1
|
Kawai Y, Ozawa M, Isomura A, Mitsuhashi H, Yamaguchi S, Nagayama S, Tanaka S, Abe E, Saka S, Nagahama K, Iwamoto T, Tamura K. A case of Fanconi syndrome that developed following a year of consumption of a red yeast rice supplement. CEN Case Rep 2025; 14:95-102. [PMID: 38985380 DOI: 10.1007/s13730-024-00913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Although some dietary supplements have been reported to cause renal dysfunction, there have been few reports of supplement-induced Fanconi syndrome. We present the case of a 56-year-old woman with Fanconi syndrome that developed after she consumed a red yeast rice supplement. She was referred to our hospital because of renal dysfunction, and was found to have electrolyte abnormalities, including hypophosphatemia and hypouricemia, renal diabetes, and hyperchloremic metabolic acidosis, and was, therefore, diagnosed with Fanconi syndrome. Renal biopsy revealed proximal tubular injury characterized by severely degenerated tubular epithelial cells as well as mild hypocellular fibrosis. We speculated that the red yeast rice supplement, which the patient had been consuming for approximately 1 year, might be a cause of her syndrome, because reports of renal dysfunction associated with the consumption of red yeast rice supplements have emerged in Japan since 2024. After the supplement was discontinued and oral prednisolone treatment was initiated, the patient's renal function improved and her electrolyte abnormalities were ameliorated. Furthermore, even after tapering off and discontinuing the prednisolone over approximately 12 weeks, her renal function remained. Because Fanconi syndrome may be caused by various exogenous substances, the taking of a thorough medical history is crucial, including with respect to the use not only of prescription medications, but also other substances, including supplements.
Collapse
Affiliation(s)
- Yuki Kawai
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan
| | - Moe Ozawa
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan
| | - Aya Isomura
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | | | - Satoshi Yamaguchi
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan
| | - Shohei Nagayama
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan
| | - Shohei Tanaka
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan
| | - Eriko Abe
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan
| | - Sanae Saka
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tamio Iwamoto
- Department of Nephrology and Hypertension, Saiseikai Yokohamashi Nanbu Hospital, 3-2-9 Konandai, Konan-Ku, Yokohama, Kanagawa, 234-0054, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Marin JJG, Serrano MA, Herraez E, Lozano E, Ortiz-Rivero S, Perez-Silva L, Reviejo M, Briz O. Impact of genetic variants in the solute carrier ( SLC) genes encoding drug uptake transporters on the response to anticancer chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:27. [PMID: 39143954 PMCID: PMC11322974 DOI: 10.20517/cdr.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024]
Abstract
Cancer drug resistance constitutes a severe limitation for the satisfactory outcome of these patients. This is a complex problem due to the co-existence in cancer cells of multiple and synergistic mechanisms of chemoresistance (MOC). These mechanisms are accounted for by the expression of a set of genes included in the so-called resistome, whose effectiveness often leads to a lack of response to pharmacological treatment. Additionally, genetic variants affecting these genes further increase the complexity of the question. This review focuses on a set of genes encoding members of the transportome involved in drug uptake, which have been classified into the MOC-1A subgroup of the resistome. These proteins belong to the solute carrier (SLC) superfamily. More precisely, we have considered here several members of families SLC2, SLC7, SLC19, SLC22, SLCO, SLC28, SLC29, SLC31, SLC46, and SLC47 due to the impact of their expression and genetic variants in anticancer drug uptake by tumor cells or, in some cases, general bioavailability. Changes in their expression levels and the appearance of genetic variants can contribute to the Darwinian selection of more resistant clones and, hence, to the development of a more malignant phenotype. Accordingly, to address this issue in future personalized medicine, it is necessary to characterize both changes in resistome genes that can affect their function. It is also essential to consider the time-dependent dimension of these features, as the genetic expression and the appearance of genetic variants can change during tumor progression and in response to treatment.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| |
Collapse
|
3
|
Hoang S, Pujar T, Bellorin-Font E, Edwards JC, Miyata KN. A case of ifosfamide-induced acute kidney injury, Fanconi syndrome, and nephrogenic diabetes insipidus. CEN Case Rep 2024; 13:194-198. [PMID: 37897631 PMCID: PMC11144167 DOI: 10.1007/s13730-023-00829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023] Open
Abstract
Ifosfamide, a cytotoxic antineoplastic drug, can induce rare complications of Fanconi syndrome and nephrogenic diabetes insipidus (DI). Ifosfamide-induced Fanconi syndrome tends to occur in patients with certain risk factors including young age, high cumulative ifosfamide dose, and coadministration of cisplatin. Nephrogenic DI causes polyuria from impaired urinary concentrating ability due to resistance to arginine vasopressin (AVP) at the collecting duct. These complications are serious and potentially fatal. Here, we describe a case of a middle-aged man without risk factors who was admitted for the management of acute kidney injury and electrolyte derangements after his fourth cycle of chemotherapy including ifosfamide for synovial sarcoma. He was found to have hypokalemia, hypophosphatemia, renal glycosuria, and aminoaciduria, likely from Fanconi syndrome, which were managed by electrolyte replacement therapy. In addition, polyuria and hypernatremia were considered due to nephrogenic DI, which partially responded to desmopressin treatment. This case highlights the importance of the routine electrolytes monitoring after ifosfamide treatment.
Collapse
Affiliation(s)
- Summer Hoang
- Saint Louis University School of Medicine, 1008 S. Spring Ave., St. Louis, MO, 63110, USA
| | - Thejeswi Pujar
- Saint Louis University School of Medicine, 1008 S. Spring Ave., St. Louis, MO, 63110, USA
| | - Ezequiel Bellorin-Font
- Saint Louis University School of Medicine, 1008 S. Spring Ave., St. Louis, MO, 63110, USA
| | - John C Edwards
- Saint Louis University School of Medicine, 1008 S. Spring Ave., St. Louis, MO, 63110, USA
| | - Kana N Miyata
- Saint Louis University School of Medicine, 1008 S. Spring Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Xiu F, Console L, Indiveri C, Su S, Wang T, Visentin M. Effect of 7-ketocholesterol incorporation on substrate binding affinity and turnover rate of the organic cation transporter 2 (OCT2). Biochem Pharmacol 2024; 220:116017. [PMID: 38176620 DOI: 10.1016/j.bcp.2023.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The organic cation transporter 2 (OCT2) is pivotal in the renal elimination of several positively charged molecules. OCT2 mode of transport is profoundly influenced by the level of membrane cholesterol. The aim of this study was to investigate the effect of oxidized cholesterol on OCT2 transport activity in human embryonic kidney 293 cells stably transfected with OCT2 (OCT2-HEK293) and in primary renal proximal tubular epithelial cells (RPTEC). Cholesterol was exchanged with 7-ketocholesterol, the main product of cholesterol auto-oxidation, by exposing cells to sterol-saturated methyl-β-cyclodextrin (mβcd). After a 30 min-exposure, approximately 50% of the endogenous cholesterol was replaced by 7-ketocholesterol without significant changes in total sterol level. In the presence of 7-ketocholesterol, [3H]1-methyl-4-phenylpyridinium (MPP+) uptake was significantly reduced in both cell lines. 7-ketocholesterol incorporation did not affect lipid raft integrity, nor OCT2 surface expression and spatial organization. The inhibitory effect of 7-ketocholesterol on MPP+ uptake was abolished by the presence of MPP+ in the trans-compartment. In the presence of 7-ketocholesterol, both Kt and Vmax of MPP+ influx decreased. Molecular docking using OCT2 structure in outward occluded conformation showed overlapping poses and similar binding energies between cholesterol and 7-ketocholesterol. The thermal stability of OCT2 was not changed when cholesterol was replaced with 7-ketocholesterol. We conclude that 7-ketocholesterol confers a higher rigidity to the carrier by reducing its conformational entropy, arguably as a result of changes in plasma membrane physical properties, thereby facilitating the achievement of a higher affinity state at the expense of the mobility and overall cycling rate of the transporter.
Collapse
Affiliation(s)
- Fangrui Xiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Shanshan Su
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Tong Wang
- School of Nursing, Shandong University fo Traditional Chinese Medicine, Jinan 250014, China.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|
5
|
Quiroz-Aldave JE, Durand-Vásquez MDC, Chávez-Vásquez FS, Rodríguez-Angulo AN, Gonzáles-Saldaña SE, Alcalde-Loyola CC, Coronado-Arroyo JC, Zavaleta-Gutiérrez FE, Concepción-Urteaga LA, Haro-Varas JC, Concepción-Zavaleta MJ. Ifosfamide-induced nephrotoxicity in oncological patients. Expert Rev Anticancer Ther 2024; 24:5-14. [PMID: 38031874 DOI: 10.1080/14737140.2023.2290196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Ifosfamide is an alkylating chemotherapeutic agent used in the treatment of various neoplasms. Its main adverse effects include renal damage. AREAS COVERED A comprehensive review was conducted, including 100 articles from the Scielo, Scopus, and EMBASE databases. Ifosfamide-induced nephrotoxicity is attributed to its toxic metabolites, such as acrolein and chloroacetaldehyde, which cause mitochondrial damage and oxidative stress in renal tubular cells. Literature review found a 29-year average age with no gender predominance and a mortality of 13%. Currently, no fully effective strategy exists for preventing ifosfamide-induced nephrotoxicity; however, hydration, forced diuresis, and other interventions are employed to limit renal damage. Long-term renal function monitoring is essential for patients treated with ifosfamide. EXPERT OPINION Ifosfamide remains essential in neoplasm treatment, but nephrotoxicity, often compounded by coadministered drugs, poses diagnostic challenges. Preventive strategies are lacking, necessitating further research. Identifying timely risk factors can mitigate renal damage, and a multidisciplinary approach manages established nephrotoxicity. Emerging therapies may reduce ifosfamide induced nephrotoxicity.
Collapse
Affiliation(s)
- Juan Eduardo Quiroz-Aldave
- Division of Non-communicable diseases, Endocrinology research line, Hospital de Apoyo Chepén, Chepén, Perú
| | | | | | | | | | | | | | | | | | - Juan Carlos Haro-Varas
- Division of Medical Oncology, Division of Medical Oncology. Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | | |
Collapse
|
6
|
Tan H, Wang F, Hu J, Duan X, Bai W, Wang X, Wang B, Su Y, Hu J. Inhibitory interaction of flavonoids with organic cation transporter 2 and their structure-activity relationships for predicting nephroprotective effects. J Appl Toxicol 2023; 43:1421-1435. [PMID: 37057715 DOI: 10.1002/jat.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Organic cation transporter 2 (OCT2) is mainly responsible for the renal secretion of various cationic drugs, closely associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OCT2 inhibitors with little toxicity in natural products in reducing OCT2-mediated AKI is of great value. Flavonoids are enriched in various vegetables, fruits, and herbal products, and some were reported to produce transporter-mediated drug-drug interactions. This study aimed to screen potential inhibitors of OCT2 from 96 flavonoids, assess the nephroprotective effects on cisplatin-induced kidney injury, and clarify the structure-activity relationships of flavonoids with OCT2. Ten flavonoids exhibited significant inhibition (>50%) on OCT2 in OCT2-HEK293 cells. Among them, the six most potent flavonoid inhibitors, including pectolinarigenin, biochanin A, luteolin, chrysin, 6-hydroxyflavone, and 6-methylflavone markedly decreased cisplatin-induced cytotoxicity. Moreover, in cisplatin-induced renal injury models, they also reduced serum blood urea nitrogen (BUN) and creatinine levels to different degrees, the best of which was 6-methylflavone. The pharmacophore model clarified that the aromatic ring, hydrogen bond acceptors, and hydrogen bond donors might play a vital role in the inhibitory effect of flavonoids on OCT2. Thus, our findings would pave the way to predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and optimizing flavonoid structure to alleviate OCT2-related AKI.
Collapse
Affiliation(s)
- Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yan Su
- Department of Health Management and Service, Cangzhou Medical College, Hebei, 061001, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Sharma V, Singh TG. Drug induced nephrotoxicity- A mechanistic approach. Mol Biol Rep 2023; 50:6975-6986. [PMID: 37378746 DOI: 10.1007/s11033-023-08573-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
The main goal of the treatment of patients is its effectiveness and safety. However, all currently prescribed drugs being used also have certain adverse effects, which might be seen as an unavoidable but necessary cost of pharmacotherapy. The kidney is the primary organ for xenobiotics elimination, making it particularly susceptible to the harmful effects of drugs and their metabolites during their excretion from the body. Moreover, certain medications have a preferential nephrotoxicity potential, which means that using them increases the risk of kidney injury. Drug nephrotoxicity is, therefore, both a significant problem and a complication of pharmacotherapy. It should be noted that, there is presently no accepted definition of drug-induced nephrotoxicity and no established diagnostic criteria. The current review briefly describes the pathogenic mechanism of drug-induced nephrotoxicity, the various basic drugs with nephrotoxicity potential and the renal biomarkers for the treatment of the drug-related kidney damage.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India, 140401
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India, 140401.
| |
Collapse
|
8
|
Shabani M, Bayrami D, Moghadam AA, Jamali Z, Salimi A. Pretreatment of ellagic acid protects ifosfamide-induced acute nephrotoxicity in rat kidneys: A mitochondrial, histopathological and oxidative stress approaches. Toxicol Rep 2023; 10:441-447. [PMID: 37125148 PMCID: PMC10133406 DOI: 10.1016/j.toxrep.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Ifosfamide (IFO) kidney damage is an important organ toxicity in children and adults undergoing chemotherapy. Previous evidence has shown that IFO toxic metabolites such as acrolein and are associated with mitochondrial dysfunction, depletion of antioxidants, oxidative stress and may predispose the kidney to IFO toxicity. Bioactive food compounds such as ellagic acid (EA) found in fruits has been described as antioxidant and mitochondrial protective agents against toxicity-related mitochondrial damage and oxidative stress. In current study, the protective effects of EA on IFO-induced nephrotoxicity in male Wistar rats were investigated with histopathological, biochemical, and mitochondrial methods. The rats were randomly divided into four groups, control, IFO, IFO + EA, and EA groups. EA (25 mg/kg, i.p. daily) were administered to animals for 2 consecutive days and IFO (500 mg/kg, i.p.) was administered on third day. The results showed that pretreatment EA significantly increased mitochondrial succinate dehydrogenases (SDH) activity, and protected mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) formation, lipid peroxidation (LPO) and depletion glutathione (GSH). Histopathological findings demonstrated that EA had protective effects and reduced histopathological abnormalities caused by IFO. These results showed that EA administration protects the kidneys against mitochondrial dysfunction, oxidative stress and histopathological abnormality induced by IFO. Taken together, our results demonstrated that EA played a protective role against IFO-induced nephrotoxicity through mitochondrial protection and antioxidant properties.
Collapse
Affiliation(s)
- Mohammad Shabani
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Ashena Moghadam
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Correspondence to: Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
9
|
Hałka J, Spaleniak S, Kade G, Antosiewicz S, Sigorski D. The Nephrotoxicity of Drugs Used in Causal Oncological Therapies. Curr Oncol 2022; 29:9681-9694. [PMID: 36547174 PMCID: PMC9776938 DOI: 10.3390/curroncol29120760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, a dynamic development of oncology has been observed, resulting from the increasingly frequent occurrence of neoplasms and therefore, increasing population of patients. The most effective form of therapy for cancer patients is complex multidisciplinary specialized disease management, including nephro-oncology care. Different forms of renal function impairment are frequently diagnosed in cancer patients. They are caused by different co-morbidities existing before starting the oncologic treatment as well as the direct undesirable effects of this therapy which may cause temporary or irreversible damage of the urinary system-especially kidneys. According to different therapeutic programs, in such cases the degree of renal damage is often crucial for the possibility of further anti-cancer treatment. Medical personnel responsible for delivering care to oncology patients should be properly educated on current methods of prevention and treatment of renal complications resulting from anti-cancer therapy. The development of oncologic medicines design, including especially immuno-oncological agents, obliges us to learn new patomechanisms determining potential adverse effects, including renal complications. This publication is focused on the most important undesirable nephrotoxic effects of the frequently used anti-cancer drugs.
Collapse
Affiliation(s)
- Janusz Hałka
- Department of Clinical Hematology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, Wojska Polskiego 37, 10-228 Olsztyn, Poland
| | - Sebastian Spaleniak
- Department of Internal Diseases and Nephrodiabetology, Medical University of Lodz, Żeromskiego 113, 90-549 Lodz, Poland
- Correspondence:
| | - Grzegorz Kade
- Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, Wojska Polskiego 37, 10-228 Olsztyn, Poland
| | - Stefan Antosiewicz
- Military Institute of Aviation Medicine, Center of Aeromedical Examination and Occupational Medicine, Zygmunta Krasińskiego 54/56, 01-755 Warsaw, Poland
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, 11-082 Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, Wojska Polskiego 37, 10-228 Olsztyn, Poland
| |
Collapse
|
10
|
Yen NTH, Park SM, Thu VTA, Phat NK, Cho YS, Yoon S, Shin JG, Kim DH, Oh JH, Long NP. Genome-wide gene expression analysis reveals molecular insights into the drug-induced toxicity of nephrotoxic agents. Life Sci 2022; 306:120801. [PMID: 35850247 DOI: 10.1016/j.lfs.2022.120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
Drug-induced nephrotoxicity is frequently reported. However, the mechanisms underlying nephrotoxic medications and their overlapping molecular events, which might have therapeutic value, are unclear. We performed a genome-wide analysis of gene expression and a gene set enrichment analysis to identify common and unique pathways associated with the toxicity of colistin, ifosfamide, indomethacin, and puromycin. Rats were randomly allocated into the treatment or control group. The treatment group received a toxic dose once daily of each investigated drug for 1 week. Differentially expressed genes were found in the drug-treated kidney and liver compared to the control, except for colistin in the liver. Upregulated pathways were mainly related to cell death, cell cycle, protein synthesis, and immune response modulation in the kidney. Cell cycle was upregulated by all drugs. Downregulated pathways were associated with carbon metabolism, amino acid metabolism, and fatty acid metabolism. Indomethacin, colistin, and puromycin shared the most altered pathways in the kidney. Ifosfamide and indomethacin affected molecular processes greatly in the liver. Our findings provide insight into the mechanisms underlying the renal and hepatic adverse effects of the four drugs. Further investigation should explore the combinatory drug therapies that attenuate the toxic effects and maximize the effectiveness of nephrotoxic drugs.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea.
| |
Collapse
|
11
|
Lawrence M, Elhendawi M, Morlock M, Liu W, Liu S, Palakkan A, Seidl L, Hohenstein P, Sjögren A, Davies J. Human iPSC-derived renal organoids engineered to report oxidative stress can predict drug-induced toxicity. iScience 2022; 25:103884. [PMID: 35243244 PMCID: PMC8861638 DOI: 10.1016/j.isci.2022.103884] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/10/2021] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Advances in regenerative medicine have led to the construction of many types of organoids, which reproduce important aspects of endogenous organs but may be limited or disorganized in nature. While their usefulness for restoring function remains unclear, they have undoubted usefulness in research, diagnostics, and toxicology. In toxicology, there is an urgent need for better models for human kidneys. We used human iPS-cell (hiPSC)-derived renal organoids to identify HMOX1 as a useful marker of toxic stress via the oxidative stress pathway, and then constructed an HMOX1 reporter in hiPSCs. We used two forms of hiPSC-derived HMOX1-reporter renal organoids to probe their ability to detect nephrotoxicants in a panel of blind-coded compounds. Our results highlight the potential usefulness, and some limitations, of HMOX1-reporter renal organoids as screening tools. The results may guide development of similar stress-reporting organoid assays for other stem-cell-derived organs and tissues.
Collapse
Affiliation(s)
- M.L. Lawrence
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - M. Elhendawi
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - M. Morlock
- R&D Graduate, R&D, AstraZeneca, Gothenburg, Sweden
| | - W. Liu
- SynthSys Centre for Synthetic and Systems Biology, UK Centre for Mammalian Synthetic Biology, School of Biological Sciences, University of Edinburgh, C.H Waddington Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - S. Liu
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - A. Palakkan
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - L.F. Seidl
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - P. Hohenstein
- Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - A.K. Sjögren
- CVRM Safety, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - J.A. Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| |
Collapse
|
12
|
Martinez D, Rodelo J, Pelaez García S. Ifosfamide as a Cause of Fanconi Syndrome. Cureus 2022; 14:e22755. [PMID: 35371860 PMCID: PMC8971049 DOI: 10.7759/cureus.22755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Ifosfamide-induced Fanconi syndrome is a rare complication that occurs in patients in treatment with ifosfamide. It is usually characterized by type II proximal renal tubular dysfunction, as evidenced by glycosuria, proteinuria, electrolyte loss, and metabolic acidosis. We outline two case reports of patients who received ifosfamide as chemotherapy for Ewing’s sarcoma and extranodal B-cell lymphoma.
Collapse
|
13
|
Aloy B, Janus N, Isnard-Bagnis C, Deray G, Launay-Vacher V. [Renal toxicity of anticancer drugs]. Nephrol Ther 2021; 17:553-563. [PMID: 34802974 DOI: 10.1016/j.nephro.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The renal toxicity of anticancer drugs is a clinical challenge because of the intrinsic toxicity of some anticancer drugs and because the cancer itself. Indeed, cancer patients are exposed to all types of renal disorders (obstructive, functional, organic because of radiotherapy, paraneoplastic glomerulopathy, thrombotic microangiopathy…). The therapeutic index of anticancer drugs is often narrow and the doses used for optimal efficacy are high. Improving safety requires a better dose adjustment, which depends on the correct evaluation of the renal function. Prevention remains important as the mortality associated with acute renal failure is very high.
Collapse
Affiliation(s)
- Blandine Aloy
- Service de néphrologie, groupe hospitalier Pitié-Salpêtrière-Charles-Foix, 83, boulevard de l'Hôpital, 75013 Paris, France; Service information conseil adaptation rénale (Icar), cour des consultations porte 12, hôpital Pitié-Salpêtrière, 83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Nicolas Janus
- Service de néphrologie, groupe hospitalier Pitié-Salpêtrière-Charles-Foix, 83, boulevard de l'Hôpital, 75013 Paris, France; Service information conseil adaptation rénale (Icar), cour des consultations porte 12, hôpital Pitié-Salpêtrière, 83, boulevard de l'Hôpital, 75013 Paris, France; Cancer and the Kidney International Network, boulevard du Souverain, 280, 1160 Bruxelles, Belgique
| | - Corine Isnard-Bagnis
- Service de néphrologie, groupe hospitalier Pitié-Salpêtrière-Charles-Foix, 83, boulevard de l'Hôpital, 75013 Paris, France; Campus Pierre-et-Marie-Curie, Sorbonne Université, 4, place Jussieu, 75005 Paris, France
| | - Gilbert Deray
- Service de néphrologie, groupe hospitalier Pitié-Salpêtrière-Charles-Foix, 83, boulevard de l'Hôpital, 75013 Paris, France; Service information conseil adaptation rénale (Icar), cour des consultations porte 12, hôpital Pitié-Salpêtrière, 83, boulevard de l'Hôpital, 75013 Paris, France; Cancer and the Kidney International Network, boulevard du Souverain, 280, 1160 Bruxelles, Belgique; Campus Pierre-et-Marie-Curie, Sorbonne Université, 4, place Jussieu, 75005 Paris, France
| | - Vincent Launay-Vacher
- Service de néphrologie, groupe hospitalier Pitié-Salpêtrière-Charles-Foix, 83, boulevard de l'Hôpital, 75013 Paris, France; Service information conseil adaptation rénale (Icar), cour des consultations porte 12, hôpital Pitié-Salpêtrière, 83, boulevard de l'Hôpital, 75013 Paris, France; Cancer and the Kidney International Network, boulevard du Souverain, 280, 1160 Bruxelles, Belgique
| |
Collapse
|
14
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
15
|
Yamazoe T, Akagawa S, Matsuno R, Akagawa Y, Yamanouchi S, Omachi T, Kimata T, Tsuji S, Kaneko K. Superiority of Cystatin C over Creatinine for Early Diagnosis of Acute Kidney Injury in Pediatric Acute Lymphoblastic Leukemia/Lymphoblastic Lymphoma. TOHOKU J EXP MED 2021; 254:163-170. [PMID: 34248109 DOI: 10.1620/tjem.254.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The exact incidence of acute kidney injury (AKI) during chemotherapy for acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL) is unknown. Furthermore, childhood cancer survivors are at risk of AKI-chronic kidney disease transition. Thus, early diagnosis of AKI is crucial. This study aimed to elucidate the incidence of AKI in patients undergoing chemotherapy for pediatric ALL/LBL and to compare the usefulness of serum cystatin C (CysC)- and creatinine (Cr)-based estimated glomerular filtration rate (eGFR) as diagnostic measures. Data of 16 patients with ALL/LBL treated with a total of 75 courses of chemotherapy were retrospectively analyzed. CysC- and Cr-based eGFR were measured before and three times per week during therapy. To calculate the eGFR, an equation for Japanese children was used. AKI was diagnosed when eGFR dropped by ≥ 25% from the highest eGFR value obtained during the latest 2 weeks since the start of chemotherapy. AKI was graded based on the pediatric Risk, Injury, Failure, Loss, End Stage Renal Disease scale. All patients developed AKI during chemotherapy; however, more than 90% of the cases were mild and eventually recovered. No significant differences were found in the incidence of AKI between CysC- and Cr-based eGFR (p = 0.104). The median time to AKI diagnosis was significantly shorter in the CysC-based eGFR than in the Cr-based eGFR (8 vs. 17 days, p < 0.001). In this study, all patients with pediatric ALL/LBL could develop mild AKI during treatment. CysC-based eGFR is a more effective measure than Cr-based eGFR for the early diagnosis of AKI.
Collapse
Affiliation(s)
| | | | | | - Yuko Akagawa
- Department of Pediatrics, Kansai Medical University
| | | | | | | | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University
| | | |
Collapse
|
16
|
Lepa C, Hoppe S, Stöber A, Skryabin BV, Sievers LK, Heitplatz B, Ciarimboli G, Neugebauer U, Lindenmeyer MT, Cohen CD, Drexler HC, Boor P, Weide T, Pavenstädt H, George B. TrkC Is Essential for Nephron Function and Trans-Activates Igf1R Signaling. J Am Soc Nephrol 2021; 32:357-374. [PMID: 33380522 PMCID: PMC8054883 DOI: 10.1681/asn.2020040424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Injury to kidney podocytes often results in chronic glomerular disease and consecutive nephron malfunction. For most glomerular diseases, targeted therapies are lacking. Thus, it is important to identify novel signaling pathways contributing to glomerular disease. Neurotrophic tyrosine kinase receptor 3 (TrkC) is expressed in podocytes and the protein transmits signals to the podocyte actin cytoskeleton. METHODS Nephron-specific TrkC knockout (TrkC-KO) and nephron-specific TrkC-overexpressing (TrkC-OE) mice were generated to dissect the role of TrkC in nephron development and maintenance. RESULTS Both TrkC-KO and TrkC-OE mice exhibited enlarged glomeruli, mesangial proliferation, basement membrane thickening, albuminuria, podocyte loss, and aspects of FSGS during aging. Igf1 receptor (Igf1R)-associated gene expression was dysregulated in TrkC-KO mouse glomeruli. Phosphoproteins associated with insulin, erb-b2 receptor tyrosine kinase (Erbb), and Toll-like receptor signaling were enriched in lysates of podocytes treated with the TrkC ligand neurotrophin-3 (Nt-3). Activation of TrkC by Nt-3 resulted in phosphorylation of the Igf1R on activating tyrosine residues in podocytes. Igf1R phosphorylation was increased in TrkC-OE mouse kidneys while it was decreased in TrkC-KO kidneys. Furthermore, TrkC expression was elevated in glomerular tissue of patients with diabetic kidney disease compared with control glomerular tissue. CONCLUSIONS Our results show that TrkC is essential for maintaining glomerular integrity. Furthermore, TrkC modulates Igf-related signaling in podocytes.
Collapse
Affiliation(s)
- Carolin Lepa
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Sascha Hoppe
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Antje Stöber
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Westfälische-Wilhelms-University, Münster, Germany
| | | | - Barbara Heitplatz
- Gerhard-Domagk Institute for Pathology, University Hospital Münster, Münster, Germany
| | | | - Ute Neugebauer
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Maja T. Lindenmeyer
- III. Medizinische Klinik und Poliklinik, University Hospital Hamburg-Eppendorf, Germany
| | - Clemens D. Cohen
- Klinik für Nieren-, Hochdruck- und Rheumaerkrankungen, München Klinik Harlaching, Germany
| | - Hannes C.A. Drexler
- Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Thomas Weide
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | | | - Britta George
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| |
Collapse
|
17
|
Substrates and Inhibitors of Organic Cation Transporters (OCTs) and Plasma Membrane Monoamine Transporter (PMAT) and Therapeutic Implications. Handb Exp Pharmacol 2021; 266:119-167. [PMID: 34495395 DOI: 10.1007/164_2021_516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gene products of the SLC22A gene family (hOCT1, hOCT2, and hOCT3) and of the SLC29A4 gene (hPMAT or hENT4) are all polyspecific organic cation transporters. Human OCTs (including hPMAT) are expressed in peripheral tissues such as small intestine, liver, and kidney involved in the pharmacokinetics of drugs. In the human brain, all four transporters are expressed at the blood-brain barrier (BBB), hOCT2 is additionally expressed in neurons, and hOCT3 and hPMAT in glia. More than 40% of the presently used drugs are organic cations. This chapter lists and discusses all known drugs acting as substrates or inhibitors of these four organic cation transporters, independently of whether the transporter is expressed in the central nervous system (CNS) or in peripheral tissues. Of interest is their involvement in drug absorption, distribution, and excretion as well as potential OCT-associated drug-drug interactions (DDIs), with a focus on drugs that act in the CNS.
Collapse
|
18
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
19
|
Dobrek L, Nalik-Iwaniak K, Fic K, Arent Z. The Effect of Acetylcysteine on Renal Function in Experimental Models of Cyclophosphamide-and Ifosfamide-Induced Cystitis. Curr Urol 2020; 14:150-162. [PMID: 33224008 DOI: 10.1159/000499245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023] Open
Abstract
Introduction Urotoxicity is a characteristic attribute of cy-clophosphamide and ifosfamide. Acetylcysteine is perceived as a uroprotective and possible nephroprotective compound. The purpose of the study was to assess the effect of acetylcysteine treatment on the morphology of the kidneys and the urinary bladder, and renal function in rats with cystitis induced by cyclophosphamide or ifosfamide. Methods Cystitis was induced in rats belonging to groups 2 and 3, as well as 4 and 5, by five administrations of cyclophosphamide (75 mg/kg) or ifosfamide (80 mg/kg) respectively. Additionally, groups 3 and 5 received acetylcysteine (200 mg/kg). Group 1 was "sham treated" as a control. Upon conclusion of the experiment, the animals were euthanized and their kidneys and urinary bladders were collected for histopathological analysis. The assessment of renal function was based on classic nitrogen blood parameters (urea, creatinine, and uric acid), as well as proteinuria and cystatin C (CysC) and kidney injury molecule-1 (KIM-1) urinary concentrations, and their 24-hour elimination with urine. Results Reduction of blood urea nitrogen and uric acid, and urinary pH with a significant increase of CysC and KIM-1 urinary concentrations, and their 24-hour elimination with urine were observed in groups 2 and 4. The acetylcysteine treatment did not cause a significant change of blood parameters, but significantly decreased 24-hour elimination of CysC and KIM-1 with urine, and accounted for alleviation of the histopathological abnormalities of urinary bladders, with no significant effects on the structure of the kidneys. Conclusions Acetylcysteine used in the experimental model of cyclophosphamide- and ifosfamide-induced cystitis had a uroprotective effect and also reduced renal dysfunction, which suggests its potential use as a nephroprotective compound in cyclophosphamide/ifosfamide therapy.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| | - Klaudia Nalik-Iwaniak
- Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Kinga Fic
- Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Zbigniew Arent
- Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
20
|
Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The Role of Mitochondria in Drug-Induced Kidney Injury. Front Physiol 2020; 11:1079. [PMID: 33013462 PMCID: PMC7500167 DOI: 10.3389/fphys.2020.01079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The kidneys utilize roughly 10% of the body’s oxygen supply to produce the energy required for accomplishing their primary function: the regulation of body fluid composition through secreting, filtering, and reabsorbing metabolites and nutrients. To ensure an adequate ATP supply, the kidneys are particularly enriched in mitochondria, having the second highest mitochondrial content and thus oxygen consumption of our body. The bulk of the ATP generated in the kidneys is consumed to move solutes toward (reabsorption) or from (secretion) the peritubular capillaries through the concerted action of an array of ATP-binding cassette (ABC) pumps and transporters. ABC pumps function upon direct ATP hydrolysis. Transporters are driven by the ion electrochemical gradients and the membrane potential generated by the asymmetric transport of ions across the plasma membrane mediated by the ATPase pumps. Some of these transporters, namely the polyspecific organic anion transporters (OATs), the organic anion transporting polypeptides (OATPs), and the organic cation transporters (OCTs) are highly expressed on the proximal tubular cell membranes and happen to also transport drugs whose levels in the proximal tubular cells can rapidly rise, thereby damaging the mitochondria and resulting in cell death and kidney injury. Drug-induced kidney injury (DIKI) is a growing public health concern and a major cause of drug attrition in drug development and post-marketing approval. As part of the article collection “Mitochondria in Renal Health and Disease,” here, we provide a critical overview of the main molecular mechanisms underlying the mitochondrial damage caused by drugs inducing nephrotoxicity.
Collapse
Affiliation(s)
- Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Huang KM, Uddin ME, DiGiacomo D, Lustberg MB, Hu S, Sparreboom A. Role of SLC transporters in toxicity induced by anticancer drugs. Expert Opin Drug Metab Toxicol 2020; 16:493-506. [PMID: 32276560 DOI: 10.1080/17425255.2020.1755253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION . Membrane transporters are integral to the maintenance of cellular integrity of all tissue and cell types. While transporters play an established role in the systemic pharmacokinetics of therapeutic drugs, tissue specific expression of uptake transporters can serve as an initiating mechanism that governs the accumulation and impact of cytotoxic drugs. AREAS COVERED . This review provides an overview of organic cation transporters as determinants of chemotherapy-induced toxicities. We also provide insights into the recently updated FDA guidelines for in vitro drug interaction studies, with a particular focus on the class of tyrosine kinase inhibitors as perpetrators of transporter-mediated drug interactions. EXPERT OPINION . Studies performed over the last few decades have highlighted the important role of basolateral uptake and apical efflux transporters in the pathophysiology of drug-induced organ damage. Increased understanding of the mechanisms that govern the accumulation of cytotoxic drugs has provided insights into the development of novel strategies to prevent debilitating toxicities. Furthermore, we argue that current regulatory guidelines provide inadequate recommendations for in vitro studies to identify substrates or inhibitors of drug transporters. Therefore, the translational and predictive power of FDA-approved drugs as modulators of transport function remains ambiguous and warrants further revision of the current guidelines.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Duncan DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, College of Medicine, the Ohio State University and Comprehensive Cancer Center , Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| |
Collapse
|
23
|
Sprangers B, Lapman S. The growing pains of ifosfamide. Clin Kidney J 2020; 13:500-503. [PMID: 32897272 PMCID: PMC7467579 DOI: 10.1093/ckj/sfaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 11/14/2022] Open
Abstract
Ifosfamide is a commonly used chemotherapeutic known to have numerous adverse kidney manifestations. In this issue of Clinical Kidney Journal, Ensergueix et al. report a multicentric observational retrospective French study on 34 adult patients with tubular dysfunction and /or kidney dysfunction following ifosfamide treatment. Of these patients, 18% had isolated proximal tubular dysfunction, 14% had isolated acute kidney injury (AKI), 18% had isolated chronic kidney disease (CKD) and 50% had a combination of proximal tubular dysfunction and AKI. Concomitant treatment with cisplatin was identified as a risk factor for the development of AKI, and cisplatin and age were associated with estimated glomerular filtration rate at last follow-up. Interestingly, the cumulative dose of ifosfamide was not associated with renal outcomes. This report highlights the need for additional studies on the prevalence, spectrum and management of ifosfamide-associated nephrotoxicity and clearly demonstrates that patients who received ifosfamide should be followed long term to detect proximal tubular dysfunction and CKD early.
Collapse
Affiliation(s)
- Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Sebastian Lapman
- Division of Onconephrology, Sanatorio Modelo de Caseros and Henry Moore Institute, Buenos Aires, Argentina
| |
Collapse
|
24
|
Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol 2020; 177:113959. [PMID: 32272110 DOI: 10.1016/j.bcp.2020.113959] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most prevalent type of tumor and the second leading cause of death due to cancer among women. Although screening methods, diagnosis and therapeutic options have improved in the last decade, chemoresistance remains an important challenge. There is evidence relating breast cancer resistance with signaling pathways involving hormone and growth receptors, survival, apoptosis and the activation of efflux pumps. However, the resistance mechanisms linked to drug uptake are poorly understood, despite it often being observed that the drug content is lower in resistant cancer cells and that the entry of the drug into these cells is a limiting process for the subsequent therapeutic effect.In this review, we provide an overview of drug uptake-based resistance mechanisms developed by cancer cells in the four main types of chemotherapy used in breast cancer: anthracyclines, taxanes, oxazaphosphorines and platinum-based drugs. The contribution of tumor microenvironment to reduced drug-uptake and multidrug resistance is also analyzed. As a developing field, nanomedicine-based approaches provide promising opportunities to improve drug specific targeting, cell interaction and uptake into cancer cells. The endocytic-mediated pathways attributed to the different types of nanoformulations as well as the contribution of nanotherapeutics to overcoming chemoresistance affecting drug uptake in breast cancer will be described. New approaches focusing on drug uptake mechanisms could improve breast cancer chemotherapy, obtaining better dose-response outcomes and reducing toxic side effects.
Collapse
Affiliation(s)
- Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
25
|
Nicolaysen A. Nephrotoxic Chemotherapy Agents: Old and New. Adv Chronic Kidney Dis 2020; 27:38-49. [PMID: 32147000 DOI: 10.1053/j.ackd.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
In the last several decades, advancements in chemotherapy have improved the overall survival of cancer patients. These agents, however, are associated with adverse effects, including various kidney lesions. This review summarizes the nephrotoxic potential of chemotherapy agents, old and new, as well as the different factors that contribute to kidney injury. Provided for each class of chemotherapy agent is the associated kidney lesion and a brief discussion of clinical manifestation, mechanism of action, and possible treatment when available. Understanding the nephrotoxic potential of these agents have on the kidneys is imperative for both the oncologist and the nephrologist to properly care for cancer patients and ensure their best outcomes.
Collapse
|
26
|
Ciarimboli G, Theil G, Bialek J, Edemir B. Contribution and Expression of Organic Cation Transporters and Aquaporin Water Channels in Renal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:81-104. [PMID: 32772272 DOI: 10.1007/112_2020_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The body homeostasis is maintained mainly by the function of the kidneys, which regulate salt and water balance and excretion of metabolism waste products and xenobiotics. This important renal function is determined by the action of many transport systems, which are specifically expressed in the different parts of the nephron, the functional unit of the kidneys. These transport systems are involved, for example, in the reabsorption of sodium, glucose, and other important solutes and peptides from the primary urine. They are also important in the reabsorption of water and thereby production of a concentrated urine. However, several studies have shown the importance of transport systems for different tumor entities. Transport systems, for example, contributed to the proliferation and migration of cancer cells and thereby on tumor progression. They could also serve as drug transporters that could enable drug resistance by outward transport of, for example, chemotherapeutic agents and other drugs. Although many renal transporters have been characterized in detail with respect to the significance for proper kidney function, their role in renal cancer progression is less known. Here, we describe the types of renal cancer and review the studies that analyzed the role of organic cation transporters of the SLC22-family and of the aquaporin water channel family in kidney tumors.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Medicine Clinic D, Experimental Nephrology, University Hospital of Münster, Münster, Germany
| | - Gerit Theil
- Clinic of Urology, University Hospital, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joanna Bialek
- Clinic of Urology, University Hospital, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
27
|
Ensergueix G, Pallet N, Joly D, Levi C, Chauvet S, Trivin C, Augusto JF, Boudet R, Aboudagga H, Touchard G, Nochy D, Essig M, Thervet E, Lazareth H, Karras A. Ifosfamide nephrotoxicity in adult patients. Clin Kidney J 2019; 13:660-665. [PMID: 32897279 PMCID: PMC7467602 DOI: 10.1093/ckj/sfz183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023] Open
Abstract
Background Ifosfamide, a widely prescribed antineoplasic agent, is frequently associated with kidney dysfunction. Its nephrotoxicity is well documented in children, but data are lacking in adult patients. Methods The aim of this retrospective study was to describe the clinical, biological and histological characteristics of ifosfamide nephrotoxicity. Results We report 34 patients (median age: 41 years) admitted in six French nephrology departments for kidney failure and/or tubular dysfunction. Fifteen patients (44.1%) received cisplatin as part of their chemotherapy. In 6 patients (17.7%), ifosfamide nephrotoxicity was revealed by a proximal tubular dysfunction (PTD), in 5 patients (14.4%) by an acute kidney injury (AKI), in 6 patients (17.7%) by a chronic kidney disease (CKD) and in 17 patients (49.7%) by an association of PTD and AKI. Fourteen renal biopsies (41.2%) were performed and revealed acute tubular necrosis (85.7%), vacuolation (78.6%) and nuclear atypias (71.4%) of renal epithelial cells, interstitial inflammation (71.4%) and fibrosis (57.1%). Electron microscopy showed mitochondrial enlargement and dysmorphic changes suggestive of mitochondrial toxicity. Ten patients (29.4%) progressed to Stage 5 CKD, six (17.6%) required haemodialysis and six patients died during a median follow-up period of 31 months. Risk factors for Stage 5 CKD were age and cisplatin co-administration.
Collapse
Affiliation(s)
- Gaël Ensergueix
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Nicolas Pallet
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Dominique Joly
- Department of Nephrology, Dialysis, Necker Hospital, Paris, France
| | - Charlène Levi
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Sophie Chauvet
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Claire Trivin
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Jean-Francois Augusto
- Department of Nephrology, Dialysis, Transplantation, Angers University Hospital, Paris, France
| | - Rémi Boudet
- Department of Nephrology, Dialysis, Brive-La-Gaillarde General Hospital, Paris, France
| | - Hail Aboudagga
- Department of Pharmacology, Georges Pompidou European Hospital, Paris, France
| | - Guy Touchard
- Department of Nephrology, Dialysis, Transplantation, Poitiers University Hospital, Paris, France
| | - Dominique Nochy
- Department of Anatomopathology, Georges Pompidou European Hospital, Paris, France
| | - Marie Essig
- Department of Nephrology, Dialysis, Transplantation, Limoges University Hospital, Paris, France
| | - Eric Thervet
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Hélène Lazareth
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Alexandre Karras
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
28
|
Ide Y, Yanagisawa R, Kubota N, Sakashita K, Tozuka M, Nakamura T, Honda T. Analysis of the clinical characteristics of pediatric patients who experience ifosfamide-induced encephalopathy. Pediatr Blood Cancer 2019; 66:e27996. [PMID: 31535455 DOI: 10.1002/pbc.27996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/10/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Several kinds of pediatric hematological and/or malignant diseases are treated with chemotherapy regimens including ifosfamide (IFO). IFO-induced encephalopathy (IIE) is one of the serious side effects, but there is not enough evidence regarding the clinical features of IIE in children. PROCEDURE We performed a retrospective study on pediatric patients treated with chemotherapy regimens, including IFO, at a single center. We recorded the clinical characteristics of all patients; we compared the clinical characteristics between patients who developed IIE and those who did not. RESULTS In total, 88 patients received a chemotherapy regimen including IFO. IIE developed in seven patients (8.0%). The median age of patients at the time of IIE development was 4.3 (range 1.4-6.5) years in the younger population. Six of seven patients with IIE improved with supportive therapy only; however, one patient died due to heart failure. Overall survival was not different between the two groups. Multivariable analysis revealed that the co-administration of cisplatin (CDDP) or carboplatin (CBDCA) was a significant risk factor associated with IIE. Although there was no significant difference in laboratory data between the groups before chemotherapy, patients who developed IIE showed exacerbation in several laboratory tests, including those for renal and liver functions. CONCLUSIONS Renal dysfunction caused by the combination of nephrotoxic agents (IFO and CDDP/CBDCA) seems to be important for the development of pediatric IIE. It was thought to be difficult to predict IIE onset based on laboratory data before the initiation of chemotherapy regimens; however, careful observation of laboratory data during IFO chemotherapy regimens may help predict IIE onset and facilitate early treatment.
Collapse
Affiliation(s)
- Yuichiro Ide
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan.,Life Science Research Center, Nagano Children's Hospital, Matsumoto, Japan
| | - Ryu Yanagisawa
- Life Science Research Center, Nagano Children's Hospital, Matsumoto, Japan.,Division of Blood Transfusion, Shinshu University Hospital, Matsumoto, Japan.,Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Japan
| | - Noriko Kubota
- Life Science Research Center, Nagano Children's Hospital, Matsumoto, Japan.,Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Kazuo Sakashita
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Minoru Tozuka
- Life Science Research Center, Nagano Children's Hospital, Matsumoto, Japan.,Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Tomohiko Nakamura
- Life Science Research Center, Nagano Children's Hospital, Matsumoto, Japan
| | - Takayuki Honda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
29
|
Raza Z, Naureen Z. Melatonin ameliorates the drug induced nephrotoxicity: Molecular insights. Nefrologia 2019; 40:12-25. [PMID: 31735377 DOI: 10.1016/j.nefro.2019.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Drug-induced nephrotoxicity is a frequent adverse event that can lead to acute or chronic kidney disease and increase the healthcare expenditure. It has high morbidity and mortality incidence in 40-70% of renal injuries and accounts for 66% cases of renal failure in elderly population. OBJECTIVE Amelioration of drug-induced nephrotoxicity has been long soughed to improve the effectiveness of therapeutic drugs. This study was conducted to review the melatonin potential to prevent the pathogenesis of nephrotoxicity induced by important nephrotoxic drugs. METHODS We analyzed the relevant studies indexed in Pubmed, Medline, Scielo and Web of science to explain the molecular improvements following melatonin co-administration with special attention to oxidative stress, inflammation and apoptosis as key players of drug-induced nephrotoxicity. RESULTS A robust consensus among researchers of these studies suggested that melatonin efficiently eradicate the chain reaction of free radical production and induced the endogenous antioxidant enzymes which attenuate the lipid peroxidation of cellular membranes and subcellular oxidative stress in drug-induced nephrotoxicity. This agreement was further supported by the melatonin role in disintegration of inflammatory process through inhibition of principle pro-inflammatory or apoptotic cytokines such as TNF-α and NF-κB. These studies highlighted that alleviation of drug-induced renal toxicity is a function of melatonin potential to down regulate the cellular inflammatory and oxidative injury process and to stimulate the cellular repair or defensive mechanisms. CONCLUSION The comprehensive nephroprotection and safer profile suggests the melatonin to be a useful adjunct to improve the safety of nephrotoxic drugs.
Collapse
Affiliation(s)
- Zohaib Raza
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zainab Naureen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
30
|
Madrigal-Bujaidar E, Pérez-Montoya E, García-Medina S, Cristóbal-Luna JM, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Álvarez-González I. Pharmacokinetic parameters of ifosfamide in mouse pre-administered with grapefruit juice or naringin. Sci Rep 2019; 9:16621. [PMID: 31719649 PMCID: PMC6851181 DOI: 10.1038/s41598-019-53204-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Grapefruit juice (GFJ) and naringin when consumed previously or together with medications may alter their bioavailavility and consequently the clinical effect. Ifosfamide (IF) is an antitumoral agent prescribed against various types of cancer. Nevertheless, there is no information regarding its interaction with the ingestion of GFJ or naringin. The aims of the present report were validating a method for the quantitation of IF in the plasma of mouse, and determine if mice pretreated with GFJ or naringin may modify the IF pharmacokinetics. Our HPLC results to quantify IF showed adequate intra and inter-day precision (RSD < 15%) and accuracy (RE < 15%) indicating reliability. Also, the administration of GFJ or naringin increased Cmax of IF 22.9% and 17.8%, respectively, and decreased Tmax of IF 19.2 and 53.8%, respectively. The concentration of IF was higher when GFJ (71.35 ± 3.5 µg/mL) was administered with respect to that obtained in the combination naringin with IF (64.12 ± µg/mL); however, the time required to reach such concentration was significantly lower when naringin was administered (p < 0.5). We concluded that pre-administering GFJ and naringin to mice increased the Tmax and decreased the Cmax of IF.
Collapse
Affiliation(s)
- Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Edilberto Pérez-Montoya
- Laboratorio de Biofarmacia, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Sandra García-Medina
- Laboratorio de Biofarmacia, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José Melesio Cristóbal-Luna
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José A Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México, 11340, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México, 11340, Mexico
| | - Rogelio Paniagua-Pérez
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| |
Collapse
|
31
|
Thölking G, Schütte-Nütgen K, Schmitz J, Rovas A, Dahmen M, Bautz J, Jehn U, Pavenstädt H, Heitplatz B, Van Marck V, Suwelack B, Reuter S. A Low Tacrolimus Concentration/Dose Ratio Increases the Risk for the Development of Acute Calcineurin Inhibitor-Induced Nephrotoxicity. J Clin Med 2019; 8:jcm8101586. [PMID: 31581670 PMCID: PMC6832469 DOI: 10.3390/jcm8101586] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
Fast tacrolimus metabolism is linked to inferior outcomes such as rejection and lower renal function after kidney transplantation. Renal calcineurin-inhibitor toxicity is a common adverse effect of tacrolimus therapy. The present contribution hypothesized that tacrolimus-induced nephrotoxicity is related to a low concentration/dose (C/D) ratio. We analyzed renal tubular epithelial cell cultures and 55 consecutive kidney transplant biopsy samples with tacrolimus-induced toxicity, the C/D ratio, C0, C2, and C4 Tac levels, pulse wave velocity analyses, and sublingual endothelial glycocalyx dimensions in the selected kidney transplant patients. A low C/D ratio (C/D ratio < 1.05 ng/mL×1/mg) was linked with higher C2 tacrolimus blood concentrations (19.2 ± 8.7 µg/L vs. 12.2 ± 5.2 µg/L respectively; p = 0.001) and higher degrees of nephrotoxicity despite comparable trough levels (6.3 ± 2.4 µg/L vs. 6.6 ± 2.2 µg/L respectively; p = 0.669). However, the tacrolimus metabolism rate did not affect the pulse wave velocity or glycocalyx in patients. In renal tubular epithelial cells exposed to tacrolimus according to a fast metabolism pharmacokinetic profile it led to reduced viability and increased Fn14 expression. We conclude from our data that the C/D ratio may be an appropriate tool for identifying patients at risk of developing calcineurin-inhibitor toxicity.
Collapse
Affiliation(s)
- Gerold Thölking
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Marienhospital Steinfurt, 48565 Steinfurt, Germany.
| | - Katharina Schütte-Nütgen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Julia Schmitz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Maximilian Dahmen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Joachim Bautz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Ulrich Jehn
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Barbara Heitplatz
- Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, 48149 Münster, Germany.
| | - Veerle Van Marck
- Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, 48149 Münster, Germany.
| | - Barbara Suwelack
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| |
Collapse
|
32
|
Panezai MA, Owen C, Szerlip HM. Partial Fanconi syndrome induced by ifosfamide. Proc (Bayl Univ Med Cent) 2019; 32:73-74. [PMID: 30956588 DOI: 10.1080/08998280.2018.1536020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 10/27/2022] Open
Abstract
Ifosfamide-induced proximal tubular nephropathy can present as a spectrum of disease, from isolated hyperaminoaciduria to a partial or complete Fanconi syndrome. We report a case of ifosfamide-induced partial Fanconi syndrome in a man with metastatic progressive Ewing sarcoma and put forth a hypothesis on the mechanism.
Collapse
Affiliation(s)
| | - Charles Owen
- Division of Nephrology, Baylor University Medical CenterDallasTexas
| | - Harold M Szerlip
- Division of Nephrology, Baylor University Medical CenterDallasTexas
| |
Collapse
|
33
|
Mechanisms of Anticancer Drug Resistance in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11030407. [PMID: 30909445 PMCID: PMC6468761 DOI: 10.3390/cancers11030407] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
The most frequent liver tumor in children is hepatoblastoma (HB), which derives from embryonic parenchymal liver cells or hepatoblasts. Hepatocellular carcinoma (HCC), which rarely affects young people, causes one fourth of deaths due to cancer in adults. In contrast, HB usually has better prognosis, but this is still poor in 20% of cases. Although more responsive to chemotherapy than HCC, the failure of pharmacological treatment used before and/or after surgical resection is an important limitation in the management of patients with HB. To advance in the implementation of personalized medicine it is important to select the best combination among available anti-HB drugs, such as platinum derivatives, anthracyclines, etoposide, tyrosine-kinase inhibitors, Vinca alkaloids, 5-fluorouracil, monoclonal antibodies, irinotecan and nitrogen mustards. This requires predicting the sensitivity to these drugs of each tumor at each time because, it should be kept in mind, that cancer chemoresistance is a dynamic process of Darwinian nature. For this goal it is necessary to improve our understanding of the mechanisms of chemoresistance involved in the refractoriness of HB against the pharmacological challenge and how they evolve during treatment. In this review we have summarized the current knowledge on the multifactorial and complex factors responsible for the lack of response of HB to chemotherapy.
Collapse
|
34
|
Al-Abdulla R, Perez-Silva L, Abete L, Romero MR, Briz O, Marin JJG. Unraveling ‘The Cancer Genome Atlas’ information on the role of SLC transporters in anticancer drug uptake. Expert Rev Clin Pharmacol 2019; 12:329-341. [DOI: 10.1080/17512433.2019.1581605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Lorena Abete
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
35
|
Abstract
Several commonly used chemotherapeutic agents, antibiotics, antivirals, and antiepileptic medications can cause partial or full Fanconi syndrome, disorders which can generally be described as transport defects in the proximal renal tubule, associated with non-anion gap metabolic acidosis. Fanconi syndrome is underreported and therefore often missed in the clinical setting. Herein, we present a case report that details the course of a 64-year-old female with a history of stage IV undifferentiated pleomorphic sarcoma who after her sixth chemotherapeutic cycle (adriamycin, ifosfamide, and mesna) developed severe hypokalemia, hypophosphatemia, and proteinuria without glycosuria, eventually diagnosed with partial Fanconi syndrome. The aim of this report is to highlight the importance of routine serum and urine monitoring in patients undergoing therapy with potentially nephrotoxic agents to avoid potentially fatal renal nephrotoxicity, including partial and full Fanconi syndrome.
Collapse
Affiliation(s)
- Sulagna Das
- Internal Medicine, Kettering Medical Center, Dayton, USA
| | | | - Adam Fershko
- Internal Medicine, Kettering Medical Center, Dayton, USA
| |
Collapse
|
36
|
Ahmed A, Alkhawajah AMM, Al-Tamimi DM, Shawarby MA, Isab AA, Badar A. Biological alterations in renal and hepatic tissues by a novel gold (III) anti-cancerous compound. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1064-1072. [PMID: 30524681 PMCID: PMC6281062 DOI: 10.22038/ijbms.2018.28622.6935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective(s): Newer organo-metallic, specifically gold (III) complexes with multiple ligands are currently being formulated with primary focus of having increased anti-cancerous properties and decreased cytotoxicity. In this study, histological toxicity profile of a newly formulated anti-cancerous gold (III) compound [trans-(±)-1,2-(DACH)2Au]Cl3 Bis(trans-1,2-Diaminocyclohexane) was investigated by evaluation of kidney and liver tissues of rats treated by the compound. Materials and Methods: This is a quasi-experimental study. In acute toxicity component of the study, (n = 16) male rats weighing between 200–250 g were administered single, variable concentration of the gold (III) compound, [trans-(±)-1,2-(DACH)2Au]Cl3 Bis(trans-1,2-Diaminocyclohexane) to determine LD50 (dose that is lethal to 50% of rats). An IP injection of 2.3 mg/kg (equivalent to 1/10 of LD50) was injected for 14 consecutive days to (n=10) male rats in the sub-acute component of the study. Autopsy preservation of liver and kidney tissue in buffered formalin, sample processing, histopathological evaluation, and comparison with unremarkable controls (n=5) was conducted sequentially. Results: A dose of 2.3 mg/kg did not produce any tubular necrosis in kidney specimens. Mild interstitial inflammation with prominence of plasma cells was the main histological alteration. Plasmacytic pyelitis was also seen. Varying extents of cytoplasmic vacuolization and mild focal lobular and portal inflammation were predominant hepatic microscopic findings. Conclusion: [trans-(±)-1,2-(DACH)2Au]Cl3 Bis(trans-1,2-Diaminocyclohexane) produced no histological damage in renal and hepatic tissues of rats. This very limited sample animal-based study points to the relative safety of this new gold compound. However, there is a need to compare this compound with established drugs in a comparative non-animal based study.
Collapse
Affiliation(s)
- Ayesha Ahmed
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | | | - Dalal M Al-Tamimi
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | - Mohamed A Shawarby
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Ahmed Badar
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
37
|
Ensergueix G, Karras A. [Ifosphamide nephrotoxicity]. Nephrol Ther 2018; 14 Suppl 1:S125-S131. [PMID: 29606257 DOI: 10.1016/j.nephro.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/01/2018] [Indexed: 02/01/2023]
Abstract
Ifosfamide is a cytotoxic drug usually used in malignant sarcomas. The nephrotoxicity of this agent has been described essentially among children, revealed by renal failure and proximal tubulopathy. We recently conducted a retrospective multicentre study, describing 34 adult patients admitted for ifosfamide nephrotoxicity. More than 80% of them presented with renal failure, diagnosed up to 48 months after ifosfamide administration. A Fanconi syndrome with hypophosphoremia, hypokaliemia, glucosuria and low-molecular weight proteinuria, was present in two third of all cases. Median estimated glomerular filtration rate was 31mL/min 1 month and 38mL/min 3 months after ifosfamide infusion, versus 67mL/min at baseline. Renal biopsy, performed in 14 of these patients, showed acute tubular necrosis with vacuolization of proximal tubular epithelial cells with marked nuclear modifications, whereas electron microscopy revealed major changes of mitochondrial structure inside those cells, suggesting a tenofovir-like mechanism of nephrotoxicity. After a median follow-up of 31 months, ten patients out of 34 reached stage 5 chronic kidney disease, requiring dialysis in five cases. Poor renal prognosis was associated with concomitant cisplatin use (P=0.02) and with older age at presentation (P=0.04). In conclusion, ifosfamide nephrotoxicity is often severe and irreversible, leading to proximal tubulopathy and sometimes-severe chronic kidney failure, that can be immediate or delayed, sometimes diagnosed months after chemotherapy completion.
Collapse
Affiliation(s)
- Gaël Ensergueix
- Service de néphrologie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France.
| | - Alexandre Karras
- Service de néphrologie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Faculté de médecine, université Paris-Descartes, 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
38
|
Hucke A, Ciarimboli G. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations. J Clin Pharmacol 2017; 56 Suppl 7:S157-72. [PMID: 27385173 DOI: 10.1002/jcph.706] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory.
Collapse
Affiliation(s)
- Anna Hucke
- Experimental Nephrology, Medical Clinic D, Münster University Hospital, Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Medical Clinic D, Münster University Hospital, Münster, Germany
| |
Collapse
|
39
|
Li S, Zhao J, Huang R, Steiner T, Bourner M, Mitchell M, Thompson DC, Zhao B, Xia M. Development and Application of Human Renal Proximal Tubule Epithelial Cells for Assessment of Compound Toxicity. Curr Chem Genom Transl Med 2017; 11:19-30. [PMID: 28401035 PMCID: PMC5362976 DOI: 10.2174/2213988501711010019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023] Open
Abstract
Kidney toxicity is a major problem both in drug development and clinical settings. It is difficult to predict nephrotoxicity in part because of the lack of appropriate in vitro cell models, limited endpoints, and the observation that the activity of membrane transporters which plays important roles in nephrotoxicity by affecting the pharmacokinetic profile of drugs is often not taken into account. We developed a new cell model using pseudo-immortalized human primary renal proximal tubule epithelial cells. This cell line (SA7K) was characterized by the presence of proximal tubule cell markers as well as several functional properties, including transporter activity and response to a few well-characterized nephrotoxicants. We subsequently evaluated a group of potential nephrotoxic compounds in SA7K cells and compared them to a commonly used human immortalized kidney cell line (HK-2). Cells were treated with test compounds and three endpoints were analyzed, including cell viability, apoptosis and mitochondrial membrane potential. The results showed that most of the known nephrotoxic compounds could be detected in one or more of these endpoints. There were sensitivity differences in response to several of the chemicals between HK-2 and SA7K cells, which may relate to differences in expressions of key transporters or other components of nephrotoxicity pathways. Our data suggest that SA7K cells appear as promising for the early detection of renal toxicants.
Collapse
Affiliation(s)
- Shuaizhang Li
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Jinghua Zhao
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Ruili Huang
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Toni Steiner
- Sigma-Aldrich Corporation, St. Louis, MO 63103, USA
| | | | | | | | - Bin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Menghang Xia
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| |
Collapse
|
40
|
Dobrek Ł, Skowron B, Baranowska A, Płoszaj K, Bądziul D, Thor P. The influence of oxazaphosphorine agents on kidney function in rats. Medicina (B Aires) 2017; 53:179-189. [DOI: 10.1016/j.medici.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 02/04/2023] Open
|
41
|
Schulze U, Brast S, Grabner A, Albiker C, Snieder B, Holle S, Schlatter E, Schröter R, Pavenstädt H, Herrmann E, Lambert C, Spoden GA, Florin L, Saftig P, Ciarimboli G. Tetraspanin CD63 controls basolateral sorting of organic cation transporter 2 in renal proximal tubules. FASEB J 2016; 31:1421-1433. [DOI: 10.1096/fj.201600901r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Ulf Schulze
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Sabine Brast
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Alexander Grabner
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Christian Albiker
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Beatrice Snieder
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Svenja Holle
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Eberhard Schlatter
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Rita Schröter
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Hermann Pavenstädt
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| | - Edwin Herrmann
- Klinik und Poliklinik für UrologieWestfälische Wilhelms–Universität Münster Germany
| | - Carsten Lambert
- Institut für Medizinische Mikrobiologie und HygieneJohannes Gutenberg–Universität Mainz Germany
| | - Gilles A. Spoden
- Institut für Medizinische Mikrobiologie und HygieneJohannes Gutenberg–Universität Mainz Germany
| | - Luise Florin
- Institut für Medizinische Mikrobiologie und HygieneJohannes Gutenberg–Universität Mainz Germany
| | - Paul Saftig
- Biochemisches Institut, Medizinische FakultätChristian‐Albrechts–Universität Kiel Germany
| | - Giuliano Ciarimboli
- Medizinische Klinik D, Experimentelle NephrologieWestfälische Wilhelms–Universität Münster Germany
| |
Collapse
|
42
|
Chuah JKC, Zink D. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnol Adv 2016; 35:150-167. [PMID: 28017905 DOI: 10.1016/j.biotechadv.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 02/09/2023]
Abstract
The global rise in the numbers of kidney patients and the shortage in transplantable organs have led to an increasing interest in kidney-specific regenerative therapies, renal disease modelling and bioartificial kidneys. Sources for large quantities of high-quality renal cells and tissues would be required, also for applications in in vitro platforms for compound safety and efficacy screening. Stem cell-based approaches for the generation of renal-like cells and tissues would be most attractive, but such methods were not available until recently. This situation has drastically changed since 2013, and various protocols for the generation of renal-like cells and precursors from pluripotent stem cells (PSC) have been established. The most recent breakthroughs were related to the establishment of various protocols for the generation of PSC-derived kidney organoids. In combination with recent advances in genome editing, bioprinting and the establishment of predictive renal screening platforms this results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based protocols for the generation of renal-like cells, precursors and organoids, and their current and potential applications in regenerative medicine, compound screening, disease modelling and bioartificial organs.
Collapse
Affiliation(s)
- Jacqueline Kai Chin Chuah
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
43
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
44
|
Faught LN, Greff MJE, Rieder MJ, Koren G. Drug-induced acute kidney injury in children. Br J Clin Pharmacol 2015; 80:901-9. [PMID: 25395343 DOI: 10.1111/bcp.12554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/12/2014] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a serious problem occurring in anywhere between 8 and 30% of children in the intensive care unit. Up to 25% of these cases are believed to be the result of pharmacotherapy. In this review we have focused on several relevant drugs and/or drug classes, which are known to cause AKI in children, including cancer chemotherapeutics, non-steroidal anti-inflammatory drugs and antimicrobials. AKI demonstrates a steady association with increased long term risk of poor outcomes including chronic kidney disease and death as determined by the extent of injury. For this reason it is important to understand the causality and implications of these drugs and drug classes. Children occupy a unique patient population, advocating the importance of understanding how they are affected dissimilarly compared with adults. While the kidney itself is likely more susceptible to injury than other organs, the inherent toxicity of these drugs also plays a major role in the resulting AKI. Mechanisms involved in the toxicity of these drugs include oxidative damage, hypersensitivity reactions, altered haemodynamics and tubule obstruction and may affect the glomerulus and/or the tubules. Understanding these mechanisms is critical in determining the most effective strategies for treatment and/or prevention, whether these strategies are less toxic versions of the same drugs or add-on agents to mitigate the toxic effect of the existing therapy.
Collapse
Affiliation(s)
- Lauren N Faught
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Michael J Rieder
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Pediatrics, Western University, London, Ontario, Canada.,CIHR-GSK Chair in Paediatric Clinical Pharmacology, Children's Hospital of Western Ontario, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada
| | - Gideon Koren
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pediatrics, Western University, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Abstract
Pharmaceutical agents provide diagnostic and therapeutic utility that are central to patient care. However, all agents also carry adverse drug effect profiles. While most of these are clinically insignificant, some drugs may cause unacceptable toxicity that impacts negatively on patient morbidity and mortality. Recognizing adverse effects is important for administering appropriate drug doses, instituting preventive strategies, and withdrawing the offending agent due to toxicity. In the present article, we will review those drugs that are associated with impaired renal function. By focusing on pharmaceutical agents that are currently in clinical practice, we will provide an overview of nephrotoxic drugs that a treating physician is most likely to encounter. In doing so, we will summarize risk factors for nephrotoxicity, describe clinical manifestations, and address preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Anushree C Shirali
- Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol In Vitro 2014; 30:95-105. [PMID: 25500123 DOI: 10.1016/j.tiv.2014.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The kidney is a major target for drug-induced injury, primarily due the fact that it transports a wide variety of chemical entities into and out of the tubular lumen. Here, we investigated the expression of the main xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1 at an mRNA and/or protein level. RPTEC/TERT1 cells expressed OCT2, OCT3, OCTN2, MATE1, MATE2, OAT1, OAT3 and OAT4. The functionality of the OCTs was demonstrated by directional transport of the fluorescent dye 4-Di-1-ASP. In addition, P-glycoprotein activity in RPTEC/TERT1 cells was verified by fluorescent dye retention in presence of various P-glycoprotein inhibitors. In comparison to proliferating cells, contact inhibited RPTEC/TERT1 cells expressed increased mRNA levels of several ABC transporter family members and were less sensitive to cyclosporine A. We conclude that differentiated RPTEC/TERT1 cells are well suited for utilisation in xenobiotic transport and pharmacokinetic studies.
Collapse
|
47
|
Lee LK, Chen PM, Tzeng CH, Liu JH, Yen CC. Ifosfamide-Induced Fanconi's Syndrome. JOURNAL OF CANCER RESEARCH AND PRACTICE 2014. [DOI: 10.1016/s2311-3006(16)30023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Akilesh S, Juaire N, Duffield JS, Smith KD. Chronic Ifosfamide Toxicity: Kidney Pathology and Pathophysiology. Am J Kidney Dis 2014; 63:843-50. [DOI: 10.1053/j.ajkd.2013.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/27/2013] [Indexed: 11/11/2022]
|
49
|
Abstract
A number of therapeutic drugs are toxic to the kidney proximal tubule (PT) and can cause the renal Fanconi syndrome (FS). The most frequently implicated drugs are cisplatin, ifosfamide, tenofovir, sodium valproate and aminoglycoside antibiotics, and the new oral iron chelator deferasirox has also recently been associated with FS. The incidence of full or partial FS is almost certainly under-estimated due to a lack of appropriate systematic studies, variations in definitions of tubular dysfunction and under-reporting of adverse events. The clinical features of FS are amino aciduria, low molecular weight proteinuria, hypophosphataemia, metabolic acidosis and glycosuria. The most serious complications are bone demineralization from urinary phosphate wasting and progressive decline in kidney function. Commonly used tests for kidney function such as estimated glomerular filtration rate and urine albumin/creatinine ratio are not sensitive markers of PT toxicity; patients at risk should thus be monitored with more appropriate tests, and drugs should be stopped or reduced in dose if toxicity occurs. Substantial recovery of PT function can occur after withdrawal of therapy, but this can take months and chronic damage may persist in some cases.
Collapse
Affiliation(s)
- A M Hall
- Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | |
Collapse
|
50
|
Klootwijk ED, Reichold M, Helip-Wooley A, Tolaymat A, Broeker C, Robinette SL, Reinders J, Peindl D, Renner K, Eberhart K, Assmann N, Oefner PJ, Dettmer K, Sterner C, Schroeder J, Zorger N, Witzgall R, Reinhold SW, Stanescu HC, Bockenhauer D, Jaureguiberry G, Courtneidge H, Hall AM, Wijeyesekera AD, Holmes E, Nicholson JK, O'Brien K, Bernardini I, Krasnewich DM, Arcos-Burgos M, Izumi Y, Nonoguchi H, Jia Y, Reddy JK, Ilyas M, Unwin RJ, Gahl WA, Warth R, Kleta R. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi's syndrome. N Engl J Med 2014; 370:129-38. [PMID: 24401050 DOI: 10.1056/nejmoa1307581] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconi's syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS We linked the phenotype of this family's Fanconi's syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconi's syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconi's syndrome. (Funded by the European Commission Seventh Framework Programme and others.).
Collapse
Affiliation(s)
- Enriko D Klootwijk
- From the Centre for Nephrology (E.D.K., H.C.S., D.B., G.J., H.C., A.M.H., R.J.U., R.K.) and Institute of Child Health (D.B., R.K.), University College London, and Biomolecular Medicine, Imperial College London (S.L.R., A.D.W., E.H., J.K.N.) - both in London; the Departments of Medical Cell Biology (M.R., C.B., D.P., C.S., R. Warth), Internal Medicine III (K.R.), Internal Medicine II (S.W.R.), and Molecular and Cellular Anatomy (R. Witzgall) and the Institutes of Functional Genomics (J.R., K.E., N.A., P.J.O., K.D.) and Pathology (J.S.), University of Regensburg, and the Department of Radiology, Barmherzige Brueder Hospital (N.Z.) - all in Regensburg, Germany; the National Human Genome Research Institute (A.H.-W., S.L.R., H.C.S., K.O., I.B., D.M.K., W.A.G., R.K.) and National Heart, Lung, and Blood Institute (Y.I.), National Institutes of Health, Bethesda, MD; the Division of Pediatric Nephrology, University of Florida, Jacksonville (A.T., M.I.); the Genome Biology Department, Australian National University, Canberra, ACT, Australia (M.A.-B.); Kitasato University Medical Center, Saitama, Japan (H.N.); and the Department of Pathology, Northwestern University, Chicago (Y.J., J.K.R.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|