1
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
2
|
Amiri-Farsani M, Taheri Z, Tirbakhsh Gouran S, Chabok O, Safarpour-Dehkordi M, Kazemi Roudsari M. Cancer stem cells: Recent trends in cancer therapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1383-1414. [PMID: 38319997 DOI: 10.1080/15257770.2024.2311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that were first identified in blood cancers (leukemia) and are considered promising therapeutic targets in cancer treatment. These cells are the cause of many malignancies including metastasis, heterogeneity, drug resistance, and tumor recurrence. They carry out these activities through multiple transcriptional programs and signaling pathways. This review summarizes the characteristics of cancer stem cells, explains their key signaling pathways and factors, and discusses targeted therapies for cancer stem cells. Investigating these mechanisms and signaling pathways responsible for treatment failure may help identify new therapeutic pathways in cancer.
Collapse
Affiliation(s)
- Maryam Amiri-Farsani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Somayeh Tirbakhsh Gouran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Kazemi Roudsari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Hsieh MCW, Wang WT, Lin CY, Kuo YR, Lee SS, Hou MF, Wu YC. Stem Cell-Based Therapeutic Strategies in Diabetic Wound Healing. Biomedicines 2022; 10:biomedicines10092085. [PMID: 36140185 PMCID: PMC9495374 DOI: 10.3390/biomedicines10092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired wound healing and especially the “all-too-common” occurrence of associated diabetic foot ulcers (DFU) are becoming an increasingly urgent and deteriorating healthcare issue, which drastically impact the quality of life and further heighten the risks of infection and amputation in patients with diabetes mellitus. Amongst the multifactorial wound healing determinants, glycemic dysregulation has been identified to be the primary casual factor of poor wound healing. Unfortunately, current therapeutic modalities merely serve as moderate symptomatic relieves but often fail to completely restore the wound site to its pre-injury state and prevent further recurrence. Stem cell-based therapeutics have been employed for its promising potential to address the root of the problem as they not only exhibit the capacity for self-renewal and differentiation towards multiple lineages, but also have been disclosed to participate in mediating variant growth factors and cytokines. Herein we review the current literatures on the therapeutic benefits of using various kinds of stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and adipose-derived stem cells (ASCs) in diabetic wound healing by searching on the PubMed® Database for publications. This study shall serve as an overview of the current body of research with particular focus on autologous ASCs and the laboratory expandable iPSCs in hope of shedding more light on this attractive therapy so as to elevate the efficacy of wound healing that is almost always compromised in diabetic patients.
Collapse
Affiliation(s)
- Meng-Chien Willie Hsieh
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Wei-Ting Wang
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yur-Ren Kuo
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Shin Lee
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Division of Breast Oncology and Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Division of Breast Oncology and Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7675)
| |
Collapse
|
5
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
6
|
Yu Q, Qiao GH, Wang M, Yu L, Sun Y, Shi H, Ma TL. Stem Cell-Based Therapy for Diabetic Foot Ulcers. Front Cell Dev Biol 2022; 10:812262. [PMID: 35178389 PMCID: PMC8844366 DOI: 10.3389/fcell.2022.812262] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcer has become a worldwide clinical medical challenge as traditional treatments are not effective enough to reduce the amputation rate. Therefore, it is of great social significance to deeply study the pathogenesis and biological characteristics of the diabetic foot, explore new treatment strategies and promote their application. Stem cell-based therapy holds tremendous promise in the field of regenerative medicine, and its mechanisms include promoting angiogenesis, ameliorating neuroischemia and inflammation, and promoting collagen deposition. Studying the specific molecular mechanisms of stem cell therapy for diabetic foot has an important role and practical clinical significance in maximizing the repair properties of stem cells. In addition, effective application modalities are also crucial in order to improve the survival and viability of stem cells at the wound site. In this paper, we reviewed the specific molecular mechanisms of stem cell therapy for diabetic foot and the extended applications of stem cells in recent years, with the aim of contributing to the development of stem cell-based therapy in the repair of diabetic foot ulcers.
Collapse
Affiliation(s)
- Qian Yu
- Department of Hepatology, Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Guo-Hong Qiao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Hui Shi
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tie-Liang Ma
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| |
Collapse
|
7
|
Dubey SK, Parab S, Alexander A, Agrawal M, Achalla VPK, Pal UN, Pandey MM, Kesharwani P. Cold atmospheric plasma therapy in wound healing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Alan S, Şalva E, Karakoyun B, Çakalağaoğlu F, Özbaş S, Akbuğa J. Investigation of therapeutic effects in the wound healing of chitosan/pGM-CSF complexes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Abstract
OBJECTIVE The burden of the management of problematic skin wounds characterised by a compromised skin barrier is growing rapidly. Almost six million patients are affected in the US alone, with an estimated market of $25 billion annually. There is an urgent requirement for efficient mechanism-based treatments and more efficacious drug delivery systems. Novel strategies are needed for faster healing by reducing infection, moisturising the wound, stimulating the healing mechanisms, speeding up wound closure and reducing scar formation. METHODS A systematic review of qualitative studies was conducted on the recent perspectives of nanotechnology in burn wounds management. Pubmed, Scopus, EMBASE, CINAHL and PsychINFO databases were all systematically searched. Authors independently rated the reporting of the qualitative studies included. A comprehensive literature search was conducted covering various resources up to 2018-2019. Traditional techniques aim to simply cover the wound without playing any active role in wound healing. However, nanotechnology-based solutions are being used to create multipurpose biomaterials, not only for regeneration and repair, but also for on-demand delivery of specific molecules. The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. CONCLUSION Nanotechnology-based therapy is in the forefront of next-generation therapy that is able to advance wound healing of hard-to-heal wounds. In this review, we will highlight the developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment. Herein we will explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.
Collapse
Affiliation(s)
- Ruan Na
- Orthopedics Department, Affiliated Tongji Hospital of Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Tian Wei
- Department of Biomedical Engineering
| |
Collapse
|
10
|
Khazaeli P, Alaei M, Khaksarihadad M, Ranjbar M. Preparation of PLA/chitosan nanoscaffolds containing cod liver oil and experimental diabetic wound healing in male rats study. J Nanobiotechnology 2020; 18:176. [PMID: 33256764 PMCID: PMC7706058 DOI: 10.1186/s12951-020-00737-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic disorders. One of the important metabolic complications in diabetes is diabetic foot ulcer syndrome, which causes delayed and abnormal healing of the wound. The formulation of nanoscaffolds containing cod liver oil by altering the hemodynamic balance toward the vasodilators state, increasing wound blood supply, and altering plasma membrane properties, namely altering the membrane phospholipids composition, can be effective in wound healing. In this study, electrospinning method was used to produce poly lactic acid/chitosan nanoscaffolds as a suitable bio-substitute. After preparing the nanoscaffolds, the products were characterized with dynamic light scattering (DLS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Also optical properties of polymer and comparison between adsorption between single polymer and polymer-drug calculated with UV−Vis spectra. The structure and functional groups of the final products were characterized by Fourier-transform infrared spectroscopy (FT-IR) and energy dispersive spectroscopy (EDAX) as elemental analysis. The results showed that the optimum formulation of cod liver oil was 30%, which formed a very thin fiber that rapidly absorbed to the wound and produced significant healing effects. According to the results, poly lactic acid/chitosan nanoscaffolds containing cod liver oil can be a suitable bio-product to be used in treating the diabetic foot ulcer syndrome.![]()
Collapse
Affiliation(s)
- Payam Khazaeli
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, Kerman, 76169-11319, Iran.,Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Alaei
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksarihadad
- Neuroscience Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, Kerman, 76169-11319, Iran.
| |
Collapse
|
11
|
Effect of PDGF-B Gene-Activated Acellular Matrix and Mesenchymal Stem Cell Transplantation on Full Thickness Skin Burn Wound in Rat Model. Tissue Eng Regen Med 2020; 18:235-251. [PMID: 33145744 DOI: 10.1007/s13770-020-00302-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Full thickness burn wounds are lack of angiogenesis, cell migration, epithelialisation and finally scar tissue formation. Tissue engineered composite graft can provide sustained release of growth factor and promote the wound healing by cell migration, early angiogenesis and proliferation of extracellular matrix and wound remodeling. The objective of this study was to evaluate the gene embedded (pDNA-platelet-derived growth factor, PDGF-B) porcine acellular urinary bladder matrix with transfected mesenchymal stem cells (rBMSC) on healing of full thickness burn wound in rat model. METHODS Full thickness burn wound of 2 × 2 cm size was created in dorsum of rat model under general anesthesia. Burn wounds were treated with silver sulfadiazine; porcine acellular urinary bladder matrix (PAUBM); PAUBM transfected with pDNA-PDGF-B; PAUBM seeded with rBMSC; PAUBM seeded with rBMSC transfected with pDNA-PDGF-B in groups A, B, C, D and E respectively. The wound healing was assessed based on clinical, macroscopically, immunologically, histopathological and RT-qPCR parameters. RESULTS Wound was significantly healed in group E and group D with early extracellular matrix deposition, enhanced granulation tissue formation and early angiogenesis compared to all other groups. The immunologic response against porcine acellular matrix showed that PDGF-B gene activated matrix along with stem cell group showed less antibody titer against acellular matrix than other groups in all intervals. PDGF gene activated matrix releasing the PDGF-B and promote the healing of full thickness burn wound with neovascularization and neo tissue formation. PDGF gene also enhances secretion of other growth factors results in PDGF mediated regenerative activities. This was confirmed in RT-qPCR at various time intervals. CONCLUSION Gene activated matrix encoded for PDGF-B protein transfected stem cells have been clinically proven for early acceleration of angiogenesis and tissue regeneration in burn wounds in rat models. Evaluation of PDGF-B gene-activated acellular matrix and mesenchymal stem cell in full thickness skin burn wound in rat.
Collapse
|
12
|
Sabzevari R, Roushandeh AM, Mehdipour A, Alini M, Roudkenar MH. SA/G hydrogel containing hCAP-18/LL-37-engineered WJ-MSCs-derived conditioned medium promoted wound healing in rat model of excision injury. Life Sci 2020; 261:118381. [DOI: 10.1016/j.lfs.2020.118381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
13
|
Raghuram AC, Yu RP, Lo AY, Sung CJ, Bircan M, Thompson HJ, Wong AK. Role of stem cell therapies in treating chronic wounds: A systematic review. World J Stem Cells 2020; 12:659-675. [PMID: 32843920 PMCID: PMC7415243 DOI: 10.4252/wjsc.v12.i7.659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/03/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The impairment of cutaneous wound healing results in chronic, non-healing wounds that are caused by altered wound environment oxygenation, tissue injury, and permissive microbial growth. Current modalities for the treatment of these wounds inadequately address the complex changes involved in chronic wound pathogenesis. Consequently, stem cell therapies have emerged as a potential therapeutic modality to promote cutaneous regeneration through trophic and paracrine activity.
AIM To investigate current literature regarding use of stem cell therapies for the clinical treatment of chronic, non-healing wounds.
METHODS PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus were queried with combinations of the search terms “mesenchymal stem cells,” “adult stem cells,” “embryonic stem cells,” “erythroid precursor cells,” “stem cell therapies,” and “chronic wounds” in order to find relevant articles published between the years of 2000 and 2019 to review a 20-year experience. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (reviews, case reports/series, retrospective/prospective studies, and clinical trials) were evaluated by the authors for their depiction of clinical stem cell therapy use. Data were extracted from the articles using a standardized collection tool.
RESULTS A total of 43 articles describing the use of stem cell therapies for the treatment of chronic wounds were included in this review. While stem cell therapies have been explored in in vitro and in vivo applications in the past, recent efforts are geared towards assessing their clinical role. A review of the literature revealed that adipose-derived stem cells, bone marrow-derived stem cells, bone marrow-derived mononuclear cells, epidermally-derived mesenchymal stem cells, fibroblast stem cells, keratinocyte stem cells, placental mesenchymal stem cells, and umbilical cord mesenchymal stem cells have all been employed in the treatment of chronic wounds of various etiologies. Most recently, embryonic stem cells have emerged as a novel stem cell therapy with the capacity for multifaceted germ cell layer differentiation. With the capacity for self-renewal and differentiation, stem cells can enrich existing cell populations in chronic wounds in order to overcome barriers impeding the progression of wound healing. Further, stem cell therapies can be utilized to augment cell engraftment, signaling and activity, and resultant patient outcomes.
CONCLUSION Assessing observed clinical outcomes, potential for stem cell use, and relevant therapeutic challenges allows wound care stakeholders to make informed decisions regarding optimal treatment approaches for their patients’ chronic wounds.
Collapse
Affiliation(s)
- Anjali C Raghuram
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Roy P Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Andrea Y Lo
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Cynthia J Sung
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Melissa Bircan
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Holly J Thompson
- Wilson Dental Library, Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, United States
| | - Alex K Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| |
Collapse
|
14
|
Kitala D, Łabuś W, Klama-Baryła A, Kraut M, Maj M, Szapski M. Application of Amniotic Stem Cells on an Acellular Dermal Matrix Scaffold in a Burned Patient: A Case Report. Transplant Proc 2020; 52:2563-2569. [PMID: 32444118 DOI: 10.1016/j.transproceed.2020.01.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Advances in science have allowed newly created medicinal products based on gene therapy, somatic cell therapy, and tissue engineering to be used in the treatment of human diseases. December 2008 legislation aims to ensure they are both safe for patients and available throughout the European Union. Amniotic stem cells are designated by the European Medicines Agency Committee for Advanced Therapies as an advanced therapy medicinal product; therefore, production must be in accordance with Regulation (EC) No. 1394/2007 of the European Council of 13 November 2007 on advanced therapy medicinal products. OBJECTIVES This article details preliminary results of innovative amniotic stem cell transplant (supported by an acellular dermal matrix [ADM] produced in-house with Suprathel wound and burn dressing) in a burn patient and compares them with results in a patient treated with allogeneic skin. MATERIAL AND METHODS Amniotic stem cells were applied to a 40-year-old patient with IIb°/III° thermal burns of 36% of total body surface area and III°/IV° of 1%. Wound healing was assessed by histologic examination and the Bates-Jensen scale. Reduction in pain perception was verified by 10-point visual analog scale. Hospitalization time was compared to length of stay for patients treated with standard therapy. RESULTS The patient was discharged from hospital on the 12th day after surgery with complete wound healing (almost 2 times shorter than the control). CONCLUSIONS The use of amniotic stem cells and ADM may be the optimal method for burn treatment.
Collapse
Affiliation(s)
- Diana Kitala
- Dr Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Śląskie, Poland
| | - Wojciech Łabuś
- Dr Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Śląskie, Poland.
| | | | - Małgorzata Kraut
- Dr Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Śląskie, Poland
| | - Mariusz Maj
- Dr Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Śląskie, Poland
| | - Michał Szapski
- Dr Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Śląskie, Poland
| |
Collapse
|
15
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [PMID: 31546465 DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
16
|
IL-10 Gene-Modified Human Amniotic Mesenchymal Stem Cells Augment Regenerative Wound Healing by Multiple Synergistic Effects. Stem Cells Int 2019; 2019:9158016. [PMID: 31281390 PMCID: PMC6594256 DOI: 10.1155/2019/9158016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess a capacity to enhance cutaneous wound healing that is well characterized. However, the therapeutic effect of MSCs appears to be limited. Modifying MSC target genes to increase necessary biological effects is a promising strategy for wound therapy. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that has a therapeutic effect on wound healing. In this study, we modified human amniotic mesenchymal stem cells (hAMSCs) using recombinant lentiviral vectors for expressing IL-10 and evaluated the therapeutic effects of hAMSCs-IL-10 in wound healing. We elucidated the mechanisms underlying the effects. We found that promoting wound healing was maintained by synergistic effects of hAMSCs and IL-10. hAMSCs-IL-10 showed stronger biological effects in accelerating wound closure, enhancing angiogenesis, modulating inflammation, and regulating extracellular matrix remodeling than hAMSCs. hAMSCs-IL-10 would be better at promoting wound healing and improving healing quality. These data may provide a theoretical foundation for clinical administration of hAMSCs-IL-10 in cutaneous wound healing and skin regeneration.
Collapse
|
17
|
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:344-365. [PMID: 29981800 DOI: 10.1016/j.addr.2018.06.019] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Cutaneous wound healing in adult mammals is a complex multi-step process involving overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodelling. Re-epithelialization describes the resurfacing of a wound with new epithelium. The cellular and molecular processes involved in the initiation, maintenance, and completion of epithelialization are essential for successful wound closure. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here, we focus on cellular mechanisms underlying keratinocyte migration and proliferation during epidermal closure. Inability to re-epithelialize is a clear indicator of chronic non-healing wounds, which fail to proceed through the normal phases of wound healing in an orderly and timely manner. This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.
Collapse
|
18
|
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10:111. [PMID: 30922387 PMCID: PMC6440165 DOI: 10.1186/s13287-019-1212-2] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Normal wound healing is a dynamic and complex multiple phase process involving coordinated interactions between growth factors, cytokines, chemokines, and various cells. Any failure in these phases may lead wounds to become chronic and have abnormal scar formation. Chronic wounds affect patients' quality of life, since they require repetitive treatments and incur considerable medical costs. Thus, much effort has been focused on developing novel therapeutic approaches for wound treatment. Stem-cell-based therapeutic strategies have been proposed to treat these wounds. They have shown considerable potential for improving the rate and quality of wound healing and regenerating the skin. However, there are many challenges for using stem cells in skin regeneration. In this review, we present some sets of the data published on using embryonic stem cells, induced pluripotent stem cells, and adult stem cells in healing wounds. Additionally, we will discuss the different angles whereby these cells can contribute to their unique features and show the current drawbacks.
Collapse
Affiliation(s)
- Azar Nourian Dehkordi
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Mirahmadi Babaheydari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | |
Collapse
|
19
|
|
20
|
Feng Z, Chen H, Fu T, Zhang L, Liu Y. miR-21 modification enhances the performance of adipose tissue-derived mesenchymal stem cells for counteracting urethral stricture formation. J Cell Mol Med 2018; 22:5607-5616. [PMID: 30179296 PMCID: PMC6201219 DOI: 10.1111/jcmm.13834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/15/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
The treatment of complicated long segment strictures remains to a challenge, and the substitution urethroplasty treatment is often accompanied by subsequent tissue fibrosis and secondary stricture formation. In situ injection of human adipose tissue-derived stem cells (hADSC) could potential be applied for prevention of urethral fibrosis, but the cells transplantation alone may be insufficient because of the complicated histopathological micro-environmental changes in the injury site. This study investigated whether miR-21 modification can improve the therapeutic efficacy of ADSCs against urethral fibrosis to limit urethral stricture recurrence. MiR-21-modified ADSCs (miR-21) were constructed via lentivirus-mediated transfer of pre-miR-21 and GFP reporter gene. In vitro results suggested that miR-21 modification can increase the angiogenesis genes expression of ADSCs and enhance its anti-oxidative effects against reactive oxygen species (ROS) damage. In vivo results showed that miR-21 modification contributes to increased urodynamic parameters and better formation of the epithelium and the muscle layer as compared to ADSCs transplantation alone groups. The results demonstrated that miR-21 modification in ADSCs could improve urethral wound healing microenvironment, enhance stem cell survival through ROS scavenging and promote the neovascularization via regulating angiogenic genes expression, which eventually increase the ADSCs' therapeutic potential for urethral wound healing.
Collapse
Affiliation(s)
- Zongcheng Feng
- Department of Urology, No. 731 Hospital of China Aerospace Science and Industry Corporation, Beijing, China
| | - Hongrun Chen
- Department of Urology, No. 731 Hospital of China Aerospace Science and Industry Corporation, Beijing, China
| | - Taozhu Fu
- Department of Urology, No. 731 Hospital of China Aerospace Science and Industry Corporation, Beijing, China
| | - Lianfeng Zhang
- Department of Urology, No. 731 Hospital of China Aerospace Science and Industry Corporation, Beijing, China
| | - Yushan Liu
- Department of Urology, No. 731 Hospital of China Aerospace Science and Industry Corporation, Beijing, China
| |
Collapse
|
21
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
22
|
Hsu LC, Peng BY, Chen MS, Thalib B, Ruslin M, Tung TDX, Chou HH, Ou KL. The potential of the stem cells composite hydrogel wound dressings for promoting wound healing and skin regeneration: In vitro
and in vivo
evaluation. J Biomed Mater Res B Appl Biomater 2018; 107:278-285. [DOI: 10.1002/jbm.b.34118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ling-Chuan Hsu
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei 110 Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei 110 Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry; Taipei Medical University Hospital; Taipei 110 Taiwan
| | - May-Show Chen
- School of Oral Hygiene, College of Oral Medicine; Taipei Medical University; Taipei 110 Taiwan
- Division of Prosthodontics, Department of Dentistry; Taipei Medical University Hospital; Taipei 110 Taiwan
| | - Bahruddin Thalib
- Department of Prosthodontics, Faculty of Dentistry; Hasanuddin University; Makassar 90245 Indonesia
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry; Hasanuddin University; Makassar 90245 Indonesia
| | - Tran Dang Xuan Tung
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering; Taipei Medical University; Taipei 110 Taiwan
- Stem Cell Research Center, Taipei Medical University; Taipei 110 Taiwan
- Stem Cell Unit, Van Hanh General Hospital; Ho Chi Minh City Vietnam
| | - Hsin-Hua Chou
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei 110 Taiwan
- Dental Department of Wan-Fang Hospital; Taipei Medical University; Taipei 116 Taiwan
| | - Keng-Liang Ou
- Department of Prosthodontics, Faculty of Dentistry; Hasanuddin University; Makassar 90245 Indonesia
- Department of Dentistry; Taipei Medical University Hospital; Taipei 110 Taiwan
- Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; New Taipei City 235 Taiwan
- School of Dentistry; Health Sciences University of Hokkaido; Hokkaido 061-0293 Japan
- Department of Prosthodontic, Faculty of Dentistry; Universitas Gadjah Mada; Yogyakarta 55281 Indonesia. 3D Global Biotech Inc.; New Taipei City 221 Taiwan
| |
Collapse
|
23
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|
24
|
Wu P, Chen H, Jin R, Weng T, Ho JK, You C, Zhang L, Wang X, Han C. Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 2018; 16:29. [PMID: 29448962 PMCID: PMC5815227 DOI: 10.1186/s12967-018-1402-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Critical tissue defects frequently result from trauma, burns, chronic wounds and/or surgery. The ideal treatment for such tissue loss is autografting, but donor sites are often limited. Tissue engineering (TE) is an inspiring alternative for tissue repair and regeneration (TRR). One of the current state-of-the-art methods for TRR is gene therapy. Non-viral gene delivery systems (nVGDS) have great potential for TE and have several advantages over viral delivery including lower immunogenicity and toxicity, better cell specificity, better modifiability, and higher productivity. However, there is no ideal nVGDS for TRR, hence, there is widespread research to improve their properties. This review introduces the basic principles and key aspects of commonly-used nVGDSs. We focus on recent advances in their applications, current challenges, and future directions.
Collapse
Affiliation(s)
- Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Jon Kee Ho
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Liping Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
25
|
Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12:e296-e312. [PMID: 28482114 PMCID: PMC5813216 DOI: 10.1002/term.2443] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Trinity Centre for BioengineeringTrinity Biomedical Sciences Institute, Trinity College DublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Medical University of BahrainAdliyaKingdom of Bahrain
| |
Collapse
|
26
|
Zanata F, Shaik S, Devireddy RV, Wu X, Ferreira LM, Gimble JM. Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:137-146. [PMID: 27837560 DOI: 10.1007/978-3-319-45457-3_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose-Derived Stromal/Stem Cells (ASC) have considerable potential for regenerative medicine due to their abilities to proliferate, differentiate into multiple cell lineages, high cell yield, relative ease of acquisition, and almost no ethical concerns since they are derived from adult tissue. Storage of ASC by cryopreservation has been well described that maintains high cell yield and viability, stable immunophenotype, and robust differentiation potential post-thaw. This ability is crucial for banking research and for clinical therapeutic purposes that avoid the morbidity related to repetitive liposuction tissue harvests. ASC secrete various biomolecules such as cytokines which are reported to have immunomodulatory properties and therapeutic potential to reverse symptoms of multiple degenerative diseases/disorders. Nevertheless, safety regarding the use of these cells clinically is still under investigation. This chapter focuses on the different aspects of cryopreserved ASC and the methods to evaluate their functionality for future clinical use.
Collapse
Affiliation(s)
- Fabiana Zanata
- Federal University of Sao Paulo, Sao Paulo, SP, Brazil
- Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, LA, USA
| | - Shahensha Shaik
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xiying Wu
- La Cell LLC, New Orleans BioInnovation Center, Suite 304, 1441 Canal Street, New Orleans, LA, 70112, USA
| | | | - Jeffrey M Gimble
- Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, LA, USA.
- La Cell LLC, New Orleans BioInnovation Center, Suite 304, 1441 Canal Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
27
|
Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem 2016; 417:119-33. [PMID: 27206737 DOI: 10.1007/s11010-016-2719-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Abstract
Acute wounds do not generally require professional treatment modalities and heal in a predictable fashion, but chronic wounds are mainly accompanied with infection and prolonged inflammation, leading to healing impairments and continuous tissue degradation. Although a vast amount of products have been introduced in the market, claiming to provide a better optimization of local and systemic conditions of patients, they do not meet the expectations due to being expensive and not easily accessible, requiring wound care facilities, having patient-specific response, low efficiency, and severe side-effects. In this sense, developing new, safe, self-applicable, effective, and cheap wound care products with broad-range antimicrobial activity is still an attractive area of international research. In the present work, boron derivatives [boric acid and sodium pentaborate pentahydrate (NaB)] were evaluated for their antimicrobial activity, proliferation, migratory, angiogenesis, gene, and growth factor expression promoting effects on dermal cells in vitro. In addition, boron-containing hydrogel formulation was examined for its wound healing promoting potential using full-thickness wound model in streptozotocin-induced diabetic rats. The results revealed that while both boron compounds significantly increased proliferation, migration, vital growth factor, and gene expression levels of dermal cells along with displaying remarkable antimicrobial effects against bacteria, yeast, and fungi, NaB displayed greater antimicrobial properties as well as gene and growth factor expression inductive effects. Animal studies proved that NaB-containing gel formulation enhanced wound healing rate of diabetic animals and histopathological scores. Overall data suggest a potential promising therapeutic option for the management of chronic wounds but further studies are highly warranted to determine signaling pathways and target metabolisms in which boron is involved to elucidate the limitations and extend its use in clinics.
Collapse
|
28
|
Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:149-62. [PMID: 26586955 PMCID: PMC4636091 DOI: 10.2147/sccaa.s64373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the discovery of adipose-derived stem cells (ASC) in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation). Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties.
Collapse
Affiliation(s)
- Vaughan Feisst
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah Meidinger
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle B Locke
- Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.04.064] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: scope and advancement. Nanomedicine (Lond) 2015; 10:2593-612. [PMID: 26295361 DOI: 10.2217/nnm.15.82] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Innovative methods for treating impaired and hard-to-heal wounds are needed. Novel strategies are needed for faster healing by reducing infection, moisturizing the wound, stimulating the healing mechanisms, speeding up the wound closure and reducing scar formation. In the past few years, nanotechnology has been constantly revolutionizing the treatment and management of wound care, by offering novel solutions which include but are not limited to: state-of-the-art materials, so called 'smart' biomaterials and theranostic nanoparticles. Nanotechnology-based therapy has recently announced itself as a possible next-generation therapy that is able to advance wound healing to cure chronic wounds. In this communication, the recent progress in advanced therapy for cutaneous wound healing during last 5 years using a nanotechnology-based approach is summarized.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Nanoscience Technology Center, Advanced Materials Processing & Analysis Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Soumen Das
- Nanoscience Technology Center, Advanced Materials Processing & Analysis Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Sudipta Seal
- Nanoscience Technology Center, Advanced Materials Processing & Analysis Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA.,Materials Science & Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
31
|
Zhao J, Hu L, Gong N, Tang Q, Du L, Chen L. The effects of macrophage-stimulating protein on the migration, proliferation, and collagen synthesis of skin fibroblasts in vitro and in vivo. Tissue Eng Part A 2015; 21:982-91. [PMID: 25315688 DOI: 10.1089/ten.tea.2013.0726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Macrophage-stimulating protein (MSP), an important cytokine with multiple functions, is highly expressed in adipose-derived stem cells-conditioned medium (ASC-CM). ASCs can effectively promote wound healing through paracrine mechanism, suggesting that MSP may play a critical role in wound healing. Through binding to its receptor, RON (Receptuerd'OrigineNantaise, also called macrophage stimulation 1 receptor; MST1R), it can activate epithelial cells and work as an inflammatory mediator. In this study, we found RON was also expressed on dermal fibroblasts and investigated the effects of MSP on proliferation, migration, and collagen synthesis of fibroblasts. With the treatment of different concentrations of MSP (0, 1, 10, 20, 50, and 100 ng/mL) on fibroblasts, proliferation, migration, and collagen synthesis were analyzed by Cell Counting Kit-8 (CCK-8), transwell and real-time polymerase chain reaction. Under the treatment of MSP, the migration, Collagen I, III synthesis, and matrix metalloproteinase-1 (MMP-1) mRNA expression of fibroblasts were upregulated significantly, although there was no effect on fibroblasts proliferation, and the optimal concentration of MSP for migration and collagen synthesis was 10 ng/mL. In the in vivo study, 10 ng/mL MSP was applied to full-thickness skin wound with bacterial cellulose membranes, and this treatment could accelerate the wound healing rate and increased the collagen synthesis of wound sites. This study suggested that MSP appears to promote the migration of fibroblasts, enhances collagen synthesis and remodeling, and effectively improves wound healing.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | | | | | | | | | | |
Collapse
|
32
|
He L, Tu HJ, He WF, Guo LL, Yu SX, Li J, Wu Q, Li J. Lentiviral-mediated overexpression of homeobox A4 by human umbilical cord mesenchymal stem cells repairs full-thickness skin defects. Mol Med Rep 2015; 11:3517-22. [PMID: 25592724 DOI: 10.3892/mmr.2015.3208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
A number of types of stem cells have been shown to be effective in wound repair. In the present study the effect of homeobox A4 (HOXA4) overexpression by human umbilical cord mesenchymal stem cells (hUMSCs) on full‑thickness skin repair was evaluated. Isolated hUMSCs were transfected with a lentivirus expressing HOXA4 and cultured for 21 days. Expression of the epidermal cell‑specific markers, cytokeratins 14 and 18, was detected by immunohistochemistry and flow cytometry. Full‑thickness skin defects (1.5 cm x 1.5 cm) were made on the backs of 45 nude mice, which were randomly divided into the following three treatment groups: Collagen membrane with lenti‑HOXA4 hUMSC seed cells; collagen membrane with lentivirus expressing green fluorescent protein; and collagen membrane alone. On days 7, 14 and 21 following transplantation, tissue samples were harvested and examined by histology and western blot analysis. Flow cytometry showed that the transfection efficiency was 95.41% at a multiplicity of infection of 100, and that the lenti‑HOXA4 hUMSCs differentiated into epidermal cells, expressing cytokeratins 14 and 18. In addition, re‑epithelialization of wounds treated with lenti‑HOXA4 hUMSCs was significantly greater than that in the control groups in the first week. By week three the epidermis was significantly thicker in the lenti‑HOXA4 group than the control groups. Thus, transplantation of hUMSCs modified with Ad‑HOXA4 promoted wound healing.
Collapse
Affiliation(s)
- Ling He
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huai-Jun Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Feng He
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling-Ling Guo
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Xia Yu
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jie Li
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong Wu
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Li
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
34
|
Liu Y, Wang DA. Viral vector-mediated transgenic cell therapy in regenerative medicine: safety of the process. Expert Opin Biol Ther 2014; 15:559-67. [PMID: 25528865 DOI: 10.1517/14712598.2015.995086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Teng M, Huang Y, Zhang H. Application of stems cells in wound healing--an update. Wound Repair Regen 2014; 22:151-60. [PMID: 24635168 DOI: 10.1111/wrr.12152] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex but well-orchestrated tissue repair process composed of a series of molecular and cellular events conducted by various types of cells and extracellular matrix. Despite a variety of therapeutic strategies proposed to accelerate the healing of acute and/or chronic wounds over the past few decades, effective treatment of chronic nonhealing wounds still remains a challenge. Due to the recent advances in stem cell research, a dramatic enthusiasm has been drawn to the application of stem cells in regenerative medicine. Both embryonic and adult stem cells have prolonged self-renewal capacity and are able to differentiate into various tissue types. Nevertheless, use of embryonic stem cells is limited, owing to ethical concerns and legal restrictions. Adult stem cells, which could be isolated from bone marrow, umbilical cord blood, adipose tissue, skin and hair follicles,are being explored extensively to facilitate the healing of both acute and chronic wounds. The current article summarizes recent research on various types of stem cell-based strategies applied to improve wound healing. In addition, future directions of stem cell-based therapy in wound healing have also been discussed. Finally, despite its apparent advantages, limitations and challenges of stem cell therapy are discussed.
Collapse
Affiliation(s)
- Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
36
|
RNA interference mediated JAM-A gene silencing promotes human epidermal stem cell proliferation. Hum Cell 2014; 28:73-80. [DOI: 10.1007/s13577-013-0087-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/23/2013] [Indexed: 10/24/2022]
|
37
|
Tang JB, Chen CH, Zhou YL, McKeever C, Liu PY. Regulatory effects of introduction of an exogenous FGF2 gene on other growth factor genes in a healing tendon. Wound Repair Regen 2014; 22:111-8. [PMID: 24393159 DOI: 10.1111/wrr.12129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
Abstract
In this study of a tendon injury model, we investigated how injection of a vector incorporating one growth factor gene changes expression levels of multiple growth factor genes in the healing process. The flexor tendon of chicken toes was completely cut and repaired surgically. The tendons in the experimental arm were injected with an adeno-associated virus-2 vector incorporating basic fibroblast growth-factor gene, whereas the tendons in the control arm were not injected or injected with sham vectors. Using real-time polymerase chain reaction, we found that, within the tendon healing period, a set of growth factor genes-transforming growth factor-β1, vascular endothelial growth factor, and connective tissue growth factor-were significantly up-regulated. Expression of the platelet-derived growth factor-B gene was not changed, and the insulin-like growth factor was down-regulated. A tendon marker gene, scleraxis, was significantly up-regulated in the period. Our study revealed an intriguing finding that introduction of one growth factor gene in the healing tendon modulated expression of multiple growth factor genes. We believe this study may have significant implications in determining the approach of gene therapy, and the findings substantiate that gene therapy using a single growth factor could affect multiple growth factors.
Collapse
Affiliation(s)
- Jin Bo Tang
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Medical Research Center for Tissue Repair and Reconstruction of Jiangsu, Nantong, Jiangsu, China; Department of Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | | | |
Collapse
|
38
|
Barker JC, Barker AD, Bills J, Huang J, Wight-Carter M, Delgado I, Noble DL, Huang LJ, Porteus MH, Davis KE. Genome Editing of Mouse Fibroblasts by Homologous Recombination for Sustained Secretion of PDGF-B and Augmentation of Wound Healing. Plast Reconstr Surg 2014; 134:389e-401e. [DOI: 10.1097/prs.0000000000000427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Isasi R, Dalpe G, Knoppers BM. Fostering public cord blood banking and research in Canada. Stem Cells Dev 2014; 22 Suppl 1:29-34. [PMID: 24304072 DOI: 10.1089/scd.2013.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In June 2013, Canadian Blood Services (CBS) established the National Public Cord Blood Bank (NPCBB) accessible to Canadian and international patients and researchers. The NPCBB promotes efforts that contribute to research and improved clinical care by making units not suitable for banking or transplantation available for research. In the context of the NPCBB of the CBS, this article will focus on the practical tools (e.g., consent protocols) developed to optimize umbilical cord blood (UCB) banking and research while enabling ethical provenance of UCB stem cells. The Canadian approach represents an ideal model for comparison as it is a country in which the national public bank (and other regional/provincial public banks) coexists with private companies.
Collapse
Affiliation(s)
- Rosario Isasi
- Centre of Genomics and Society, McGill University , Montreal, Quebec, Canada
| | | | | |
Collapse
|
40
|
Muñoz-Soriano V, López-Domenech S, Paricio N. Why mammalian wound-healing researchers may wish to turn toDrosophilaas a model. Exp Dermatol 2014; 23:538-42. [DOI: 10.1111/exd.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética; Facultad CC Biológicas; Universidad de Valencia; Burjasot Spain
| | - Sandra López-Domenech
- Departamento de Genética; Facultad CC Biológicas; Universidad de Valencia; Burjasot Spain
| | - Nuria Paricio
- Departamento de Genética; Facultad CC Biológicas; Universidad de Valencia; Burjasot Spain
| |
Collapse
|
41
|
Aller MA, Arias JI, Arraez-Aybar LA, Gilsanz C, Arias J. Wound healing reaction: A switch from gestation to senescence. World J Exp Med 2014; 4:16-26. [PMID: 24977118 PMCID: PMC4073218 DOI: 10.5493/wjem.v4.i2.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The repair of wounded tissue during postnatal life could be associated with the upregulation of some functions characteristic of the initial phases of embryonic development. The focusing of these recapitulated systemic functions in the interstitial space of the injured tissue is established through a heterogeneous endothelial barrier which has excretory-secretory abilities which in turn, would induce a gastrulation-like process. The repair of adult tissues using upregulated embryonic mechanisms could explain the universality of the inflammatory response against injury, regardless of its etiology. However, the early activation after the injury of embryonic mechanisms does not always guarantee tissue regeneration since their long-term execution is mediated by the host organism.
Collapse
|
42
|
Sirousazar M, Forough M, Farhadi K, Shaabani Y, Molaei R. Hydrogels: Properties, Preparation, Characterization and Biomedical, Applications in Tissue Engineering, Drug, Delivery and Wound Care. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Golas AR, Hernandez KA, Spector JA. Tissue engineering for plastic surgeons: a primer. Aesthetic Plast Surg 2014; 38:207-221. [PMID: 24378377 DOI: 10.1007/s00266-013-0255-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/17/2013] [Indexed: 01/12/2023]
Abstract
A central tenet of reconstructive surgery is the principle of "replacing like with like." However, due to limitations in the availability of autologous tissue or because of the complications that may ensue from harvesting it, autologous reconstruction may be impractical to perform or too costly in terms of patient donor-site morbidity. The field of tissue engineering has long held promise to alleviate these shortcomings. Scaffolds are the structural building blocks of tissue-engineered constructs, akin to the extracellular matrix within native tissues. Commonly used scaffolds include allogenic or xenogenic decellularized tissue, synthetic or naturally derived hydrogels, and synthetic biodegradable nonhydrogel polymeric scaffolds. Embryonic, induced pluripotent, and mesenchymal stem cells also hold immense potential for regenerative purposes. Chemical signals including growth factors and cytokines may be harnessed to augment wound healing and tissue regeneration. Tissue engineering is already clinically prevalent in the fields of breast augmentation and reconstruction, skin substitutes, wound healing, auricular reconstruction, and bone, cartilage, and nerve grafting. Future directions for tissue engineering in plastic surgery include the development of prevascularized constructs and rationally designed scaffolds, the use of stem cells to regenerate organs and tissues, and gene therapy.
Collapse
Affiliation(s)
- Alyssa Reiffel Golas
- Division of Plastic Surgery, Weill Cornell Medical College, 525 E 68th Street, Payson 709A, New York, NY, 10065, USA.
| | - Karina A Hernandez
- Division of Plastic Surgery, Weill Cornell Medical College, 525 E 68th Street, Payson 709A, New York, NY, 10065, USA
| | - Jason A Spector
- Division of Plastic Surgery, Weill Cornell Medical College, 525 E 68th Street, Payson 709A, New York, NY, 10065, USA
| |
Collapse
|
44
|
Mehanni SS, Ibrahim NF, Hassan AR, Rashed LA. New approach of bone marrow-derived mesenchymal stem cells and human amniotic epithelial cells applications in accelerating wound healing of irradiated albino rats. Int J Stem Cells 2013; 6:45-54. [PMID: 24298373 DOI: 10.15283/ijsc.2013.6.1.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Irradiated wound healing is a highly complex and dynamic process. The latest technology making a huge difference in this process is stem cell therapy. The goal of this study was to evaluate the use of bone marrow-derived mesenchymal stem cells (BM-MSCs) or human amniotic epithelial cells (HAECs) in the healing of irradiated wounds. METHODS AND RESULTS Forty five male albino rats were subjected to whole body 6 gray gamma radiations. One day post irradiation, full-thickness incisional wound was created in the tibial skin. The rats were randomly equally divided into three groups. The incisions of the first group (gp I) were injected intra-dermally with saline before stitching and those of both the second (gp II) and the third groups (gp III) were intradermally injected with BM-MSCs and HAECs before stitching respectively. Animals were sacrificed after the third, seventh and fourteenth days postoperative. The healing process was assessed histopathologically. CXCL-5, SDF-1 and Transforming growth factor-beta 1 (TGF-β1) expression were also detected in biopsies from all wounds. Expression of TGF-β1 in gp I was more than the other groups leading to severe inflammation, deficient healed dermis and delayed reepithelialization. SDF-1 expression was high in gp II while CXCL-5 expression was high in gp III causing accelerated wound healing. BM-MSCs showed a great effect on the quality of the dermis, while superiority of the epithelium and its appendages were achieved in HAECs group. CONCLUSIONS Using BM-MSCs and HAECs could be used safely in case of irradiated wounds.
Collapse
Affiliation(s)
- Samah S Mehanni
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | | | | | | |
Collapse
|
45
|
Jeschke MG, Finnerty CC, Shahrokhi S, Branski LK, Dibildox M. Wound coverage technologies in burn care: novel techniques. J Burn Care Res 2013; 34:612-20. [PMID: 23877140 PMCID: PMC3819403 DOI: 10.1097/bcr.0b013e31829b0075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Improvements in burn wound care have vastly decreased morbidity and mortality in severely burned patients. Development of new therapeutic approaches to increase wound repair has the potential to reduce infection, graft rejection, and hypertrophic scarring. The incorporation of tissue-engineering techniques, along with the use of exogenous proteins, genes, or stem cells to enhance wound healing, heralds new treatment regimens based on the modification of already existing biological activity. Refinements to surgical techniques have enabled the creation of protocols for full facial transplantation. With new technologies and advances such as these, care of the severely burned will undergo massive changes over the next decade. This review centers on new developments that have recently shown great promise in the investigational arena.
Collapse
Affiliation(s)
- Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Celeste C. Finnerty
- Department of Surgery, Sealy Center for Molecular Medicine, and the Institute for Translational Science, University of Texas Medical Branch and Shriners Hospitals for Children, Galveston, Texas, USA
| | - Shahriar Shahrokhi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Ludwik K. Branski
- Department of Plastic and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Manuel Dibildox
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | | |
Collapse
|
46
|
Nakamura Y, Ishikawa H, Kawai K, Tabata Y, Suzuki S. Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Biomaterials 2013; 34:9393-400. [PMID: 24054847 DOI: 10.1016/j.biomaterials.2013.08.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/15/2022]
Abstract
The objective of this study was to investigate the ability of mesenchymal stem cells (MSC) genetically engineered with stromal cell-derived factor-1 (SDF-1) to heal skin wounds. When transfected with SDF-1 plasmid DNA, MSC which were isolated from the bone marrow of rats, secreted SDF-1 for 7 days. In vitro cell migration assay revealed that the SDF-1-engineered MSC (SDF-MSC) enhanced the migration of MSC and dermal fibroblasts to a significantly greater extent than MSC. The SDF-MSC secreted vascular endothelial growth factor, hepatocyte growth factor, and interleukin 6 at a significantly high level. A skin defect model of rats was prepared and MSC and SDF-MSC were applied to the wound to evaluate wound healing in terms of wound size and histological examinations. The wound size decreased significantly faster with SDF-MSC treatment than with MSC and PBS treatments. The length of the neoepithelium and the number of blood vessels newly formed were significantly larger. A cell-tracing experiment with fluorescently labeled cells demonstrated that the percent survival of SDF-MSC in the tissue treated was significantly high compared with that of MSC. It was concluded that SDF-1 genetic engineering is a promising way to promote the wound healing activity of MSC for a skin defect.
Collapse
Affiliation(s)
- Yoko Nakamura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan; Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Japan.
| | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND In the past two decades, regenerative surgeons have focused increasing attention on the potential of gene therapy for treatment of local disorders and injuries. Gene transfer techniques may provide an effective local and short-term induction of growth factors without the limits of other topical therapies. In 2002, Tepper and Mehrara accurately reviewed the topic: given the substantial advancement of research on this issue, an updated review is provided. METHODS Literature indexed in the National Center for Biotechnology Information database (PubMed) has been reviewed using variable combinations of keywords ("gene therapy," "regenerative medicine," "tissue regeneration," and "gene medicine"). Articles investigating the association between gene therapies and local pathologic conditions have been considered. Attention has been focused on articles published after 2002. Further literature has been obtained by analysis of references listed in reviewed articles. RESULTS Gene therapy approaches have been successfully adopted in preclinical models for treatment of a large variety of local diseases affecting almost every type of tissue. Experiences in abnormalities involving skin (e.g., chronic wounds, burn injuries, pathologic scars), bone, cartilage, endothelia, and nerves have been reviewed. In addition, the supporting role of gene therapies to other tissue-engineering approaches has been discussed. Despite initial reports, clinical evidence has been provided only for treatment of diabetic ulcers, rheumatoid arthritis, and osteoarthritis. CONCLUSIONS Translation of gene therapy strategies into human clinical trials is still a lengthy, difficult, and expensive process. Even so, cutting-edge gene therapy-based strategies in reconstructive procedures could soon set valuable milestones for development of efficient treatments in a growing number of local diseases and injuries.
Collapse
|
48
|
Jhong JF, Venault A, Hou CC, Chen SH, Wei TC, Zheng J, Huang J, Chang Y. Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing. ACS APPLIED MATERIALS & INTERFACES 2013; 5:6732-6742. [PMID: 23795955 DOI: 10.1021/am401669q] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Development of bioinert membranes to prevent blood clotting, tissue adhesion, and bacterial attachment is important for the wound healing process. In this work, two wound-contacting membranes of expanded poly(tetrafluoroethylene) (ePTFE) grafted with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and hydrophilic poly(ethylene glycol) methacrylate (PEGMA) via atmospheric plasma-induced surface copolymerization were studied. The surface grafting chemical structure, hydrophilicity, and hydration capability of the membranes were determined to illustrate the correlations between bioadhesive properties and wound recovery of PEGylated and zwitterionic ePTFE membranes. Bioadhesive properties of the membranes were evaluated by the plasma protein adsorption, platelet activation, blood cell hemolysis, tissue cell adhesion, and bacterial attachment. It was found that the zwitterionic PSBMA-grafted ePTFE membrane presented high hydration capability and exhibited the best nonbioadhesive character in contact with protein solution, human blood, tissue cells, and bacterial medium. This work shows that zwitterionic membrane dressing provides a moist environment, essential for "deep" skin wound healing observed from the animal rat model in vivo and permits a complete recovery after 14 days, with histology of repaired skin similar to that of normal skin tissue. This work suggests that the bioinert nature of grafted PSBMA polymers obtained by controlling grafting structures gives them great potential in the molecular design of antibioadhesive membranes for use in skin tissue regeneration.
Collapse
Affiliation(s)
- Jheng-Fong Jhong
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taoyuan 320, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Degen KE, Gourdie RG. Embryonic wound healing: a primer for engineering novel therapies for tissue repair. ACTA ACUST UNITED AC 2013; 96:258-70. [PMID: 23109321 DOI: 10.1002/bdrc.21019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Scar is the default tissue repair used by the body in response to most injuries-a response that occurs in wounds ranging in seriousness from minor skin cuts to complete severance of the spinal cord. By contrast, before the third trimester of pregnancy embryonic mammals tend to heal without scarring due to a variety of mechanisms and factors that are uniquely in operation during development in utero. The goal of tissue engineering is to develop safe and clinically effective biological substitutes that restore, maintain, or improve tissue function in patients. This review provides a comparative overview of wound healing during development and maturation and seeks to provide a perspective on just how much the embryo may be able teach us in the engineering of new therapies for tissue repair.
Collapse
Affiliation(s)
- Katherine E Degen
- School of Biomedical Engineering Science, Virginia Tech, Blacksburg, USA
| | | |
Collapse
|
50
|
Zou JP, Huang S, Peng Y, Liu HW, Cheng B, Fu XB, Xiang XF. Mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs): potential role in healing cutaneous chronic wounds. INT J LOW EXTR WOUND 2013; 11:244-53. [PMID: 23222159 DOI: 10.1177/1534734612463935] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic wounds remain a major challenge in modern medicine and represent a significant health care burden. Several treatments have been suggested, but without a full understanding of the exact mechanism by which chronic wound occurs. Numerous studies have shown that mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs) may have therapeutic potential in healing cutaneous chronic wounds through various mechanisms. So far, a series of hypotheses have been proposed, but a holistic image of them is lacking. This review provides a systematic analysis of recent research in animal models and preclinical or clinic trails to evaluate the potential role of MSCs in chronic cutaneous wound healing. Most important, we highlight how mesenchymal stem cells could potentially revolutionize our approach to treating cutaneous chronic wounds. Special attention should be focused on ongoing research regarding the challenges in using and prospects of MSCs in clinical settings.
Collapse
Affiliation(s)
- Ji-Ping Zou
- Guangzhou General Hospital of Guangzhou Command, GuangDong, The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, P R China
| | | | | | | | | | | | | |
Collapse
|