1
|
O'Neill N, Schran C, Cox SJ, Michaelides A. Crumbling crystals: on the dissolution mechanism of NaCl in water. Phys Chem Chem Phys 2024; 26:26933-26942. [PMID: 39417378 PMCID: PMC11483817 DOI: 10.1039/d4cp03115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Dissolution of ionic salts in water is ubiquitous, particularly for NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface area to volume of the crystal. Overall, dissolution comprises a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights contribute to the general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement.
Collapse
Affiliation(s)
- Niamh O'Neill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| |
Collapse
|
2
|
Najib M, Hammond RB, Mahmud T, Izumi T. Impact of Inequivalent Wetting on the Face-Specific Dissolution Rates for Single Faceted-Crystals Predicted from Solid-State Binding Energies. CRYSTAL GROWTH & DESIGN 2024; 24:4894-4905. [PMID: 38911133 PMCID: PMC11191405 DOI: 10.1021/acs.cgd.2c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
A methodology for the prediction of face-specific relative dissolution rates for single-faceted crystals accounting for inequivalent wetting by the solvent is presented. This method is an extended form of a recent binding energy model developed by the authors (Najib et al., Cryst. Growth & Des. 2021, 21(3), 1482-1495) for predicting the face-specific dissolution rates for single-faceted crystals from the solid-state intermolecular binding energies in a vacuum. The principal modification is that the equivalent wetting of the crystal surfaces is no longer assumed, since interactions between the crystal surfaces and the solution-state molecules are incorporated. These surface interactions have been investigated by using a grid-based systematic search method. The face-specific dissolution rates predicted by the extended binding energy model for ibuprofen in a 95% v/v ethanol-water solution and furosemide in an aqueous medium have been validated against the published experimental results and are in excellent agreement. This model is a step forward toward accurate predictions of the relative face-specific dissolution rates for a wide variety of faceted crystals in any dissolution medium.
Collapse
Affiliation(s)
- Muhammad Najib
- Centre
for Doctoral Training in Complex Particulate Products and Processes
(CDT CP3), School of Chemical and Process Engineering, The University of Leeds, Leeds LS2 9JT, U.K.
| | - Robert B. Hammond
- School
of Chemical and Process Engineering, The
University of Leeds, Leeds LS2 9JT, U.K.
| | - Tariq Mahmud
- School
of Chemical and Process Engineering, The
University of Leeds, Leeds LS2 9JT, U.K.
| | - Toshiko Izumi
- Pfizer
Research & Development U.K., Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K.
| |
Collapse
|
3
|
Casalini T, Mann J, Pepin X. Predicting Surface pH in Unbuffered Conditions for Acids, Bases, and Their Salts - A Review of Modeling Approaches and Their Performance. Mol Pharm 2024; 21:513-534. [PMID: 38127789 DOI: 10.1021/acs.molpharmaceut.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dissolution of ionizable drugs and their salts is a function of drug surface solubility driven by the surface pH, i.e., the microenvironmental pH at the solid/liquid interface, which will deviate from bulk pH when there is an acid-base reaction occurring at the solid/liquid interface. In this work, we first present a brief overview of the modeling approaches available in the literature, classified according to the rate-determining step assumed in the dissolution process. In the second part, we present and evaluate the prediction performance of two different modeling approaches for surface pH. The first method relies only on thermodynamic equilibria, while the second method accounts for transport phenomena of charged compounds through the diffusional boundary layer using the Nernst - Planck equation. Model outcomes are compared with experimental data taken from the literature and obtained during this work. In terms of surface pH predictions, the models provide identical values for weak acids or weak bases. The models' outcomes for bases are in good agreement with experimental data in acidic conditions (bulk pH 1-4), while overpredictions are observed in the 5-7 bulk pH range in a system-dependent manner. Deviations can be related to the effect of surface dissolution (also referred to as surface reaction), which may become a controlling mechanism and slow the replenishment of the unionized drug at the surface of the crystal. Surface pH predictions for acids are generally in good agreement with experiments, with a slight underestimation for some drug examples, which could be related to errors in intrinsic solubility determination or to the assumption of thermodynamic equilibrium at the surface of the drug. A good agreement is also observed for salts with the thermodynamic model except for mesylate salts, suggesting that other phenomena, not currently included in the thermodynamic equilibrium model, may determine the surface pH.
Collapse
Affiliation(s)
- Tommaso Casalini
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Xavier Pepin
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| |
Collapse
|
4
|
Sharma A, Kumar V, Chakraborty S. Micro-Solvation of Propofol in Propylene Glycol-Water Binary Mixtures: Molecular Dynamics Simulation Studies. J Phys Chem B 2023; 127:11011-11022. [PMID: 37972382 DOI: 10.1021/acs.jpcb.3c04932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The water microstructure around propofol plays a crucial role in controlling their solubility in the binary mixture. The unusual nature of such a water microstructure can influence both translational and reorientational dynamics, as well as the water hydrogen bond network near propofol. We have carried out all-atom molecular dynamics simulations of five different compositions of the propylene glycol (PG)/water binary mixture containing propofol (PFL) molecules to investigate the differential behavior of water microsolvation shells around propofol, which is likely to control the propofol solubility. It is evident from the simulation snapshots for various compositions that the PG at high molecular ratio favors the water cluster and extended chainlike network that percolates within the PG matrix, where the propofol is in the dispersed state. We estimated that the radial distribution function indicates higher ordered water microstructure around propofol for high PG content, as compared to the lower PG content in the PG/water mixture. So, the hydrophilic PG regulates the stability of the water micronetwork around propofol and its solubility in the binary mixture. We observed that the translational and rotational mobility of water belonging to the propofol microsolvation shell is hindered for high PG content and relaxed toward the low PG molecular ratio in the PG/water mixture. It has been noticed that the structural relaxation of the hydrogen bond formed between the propofol and the water molecules present in the propofol microsolvation shell for all five compositions is found to be slower for high PG content and becomes faster on the way to low PG content in the mixture. Simultaneously, we calculated the intermittent residence time correlation function of the water molecules belonging to the microsolvation shell around the propofol for five different compositions and found a faster short time decay followed up with long time components. Again, the origin of such long time decay is primarily from the structural relaxation of the microsolvation shell around the propofol, where the high PG content shows the slower structural relaxation that turns faster as the PG content approaches to the other end of the compositions. So, our studies showed that the slower structural relaxation of the microsolvation shell around propofol for a high PG molecular ratio in the PG/water mixture correlate well with the extensive ordering of the water microstructure and restricted water mobility and facilitates the dissolution process of propofol in the binary mixture.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Vishal Kumar
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
5
|
Yuan K, Huang R, Gong K, Xiao Z, Chen J, Cai S, Shen J, Xiong Z, Lin Z. Smartphone-based hand-held polarized light microscope for on-site pharmaceutical crystallinity characterization. Anal Bioanal Chem 2023:10.1007/s00216-023-04582-1. [PMID: 36786836 DOI: 10.1007/s00216-023-04582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Polarized light microscopy (PLM) is a common but critical method for pharmaceutical crystallinity characterization, which has been widely introduced for research purposes or drug testing and is recommended by many pharmacopeias around the world. To date, crystallinity characterization of pharmaceutical solids is restricted to laboratories due to the relatively bulky design of the conventional PLM system, while little attention has been paid to on-site, portable, and low-cost applications. Herein, we developed a smartphone-based polarized microscope with an ultra-miniaturization design ("hand-held" scale) for these purposes. The compact system consists of an optical lens, two polarizers, and a tailor-made platform to hold the smartphone. Analytical performance parameters including resolution, imaging quality of interference color, and imaging reproducibility were measured. In a first approach, we illustrated the suitability of the device for pharmaceutical crystallinity characterization and obtained high-quality birefringence images comparable to a conventional PLM system, and we also showed the great promise of the device for on-site characterization with high flexibility. In a second approach, we employed the device as a proof of concept for a wider application ranging from liquid crystal to environmental pollutants or tissues from plants. As such, this smartphone-based hand-held polarized light microscope shows great potential in helping pharmacists both for research purposes and on-site drug testing, not to mention its broad application prospects in many other fields.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China.
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Kaishuo Gong
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Ziyi Xiao
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Jialin Chen
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Siyao Cai
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Jiayi Shen
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Zuer Xiong
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China.
| |
Collapse
|
6
|
Niosomes: a novel targeted drug delivery system for cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:240. [PMID: 36175809 DOI: 10.1007/s12032-022-01836-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 10/25/2022]
Abstract
Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.
Collapse
|
7
|
Tanaka S, Yamamoto N, Kasahara K, Ishii Y, Matubayasi N. Crystal Growth of Urea and Its Modulation by Additives as Analyzed by All-Atom MD Simulation and Solution Theory. J Phys Chem B 2022; 126:5274-5290. [DOI: 10.1021/acs.jpcb.2c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Senri Tanaka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Naoki Yamamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kento Kasahara
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiki Ishii
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
8
|
Intermolecular Forces Driving Hexamethylenetetramine Co-Crystal Formation, a DFT and XRD Analysis. Molecules 2021; 26:molecules26195746. [PMID: 34641290 PMCID: PMC8510214 DOI: 10.3390/molecules26195746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Interest in co-crystals formation has been constantly growing since their discovery, almost a century ago. Such success is due to the ability to tune the physical-chemical properties of the components in solid state by avoiding a change in their molecular structure. The properties influenced by the co-crystals formation range from an improvement of mechanical features and chemical stability to different solubility. In the scientific research area, the pharmacological field is undoubtedly one of those in which an expansion of the co-crystal knowledge can offer wide benefits. In this work, we described the crystalline structure of hexamethylenetetramine co-crystallized with the isophthalic acid, and we compared it with another co-crystal, showing the same components but different stoichiometry. To give a wider overview on the nature of the interactions behind the observed crystal packing and to rationalize the reasons of its formation, a computational analysis on such structures was carried out.
Collapse
|
9
|
Elts E, Briesen H. Capturing Crystal Shape Evolution from Molecular Simulations. J Chem Inf Model 2020; 60:6109-6119. [PMID: 33284626 DOI: 10.1021/acs.jcim.0c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and efficient algorithm for tracking shape evolution of small-molecule organic crystals during molecular simulations is described. It is based on the reconstruction of a crystal surface from molecular coordinates using an alpha-shape triangulation algorithm followed by the DBSCAN clustering of neighboring triangles with similar normal vectors to crystal faces. No information except the unit cell parameters is needed beforehand, enabling the user to automatically detect not only existing but also new forming crystal faces and edges, which is valuable for prediction of growth and dissolution kinetics. The results are demonstrated for aspirin and paracetamol crystals.
Collapse
Affiliation(s)
- Ekaterina Elts
- Chair for Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Heiko Briesen
- Chair for Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
10
|
Ochs O, Martsinovich N, Heckl WM, Lackinger M. Quantifying the Ultraslow Desorption Kinetics of 2,6-Naphthalenedicarboxylic Acid Monolayers at Liquid-Solid Interfaces. J Phys Chem Lett 2020; 11:7320-7326. [PMID: 32787298 DOI: 10.1021/acs.jpclett.0c01882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kinetic effects in monolayer self-assembly at liquid-solid interfaces are not well explored but can provide unique insights. We use variable-temperature scanning tunneling microscopy (STM) to quantify the desorption kinetics of 2,6-naphthalenedicarboxylic acid (NDA) monolayers at nonanoic acid-graphite interfaces. Quantitative tracking of the decline of molecular coverages by STM between 57.5 and 65.0 °C unveiled single-exponential decays over the course of days. An Arrhenius plot of rate constants derived from fits results in a surprisingly high energy barrier of 208 kJ mol-1 that strongly contrasts with the desorption energy of 16.4 kJ mol-1 with respect to solution as determined from a Born-Haber cycle. This vast discrepancy indicates a high-energy transition state. Expanding these studies to further systems is the key to pinpointing the molecular origin of the remarkably large NDA desorption barrier.
Collapse
Affiliation(s)
- Oliver Ochs
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | | | - Wolfgang M Heckl
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | - Markus Lackinger
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| |
Collapse
|
11
|
Gobbo D, Ballone P, Decherchi S, Cavalli A. Solubility Advantage of Amorphous Ketoprofen. Thermodynamic and Kinetic Aspects by Molecular Dynamics and Free Energy Approaches. J Chem Theory Comput 2020; 16:4126-4140. [PMID: 32463689 DOI: 10.1021/acs.jctc.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermodynamic and kinetic aspects of crystalline (c-KTP) and amorphous (a-KTP) ketoprofen dissolution in water have been investigated by molecular dynamics simulation focusing on free energy properties. Absolute free energies of all relevant species and phases have been determined by thermodynamic integration on a novel path, first connecting the harmonic to the anharmonic system Hamiltonian at low T and then extending the result to the temperature of interest. The free energy required to transfer one ketoprofen molecule from the crystal to the solution is in fair agreement with the experimental value. The absolute free energy of the amorphous form is 19.58 kJ/mol higher than for the crystal, greatly enhancing the ketoprofen concentration in water, although as a metastable species in supersaturated solution. The kinetics of the dissolution process has been analyzed by computing the free energy profile along a reaction coordinate bringing one ketoprofen molecule from the crystal or amorphous phase to the solvated state. This computation confirms that, compared to the crystal form, the dissolution rate is nearly 7 orders of magnitude faster for the amorphous form, providing one further advantage to the latter in terms of bioavailability. The problem of drug solubility, of great practical importance, is used here as a test bed for a refined method to compute absolute free energies, which could be of great interest in biophysics and drug discovery in particular.
Collapse
Affiliation(s)
- D Gobbo
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - P Ballone
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy.,School of Physics, University College Dublin, Dublin, Ireland.,Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - S Decherchi
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - A Cavalli
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy.,University of Bologna, Bologna 40126, Italy
| |
Collapse
|
12
|
Implication of Differential Surface Anisotropy on Biopharmaceutical Performance of Polymorphic Forms of Ambrisentan. J Pharm Sci 2019; 108:3792-3802. [PMID: 31449817 DOI: 10.1016/j.xphs.2019.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to compare the dissolution rate and in vivo biopharmaceutical performance of 2 polymorphic forms (form I and II) of ambrisentan and correlate with their surface molecular environment. Dominance of various functionalities on the surface of specific crystal facets of both forms was predicted by Bravais-Friedel-Donnay-Harker method. Hirshfeld surface analysis maps and 2D fingerprint plots indicate a difference in shape index, curvedness, and relative percentage contribution of various contacts in both forms. Pre- and post-intrinsic dissolution compact studied by atomic force microscopy showed a significant difference in surface roughness and defects formation in form II as compared to form I which is attributed to the presence of more hydrophilic surfaces. The hydrophilic molecular surface environment of form II is ascribed to its improved intrinsic dissolution rate than form I. Furthermore, in vivo pharmacokinetic study also showed significantly higher AUC0-24 and Cmax in form II compared to form I. Overall, this study demonstrates that form I and II of ambrisentan exhibited the differential surface anisotropy which has significant implications on their biopharmaceutical performance.
Collapse
|
13
|
Shamsi M, Mohammadi A, Manshadi MK, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019; 307:150-165. [DOI: 10.1016/j.jconrel.2019.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
|
14
|
Rexrode NR, Orien J, King MD. Effects of Solvent Stabilization on Pharmaceutical Crystallization: Investigating Conformational Polymorphism of Probucol Using Combined Solid-State Density Functional Theory, Molecular Dynamics, and Terahertz Spectroscopy. J Phys Chem A 2019; 123:6937-6947. [PMID: 31099570 DOI: 10.1021/acs.jpca.9b00792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-state density functional theory (DFT), molecular dynamics (MD), and terahertz (THz) spectroscopy were used to study the formation of enantiotropically related conformational Form I and Form II polymorphs of the pharmaceutical compound, probucol. DFT calculations were performed on the crystal systems to compare relative lattice energies and the solvent stabilization of the metastable Form II structure. The thermodynamics of solvent inclusion in the Form II·MeOH crystal system were determined from MD simulations, as was the favored conformation of molecular probucol in methanol and ethanol solutions. The findings from both solid-state DFT and MD calculations suggest that the preferred molecular orientations of the probucol molecule in solution and the probable inclusion of methanol in the crystal lattice during the crystallization process lead to the solvent selectivity of the probucol polymorph formation. The additional stabilization energy provided by the crystallization solvent facilitates the nucleation and growth of the Form II polymorph under conditions that favor this metastable crystal form over the thermodynamically stable Form I, despite the higher energy molecular and crystalline configurations of probucol Form II. We demonstrate the influence of solvent on the formation of pharmaceutical polymorphs and provide a molecular-level view of complex interactions leading to polymorphism using a combination of computational methods and THz spectral data.
Collapse
|
15
|
Othman MF, Anuar N, Yusop SN, Salwani MAN, Abd Samad NA. Morphology Prediction and Dissolution Behavior of α-Succinic Acid in Ethanol Solution Using Molecular Dynamic Simulation. KEY ENGINEERING MATERIALS 2019; 797:139-148. [DOI: 10.4028/www.scientific.net/kem.797.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Succinic acid is a potential co-former to produce co-crystal, thus an understanding of the dissolution behaviour of succinic acid crystal is crucial for designing the co-crystal. In this works, α-succinic acid was chosen as a model compound for this study regardless its attractive crystal chemistry and its diverse surface properties. The aims of this study are to analyse the morphology of succinic acid crystal (form A) and to analyse the dissolution behaviour of succinic acid crystal (form A) in the ethanol solution using molecular dynamic simulation. Prediction of form A succinic acid morphology were conducted with different combination of charge set and potential function i.e ESP and CVFF which produces hexagonal needle-like shape morphology and shows good agreement with the experimental crystal shape. Dissolution of α-succinic acid in ethanol solvent was investigated using dynamic simulation. Visual observation and mobility assessment shows that the molecules at the edge of the crystal tends to dissolve faster compared to the molecules at other position on the facet.
Collapse
|
16
|
|
17
|
Yamamoto N, Nakakuki I, Matubayasi N. Free-energy analysis of physisorption on solid-liquid interface with the solution theory in the energy representation. J Chem Phys 2018; 149:014504. [PMID: 29981552 DOI: 10.1063/1.5027861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Physisorption of urea on its crystal in contact with water was subject to energetics analysis with all-atom molecular dynamics simulation. The transfer free energy of urea to an adsorption site was treated in the framework of the energy-representation theory of solutions, which allows a fast computation of the free energy in an inhomogeneous environment with solid-liquid interface. The preference of adsorption was then compared between the (001) and (110) faces, and it was found that the physisorption is more favorable on (001) than on (110) in correspondence to the hydrogen bonding between the adsorbed urea and the crystal urea. Among the terrace configurations of adsorption, the attractive interaction governs the preferable site with a minor role of the repulsive interaction. The effect of an edge was also treated by examining the terrace and step and was shown to be strongly operative on the (110) face when the CO group of the adsorbed urea points toward the edge. The present work demonstrates that the solution theory can be a framework for analyzing the energetics of physisorption and addressing the roles of the crystal and liquid at the interface through the systematic decomposition of free energy.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ippei Nakakuki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
18
|
Katiyar RS, Jha PK. Molecular simulations in drug delivery: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Prateek K. Jha
- Department of Chemical EngineeringIIT RoorkeeUttarakhandIndia
| |
Collapse
|
19
|
Anand A, Patey GN. Mechanism of Urea Crystal Dissolution in Water from Molecular Dynamics Simulation. J Phys Chem B 2018; 122:1213-1222. [PMID: 29260571 DOI: 10.1021/acs.jpcb.7b07096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Molecular dynamics simulations are used to determine the mechanism of urea crystal dissolution in water under sink conditions. Crystals of cubic and tablet shapes are considered, and results are reported for four commonly used water models. The dissolution rates for different water models can differ considerably, but the overall dissolution mechanism remains the same. Urea dissolution occurs in three stages: a relatively fast initial stage, a slower intermediate stage, and a final stage. We show that the long intermediate stage is well described by classical rate laws, which assume that the dissolution rate is proportional to the active surface area. By carrying out simulations at different temperatures, we show that urea dissolution is an activated process, with an activation energy of ∼32 kJ mol-1. Our simulations give no indication of a significant diffusion layer, and we conclude that the detachment of molecules from the crystal is the rate-determining step for dissolution. The results we report for urea are consistent with earlier observations for the dissolution of NaCl crystals. This suggests that the three-stage mechanism and classical rate laws might apply to the dissolution of other ionic and molecular crystals.
Collapse
Affiliation(s)
- Abhinav Anand
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z1
| | - G N Patey
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
20
|
In Silico Prediction of Growth and Dissolution Rates for Organic Molecular Crystals: A Multiscale Approach. CRYSTALS 2017. [DOI: 10.3390/cryst7100288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Parks C, Huang L, Wang Y, Ramkrishna D. Accelerating multiple replica molecular dynamics simulations using the Intel® Xeon Phi™ coprocessor. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1301666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Conor Parks
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Lei Huang
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Yang Wang
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
22
|
Parks C, Koswara A, Tung HH, Nere NK, Bordawekar S, Nagy ZK, Ramkrishna D. Nanocrystal Dissolution Kinetics and Solubility Increase Prediction from Molecular Dynamics: The Case of α-, β-, and γ-Glycine. Mol Pharm 2017; 14:1023-1032. [PMID: 28271901 DOI: 10.1021/acs.molpharmaceut.6b00882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Conor Parks
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| | - Andy Koswara
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| | - Hsien-Hsin Tung
- Process Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nandkishor K. Nere
- Process Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shailendra Bordawekar
- Process Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Zoltan K. Nagy
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| | - Doraiswami Ramkrishna
- School
of Chemical Engineering, Purdue University, 480 West Stadium Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Birru WA, Warren DB, Han S, Benameur H, Porter CJH, Pouton CW, Chalmers DK. Computational Models of the Gastrointestinal Environment. 2. Phase Behavior and Drug Solubilization Capacity of a Type I Lipid-Based Drug Formulation after Digestion. Mol Pharm 2017; 14:580-592. [PMID: 27936778 DOI: 10.1021/acs.molpharmaceut.6b00887] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipid-based drug formulations can greatly enhance the bioavailability of poorly water-soluble drugs. Following the oral administration of formulations containing tri- or diglycerides, the digestive processes occurring within the gastrointestinal (GI) tract hydrolyze the glycerides to mixtures of free fatty acids and monoglycerides that are, in turn, solubilized by bile. The behavior of drugs within the resulting colloidal mixtures is currently not well characterized. This work presents matched in vitro experimental and molecular dynamics (MD) theoretical models of the GI microenvironment containing a digested triglyceride-based (Type I) drug formulation. Both the experimental and theoretical models consist of molecular species representing bile (glycodeoxycholic acid), digested triglyceride (1:2 glyceryl-1-monooleate and oleic acid), and water. We have characterized the phase behavior of the physical system using nephelometry, dynamic light scattering, and polarizing light microscopy and compared these measurements to phase behavior observed in multiple MD simulations. Using this model microenvironment, we have investigated the dissolution of the poorly water-soluble drug danazol experimentally using LC-MS and theoretically by MD simulation. The results show how the formulation lipids alter the environment of the GI tract and improve the solubility of danazol. The MD simulations successfully reproduce the experimental results showing the utility of MD in modeling the fate of drugs after digestion of lipid-based formulations within the intestinal lumen.
Collapse
|
24
|
Zolghadr AR, Heydari Dokoohaki M. Self-assembly of neuroprotective carbazolium based small molecules at octane/water interface: A simulation investigation. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Wang B, Wang D, Zhao S, Huang X, Zhang J, Lv Y, Liu X, Lv G, Ma X. Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify. Eur J Pharm Sci 2016; 96:45-52. [PMID: 27568852 DOI: 10.1016/j.ejps.2016.08.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022]
Abstract
In this study, we used density functional theory (DFT) to predict polymer-drug interactions, and then evaluated the ability of poly (vinyl pyrrolidone) (PVP) to inhibit crystallization of amorphous solid dispersions by experimental-verification. Solid dispersions of PVP/resveratrol (Res) and PVP/griseofulvin (Gri) were adopted for evaluating the ability of PVP to inhibit crystallization. The density functional theory (DFT) with the B3LYP was used to calculate polymer-drug and drug-drug interactions. Fourier transform infrared spectroscopy (FTIR) was used to confirm hydrogen bonding interactions. Polymer-drug miscibility and drug crystallinity were characterized by the modulated differential scanning calorimetry (MDSC) and X-ray powder diffraction (XRD). The release profiles were studied to investigate the dissolution advantage. DFT results indicated that EPVP-Res>ERes-Res (E: represents hydrogen bonding energy). A strong interaction was formed between PVP and Res. In addition, Fourier transform infrared spectroscopy (FTIR) analysis showed hydrogen bonding formed between PVP and Res, but not between PVP and Gri. MDSC and XRD results suggested that 70-90wt% PVP/Res and PVP/Gri solid dispersions formed amorphous solid dispersions (ASDs). Under the accelerated testing condition, PVP/Res dispersions with higher miscibility quantified as 90/10wt% were more stable than PVP/Gri dispersions. The cumulative dissolution rate of 90wt% PVP/Res dispersions still kept high after 90days storage due to the strong interaction. However, the cumulative dissolution rate of PVP/Gri solid dispersions significantly dropped because of the recrystallization of Gri.
Collapse
Affiliation(s)
- Bing Wang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dandan Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Shan Zhao
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaobin Huang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Jianbin Zhang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Lv
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaocen Liu
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guojun Lv
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.
| | - Xiaojun Ma
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.
| |
Collapse
|
26
|
Indulkar AS, Gao Y, Raina SA, Zhang GGZ, Taylor LS. Exploiting the Phenomenon of Liquid–Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Mol Pharm 2016; 13:2059-69. [DOI: 10.1021/acs.molpharmaceut.6b00202] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anura S. Indulkar
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi Gao
- Manufacturing Science & Technology (MS&T), Operations, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Shweta A. Raina
- Manufacturing Science & Technology (MS&T), Operations, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G. Z. Zhang
- Drug
Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Greiner M, Choscz C, Eder C, Elts E, Briesen H. Multiscale modeling of aspirin dissolution: from molecular resolution to experimental scales of time and size. CrystEngComm 2016. [DOI: 10.1039/c6ce00710d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Predicted absolute and face-specific rate constants of aspirin dissolution are incorporated in a simulation based on the equations of classical mass transfer to reproduce kinetic dissolution in experiment using a Jamin-type interferometer.
Collapse
Affiliation(s)
- Maximilian Greiner
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Carsten Choscz
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Cornelia Eder
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Ekaterina Elts
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| | - Heiko Briesen
- Chair for Process Systems Engineering
- Technische Universität München
- Freising 85354, Germany
| |
Collapse
|
28
|
Wang L, Zhao X, Zu Y, Wu W, Li Y, Zu C, Zhang Y. Enhanced dissolution rate and oral bioavailability of ginkgo biloba extract by preparing nanoparticles via emulsion solvent evaporation combined with freeze drying (ESE-FR). RSC Adv 2016. [DOI: 10.1039/c6ra14771b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dissolution rate and oral bioavailability of GBE nanoparticles were significantly improved by emulsion solvent evaporation combined with freeze drying (ESE-FR), implying that ESE-FR has great potential value in the preparation of oral GBE drugs.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin
- China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin
- China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin
- China
| | - Weiwei Wu
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin
- China
| | - Yuanyuan Li
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin
- China
| | - Chang Zu
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin
- China
| | - Yin Zhang
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin
- China
| |
Collapse
|
29
|
Gao Y, Olsen KW. Drug-polymer interactions at water-crystal interfaces and implications for crystallization inhibition: molecular dynamics simulations of amphiphilic block copolymer interactions with tolazamide crystals. J Pharm Sci 2015; 104:2132-41. [PMID: 26045147 DOI: 10.1002/jps.24442] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 02/04/2015] [Accepted: 03/12/2015] [Indexed: 11/08/2022]
Abstract
A diblock copolymer, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA), modulates the crystal growth of tolazamide (TLZ), resulting in a crystal morphology change from needles to plates in aqueous media. To understand this crystal surface drug-polymer interaction, we conducted molecular dynamics simulations on crystal surfaces of TLZ in water containing PEG-b-PLA. A 130-ns simulation of the polymer in a large water box was run before initiating 50 ns simulations with each of the crystal surfaces. The simulations demonstrated differentiated drug-polymer interactions that are consistent with experimental studies. Interaction of PEG-b-PLA with the (001) face occurred more rapidly (≤10 ns) and strongly (total interaction energy of -121.1 kJ/mol/monomer) than that with the (010) face (∼35 ns, -85.4 kJ/mol/monomer). There was little interaction with the (100) face. Hydrophobic and van der Waals (VDW) interactions were the dominant forces, accounting for more than 90% of total interaction energies. It suggests that polymers capable of forming strong hydrophobic and VDW interactions might be more effective in inhibiting crystallization of poorly water-soluble and hydrophobic drugs in aqueous media (such as gastrointestinal fluid) than those with hydrogen-bonding capacities. Such in-depth analysis and understanding facilitate the rational selection of polymers in designing supersaturation-based enabling formulations.
Collapse
Affiliation(s)
- Yi Gao
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois, 60660.,Manufacturing Science and Technology, Operations, AbbVie, Inc., North Chicago, Illinois, 60064
| | - Kenneth W Olsen
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois, 60660
| |
Collapse
|
30
|
Maniruzzaman M, Pang J, Morgan DJ, Douroumis D. Molecular modeling as a predictive tool for the development of solid dispersions. Mol Pharm 2015; 12:1040-9. [PMID: 25734898 DOI: 10.1021/mp500510m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study molecular modeling is introduced as a novel approach for the development of pharmaceutical solid dispersions. A computational model based on quantum mechanical (QM) calculations was used to predict the miscibility of various drugs in various polymers by predicting the binding strength between the drug and dimeric form of the polymer. The drug/polymer miscibility was also estimated by using traditional approaches such as Van Krevelen/Hoftyzer and Bagley solubility parameters or Flory-Huggins interaction parameter in comparison to the molecular modeling approach. The molecular modeling studies predicted successfully the drug-polymer binding energies and the preferable site of interaction between the functional groups. The drug-polymer miscibility and the physical state of bulk materials, physical mixtures, and solid dispersions were determined by thermal analysis (DSC/MTDSC) and X-ray diffraction. The produced solid dispersions were analyzed by X-ray photoelectron spectroscopy (XPS), which confirmed not only the exact type of the intermolecular interactions between the drug-polymer functional groups but also the binding strength by estimating the N coefficient values. The findings demonstrate that QM-based molecular modeling is a powerful tool to predict the strength and type of intermolecular interactions in a range of drug/polymeric systems for the development of solid dispersions.
Collapse
Affiliation(s)
- Mohammed Maniruzzaman
- †Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, U.K
| | - Jiayun Pang
- †Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, U.K
| | - David J Morgan
- ‡Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, U.K
| | - Dennis Douroumis
- †Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, U.K
| |
Collapse
|
31
|
Affiliation(s)
- Gabriele Lanaro
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - G. N. Patey
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
32
|
Ticehurst MD, Marziano I. Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design. J Pharm Pharmacol 2015; 67:782-802. [DOI: 10.1111/jphp.12375] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/14/2014] [Indexed: 12/27/2022]
Abstract
Abstract
This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised.
A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery.
Collapse
Affiliation(s)
- Martyn David Ticehurst
- Materials Science, Drug Product Design, Pharmaceutical Sciences, Worldwide R & D, Pfizer Ltd, Sandwich, Kent, UK
| | - Ivan Marziano
- Chemical R & D, Pharmaceutical Sciences, Worldwide R & D, Pfizer Ltd, Sandwich, Kent, UK
| |
Collapse
|
33
|
Feenstra P, Brunsteiner M, Khinast J. Investigation of Migrant–Polymer Interaction in Pharmaceutical Packaging Material Using the Linear Interaction Energy Algorithm. J Pharm Sci 2014; 103:3197-204. [DOI: 10.1002/jps.24115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/05/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022]
|
34
|
Gao Y, Olsen KW. Unique Mechanism of Facile Polymorphic Conversion of Acetaminophen in Aqueous Medium. Mol Pharm 2014; 11:3056-67. [DOI: 10.1021/mp500251w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Gao
- Department
of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan
Road, Chicago, Illinois 60660, United States
- Pharmaceutics, Research & Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenneth W. Olsen
- Department
of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan
Road, Chicago, Illinois 60660, United States
| |
Collapse
|
35
|
Greiner M, Elts E, Briesen H. Insights into pharmaceutical nanocrystal dissolution: a molecular dynamics simulation study on aspirin. Mol Pharm 2014; 11:3009-16. [PMID: 25090160 DOI: 10.1021/mp500148q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presented molecular dynamics simulations are the first simulations to reveal dynamic dissolution of a pharmaceutical crystal in its experimentally determined shape. Continuous dissolution at constant undersaturation of the surrounding medium is ensured by introducing a plane of sticky dummy atoms into the water slab. These atoms have a strong interaction potential with dissolved aspirin molecules, but interactions with water are excluded from the calculations. Thus, the number of aspirin molecules diffusing freely in solution is kept at a low value and continuous dissolution of the aspirin crystal is monitored. Further insight into face-specific dissolution is drawn. The dissolution mechanism of receding edges is found for the (001) plane. These findings are in good agreement with experimental results. While the proposed dissolution mechanism for the (100) plane is terrace sinking on a rough surface, no pronounced dissolution of the perfectly flat face is seen in the present work. Molecular simulations of pharmaceuticals in their experimentally obtained structure therefore have shown to be especially suited for the investigation of dissolving faces, where the edges have a pronounced effect. In contrast to previous studies a propagation of the dissolution front into the crystal face is reported, and the crystal bulk is stable over the whole simulation time of 150 ns.
Collapse
Affiliation(s)
- Maximilian Greiner
- Chair for Process Systems Engineering, Technische Universität München , Freising 85354, Germany
| | | | | |
Collapse
|
36
|
Elts E, Greiner MM, Briesen H. Data Filtering for Effective Analysis of Crystal–Solution Interface Molecular Dynamics Simulations. J Chem Theory Comput 2014; 10:1686-97. [DOI: 10.1021/ct400808d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ekaterina Elts
- Chair for Process Systems
Engineering, Technische Universität München, 85354 Freising, Germany
| | - Maximilian M. Greiner
- Chair for Process Systems
Engineering, Technische Universität München, 85354 Freising, Germany
| | - Heiko Briesen
- Chair for Process Systems
Engineering, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
37
|
Lee T, Lin HY, Lee HL. Engineering Reaction and Crystallization and the Impact on Filtration, Drying, and Dissolution Behaviors: The Study of Acetaminophen (Paracetamol) by In-Process Controls. Org Process Res Dev 2013. [DOI: 10.1021/op400129n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tu Lee
- Department of Chemical and
Materials Engineering, National Central University, 300 Jhong-Da
Road, Jhong-Li City 320, Taiwan R.O.C
| | - Hong Yu Lin
- Department of Chemical and
Materials Engineering, National Central University, 300 Jhong-Da
Road, Jhong-Li City 320, Taiwan R.O.C
| | - Hung Lin Lee
- Department of Chemical and
Materials Engineering, National Central University, 300 Jhong-Da
Road, Jhong-Li City 320, Taiwan R.O.C
| |
Collapse
|