1
|
Klitgaard M, Jacobsen J, Kristensen MN, Berthelsen R, Müllertz A. Characterizing interregional differences in the rheological properties and composition of rat small intestinal mucus. Drug Deliv Transl Res 2024; 14:3309-3320. [PMID: 38526635 PMCID: PMC11445339 DOI: 10.1007/s13346-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The mucus layer in the small intestine is generally regarded as a barrier to drug absorption. However, the mucus layer is a complex system, and presently, only a few studies have been conducted to elucidate its physicochemical properties. The current study hypothesizes that the mucus layer contains solubility-enhancing surfactants and thus might aid the oral absorption of poorly water-soluble drugs. Mucus was sampled from sections of the small intestine of fasted rats to analyze the rheological properties and determine the mucus pH and concentrations of proteins and endogenous surfactants, i.e., bile salts, polar lipids, and neutral lipids. The mucus layer in the two proximal sections of the small intestine exhibited different rheological properties such as higher zero-shear viscosity and lower loss tangent and higher protein concentrations compared to all subsequent sections of the small intestine. The pH of the mucus layer was stable at ~ 6.5 throughout most of the small intestine, but increased to 7.5 in the ileum. The bile salt concentrations increased from the duodenum (16.0 ± 2.2 mM) until the mid jejunum (55.1 ± 9.5 mM), whereas the concentrations of polar lipids and neutral lipids decreased from the duodenum (17.4 ± 2.2 mM and 37.8 ± 1.6 mM, respectively) until the ileum (4.8 ± 0.4 mM and 10.7 ± 1.1 mM, respectively). In conclusion, the mucus layer of the rat small intestine contains endogenous surfactants at levels that might benefit solubilization and absorption of orally administered poorly water-soluble drugs.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Klitgaard M, Kristensen MN, Venkatasubramanian R, Guerra P, Jacobsen J, Berthelsen R, Rades T, Müllertz A. Assessing acute colitis induced by dextran sulfate sodium in rats and its impact on gastrointestinal fluids. Drug Deliv Transl Res 2023; 13:1484-1499. [PMID: 36913104 DOI: 10.1007/s13346-023-01313-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Dextran sulfate sodium (DSS) is commonly used to induce colitis in rats. While the DSS-induced colitis rat model can be used to test new oral drug formulations for the treatment of inflammatory bowel disease, the effect of the DSS treatment on the gastrointestinal tract has not been thoroughly characterized. Additionally, the use of different markers to assess and confirm successful induction of colitis is somewhat inconsistent. This study aimed to investigate the DSS model to improve the preclinical evaluation of new oral drug formulations. The induction of colitis was evaluated based on the disease activity index (DAI) score, colon length, histological tissue evaluation, spleen weight, plasma C-reactive protein, and plasma lipocalin-2. Furthermore, the study investigated how the DSS-induced colitis affected the luminal pH, lipase activity, and concentrations of bile salts, polar lipids, and neutral lipids. For all evaluated parameters, healthy rats were used as a reference. The DAI score, colon length, and histological evaluation of the colon were effective disease indicators in DSS-induced colitis rats, while spleen weight, plasma C-reactive protein, and plasma lipocalin-2 were not. The luminal pH of the colon and bile salt- and neutral lipid concentrations in regions of the small intestine were lower in DSS-induced rats compared to healthy rats. Overall, the colitis model was deemed relevant for investigating ulcerative colitis-specific formulations.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Priscila Guerra
- Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark. .,Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Preparation and evaluation of ibrutinib lipid-based formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
5
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
6
|
Effects of Lipid Digestion and Drug Permeation/Re-Dissolution on Absorption of Orally Administered Ritonavir as Different Lipid-Based Formulations. Eur J Pharm Sci 2021; 157:105604. [PMID: 33098990 DOI: 10.1016/j.ejps.2020.105604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study is to clarify absorption mechanisms after oral administration of ritonavir (RTV) from different types of lipid-based formulations (LBFs) with particular emphasis on the effect of lipid digestion and drug permeation/re-dissolution on the oral absorption. Four LBFs were prepared; three contained either long-chain (LC) or medium-chain (MC) lipids [lipid formulation classification system (LFCS) Type II-LC, Type IIIA-MC, and Type IIIB-MC] and the fourth contained only surfactant and co-solvent (Type IV). The solubility of RTV in those LBFs was determined and drug subsequently loaded at 85% w/w of the saturated solubility in the formulations. Then, each LBF containing drug was added into a model rat intestinal fluid at approximately 2.5% w/v for evaluation using an in vitro digestion model. In vitro digestion study showed the ability of Type II-LC and Type IIIA-MC to support continued solubilization of RTV, and moderate supersaturation was observed in Type IIIA-MC. In contrast, RTV partly precipitated in the Type IIIB-MC during digestion, and the Type IV formulation lost its solubilization capacity rapidly upon dispersion, leading to drastic precipitation. Oral administration of RTV as Type IIIA-MC to rats showed significantly higher area under the plasma concentration-time curve compared to control suspension, whereas it was not improved with Type II-LC administration despite complete solubilization of RTV during digestion. From the results of in vitro permeation across dialysis membrane (a molecular weight cutoff of > 1000 Da), this may be attributed to the lowered free concentration in the gastrointestinal tract owing to incorporation of RTV into the undigested LC lipid. Oral absorption drastically increased with Type IIIB-MC and Type IV despite the observed moderate and drastic precipitation, respectively. Powder X-ray diffraction analysis revealed that the precipitate was amorphous. Therefore, improved re-solubilization may partly contribute to improved absorption. The present study revealed detailed absorption mechanisms from LBFs with different compositions. Our findings may be useful for selecting appropriate excipients to design optimal LBFs for poorly water-soluble drugs.
Collapse
|
7
|
Suys EJA, Brundel DHS, Chalmers DK, Pouton CW, Porter CJH. Interaction with biliary and pancreatic fluids drives supersaturation and drug absorption from lipid-based formulations of low (saquinavir) and high (fenofibrate) permeability poorly soluble drugs. J Control Release 2021; 331:45-61. [PMID: 33450318 DOI: 10.1016/j.jconrel.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
Drug absorption from lipid-based formulations (LBFs) in the gastrointestinal (GI) tract is the result of a series of processes, including formulation dispersion, interaction with biliary and pancreatic secretions, drug solubilisation and supersaturation, and finally intestinal permeability. Optimal formulation design is dependent on a good understanding of the limitations to, and drivers of, absorption, but for LBFs the complexity of these processes makes data interpretation complex. The current study has re-examined a previous in vitro digestion-in situ perfusion model to increase physiological relevance and has used this model to examine drug absorption from LBFs. The composition of rat bile and jejunal fluid was also characterised to identify in vivo-relevant conditions. Digestion was initiated using rat bile/pancreatic fluid and the formulation and digestive enzymes mixed immediately prior to entry into the jejunum (allowing dilution/digestion to occur at the absorptive site). These conditions were employed to study drug absorption from LBFs of high (fenofibrate, FFB) and low (saquinavir, SQV) permeability compounds. The impact of polymeric precipitation inhibitors (PPIs) was also evaluated. For FFB, supersaturation, initiated by formulation interaction with biliary/pancreatic fluids, appeared to drive absorption and the addition of the PPIs poly(glycidyl methacrylate) (PPGAE) and hydroxypropylmethyl cellulose (HPMC), reduced drug precipitation, increased FFB supersaturation and increased absorption from a Type IV LBF of FFB. For a Type IIIB LBF however, PPIs were ineffective at increasing absorption. The impact of PPIs on the absorption of a less permeable drug, SQV, was similarly evaluated and again drug absorption appeared to be related to the extent of supersaturation, although in this case PPI were unable to promote absorption. For both FFB and SQV, drug absorption patterns obtained with the in vitro digestion-in situ perfusion mode, correlated well with in vitro supersaturation data and in vivo drug exposure data from oral bioavailability studies. The data are consistent with a mode of drug absorption where rapid dilution of LBFs with biliary and pancreatic secretions at the absorptive site in the upper small intestine drives transient supersaturation, that supersaturation is a significant driver of drug absorption for both low and high permeability drugs, and that PPIs delay drug precipitation, enhance supersaturation and promote drug absorption in a drug and formulation specific manner.
Collapse
Affiliation(s)
- Estelle J A Suys
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Daniel H S Brundel
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia.
| |
Collapse
|
8
|
Ilie AR, Griffin BT, Brandl M, Bauer-Brandl A, Jacobsen AC, Vertzoni M, Kuentz M, Kolakovic R, Holm R. Exploring impact of supersaturated lipid-based drug delivery systems of celecoxib on in vitro permeation across Permeapad Ⓡ membrane and in vivo absorption. Eur J Pharm Sci 2020; 152:105452. [PMID: 32622980 DOI: 10.1016/j.ejps.2020.105452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022]
Abstract
Supersaturated lipid-based drug delivery systems have recently been investigated for oral administration for a variety of lipophilic drugs and have shown either equivalent or superior oral bioavailability compared to conventional non-supersaturated lipid-based drug delivery systems. The aim of the present work was to explore supersaturated versus non-supersaturated lipid-based systems at equivalent lipid doses, on in vivo bioavailability in rats and on in vitro permeation across a biomimetic PermeapadⓇ membrane to establish a potential in vivo - in vitro correlation. A secondary objective was to investigate the influence of lipid composition on in vitro and in vivo performance of lipid systems. Results obtained indicated that increasing the celecoxib load in the lipid-based formulations by thermally-induced supersaturation resulted in increased bioavailability for medium and long chain mono-/di-glycerides systems relative to their non-supersaturated (i.e. 85%) reference formulations, albeit only significant for the medium chain systems. Long chain systems displayed higher celecoxib bioavailability than equivalent medium chain systems, both at supersaturated and non-supersaturated drug loads. In vitro passive permeation of celecoxib was studied using both steady-state and dynamic conditions and correlated well with in vivo pharmacokinetic results with respect to compositional effects. In contrast, permeation studies indicated that flux and percentage permeated of supersaturated systems, either at steady-state or under dynamic conditions, decreased or were unchanged relative to non-supersaturated systems. This study has shown that by using two cell-free PermeapadⓇ permeation models coupled with rat-adapted gastro-intestinal conditions, bio-predictive in vitro tools can be developed to be reflective of in vivo scenarios. With further optimization, such models could be successfully used in pharmaceutical industry settings to rapidly screen various prototype formulations prior to animal studies.
Collapse
Affiliation(s)
- Alexandra-Roxana Ilie
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium; School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ann-Christin Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland
| | - Ruzica Kolakovic
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
9
|
Koehl NJ, Holm R, Kuentz M, Jannin V, Griffin BT. Exploring the Impact of Surfactant Type and Digestion: Highly Digestible Surfactants Improve Oral Bioavailability of Nilotinib. Mol Pharm 2020; 17:3202-3213. [PMID: 32649208 DOI: 10.1021/acs.molpharmaceut.0c00305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The scientific rationale for selection of the surfactant type during oral formulation development requires an in-depth understanding of the interplay between surfactant characteristics and biopharmaceutical factors. Currently, however, there is a lack of comprehensive knowledge of how surfactant properties, such as hydrophilic-lipophilic balance (HLB), digestibility, and fatty acid (FA) chain length, translate into in vivo performance. In the present study, the relationship between surfactant properties, in vitro characteristics, and in vivo bioavailability was systematically evaluated. An in vitro lipolysis model was used to study the digestibility of a variety of nonionic surfactants. Eight surfactants and one surfactant mixture were selected for further analysis using the model poorly water-soluble drug nilotinib. In vitro lipolysis of all nilotinib formulations was performed, followed by an in vivo pharmacokinetic evaluation in rats. The in vitro lipolysis studies showed that medium-chain FA-based surfactants were more readily digested compared to long-chain surfactants. The in vivo study demonstrated that a Tween 20 formulation significantly enhanced the absolute bioavailability of nilotinib up to 5.2-fold relative to an aqueous suspension. In general, surfactants that were highly digestible in vitro tended to display higher bioavailability of nilotinib in vivo. The bioavailability may additionally be related to the FA chain length of digestible surfactants with an improved exposure in the case of medium-chain FA-based surfactants. There was no apparent relationship between the HLB value of surfactants and the in vivo bioavailability of nilotinib. The impact of this study's findings suggests that when designing surfactant-based formulations to enhance oral bioavailability of the poorly water-soluble drug nilotinib, highly digestible, medium chain-based surfactants are preferred. Additionally, for low-permeability drugs such as nilotinib, which is subject to efflux by intestinal P-glycoprotein, the biopharmaceutical effects of surfactants merit further consideration.
Collapse
Affiliation(s)
- Niklas J Koehl
- School of Pharmacy, University College Cork, T12 YN60 Cork, Ireland
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Vincent Jannin
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | | |
Collapse
|
10
|
Tran T, Bønløkke P, Rodríguez-Rodríguez C, Nosrati Z, Esquinas PL, Borkar N, Plum J, Strindberg S, Karagiozov S, Rades T, Müllertz A, Saatchi K, Häfeli UO. Using in vitro lipolysis and SPECT/CT in vivo imaging to understand oral absorption of fenofibrate from lipid-based drug delivery systems. J Control Release 2020; 317:375-384. [DOI: 10.1016/j.jconrel.2019.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
|
11
|
Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137:104967. [PMID: 31252052 DOI: 10.1016/j.ejps.2019.104967] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Poorly water-soluble drugs continue to be a problematic, yet important class of pharmaceutical compounds for treatment of a wide range of diseases. Their prevalence in discovery is still high, and their development is usually limited by our lack of a complete understanding of how the complex chemical, physiological and biochemical processes that occur between administration and absorption individually and together impact on bioavailability. This review defines the challenge presented by these drugs, outlines contemporary strategies to solve this challenge, and consequent in silico and in vitro evaluation of the delivery technologies for poorly water-soluble drugs. The next steps and unmet needs are proposed to present a roadmap for future studies for the field to consider enabling progress in delivery of poorly water-soluble compounds.
Collapse
|
12
|
Berthelsen R, Klitgaard M, Rades T, Müllertz A. In vitro digestion models to evaluate lipid based drug delivery systems; present status and current trends. Adv Drug Deliv Rev 2019; 142:35-49. [PMID: 31265861 DOI: 10.1016/j.addr.2019.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
During the past two decades, a range of in vitro models simulating the digestion processes occurring in the stomach and small intestine have been developed to characterize lipid based drug delivery systems (LbDDSs). This review describes the presently existing range of in vitro digestion models and their use in the field of oral drug delivery. The models are evaluated in terms of their suitability to assess LbDDSs, and their ability to produce in vitro - in vivo correlations (IVIVCs). While the pH-stat lipolysis model is by far the most commonly utilized in vitro digestion model in relation to characterizing LbDDSs, a series of recent studies have shown a lack of IVIVCs limiting its future use. Presently, no single in vitro digestion model exists which is able to predict the in vivo performance of various LbDDSs. However, recent research has shown the potential of combined digestion-permeation models as well as species specific digestion models.
Collapse
Affiliation(s)
- Ragna Berthelsen
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Mette Klitgaard
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anette Müllertz
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate. Int J Pharm 2018; 546:263-271. [DOI: 10.1016/j.ijpharm.2018.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/29/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
|
14
|
Suys EJA, Chalmers DK, Pouton CW, Porter CJH. Polymeric Precipitation Inhibitors Promote Fenofibrate Supersaturation and Enhance Drug Absorption from a Type IV Lipid-Based Formulation. Mol Pharm 2018; 15:2355-2371. [PMID: 29659287 DOI: 10.1021/acs.molpharmaceut.8b00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of lipid-based formulations (LBFs) to increase the solubilization, and prolong the supersaturation, of poorly water-soluble drugs (PWSDs) in the gastrointestinal (GI) fluids has generated significant interest in the past decade. One mechanism to enhance the utility of LBFs is to prolong supersaturation via the addition of polymers that inhibit drug precipitation (polymeric precipitation inhibitors or PPIs) to the formulation. In this work, we have evaluated the performance of a range of PPIs and have identified PPIs that are sufficiently soluble in LBF to allow the construction of single phase formulations. An in vitro model was first employed to assess drug (fenofibrate) solubilization and supersaturation on LBF dispersion and digestion. An in vitro-in situ model was subsequently employed to simultaneously evaluate the impact of PPI enhanced drug supersaturation on drug absorption in rats. The stabilizing effect of the polymers was polymer specific and most pronounced at higher drug loads. Polymers that were soluble in LBF allowed simple processing as single phase formulations, while formulations containing more hydrophilic polymers required polymer suspension in the formulation. The lipid-soluble polymers Eudragit (EU) RL100 and poly(propylene glycol) bis(2-aminopropyl ether) (PPGAE) and the water-soluble polymer hydroxypropylmethyl cellulose (HPMC) E4M were identified as the most effective PPIs in delaying fenofibrate precipitation in vitro. An in vitro model of lipid digestion was subsequently coupled directly to an in situ single pass intestinal perfusion assay to evaluate the influence of PPIs on fenofibrate absorption from LBFs in vivo. This coupled model allowed for real-time evaluation of the impact of supersaturation stabilization on absorptive drug flux and provided better discrimination between the different PPIs and formulations. In the presence of the in situ absorption sink, increased fenofibrate supersaturation resulted in increased drug exposure, and a good correlation was found between the degree of in vitro supersaturation and in vivo drug exposure. An improved in vitro-in vivo correlation was apparent when comparing the same formulation under different supersaturation conditions. These observations directly exemplify the potential utility of PPIs in promoting drug absorption from LBF, via stabilization of supersaturation, and further confirm that relatively brief periods of supersaturation may be sufficient to promote drug absorption, at least for highly permeable drugs such as fenofibrate.
Collapse
|
15
|
de Montellano PRO. 1-Aminobenzotriazole: A Mechanism-Based Cytochrome P450 Inhibitor and Probe of Cytochrome P450 Biology. Med Chem 2018; 8:038. [PMID: 30221034 PMCID: PMC6137267 DOI: 10.4172/2161-0444.1000495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1-Aminobenzotriazole (1-ABT) is a pan-specific, mechanism-based inactivator of the xenobiotic metabolizing forms of cytochrome P450 in animals, plants, insects, and microorganisms. It has been widely used to investigate the biological roles of cytochrome P450 enzymes, their participation in the metabolism of both endobiotics and xenobiotics, and their contributions to the metabolism-dependent toxicity of drugs and chemicals. This review is a comprehensive evaluation of the chemistry, discovery, and use of 1-aminobenzotriazole in these contexts from its introduction in 1981 to the present.
Collapse
|
16
|
Labrasol ® and Salts of Medium-Chain Fatty Acids Can Be Combined in Low Concentrations to Increase the Permeability of a Macromolecule Marker Across Isolated Rat Intestinal Mucosae. J Pharm Sci 2018; 107:1648-1655. [PMID: 29462634 DOI: 10.1016/j.xphs.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022]
Abstract
In addition to their solubilizing properties, excipients used in lipid-based formulations can improve intestinal permeability of macromolecules. We determined whether admixing of medium-chain fatty acid (MCFA) permeation enhancers with a lipoidal excipient (Labrasol®) could potentiate transepithelial flux of a poorly permeable macromolecule (fluorescein isothiocyanate dextran 4 kDa [FD4]) across rat intestinal mucosae mounted in Ussing chambers. Low concentrations of sodium caprate (C10), sodium undecylenate (C11:1), or sodium laurate (C12) combined with Labrasol® increased the apparent permeability coefficient (Papp) of FD4 to values typically seen with higher concentrations of MCFAs or Labrasol® alone. For example, combination of C11:1 (0.5 mg/mL) with Labrasol® (1 mg/mL) increased the Papp of FD4 by 10- and 11-fold over the respective individual agents at the same concentrations where no enhancement was evident. The increased enhancement ratios seen with the combinations were associated with some perturbation in intestinal histology and with attenuation of an epithelial functional measure, carbachol-stimulated inward short-circuit current. In conclusion, combining three MCFAs separately with Labrasol® increased the Papp of FD4 to values greater than those seen for MCFAs or Labrasol® alone. Ultimately, this may permit lower concentrations of MCFA to be used in combination with other excipients in oral formulations of poorly permeable molecules.
Collapse
|
17
|
Siqueira Jørgensen SD, Al Sawaf M, Graeser K, Mu H, Müllertz A, Rades T. The ability of two in vitro lipolysis models reflecting the human and rat gastro-intestinal conditions to predict the in vivo performance of SNEDDS dosing regimens. Eur J Pharm Biopharm 2017; 124:116-124. [PMID: 29288805 DOI: 10.1016/j.ejpb.2017.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 12/27/2017] [Indexed: 12/29/2022]
Abstract
In this work, the influence of drug load and physical state of R3040 in self-nanoemulsifying drug delivery systems (SNEDDS) on R3040 absorption in rats was assessed. Furthermore, an in vitro lipolysis model simulating rat conditions (rat lipolysis model) was compared to a human lipolysis model in regard to the prediction of the in vivo data. The formulations were SNEDDS 80%, containing R3040 at 80% of its equilibrium solubility in SNEDDS (Seq); super-SNEDDS solution with R3040 supersaturated at 200% Seq; super-SNEDDS suspension containing R3040 at 200% Seq; Chasing principle (drug-free SNEDDS followed by R3040 aqueous suspension) and R3040 aqueous suspension. The pharmacokinetic profiles of R3040 in SNEDDS 80% and super-SNEDDS solution 200% were superimposed and higher than for super-SNEDDS suspension 200%, Chasing principle and aqueous suspension. Therefore, dosing R3040 dissolved in SNEDDS increased R3040 absorption irrespective of the drug load. While the human lipolysis model could not predict the rank order of absorption of the formulations, the rat lipolysis model predicted the similar absorption of R3040 in SNEDDS 80% and super-SNEDDS solution 200%. Thus, the rat lipolysis model showed to be an important step towards predictive in vitro models for rat studies.
Collapse
Affiliation(s)
| | - Malak Al Sawaf
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kirsten Graeser
- Roche Pharma Research and Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann - La Roche Ltd, Switzerland
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Sahbaz Y, Nguyen TH, Ford L, McEvoy CL, Williams HD, Scammells PJ, Porter CJH. Ionic Liquid Forms of Weakly Acidic Drugs in Oral Lipid Formulations: Preparation, Characterization, in Vitro Digestion, and in Vivo Absorption Studies. Mol Pharm 2017; 14:3669-3683. [DOI: 10.1021/acs.molpharmaceut.7b00442] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yasemin Sahbaz
- Drug
Delivery, Disposition and Dynamics and ‡Medicinal Chemistry, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tri-Hung Nguyen
- Drug
Delivery, Disposition and Dynamics and ‡Medicinal Chemistry, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Claire L. McEvoy
- Drug
Delivery, Disposition and Dynamics and ‡Medicinal Chemistry, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Hywel D. Williams
- Capsugel R&D Australia, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Christopher J. H. Porter
- Drug
Delivery, Disposition and Dynamics and ‡Medicinal Chemistry, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Han S, Hu L, Gracia, Quach T, Simpson JS, Edwards GA, Trevaskis NL, Porter CJH. Lymphatic Transport and Lymphocyte Targeting of a Triglyceride Mimetic Prodrug Is Enhanced in a Large Animal Model: Studies in Greyhound Dogs. Mol Pharm 2016; 13:3351-3361. [DOI: 10.1021/acs.molpharmaceut.6b00195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | | | | | - Glenn A. Edwards
- School
of Animal and Veterinary Sciences, Charles Sturt University, Boorooma
Street, Wagga Wagga, New
South Wales 2650, Australia
| | | | | |
Collapse
|
20
|
Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, Charman WN, Bergström CA, Porter CJ. 50years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv Drug Deliv Rev 2016; 101:167-194. [PMID: 27089810 DOI: 10.1016/j.addr.2016.04.007] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022]
Abstract
Lipid based formulations (LBF) provide well proven opportunities to enhance the oral absorption of drugs and drug candidates that sit close to, or beyond, the boundaries of Lipinski's 'rule-of-five' chemical space. Advantages in permeability, efflux and presystemic metabolism are evident; however, the primary benefit is in increases in dissolution and apparent intestinal solubility for lipophilic, poorly water soluble drugs. This review firstly details the inherent advantages of LBF, their general properties and classification, and provides a brief retrospective assessment of the development of LBF over the past fifty years. More detailed analysis of the ability of LBF to promote intestinal solubilisation, supersaturation and absorption is then provided alongside review of the methods employed to assess formulation performance. Critical review of the ability of simple dispersion and more complex in vitro digestion methods to predict formulation performance subsequently reveals marked differences in the correlative ability of in vitro tests, depending on the properties of the drug involved. Notably, for highly permeable low melting drugs e.g. fenofibrate, LBF appear to provide significant benefit in all cases, and sustained ongoing solubilisation may not be required. In other cases, and particularly for higher melting point drugs such as danazol, where re-dissolution of crystalline precipitate drug is likely to be slow, correlations with ongoing solubilisation and supersaturation are more evident. In spite of their potential benefits, one limitation to broader use of LBF is low drug solubility in the excipients employed to generate formulations. Techniques to increase drug lipophilicity and lipid solubility are therefore explored, and in particular those methods that provide for temporary enhancement including lipophilic ionic liquid and prodrug technologies. The transient nature of these lipophilicity increases enhances lipid solubility and LBF viability, but precludes enduring effects on receptor promiscuity and off target toxicity. Finally, recent efforts to generate solid LBF are briefly described as a means to circumvent the need to encapsulate in soft or hard gelatin capsules, although the latter remain popular with consumers and a proven means of LBF delivery.
Collapse
|
21
|
Stillhart C, Kuentz M. Trends in the Assessment of Drug Supersaturation and Precipitation In Vitro Using Lipid-Based Delivery Systems. J Pharm Sci 2016; 105:2468-2476. [PMID: 26935881 DOI: 10.1016/j.xphs.2016.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 12/30/2022]
Abstract
The generation of drug supersaturation close to the absorptive site is an important mechanism of how several formulation technologies enhance oral absorption and bioavailability. Lipid-based formulations belong to the supersaturating drug delivery systems although this is not the only mechanism of how drug absorption is promoted in vivo. Different methods to determine drug supersaturation and precipitation from lipid-based formulations are described in the literature. Experimental in vitro setups vary according to their complexity and proximity to the in vivo conditions and, therefore, some tests are used for early formulation screening, while others better qualify for a later stage of development. The present commentary discusses this rapidly evolving field of in vitro testing with a special focus on the advancements in analytical techniques and new approaches of mechanistic modeling. The importance of considering a drug absorption sink is particularly emphasized. This commentary should help formulators in the pharmaceutical industry as well as in academia to make informed decisions on how to conduct in vitro tests for lipid-based delivery systems and to decide on the implications of experimental results.
Collapse
Affiliation(s)
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
22
|
Boily MO, Chauret N, Laterreur J, Leblond FA, Boudreau C, Duquet MC, Lévesque JF, Ste-Marie L, Pichette V. In Vitro and In Vivo Mechanistic Studies toward Understanding the Role of 1-Aminobenzotriazole in Rat Drug-Drug Interactions. Drug Metab Dispos 2015; 43:1960-5. [DOI: 10.1124/dmd.115.066357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 11/22/2022] Open
|
23
|
Benito-Gallo P, Franceschetto A, Wong JC, Marlow M, Zann V, Scholes P, Gershkovich P. Chain length affects pancreatic lipase activity and the extent and pH–time profile of triglyceride lipolysis. Eur J Pharm Biopharm 2015; 93:353-62. [DOI: 10.1016/j.ejpb.2015.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 11/17/2022]
|
24
|
Fang G, Tang B, Chao Y, Zhang Y, Xu H, Tang X. Improved oral bioavailability of docetaxel by nanostructured lipid carriers: in vitro characteristics, in vivo evaluation and intestinal transport studies. RSC Adv 2015. [DOI: 10.1039/c5ra14588k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of the current study was to explore the potential of nanostructured lipid carriers (NLC) for oral delivery of docetaxel (DTX) and investigate the absorption mechanismin vivo.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Bo Tang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yanhui Chao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yu Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hui Xu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xing Tang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
25
|
Feeney OM, Williams HD, Pouton CW, Porter CJH. 'Stealth' lipid-based formulations: poly(ethylene glycol)-mediated digestion inhibition improves oral bioavailability of a model poorly water soluble drug. J Control Release 2014; 192:219-27. [PMID: 25058571 DOI: 10.1016/j.jconrel.2014.07.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 12/31/2022]
Abstract
For over 20years, stealth drug delivery has been synonymous with nanoparticulate formulations and intravenous dosing. The putative determinants of stealth in these applications are the molecular weight and packing density of a hydrophilic polymer (commonly poly(ethylene glycol) (PEG)) that forms a steric barrier at the surface of the nanoparticle. The current study examined the potential translation of the concepts learned from stealth technology after intravenous administration to oral drug delivery and specifically, to enhance drug exposure after administration of oral lipid-based formulations (LBFs) containing medium-chain triglycerides (MCT). MCT LBFs are rapidly digested in the gastrointestinal tract, typically resulting in losses in solubilisation capacity, supersaturation and drug precipitation. Here, non-ionic surfactants containing stealth PEG headgroups were incorporated into MCT LBFs in an attempt to attenuate digestion, reduce precipitation risk and enhance drug exposure. Stealth capabilities were assessed by measuring the degree of digestion inhibition that resulted from steric hindrance of enzyme access to the oil-water interface. Drug-loaded LBFs were assessed for maintenance of solubilising capacity during in vitro digestion and evaluated in vivo in rats. The data suggest that the structural determinants of stealth LBFs mirror those of parenteral formulations, i.e., the key factors are the molecular weight of the PEG in the surfactant headgroup and the packing density of the PEG chains at the interface. Interestingly, the data also show that the presence of labile ester bonds within a PEGylated surfactant also impact on the stealth properties of LBFs, with digestible surfactants requiring a PEG Mw of ~1800g/mol and non-digestible ether-based surfactants ~800g/mol to shield the lipidic cargo. In vitro evaluation of drug solubilisation during digestion showed stealth LBFs maintained drug solubilisation at or above 80% of drug load and reduced supersaturation in comparison to digestible counterparts. This trend was also reflected in vivo, where the relative bioavailability of drug after administration in two stealth LBFs increased to 120% and 182% in comparison to analogous digestible (non-stealth) formulations. The results of the current study indicate that self-assembled "stealth" LBFs have potential as a novel means of improving LBF performance.
Collapse
Affiliation(s)
- Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|