1
|
Li Y, Rodriguez-Otero MR, Champion JA. Self-assembled protein vesicles as vaccine delivery platform to enhance antigen-specific immune responses. Biomaterials 2024; 311:122666. [PMID: 38879893 DOI: 10.1016/j.biomaterials.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Self-assembling protein nanoparticles are beneficial platforms for enhancing the often weak and short-lived immune responses elicited by subunit vaccines. Their benefits include multivalency, similar sizes as pathogens and control of antigen orientation. Previously, the design, preparation, and characterization of self-assembling protein vesicles presenting fluorescent proteins and enzymes on the outer vesicle surface have been reported. Here, a full-size model antigen protein, ovalbumin (OVA), was genetically fused to the recombinant vesicle building blocks and incorporated into protein vesicles via self-assembly. Characterization of OVA protein vesicles showed room temperature stability and tunable size. Immunization of mice with OVA protein vesicles induced strong antigen-specific humoral and cellular immune responses. This work demonstrates the potential of protein vesicles as a modular platform for delivering full-size antigen proteins that can be extended to pathogen antigens to induce antigen specific immune responses.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, USA
| | - Mariela R Rodriguez-Otero
- BioEngineering Program, Georgia Institute of Technology, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA
| | - Julie A Champion
- BioEngineering Program, Georgia Institute of Technology, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA.
| |
Collapse
|
2
|
Misbah MH, Quintanilla-Sierra L, Alonso M, Rodríguez-Cabello JC, Santos M. "In-situ" formation of elastin-like recombinamer hydrogels with tunable viscoelasticity through efficient one-pot process. Mater Today Bio 2024; 25:100999. [PMID: 38379933 PMCID: PMC10877175 DOI: 10.1016/j.mtbio.2024.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Despite the remarkable progress in the generation of recombinant elastin-like (ELR) hydrogels, further improvements are still required to enhance and control their viscoelasticity, as well as limit the use of expensive chemical reagents, time-consuming processes and several purification steps. To alleviate this issue, the reactivity of carboxylic groups from glutamic (E) acid distributed along the hydrophilic block of an amphiphilic ELR (coded as E50I60) with amine groups has been studied through a one-pot amidation reaction in aqueous solutions, for the first time. By means of this approach, immediate conjugation of E50I60 with molecules containing amine groups has been performed with a high yield, as demonstrated by the 1H NMR and MALDI-TOF spectroscopies. This has resulted in the preparation of viscoelastic irreversible hydrogels through the "in-situ" cross-linking of E50I60 with another ELR (coded as VKV24) containing amine groups from lysines (K). The rheology analysis demonstrated that the gelation process takes place following a dual mechanism dependent on the ELR concentration: physical cross-linking of I60 block through the hydrophobic interactions, and covalent cross-linking of E50I60 with VKV24 through the amidation reaction. While the chemical network formed between the hydrophilic E50 block and VKV24 ELR preserves the elasticity of ELR hydrogels, the self-assembly of the I60 block through the hydrophobic interactions provides a tunable physical network. The presented investigation serves as a basis for generating ELR hydrogels with tunable viscoelastic properties promising for tissue regeneration, through an ''in-situ", rapid, scalable, economically and feasible one-pot method.
Collapse
Affiliation(s)
- M. Hamed Misbah
- Nanoscience Department, Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| | - Luis Quintanilla-Sierra
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Matilde Alonso
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| | | | - Mercedes Santos
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
3
|
Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. J Control Release 2023; 353:713-726. [PMID: 36526018 DOI: 10.1016/j.jconrel.2022.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
New and improved nanomaterials are constantly being developed for biomedical purposes. Nanomaterials based on elastin-like polypeptides (ELPs) have increasingly shown potential over the past two decades. These polymers are artificial proteins of which the design is based on human tropoelastin. Due to this similarity, ELP-based nanomaterials are biodegradable and therefore well suited to drug delivery. The assembly of ELP molecules into nanoparticles spontaneously occurs at temperatures above a transition temperature (Tt). The ELP sequence influences both the Tt and the physicochemical properties of the assembled nanomaterial. Nanoparticles with desired properties can hence be designed by choosing the appropriate sequence. A promising class of ELP nanoparticles are micelles assembled from amphiphilic ELP diblock copolymers. Such micelles are generally uniform and well defined. Furthermore, site-specific attachment of cargo to the hydrophobic block results in micelles with the cargo shielded inside their core, while conjugation to the hydrophilic block causes the cargo to reside in the corona where it is available for interactions. Such control over particle design is one of the main contributing factors for the potential of ELP-based micelles as a drug delivery system. Additionally, the micelles are easily loaded with protein or peptide-based cargo by expressing it as a fusion protein. Small molecule drugs and other cargo types can be either covalently conjugated to ELP domains or physically entrapped inside the micelle core. This review aims to give an overview of ELP-based micelles and their applications in nanomedicine.
Collapse
|
4
|
García-Arévalo C, Quintanilla-Sierra L, Santos M, Ferrero S, Acosta S, Rodríguez-Cabello J. Impact of aromatic residues on the intrinsic disorder and transitional behaviour of model IDPs. Mater Today Bio 2022; 16:100400. [PMID: 36060106 PMCID: PMC9434135 DOI: 10.1016/j.mtbio.2022.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/28/2022] Open
Abstract
Understanding the interplay between order and disorder in intrinsically disorder proteins (IDPs), and its impact on the properties and features of materials manufactured from them, is a major challenge in the design of protein-based synthetic polymers intended for advanced functions. In this paper an elastin-like diblock co-recombinamer amphiphile (Phe-ELR) based on a hydrophobic block containing five phenylalanine (Phe) residues proximal to the carboxyl function of a glutamic acid (Glu) residue upon folding, and with Glu as the guest residue in the hydrophilic part, was engineered and its assembly behaviour compared with another amphiphilic ELR used as control. Phe-ELR was tailored in order to clarify the impact of the presence of aromatic residues in the amino acid sequence, which even in early studies by Urry's group already demonstrated a certain out-of-trend behaviour compared with other apolar amino acids, especially non-aromatic ones, on ELR behaviour. The combination of several experimental techniques indicates strong molecular interactions associated with the Phe residue, thus resulting in limited reversible character of the temperature-induced transitions during sequential thermal cycles, a lower than expected transition enthalpy, and clear differences in its supramolecular assembly with respect to the control ELR. A distinctive pre-aggregated state for the Phe-ELR under any condition of pH and temperature is found. Eventually, this state gives rise to Phe-core micelles or a solid jelly-like material, depending on the concentration, pH and presence of salts. In conclusion, it appears that the presence of aromatic residues and their ability to promote strong inter- and intramolecular interactions at any temperature and pH causes a complete modification of the order-disorder interplay present in other, non-aromatic ELRs. These molecular events have a profound impact on the physical properties of the resulting polymer when compared with other ELRs. This work helps to shed light on the limits that govern intrinsic disorder in ELRs beyond its inverse temperature transition.
Collapse
Affiliation(s)
- C. García-Arévalo
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - L. Quintanilla-Sierra
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - M. Santos
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - S. Ferrero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011, Valladolid, Spain
| | - S. Acosta
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - J.C. Rodríguez-Cabello
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| |
Collapse
|
5
|
Application of bioengineered elastin-like polypeptide-based system for targeted gene delivery in tumor cells. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100050. [PMID: 36824163 PMCID: PMC9934475 DOI: 10.1016/j.bbiosy.2022.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Successful gene delivery depends on the entry of negatively charged DNAs and oligonucleotides across the various barriers of the tumor cells and localization into the nucleus for its transcription and protein translation. Here, we have reported a thermal responsive self-assemble and highly biocompatible, targeted ELP-based gene delivery system. These systems consist of cell-penetrating peptides, Tat and single or multiple repeats of IL-4 receptor targeting peptide AP-1 along the backbone of ELP. Cell-penetrating peptides were introduced for nuclear localization of genes of interest, AP-1 for targeting IL-4R highly expressed tumor cells and ELP for stable condensation favoring protection of nucleic acids. The designed multidomain fusion ELPs referred to as Tat-ELP, Tat-A1E28 and Tat-A4V48 were employed to generate formulation with pEGFP-N1. Profound formulation of stable complexes occurred at different molar ratios owing to electrostatic interactions of positively charged amino acids in polymers with negatively charged nucleic acids. Among the complexes, Tat-A4V48 containing four copies of AP-1 showed maximum complexation with pEGFP-N1 in lower molar ratio. The polymer-pEGFP complexes were further analyzed for its transfection efficiency in different cancer cell lines. Both the targeted polymers, Tat-A4V48 and Tat-A1E28 upon transfection displayed significant EGFP-expression with low toxicity in different cancer cells. Therefore, both Tat-A4V48 and Tat-A1E28 can be considered as novel transfection system for successful gene delivery with therapeutic applications.
Collapse
|
6
|
van Strien J, Warmenhoven H, Logiantara A, Makurat M, Aglas L, Bethanis A, Leboux R, van Rijt L, MacKay JA, van Schijndel JW, Schneider G, Olsthoorn R, Jiskoot W, van Ree R, Kros A. Bet v 1-displaying elastin-like polypeptide nanoparticles induce a strong humoral and weak CD4+ T-cell response against Bet v 1 in a murine immunogenicity model. Front Immunol 2022; 13:1006776. [PMID: 36275650 PMCID: PMC9583423 DOI: 10.3389/fimmu.2022.1006776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing concern about the toxicity of colloidal aluminum salts used as adjuvants in subcutaneous allergen immunotherapy (SCIT). Therefore, alternative adjuvants and delivery systems are being explored to replace alum in SCIT. We applied micellar elastin-like polypeptides (ELPs), a type of self-assembling protein, to replace alum as vaccine adjuvant in birch pollen SCIT. ELP and an ELP-Bet v 1 fusion protein were expressed in E. coli and purified by immuno-affinity chromatography and inverse-transition cycling (ITC). Nanoparticles self-assembled from ELP and a 9:1 ELP/ELP-Bet v 1 mixture were characterized by using dynamic light scattering and atomic force microscopy. Allergenicity was assessed by measuring mediator release from rat basophilic leukemia cells transformed with the human FcϵR1 and sensitized with sera derived from human birch pollen allergic patients. Humoral and T-cell immunity were investigated by immunizing naïve mice with the ELP/ELP-Bet v 1 nanoparticles or alum-adsorbed Bet v 1, both containing 36 µg Bet v 1. ELP and ELP/ELP-Bet v 1 self-assembled at 37°C into spherically shaped micelles with a diameter of ~45 nm. ELP conjugation made Bet v 1 hypo-allergenic (10-fold). Compared to alum-adsorbed Bet v 1, ELP/ELP-Bet v 1 nanoparticles induced stronger IgG responses with an earlier onset. Additionally, ELP/ELP-Bet v 1 did not induce Th2 skewing cytokines and IgE. The hypoallergenic character and strong humoral immune response in the absence of a Th2-skewing T-cell response make ELP-based nanoparticles a promising candidate to replace alum in SCIT.
Collapse
Affiliation(s)
- Jolinde van Strien
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hans Warmenhoven
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,R&D Department, Haarlems Allergenen Laboratorium (HAL) Allergy B.V., Leiden, Netherlands
| | - Adrian Logiantara
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Max Makurat
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Lorenz Aglas
- Division of Allergy and Immunology, Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Athanasios Bethanis
- Division of Allergy and Immunology, Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Romain Leboux
- Department of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Leonie van Rijt
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | | | - Gregory Schneider
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - René Olsthoorn
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Wim Jiskoot
- Department of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
7
|
Girotti A, González-Valdivieso J, Alonso-Sampedro I, Escalera-Anzola S, Ramos-Díez S, Arias FJ. Elastin-like Polymers as Nanovaccines: Protein Engineering of Self-Assembled, Epitope-Exposing Nanoparticles. Methods Mol Biol 2022; 2465:41-72. [PMID: 35118615 DOI: 10.1007/978-1-0716-2168-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this chapter we describe two unconventional strategies for the formulation of new nanovaccines. Both strategies are based on obtaining chimeric genes that code for proteins in which the major antigens of the pathogens are fused to an elastin-like recombinamer (ELR) as carrier. ELRs are a family of synthetic protein biopolymers obtained using DNA recombinant techniques. The ELRs employed in the present chapter are block copolymers that are able to assemble, under controlled conditions, into nanoparticles similar to virus-like particles and to provoke an immune response. We describe the biosynthesis of ELRs genetically fused to an antigenic sequence from Mycobacterium tuberculosis and a simple procedure for obtaining stable nanoparticles displaying the antigen in the first strategy. The second approach describes the production of a DNA vaccine library consisting of plasmids codifying for major antigens from Rift Valley fever virus fused to different ELR-based block copolymer architectures.The procedures described can be adapted for the production of other chimeric DNA-protein vaccines based on protein polymer carriers.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, Universidad de Valladolid, Valladolid, Spain.
| | | | | | - Sara Escalera-Anzola
- Smart Devices for NanoMedicine Group, Universidad de Valladolid, Valladolid, Spain
| | - Sandra Ramos-Díez
- Smart Devices for NanoMedicine Group, Universidad de Valladolid, Valladolid, Spain
| | - F Javier Arias
- Smart Devices for NanoMedicine Group, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
8
|
Gonzalez-Valdivieso J, Garcia-Sampedro A, Hall AR, Girotti A, Arias FJ, Pereira SP, Acedo P. Smart Nanoparticles as Advanced Anti-Akt Kinase Delivery Systems for Pancreatic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55790-55805. [PMID: 34788541 DOI: 10.1021/acsami.1c14592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pancreatic cancer is one of the deadliest cancers partly due to late diagnosis, poor drug delivery to the target site, and acquired resistance to therapy. Therefore, more effective therapies are urgently needed to improve the outcome of patients. In this work, we have tested self-assembling genetically engineered polymeric nanoparticles formed by elastin-like recombinamers (ELRs), carrying a small peptide inhibitor of the protein kinase Akt, in both PANC-1 and patient-derived pancreatic cancer cells (PDX models). Nanoparticle cell uptake was measured by flow cytometry, and subcellular localization was determined by confocal microscopy, which showed a lysosomal localization of these nanoparticles. Furthermore, metabolic activity and cell viability were significantly reduced after incubation with nanoparticles carrying the Akt inhibitor in a time- and dose-dependent fashion. Self-assembling 73 ± 3.2 nm size nanoparticles inhibited phosphorylation and consequent activation of Akt protein, blocked the NF-κB signaling pathway, and triggered caspase 3-mediated apoptosis. Furthermore, in vivo assays showed that ELR-based nanoparticles were suitable devices for drug delivery purposes with long circulating time and minimum toxicity. Hence, the use of these smart nanoparticles could lead to the development of more effective treatment options for pancreatic cancer based on the inhibition of Akt.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Biodevices for NanoMed Group, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| | - Andrew R Hall
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, United Kingdom
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| |
Collapse
|
9
|
Choi JW, Choi SH, Won JI. Self-Assembly Behavior of Elastin-like Polypeptide Diblock Copolymers Containing a Charged Moiety. Biomacromolecules 2021; 22:2604-2613. [PMID: 34038105 DOI: 10.1021/acs.biomac.1c00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers, and some ELP block copolymers can assemble into spherical nanoparticles with thermosensitivity. In this study, two different ELP diblock copolymers, each composed of a hydrophobic and a charged moiety, were synthesized, and the dependence of their physical properties on pH, temperature, and salt concentration was investigated. A series of analyses revealed that hydrophobic core micelles could be generated in response to a change in their surroundings and that micelles did not self-aggregate, a phenomenon due to the repulsive forces between like-charged molecules on the surface. We also demonstrated that self-assembly behavior was closely dependent on the character of the charged amino acid and the specific anion in solution.
Collapse
Affiliation(s)
- Jeong-Wan Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jong-In Won
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
10
|
González-Obeso C, González-Pérez M, Mano JF, Alonso M, Rodríguez-Cabello JC. Complex Morphogenesis by a Model Intrinsically Disordered Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005191. [PMID: 33216415 DOI: 10.1002/smll.202005191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Indexed: 05/13/2023]
Abstract
The development of intricate and complex self-assembling structures in the micrometer range, such as biomorphs, is a major challenge in materials science. Although complex structures can be obtained from self-assembling materials as they segregate from solution, their size is usually in the nanometer range or requires accessory techniques. Previous studies with intrinsically disordered proteins (IDPs) have shown that the active interplay of different molecular interactions provides access to new and more complex nanostructures. As such, it is hypothesized that enriching the variety of intra- and intermolecular interactions in a model IDP will widen the landscape of sophisticated intermediate structures that can be accessed. In this study, a model silk-elastin-like recombinamer capable of interacting via three non-covalent interactions, namely hydrophobic, ion-pairing, and H-bonding is built. This model material is shown to self-assemble into complex stable micrometer-sized biomorphs. Variation of the block composition, pH, and temperature demonstrates the necessary interplay of all three interactions for the formation of such complex structures.
Collapse
Affiliation(s)
- Constancio González-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Miguel González-Pérez
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| |
Collapse
|
11
|
Acosta S, Poocza L, Quintanilla-Sierra L, Rodríguez-Cabello JC. Charge Density as a Molecular Modulator of Nanostructuration in Intrinsically Disordered Protein Polymers. Biomacromolecules 2020; 22:158-170. [PMID: 32840359 DOI: 10.1021/acs.biomac.0c00934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intrinsically disordered protein polymers (IDPPs) have attracted a lot of attention in the development of bioengineered devices and for use as study models in molecular biology because of their biomechanical properties and stimuli-responsiveness. The present study aims to understand the effect of charge density on the self-assembly of IDPPs. To that end, a library of recombinant IDPPs based on an amphiphilic diblock design with different charge densities was bioproduced, and their supramolecular assembly was characterized on the nano-, meso-, and microscale. Although the phase transition was driven by the collapse of hydrophobic moieties, the hydrophilic block composition strongly affected hierarchical assembly and, therefore, enabled the production of new molecular architectures, thus leading to new dynamics that govern the liquid-gel transition. These results highlight the importance of electrostatic repulsion for the hierarchical assembly of IDPPs and provide insights into the manufacture of supramolecular protein-based materials.
Collapse
Affiliation(s)
- Sergio Acosta
- Bioforge Lab, CIBER-BBN, University of Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - Leander Poocza
- Bioforge Lab, CIBER-BBN, University of Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | | | | |
Collapse
|
12
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
13
|
Gonzalez-Valdivieso J, Borrego B, Girotti A, Moreno S, Brun A, Bermejo-Martin JF, Arias FJ. A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Mol Pharm 2020; 17:1608-1620. [PMID: 32233501 DOI: 10.1021/acs.molpharmaceut.0c00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Belen Borrego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Jesus F Bermejo-Martin
- Laboratory of Biomedical Research in Sepsis (BioSepsis), Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - F Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
14
|
Saha S, Banskota S, Roberts S, Kirmani N, Chilkoti A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. ADVANCED THERAPEUTICS 2020; 3:1900164. [PMID: 34307837 PMCID: PMC8297442 DOI: 10.1002/adtp.201900164] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Well-defined tunable nanostructures formed through the hierarchical self-assembly of peptide building blocks have drawn significant attention due to their potential applications in biomedical science. Artificial protein polymers derived from elastin-like polypeptides (ELPs), which are based on the repeating sequence of tropoelastin (the water-soluble precursor to elastin), provide a promising platform for creating nanostructures due to their biocompatibility, ease of synthesis, and customizable architecture. By designing the sequence and composition of ELPs at the gene level, their physicochemical properties can be controlled to a degree that is unmatched by synthetic polymers. A variety of ELP-based nanostructures are designed, inspired by the self-assembly of elastin and other proteins in biological systems. The choice of building blocks determines not only the physical properties of the nanostructures, but also their self-assembly into architectures ranging from spherical micelles to elongated nanofibers. This review focuses on the molecular determinants of ELP and ELP-hybrid self-assembly and formation of spherical, rod-like, worm-like, fibrillar, and vesicle architectures. A brief discussion of the potential biomedical applications of these supramolecular assemblies is also included.
Collapse
Affiliation(s)
- Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Piña MJ, Girotti A, Serrano S, Muñoz R, Rodríguez-Cabello JC, Arias FJ. A double safety lock tumor-specific device for suicide gene therapy in breast cancer. Cancer Lett 2019; 470:43-53. [PMID: 31790763 DOI: 10.1016/j.canlet.2019.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023]
Abstract
The complexity and continuous evolution of cancer make the design of novel strategies of treatment a constant challenge in biomedicine. Moreover, most of cancer treatments are still not tumor-specific and provoke high systemic toxicity. Herein we have developed a novel selective nanodevice to eliminate tumor cells while leaving healthy ones intact. To achieve this objective, a polyplex carrier, comprising an elastin like-recombinamer covalently conjugated to an aptamer and complexed with therapeutic DNA, was tested. This carrier forms a double-lock multifunctional device due to specific binding to a tumor cell marker and the selective expression of therapeutic DNA inside human breast-cancer cells. Due to the stability provided by ELRs, the homogeneous population of polyplexes obtained showed selective toxicity against cancer cells in in vitro and in vivo assay. Inhibition of tumor progression was detected early being very significant at the end point, with a dose-dependent reduction in tumor mass. Histological studies revealed a specific reduction in tumor parenchyma and in specific tumor cell markers. These results represent an important step toward the rational development of an efficient, safe and more specialized gene-delivery device for tumor therapy.
Collapse
Affiliation(s)
- Maria J Piña
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - Sofía Serrano
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - Raquel Muñoz
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - J Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - F Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain.
| |
Collapse
|
16
|
Ibáñez-Fonseca A, Flora T, Acosta S, Rodríguez-Cabello JC. Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biol 2019; 84:111-126. [PMID: 31288085 DOI: 10.1016/j.matbio.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
Elastin-like recombinamers (ELRs), which derive from one of the repetitive domains found in natural elastin, have been intensively studied in the last few years from several points of view. In this mini review, we discuss all the recent works related to the investigation of ELRs, starting with those that define these polypeptides as model intrinsically disordered proteins or regions (IDPs or IDRs) and its relevance for some biomedical applications. Furthermore, we summarize the current knowledge on the development of drug, vaccine and gene delivery systems based on ELRs, while also emphasizing the use of ELR-based hydrogels in tissue engineering and regenerative medicine (TERM). Finally, we show different studies that explore applications in other fields, and several examples that describe biomaterial blends in which ELRs have a key role. This review aims to give an overview of the recent advances regarding ELRs and to encourage further investigation of their properties and applications.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Tatjana Flora
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Sergio Acosta
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | | |
Collapse
|
17
|
Gonzalez-Valdivieso J, Girotti A, Muñoz R, Rodriguez-Cabello JC, Arias FJ. Self-Assembling ELR-Based Nanoparticles as Smart Drug-Delivery Systems Modulating Cellular Growth via Akt. Biomacromolecules 2019; 20:1996-2007. [DOI: 10.1021/acs.biomac.9b00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Raquel Muñoz
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - J. Carlos Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - F. Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
18
|
Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello J. Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2019; 2:100007. [PMID: 32159144 PMCID: PMC7061623 DOI: 10.1016/j.mtbio.2019.100007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The topic of self-assembled structures based on elastin-like recombinamers (ELRs, i.e., elastin-like polymers recombinantly bio-produced) has released a noticeable amount of references in the last few years. Most of them are intended for biomedical applications. In this review, a complete revision of the bibliography is carried out. Initially, the self-assembly (SA) concept is considered from a general point of view, and then ELRs are described and characterized based on their intrinsic disorder. A classification of the different self-assembled ELR-based structures is proposed based on their morphologies, paying special attention to their tentative modeling. The impact of the mechanism of SA on these biomaterials is analyzed. Finally, the implications of ELR SA in biological systems are considered.
Collapse
Affiliation(s)
| | | | - J.C. Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
19
|
Qin J, Luo T, Kiick KL. Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide–Collagen-like Peptide Bioconjugates. Biomacromolecules 2019; 20:1514-1521. [DOI: 10.1021/acs.biomac.8b01681] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology
Institute, Newark, Delaware 19711, United States
| |
Collapse
|
20
|
Cipriani F, Krüger M, de Torre IG, Sierra LQ, Rodrigo MA, Kock L, Rodriguez-Cabello JC. Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform. Biomacromolecules 2018; 19:4333-4347. [PMID: 30346149 DOI: 10.1021/acs.biomac.8b01211] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue engineering for cartilage repair requires biomaterials that show rapid gelation and adequate mechanical properties. Although the use of hydrogel is the most promising biomaterial, it often lacks in rigidity and anchorage of cells when they are surrounded by synovial fluid while they are subjected to heavy loads. We developed and produced the Silk Elastin-Like co-Recombinamer (SELR), which contains both the physical interaction from elastin motifs and from silk motifs. In the first part of this work, we set up and optimized a preannealing treatment based on the evolution of silk motifs into β-sheet structures in order to fulfill the required mechanical properties of hydrogels for cartilage repair. The new preannealed SELRs (pA(EIS)2-(I5R)6) were characterized with the combination of several experimental techniques (CD, TEM, SEM, and rheology) to provide a deep insight into the material features. Finally, the regeneration properties of the pA(EIS)2-(I5R)6 hydrogel embedded with chondrocytes were evaluated. After 4 weeks of culturing in a standardized and representative ex vivo model, the biochemical and histological analysis revealed the production of glycosaminglycans and collagen. Moreover, the immunohistochemistry showed the absence of fibro-cartilage and the presence of hyaline cartilage. Hence, we conclude that the pA(EIS)2-(I5R)6 hydrogel presents improved mechanical properties while conserving the injectability, which leads to successful regeneration of hyaline cartilage in an ex vivo model.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain
| | - Melanie Krüger
- LifeTec Group B.V. , 5611 ZS Eindhoven , The Netherlands
| | - Israel Gonzalez de Torre
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Luis Quintanilla Sierra
- Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Matilde Alonso Rodrigo
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Linda Kock
- LifeTec Group B.V. , 5611 ZS Eindhoven , The Netherlands
| | - José Carlos Rodriguez-Cabello
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| |
Collapse
|
21
|
Costa RR, González-Pérez M, Herrero-Gutiérrez M, Pires RA, Alonso M, Rodriguez-Cabello JC, Reis RL, Pashkuleva I. Tuning the Stiffness of Surfaces by Assembling Genetically Engineered Polypeptides with Tailored Amino Acid Sequence. Biomacromolecules 2018; 19:3401-3411. [DOI: 10.1021/acs.biomac.8b00723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui R. Costa
- 3B’s Research Group, I3Bs−Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Miguel González-Pérez
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Edificio LUCIA, Paseo de Belén, 19, 47011 Valladolid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Valladolid, Spain
| | - Marcos Herrero-Gutiérrez
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Edificio LUCIA, Paseo de Belén, 19, 47011 Valladolid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Valladolid, Spain
| | - Ricardo A. Pires
- 3B’s Research Group, I3Bs−Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Matilde Alonso
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Edificio LUCIA, Paseo de Belén, 19, 47011 Valladolid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Valladolid, Spain
| | - J. Carlos Rodriguez-Cabello
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Edificio LUCIA, Paseo de Belén, 19, 47011 Valladolid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Valladolid, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3Bs−Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B’s Research Group, I3Bs−Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
23
|
Changi K, Bosnjak B, Gonzalez-Obeso C, Kluger R, Rodríguez-Cabello JC, Hoffmann O, Epstein MM. Biocompatibility and immunogenicity of elastin-like recombinamer biomaterials in mouse models. J Biomed Mater Res A 2017; 106:924-934. [PMID: 29105979 DOI: 10.1002/jbm.a.36290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/20/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
Novel thermo-sensitive elastin-like recombinamers (ELRs) containing bioactive molecules were created for use as a biomimetic biomaterial for tissue regeneration. For effective use for in vivo applications, it is essential to ensure that they do not induce adverse inflammatory, immune, or allergic responses that inhibit tissue repair. Therefore, we sought to establish a pre-clinical approach to evaluate biocompatibility in experimental mice using ELRs as a prototype biomaterial. First, we measured in vitro proliferation and cytokine production from BALB/c and C57BL/6 mouse splenocytes incubated with ELRs. Second, we used a rapid, high throughput in vivo approach in which inflammatory cells and cytokines were measured following an intraperitoneal implantation. Lastly, a subchronic in vivo approach was used in which ELRs or positive controls were subcutaneously implanted and the implantation sites were assessed for inflammation and gene expression. We found that ELRs induced mild inflammation and minimal fibrosis compared to the intense response to Vitoss. Additionally, implantation increased antigen-specific antibody titers for both groups and gene expression profiling of the implantation sites revealed the upregulation of inflammation, fibrosis, and wound healing-related genes in ELR and positive control-implanted mice compared to sham controls. These data demonstrate that ELRs appear safe for use in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 924-934, 2018.
Collapse
Affiliation(s)
- K Changi
- Department of Dermatology, Laboratory of Experimental Allergy, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - B Bosnjak
- Department of Dermatology, Laboratory of Experimental Allergy, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - C Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - R Kluger
- Danube Hospital Vienna, Vienna, Austria
| | - J C Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - O Hoffmann
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - M M Epstein
- Department of Dermatology, Laboratory of Experimental Allergy, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Luo T, David MA, Dunshee LC, Scott RA, Urello MA, Price C, Kiick KL. Thermoresponsive Elastin-b-Collagen-Like Peptide Bioconjugate Nanovesicles for Targeted Drug Delivery to Collagen-Containing Matrices. Biomacromolecules 2017; 18:2539-2551. [PMID: 28719196 PMCID: PMC5815509 DOI: 10.1021/acs.biomac.7b00686] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past few decades, (poly)peptide block copolymers have been widely employed in generating well-defined nanostructures as vehicles for targeted drug delivery applications. We previously reported the assembly of thermoresponsive nanoscale vesicles from an elastin-b-collagen-like peptide (ELP-CLP). The vesicles were observed to dissociate at elevated temperatures, despite the LCST-like behavior of the tethered ELP domain, which is suggested to be triggered by the unfolding of the CLP domain. Here, the potential of using the vesicles as drug delivery vehicles for targeting collagen-containing matrices is evaluated. The sustained release of an encapsulated model drug was achieved over a period of 3 weeks, following which complete release could be triggered via heating. The ELP-CLP vesicles show strong retention on a collagen substrate, presumably through collagen triple helix interactions. Cell viability and proliferation studies using fibroblasts and chondrocytes suggest that the vesicles are highly cytocompatible. Additionally, essentially no activation of a macrophage-like cell line is observed, suggesting that the vesicles do not initiate an inflammatory response. Endowed with thermally controlled delivery, the ability to bind collagen, and excellent cytocompatibility, these ELP-CLP nanovesicles are suggested to have significant potential in the controlled delivery of drugs to collagen-containing matrices and tissues.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Lucas C. Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Morgan A. Urello
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| |
Collapse
|
25
|
Abstract
Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs), are short synthetic peptides that mimic the triple helical conformation of native collagens. Traditionally, CLPs have been widely used in deciphering the chemical basis for collagen triple helix stabilization, mimicking collagen fibril formation and fabricating other higher-order supramolecular self-assemblies. While CLPs have been used extensively for elucidation of the assembly of native collagens, less work has been reported on the use of CLP-polymer and CLP-peptide conjugates in the production of responsive assemblies. CLP triple helices have been used as physical cross-links in CLP-polymer hydrogels with predesigned thermoresponsiveness. The more recently reported ability of CLP to target native collagens via triple helix hybridization has further inspired the production of CLP-polymer and CLP-peptide bioconjugates and the employment of these conjugates in generating well-defined nanostructures for targeting collagen substrates. This review summarizes the current progress and potential of using CLPs in biomedical arenas and is intended to serve as a general guide for designing CLP-containing biomaterials.
Collapse
Affiliation(s)
| | - Kristi L Kiick
- Delaware Biotechnology Institute , Newark, Delaware 19711, United States
| |
Collapse
|
26
|
Chen W, Ji S, Qian X, Zhang Y, Li C, Wu W, Wang F, Jiang X. Phenylboronic acid-incorporated elastin-like polypeptide nanoparticle drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c7py00330g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Packaging hydrophobic drugs into nanoparticles can improve their aqueous solubility, tumor-specific accumulation and therapeutic effect.
Collapse
Affiliation(s)
- Weizhi Chen
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Shilu Ji
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Xiaoping Qian
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Yajun Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Cheng Li
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Wei Wu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| | - Fei Wang
- College of Chemical Engineering
- Nanjing Forestry University
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Nanjing
- P.R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing
| |
Collapse
|
27
|
Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. J Control Release 2016; 240:93-108. [PMID: 26578439 PMCID: PMC5767577 DOI: 10.1016/j.jconrel.2015.11.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (Tt) but form amorphous coacervates above Tt. Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields.
Collapse
Affiliation(s)
- Jordan Despanie
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
28
|
Piña MJ, Girotti A, Santos M, Rodríguez-Cabello JC, Arias FJ. Biocompatible ELR-Based Polyplexes Coated with MUC1 Specific Aptamers and Targeted for Breast Cancer Gene Therapy. Mol Pharm 2016; 13:795-808. [PMID: 26815223 DOI: 10.1021/acs.molpharmaceut.5b00712] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The search for new and biocompatible materials with high potential for improvement is a challenge in gene delivery applications. A cell type specific vector made of elastin-like recombinamer (ELR) and aptamers has been specifically designed for the intracellular delivery of therapeutic material for breast cancer therapy. A lysine-enriched ELR was constructed and complexed with plasmid DNA to give positively charged and stable polyplexes. Physical characterization of these polyplexes showed a particle size of around 140 nm and a zeta potential of approximately +40 mV. The incorporation of MUC1-specific aptamers into the polyplexes resulted in a slight decrease in zeta potential but increased cell transfection specificity for MCF-7 breast cancer cells with respect to a MUC1-negative tumor line. After showing the transfection ability of this aptamer-ELR vector which is facilitated mainly by macropinocytosis uptake, we demonstrated its application for suicide gene therapy using a plasmid containing the gene of the toxin PAP-S. The strategy developed in this work about using ELR as polymeric vector and aptamers as supplier of specificity to deliver therapeutic material into MUC1-positive breast cancer cells shows promising potential and continues paving the way for ELRs in the biomedical field.
Collapse
Affiliation(s)
- Maria J Piña
- Bioforge Research Group, CIBER-BBN, University of Valladolid , LUCIA, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Alessandra Girotti
- Bioforge Research Group, CIBER-BBN, University of Valladolid , LUCIA, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Mercedes Santos
- Bioforge Research Group, CIBER-BBN, University of Valladolid , LUCIA, Paseo de Belén 19, 47011 Valladolid, Spain
| | - J Carlos Rodríguez-Cabello
- Bioforge Research Group, CIBER-BBN, University of Valladolid , LUCIA, Paseo de Belén 19, 47011 Valladolid, Spain
| | - F Javier Arias
- Bioforge Research Group, CIBER-BBN, University of Valladolid , LUCIA, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
29
|
Rodríguez-Cabello JC, Arias FJ, Rodrigo MA, Girotti A. Elastin-like polypeptides in drug delivery. Adv Drug Deliv Rev 2016; 97:85-100. [PMID: 26705126 DOI: 10.1016/j.addr.2015.12.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.
Collapse
|
30
|
Misbah MH, Espanol M, Quintanilla L, Ginebra MP, Rodríguez-Cabello JC. Formation of calcium phosphate nanostructures under the influence of self-assembling hybrid elastin-like-statherin recombinamers. RSC Adv 2016. [DOI: 10.1039/c6ra01100d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly properties of elastin-like-statherin recombinamers have great influence on calcium phosphate mineralization.
Collapse
Affiliation(s)
- M. Hamed Misbah
- G.I.R. Bioforge
- University of Valladolid
- CIBER-BBN
- 47011 Valladolid
- Spain
| | - M. Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgy
- Technical University of Catalonia
- 08028 Barcelona
- Spain
| | - Luis Quintanilla
- G.I.R. Bioforge
- University of Valladolid
- CIBER-BBN
- 47011 Valladolid
- Spain
| | - M. P. Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgy
- Technical University of Catalonia
- 08028 Barcelona
- Spain
| | | |
Collapse
|
31
|
Luo T, Kiick KL. Noncovalent Modulation of the Inverse Temperature Transition and Self-Assembly of Elastin-b-Collagen-like Peptide Bioconjugates. J Am Chem Soc 2015; 137:15362-5. [PMID: 26633746 PMCID: PMC4930074 DOI: 10.1021/jacs.5b09941] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive nanostructures produced with peptide domains from the extracellular matrix offer great opportunities for imaging and drug delivery. Although the individual utility of elastin-like (poly)peptides and collagen-like peptides in such applications has been demonstrated, the synergistic advantages of combining these motifs in short peptide conjugates have surprisingly not been reported. Here, we introduce the conjugation of a thermoresponsive elastin-like peptide (ELP) with a triple-helix-forming collagen-like peptide (CLP) to yield ELP-CLP conjugates that show a remarkable reduction in the inverse transition temperature of the ELP domain upon formation of the CLP triple helix. The lower transition temperature of the conjugate enables the facile formation of well-defined vesicles at physiological temperature and the unexpected resolubilization of the vesicles at elevated temperatures upon unfolding of the CLP domain. Given the demonstrated ability of CLPs to modify collagens, our results not only provide a simple and versatile avenue for controlling the inverse transition behavior of ELPs, but also suggest future opportunities for these thermoresponsive nanostructures in biologically relevant environments.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, Newark, Delaware 19711, United States
| |
Collapse
|
32
|
Evolution of amphiphilic elastin-like co-recombinamer morphologies from micelles to a lyotropic hydrogel. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Cho S, Dong S, Parent KN, Chen M. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers. J Drug Target 2015; 24:328-39. [PMID: 26307138 PMCID: PMC4813525 DOI: 10.3109/1061186x.2015.1077847] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/27/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. PURPOSE We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. RESULTS Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. DISCUSSION A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. CONCLUSION It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.
Collapse
Affiliation(s)
- S. Cho
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 E 2000 S, Salt Lake City, Utah 84112
| | - S. Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 E 2000 S, Salt Lake City, Utah 84112
| | - K. N. Parent
- Dept. of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - M. Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 E 2000 S, Salt Lake City, Utah 84112
| |
Collapse
|
34
|
Rodríguez-Cabello JC, Piña MJ, Ibáñez-Fonseca A, Fernández-Colino A, Arias FJ. Nanotechnological Approaches to Therapeutic Delivery Using Elastin-Like Recombinamers. Bioconjug Chem 2015; 26:1252-65. [DOI: 10.1021/acs.bioconjchem.5b00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - María Jesús Piña
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alicia Fernández-Colino
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Francisco Javier Arias
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
35
|
Elastin-like recombinamer-covered stents: Towards a fully biocompatible and non-thrombogenic device for cardiovascular diseases. Acta Biomater 2015; 12:146-155. [PMID: 25448343 DOI: 10.1016/j.actbio.2014.10.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/29/2014] [Accepted: 10/22/2014] [Indexed: 02/08/2023]
Abstract
We explored the use of recently developed gels obtained by the catalyst free click reaction of elastin-like recombinamers (ELRs) to fabricate a new class of covered stents. The approach consists in embedding bare metal stents in the ELR gels by injection molding, followed by endothelialization under dynamic pressure and flow conditions in a bioreactor. The mechanical properties of the gels could be easily tuned by choosing the adequate concentration of the ELR components and their biofunctionality could be tailored by inserting specific sequences (RGD and REDV). The ELR-covered stents exhibited mechanical stability under high flow conditions and could undergo crimping and deployment without damage. The presence of RGD in the ELR used to cover the stent supported full endothelialization in less than 2weeks in vitro. Minimal platelet adhesion and fibrin adsorption were detected after exposure to blood, as shown by immunostaining and scanning electron microscopy. These results prove the potential of this approach towards a new and more effective generation of covered stents which exclude the atherosclerotic plaque from the blood stream and have high biocompatibility, physiological hemocompatibility and reduced response of the immune system.
Collapse
|
36
|
Kim W, Haller C, Dai E, Wang X, Hagemeyer CE, Liu DR, Peter K, Chaikof EL. Targeted antithrombotic protein micelles. Angew Chem Int Ed Engl 2014; 54:1461-5. [PMID: 25504546 DOI: 10.1002/anie.201408529] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/09/2014] [Indexed: 12/26/2022]
Abstract
Activated platelets provide a promising target for imaging inflammatory and thrombotic events along with site-specific delivery of a variety of therapeutic agents. Multifunctional protein micelles bearing targeting and therapeutic proteins were now obtained by one-pot transpeptidation using an evolved sortase A. Conjugation to the corona of a single-chain antibody (scFv), which binds to the ligand-induced binding site (LIBS) of activated GPIIb/IIIa receptors, enabled the efficient detection of thrombi. The inhibition of thrombus formation was subsequently accomplished by incorporating the catalytically active domain of thrombomodulin (TM) onto the micelle corona for the local generation of activated protein C, which inhibits the formation of thrombin. An effective strategy has been developed for the preparation of protein micelles that can be targeted to sites of activated platelets with broad potential for treatment of acute thrombotic events.
Collapse
Affiliation(s)
- Wookhyun Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St, Suite 9F, Boston, MA 02115 (USA); the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA (USA)
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim W, Haller C, Dai E, Wang X, Hagemeyer CE, Liu DR, Peter K, Chaikof EL. Targeted Antithrombotic Protein Micelles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Smits FCM, Buddingh BC, van Eldijk MB, van Hest JCM. Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol Biosci 2014; 15:36-51. [PMID: 25407963 DOI: 10.1002/mabi.201400419] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/17/2014] [Indexed: 11/06/2022]
Abstract
Elastin-like polypeptides (ELPs) are characterized by a high sequence control, temperature responsiveness and biocompatibility, which make them highly interesting as smart materials for application in nanomedicine. In particular the construction of ELP-based nanoparticles has recently become a focal point of attention in materials research. This review will give an overview of the ELP-based nanoparticles that have been developed until now and their underlying design principles. First a short introduction on ELPs and their stimulus-responsive behavior will be given. This characteristic has been applied for the development of ELP-based block copolymers that can self-assemble into nanoparticles. Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, which is followed by a concise description of the promising biomedical applications reported for this class of materials.
Collapse
Affiliation(s)
- Ferdinanda C M Smits
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Pinedo-Martín G, Santos M, Testera AM, Alonso M, Rodríguez-Cabello JC. The effect of NaCl on the self-assembly of elastin-like block co-recombinamers: Tuning the size of micelles and vesicles. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Ingrole RS, Tao W, Tripathy JN, Gill HS. Synthesis and Immunogenicity Assessment of Elastin-Like Polypeptide-M2e Construct as an Influenza Antigen. ACTA ACUST UNITED AC 2014; 4:1450004. [PMID: 25825595 DOI: 10.1142/s1793984414500044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The 23 amino acid-long extracellular domain of the influenza virus transmembrane protein M2 (M2e) has remained highly conserved since the 1918 pandemic, and is thus considered a good candidate for development of a universal influenza A vaccine. However, M2e is poorly immunogenic. In this study we assessed the potential of increasing immunogenicity of M2e by constructing a nanoscale-designed protein polymer containing the M2e sequence and an elastin-like polypeptide (ELP) nanodomain consisting of alanine and tyrosine guest residues (ELP(A2YA2)24). The ELP nanodomain was included to increase antigen size, and to exploit the inherent thermal inverse phase transition behavior of ELPs to purify the protein polymer. The ELP(A2YA2)24 + M2e nanodomained molecule was recombinantly synthesized. Characterization of its inverse phase transition behavior demonstrated that attachment of M2e to ELP(A2YA2)24 increased its transition temperature compared to ELP(A2YA2)24. Using a dot blot test we determined that M2e conjugated to ELP is recognizable by M2e-specific antibodies, suggesting that the conjugation process does not adversely affect the immunogenic property of M2e. Further, upon vaccinating mice with ELP(A2YA2)24 + M2e it was found that indeed the nanodomained protein enhanced M2e-specific antibodies in mouse serum compared to free M2e peptide and ELP(A2YA2)24. The immune serum could also recognize M2 expressed on influenza virions. Overall, this data suggests the potential of using molecules containing M2e-ELP nano-domains to develop a universal influenza vaccine.
Collapse
Affiliation(s)
- Rohan S Ingrole
- Department of Chemical Engineering Texas Tech University, 6th and Canton Lubbock, Texas 79409, USA
| | - Wenqian Tao
- Department of Chemical Engineering Texas Tech University, 6th and Canton Lubbock, Texas 79409, USA
| | - Jatindra N Tripathy
- Center for Biotechnology and Genomics Texas Tech University Lubbock, Texas 79409, USA
| | - Harvinder S Gill
- Department of Chemical Engineering Texas Tech University, 6th and Canton Lubbock, Texas 79409, USA
| |
Collapse
|
41
|
Abstract
Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.
Collapse
Affiliation(s)
- Pu Shi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Joshua A Gustafson
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|