliation(s)
- Jivan N. Yewle
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | - David A. Puleo
- Center for Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506-0070
| | - Leonidas G. Bachas
- Delpartment of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431
| |
Collapse
|
49
|
Luhmann T, Germershaus O, Groll J, Meinel L. Bone targeting for the treatment of osteoporosis. J Control Release 2011; 161:198-213. [PMID: 22016072 DOI: 10.1016/j.jconrel.2011.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/01/2011] [Accepted: 10/03/2011] [Indexed: 11/19/2022]
Abstract
Osteoporosis represents a major public health burden especially considering the aging populations worldwide. Drug targeting will be important to better meet these challenges and direct the full therapeutic potential of therapeutics to their intended site of action. This review has been organized in modules, such that scientists working in the field can easily gain specific insight in the field of bone targeting for the drug class they are interested in. We review currently approved and emerging treatment options for osteoporosis and discuss these in light of the benefit these would gain from advanced targeting. In addition, established targeting strategies are reviewed and novel opportunities as well as promising areas are presented along with pharmaceutical strategies how to render novel composites consisting of a drug and a targeting moiety responsive to bone-specific or disease-specific environmental stimuli. Successful implementation of these principles into drug development programs for osteoporosis will substantially contribute to the clinical success of anti-catabolic and anabolic drugs of the future.
Collapse
Affiliation(s)
- Tessa Luhmann
- Institute for Pharmacy and Food Chemistry, University of Wurzburg, Am Hubland, DE-97074 Wurzburg, Germany
| | | | | | | |
Collapse
|
50
|
Cui W, Lu X, Cui K, Wu J, Wei Y, Lu Q. Fluorescent nanoparticles of chitosan complex for real-time monitoring drug release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8384-8390. [PMID: 21661743 DOI: 10.1021/la200552k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
New types of fluorescent nanoparticles (FNPs) were prepared through ionic self-assembly of anthracene derivative and chitosan for applications as drug delivery carriers with real-time monitoring of the process of drug release. Because of the presence of the hydrophilic groups, these FNPs showed excellent dispersion and stability in aqueous solution. The structure and properties of the FNPs were investigated by using means of (1)H NMR, FTIR, SEM, dynamic light scattering (DLS), and so on. The potential practical applications as drug delivery carriers for real-time detection of the drug release process were demonstrated using Nicardipine as a model drug. Upon loading the drug, the strong blue fluorescence of FNPs was quenched due to electron transfer and fluorescence resonance energy transfer (FRET). With release of drug in vitro, the fluorescence was recovered again. The relationship between the accumulative drug release of FNPs and the recovered fluorescence intensity has been established. Such FNPs may open up new perspectives for designing a new class of detection system for monitoring drug release.
Collapse
Affiliation(s)
- Wei Cui
- School of Chemistry and Chemical Engineering, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|