1
|
Song T, Yuan L, Wang J, Li W, Sun Y. Advances in the transport of oral nanoparticles in gastrointestinal tract. Colloids Surf B Biointerfaces 2025; 245:114321. [PMID: 39423764 DOI: 10.1016/j.colsurfb.2024.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Biological barriers in the gastrointestinal tract (GIT) prevent oral absorption of insoluble drugs. Recently, significant progress has been made in the development of various nanoparticles (NPs) designed to enhance the efficacy of oral drugs. However, the mechanism underlying the intracellular transport of NPs remains unclear, and there are still limitations to improving the oral bioavailability of drugs. This article reviews the challenges faced in the absorption of oral NPs, proposes strategies to overcome these barriers, and discusses the future prospects.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- Department of Pharmacy, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao 266033, China
| | - Wenjing Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Wang C, Ji L, Wang J, Zhang J, Qiu L, Chen S, Ni X. Amifostine loaded lipid-calcium carbonate nanoparticles as an oral drug delivery system for radiation protection. Biomed Pharmacother 2024; 177:117029. [PMID: 38991305 DOI: 10.1016/j.biopha.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| | - Shaoqing Chen
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| | - Xinye Ni
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
3
|
Singh A, Yadagiri G, Javaid A, Sharma KK, Verma A, Singh OP, Sundar S, Mudavath SL. Hijacking the intrinsic vitamin B 12 pathway for the oral delivery of nanoparticles, resulting in enhanced in vivo anti-leishmanial activity. Biomater Sci 2022; 10:5669-5688. [PMID: 36017751 DOI: 10.1039/d2bm00979j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-functionalized vitamin B12 (VB12) biocompatible nanoparticles exploit the well-characterized uptake pathway of VB12, shielding it from enzymatic degradation and inadequate absorption. In this perspective, subsequent to escalated mucus interaction and diffusion analysis, the nanoparticles were investigated by immunostaining with the anti-CD320 antibody, and their internalization mechanisms were examined by selectively blocking specific uptake processes. It was observed that their internalization occurred via an energy-dependent clathrin-mediated mechanism, simultaneously highlighting their remarkable ability to bypass the P-glycoprotein efflux. In particular, the synthesized nanoparticles were evaluated for their cytocompatibility by analyzing cellular proliferation, membrane viscoelasticity, and fluidity by fluorescence recovery after photobleaching and oxidative-stress detection, making them well-suited for successful translation to a clinical setup. Our previous in vitro antileishmanial results were paramount for their further in vivo and toxicity analysis, demonstrating their targeted therapeutic efficiency. The augmented surface hydrophilicity, which is attributed to VB12, and monomerization of amphotericin B in the lipid core strengthened the oral bioavailability and stability of the nanoparticles, as evidenced by the fluorescence resonance energy transfer analysis.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Aaqib Javaid
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Krishna Kumar Sharma
- Department of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Anurag Verma
- Department of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
4
|
Gu J, Wang X, Chen Y, Xu K, Yu D, Wu H. An enhanced antioxidant strategy of astaxanthin encapsulated in ROS-responsive nanoparticles for combating cisplatin-induced ototoxicity. J Nanobiotechnology 2022; 20:268. [PMID: 35689218 PMCID: PMC9185887 DOI: 10.1186/s12951-022-01485-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Background Excessive accumulation of reactive oxygen species (ROS) has been documented as the crucial cellular mechanism of cisplatin-induced ototoxicity. However, numerous antioxidants have failed in clinical studies partly due to inefficient drug delivery to the cochlea. A drug delivery system is an attractive strategy to overcome this drawback. Methods and results In the present study, we proposed the combination of antioxidant astaxanthin (ATX) and ROS-responsive/consuming nanoparticles (PPS-NP) to combat cisplatin-induced ototoxicity. ATX-PPS-NP were constructed by the self-assembly of an amphiphilic hyperbranched polyphosphoester containing thioketal units, which scavenged ROS and disintegrate to release the encapsulated ATX. The ROS-sensitivity was confirmed by 1H nuclear magnetic resonance spectroscopy, transmission electron microscopy and an H2O2 ON/OFF stimulated model. Enhanced release profiles stimulated by H2O2 were verified in artificial perilymph, the HEI-OC1 cell line and guinea pigs. In addition, ATX-PPS-NP efficiently inhibited cisplatin-induced HEI-OC1 cell cytotoxicity and apoptosis compared with ATX or PPS-NP alone, suggesting an enhanced effect of the combination of the natural active compound ATX and ROS-consuming PPS-NP. Moreover, ATX-PPS-NP attenuated outer hair cell losses in cultured organ of Corti. In guinea pigs, NiRe-PPS-NP verified a quick penetration across the round window membrane and ATX-PPS-NP showed protective effect on spiral ganglion neurons, which further attenuated cisplatin-induced moderate hearing loss. Further studies revealed that the protective mechanisms involved decreasing excessive ROS generation, reducing inflammatory chemokine (interleukin-6) release, increasing antioxidant glutathione expression and inhibiting the mitochondrial apoptotic pathway. Conclusions Thus, this ROS-responsive nanoparticle encapsulating ATX has favorable potential in the prevention of cisplatin-induced hearing loss. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01485-8.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China.
| |
Collapse
|
5
|
Parvez S, Karole A, Mudavath SL. Transport mechanism of hydroxy-propyl-beta-cyclodextrin modified solid lipid nanoparticles across human epithelial cells for the oral absorption of antileishmanial drugs. Biochim Biophys Acta Gen Subj 2022; 1866:130157. [DOI: 10.1016/j.bbagen.2022.130157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
6
|
Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials 2022; 281:121373. [DOI: 10.1016/j.biomaterials.2022.121373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
|
7
|
Yoshida T, Kojima H, Sako K, Kondo H. Drug delivery to the intestinal lymph by oral formulations. Pharm Dev Technol 2022; 27:175-189. [PMID: 35037843 DOI: 10.1080/10837450.2022.2030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oral drug delivery systems (DDS) targeting lymphocytes in intestinal lymphatic vessels, ducts, and nodes are useful for treating diverse diseases. The intestinal lymph harbors numerous lymphocyte subsets, and DDS containing lipids such as triglycerides and fatty acids can deliver drugs to the lymph through the chylomicron pathway. DDS are efficient, thus allowing the administration of reduced drug doses, which mitigate systemic adverse effects. Here we review orally administered lipid formulations comprising oil solutions, suspensions, micro/nanoemulsions, self-micro/nano emulsifying DDS, liposomes, micelles, solid lipid nanoparticles, and nanostructured lipid carriers for targeting drugs to the lymph. We first describe the structures of lymphatic vessels and lymph nodes and the oral absorption of lipids and drugs into the intestinal lymph. We next summarize the effects of the properties and amounts of lipids and drugs delivered into the lymph and lymphocytes, as well as their effects on drug delivery ratios of lymph to blood. Finally, we describe lymphatic DDS containing saquinavir, tacrolimus, and methotrexate, and their potency that reduce drug concentrations in blood, which are associated with systemic adverse effects.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Drug Delivery, Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., Yaizu, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., Yaizu, Japan
| | - Kazuhiro Sako
- Corporate Advocacy, Astellas Pharma Inc., 2-5-1, Nihonbashi-honcho, Chuo-ku, Tokyo, 103-0023, Japan
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
8
|
Shen Q, Tang T, Hu Q, Ying X, Shu G, Teng C, Du Y. Microwave hyperthermia-responsible flexible liposomal gel as a novel transdermal delivery of methotrexate for enhanced rheumatoid arthritis therapy. Biomater Sci 2021; 9:8386-8395. [PMID: 34787601 DOI: 10.1039/d1bm01438b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methotrexate (MTX) as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) through oral and injectable administration is still problematic in the clinic. Herein, a MTX-loaded thermal-responsible flexible liposome (MTFL) incorporated within a carbomer-based gel was prepared as a novel transdermal agent (MTFL/Gel) for effective treatment of RA. It was found that MTFL had an average size of approximately 90 nm, which could rapidly release the drug under thermal conditions. The prepared MTFL/Gel could remarkably increase the MTX skin permeation as compared with free MTX, which was possibly due to the deformable membrane of flexible liposomes. Moreover, the results suggested MTFL/Gel could lead to a remarkably enhanced RA treatment when in combination with microwave hyperthermia. The superior ability of MTFL/Gel to alleviate RA response was attributed to the excellent skin permeation, thermal-responsible drug release, and synergistic anti-arthritic effect of MTX chemotherapy and microwave-induced hyperthermia therapy. Overall, the MTFL/Gel with dual deformable and thermal-responsible performances could be used as a novel promising transdermal agent for enhanced treatment of RA.
Collapse
Affiliation(s)
- Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China. .,School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Ting Tang
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China.
| | - Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 32200, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Tan YN, Li YP, Huang JD, Luo M, Li SS, Lee AWM, Hu FQ, Guan XY. Thermal-sensitive lipid nanoparticles potentiate anti-PD therapy through enhancing drug penetration and T lymphocytes infiltration in metastatic tumor. Cancer Lett 2021; 522:238-254. [PMID: 34571084 DOI: 10.1016/j.canlet.2021.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
The response rate of anti-PD therapy in most cancer patients remains low. Therapeutic drug and tumor-infiltrating lymphocytes (TILs) are usually obstructed by the stromal region within tumor microenvironment (TME) rather than distributed around tumor cells, thus unable to induce the immune response of cytotoxic T cells. Here, we constructed the cationic thermosensitive lipid nanoparticles IR780/DPPC/BMS by introducing cationic NIR photosensitizer IR-780 iodide (IR780) modified lipid components, thermosensitive lipid DPPC and PD-1/PD-L1 inhibitor BMS202 (BMS). Upon laser irradiation, IR780/DPPC/BMS penetrated into deep tumor, and reduced cancer-associated fibroblasts (CAFs) around tumor cells to remodel the spatial distribution of TILs in TME. Interestingly, the cationic IR780/DPPC/BMS could capture released tumor-associated antigens (TAAs), thereby enhancing the antigen-presenting ability of DCs to activate cytotoxic T lymphocytes. Moreover, IR780/DPPC/BMS initiated gel-liquid crystal phase transition under laser irradiation, accelerating the disintegration of lipid bilayer structure and leading to the responsive release of BMS, which would reverse the tumor immunosuppression state by blocking PD-1/PD-L1 pathway for a long term. This combination treatment can synergistically exert the antitumor immune response and inhibit the tumor growth and metastasis.
Collapse
Affiliation(s)
- Ya-Nan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong-Peng Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, China
| | - Jian-Dong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Luo
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Shan-Shan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 00852, China
| | - Fu-Qiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 00852, China.
| |
Collapse
|
10
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
11
|
Varma S, Dey S, S P D. Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting Their Fate. Curr Pharm Biotechnol 2021; 23:679-706. [PMID: 34264182 DOI: 10.2174/1389201022666210714145356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Efficient and controlled internalization of NPs into the cells depends on their physicochemical properties and dynamics of the plasma membrane. NPs-cell interaction is a complex process that decides the fate of NPs internalization through different endocytosis pathways. OBJECTIVE The aim of this review is to highlight the physicochemical properties of synthesized nanoparticles (NPs) and their interaction with the cellular-dynamics and pathways like phagocytosis, pinocytosis, macropinocytosis, clathrin, and caveolae-mediated endocytosis and the involvement of effector proteins domain such as clathrin, AP2, caveolin, Arf6, Cdc42, dynamin and cell surface receptors during the endocytosis process of NPs. METHOD An electronic search was performed to explore the focused reviews and research articles on types of endocytosis and physicochemical properties of nanoparticles and their impact on cellular internalizations. The search was limited to peer-reviewed journals in the PubMed database. RESULTS This article discusses in detail how different types of NPs and their physicochemical properties such as size, shape, aspect ratio, surface charge, hydrophobicity, elasticity, stiffness, corona formation, surface functionalization changes the pattern of endocytosis in the presence of different pharmacological blockers. Some external forces like a magnetic field, electric field, and ultrasound exploit the cell membrane dynamics to permeabilize them for efficient internalization with respect to fundamental principles of membrane bending and pore formation. CONCLUSION This review will be useful to attract and guide the audience to understand the endocytosis mechanism and their pattern with respect to physicochemical properties of NPs to improve their efficacy and targeting to achieve the impactful outcome in drug-delivery and theranostics applications.
Collapse
Affiliation(s)
- Sameer Varma
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| | - Smita Dey
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| | - Dhanabal S P
- Department of Pharmacognosy & Phytopharmacy, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| |
Collapse
|
12
|
Al Khafaji AS, Donovan MD. Endocytic Uptake of Solid Lipid Nanoparticles by the Nasal Mucosa. Pharmaceutics 2021; 13:pharmaceutics13050761. [PMID: 34065558 PMCID: PMC8161025 DOI: 10.3390/pharmaceutics13050761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles may provide unique therapeutic opportunities when administered via the nasal cavity, yet the primary uptake and transfer pathways for these particles within the nasal mucosa are not well understood. The endocytic pathways involved in the uptake of fluorescently labeled, (Nile Red) solid lipid nanoparticles (SLNs) of different sizes (~30, 60, and 150 nm) were studied using excised bovine olfactory and nasal respiratory tissues. Endocytic activity contributing to nanoparticle uptake was investigated using a variety of pharmacological inhibitors, but none of the inhibitors were able to completely eliminate the uptake of the SLNs. The continued uptake of nanoparticles following exposure to individual inhibitors suggests that a number of endocytic pathways work in combination to transfer nanoparticles into the nasal mucosa. Following exposure to the general metabolic inhibitors, 2,4-DNP and sodium azide, additional, non-energy-dependent pathways for nanoparticle uptake were also observed. While the smallest nanoparticles (30 nm) were the most resistant to the effects of pharmacologic inhibitors, the largest (150 nm) were still able to transfer significant amounts of the particles into the tissues. The rapid nanoparticle uptake observed demonstrates that these lipid particles are promising vehicles to accomplish both local and systemic drug delivery following nasal administration.
Collapse
|
13
|
Zhang J, Li M, Wang M, Xu H, Wang Z, Li Y, Ding B, Gao J. Effects of the surface charge of polyamidoamine dendrimers on cellular exocytosis and the exocytosis mechanism in multidrug-resistant breast cancer cells. J Nanobiotechnology 2021; 19:135. [PMID: 33980270 PMCID: PMC8114490 DOI: 10.1186/s12951-021-00881-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Background Polyamidoamine (PAMAM) dendrimer applications have extended from tumor cells to multidrug-resistant tumor cells. However, their transportation in multidrug-resistant tumor cells remains unclear. Herein, we investigated the exocytosis rule and mechanism of PAMAM dendrimers in multidrug-resistant tumor cells. Results Using a multidrug-resistant human breast cancer cell model (MCF-7/ADR), we performed systematic analyses of the cellular exocytosis dynamics, pathways and mechanisms of three PAMAM dendrimers with different surface charges: positively charged PAMAM-NH2, neutral PAMAM-OH and negatively charged PAMAM-COOH. The experimental data indicated that in MCF-7/ADR cells, the exocytosis rate was the highest for PAMAM-NH2 and the lowest for PAMAM-OH. Three intracellular transportation processes and P-glycoprotein (P-gp) participated in PAMAM-NH2 exocytosis in MCF-7/ADR cells. Two intracellular transportation processes, P-gp and multidrug resistance (MDR)-associated protein participated in PAMAM-COOH exocytosis. P-gp and MDR-associated protein participated in PAMAM-OH exocytosis. Intracellular transportation processes, rather than P-gp and MDR-associated protein, played major roles in PAMAM dendrimer exocytosis. PAMAM-NH2 could enter MCF-7/ADR cells by forming nanoscale membrane holes, but this portion of PAMAM-NH2 was eliminated by P-gp. Compared with PAMAM-OH and PAMAM-COOH, positively charged PAMAM-NH2 was preferentially attracted to the mitochondria and cell nuclei. Major vault protein (MVP) promoted exocytosis of PAMAM-NH2 from the nucleus but had no effect on the exocytosis of PAMAM-OH or PAMAM-COOH. Conclusions Positive charges on the surface of PAMAM dendrimer promote its exocytosis in MCF-7/ADR cells. Three intracellular transportation processes, attraction to the mitochondria and cell nucleus, as well as nuclear efflux generated by MVP led to the highest exocytosis observed for PAMAM-NH2. Our findings provide theoretical guidance to design a surface-charged tumor-targeting drug delivery system with highly efficient transfection in multidrug-resistant tumor cells. Especially, to provide more DNA to the nucleus and enhance DNA transfection efficiency in multidrug-resistant tumor cells using PAMAM-NH2, siRNA-MVP or an inhibitor should be codelivered to decrease MVP-mediated nuclear efflux. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00881-w.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing, 314001, People's Republic of China
| | - Mingjuan Li
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing, 314001, People's Republic of China
| | - Mingyue Wang
- Department of Pharmacy, Shenyang Medical College, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Hang Xu
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing, 314001, People's Republic of China
| | - Zhuoxiang Wang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing, 314001, People's Republic of China
| | - Yue Li
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing, 314001, People's Republic of China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing, 314001, People's Republic of China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Room 409, Yuhangtang Road 866, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
14
|
Notabi MK, Arnspang EC, Andersen MØ. Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. Eur J Pharm Sci 2021; 161:105777. [PMID: 33647401 DOI: 10.1016/j.ejps.2021.105777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Cancer remains a significant health issue worldwide. The most common group of chemotherapeutic agents are small-molecule drugs, which often are associated with toxic side-effects and non-specific delivery, leading to limited therapeutic effect. This paper describes the development of a targeted drug delivery system based on lipid nanoparticles for cancer therapy. The lipid nanoparticles consist of a lipid core conjugated to an albumin stealth coating and targeting antibodies through thiol chemistry synthesized utilizing a one-step method. Applying the developed method, lipid nanoparticles with diameters down to 87 nm, capable of encapsulating small molecule compounds were synthesized. Cellular uptake studies of the lipid nanoparticles loaded with the model drug Nile red demonstrated that stealth-coating reduced non-specific cell uptake by up to a 1000-fold compared to free drug. Moreover, antibody-conjugation led to a significant cellular retargeting. Finally, it was shown that the lipid nanoparticles undergo cellular uptake through the endocytic pathway. The lipid nanoparticles are simple to synthesize, stabile in serum and have the potential to be versatile targeted towards receptors selectively expressed by diseased cells using antibodies. Thus, the system may reduce the toxic side-effects of cancer drugs while improving their delivery to cancer cells, increasing the therapeutic effect.
Collapse
Affiliation(s)
- Martine K Notabi
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Eva C Arnspang
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Morten Ø Andersen
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
| |
Collapse
|
15
|
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, Li Y, Shi Y. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology 2021; 19:32. [PMID: 33499885 PMCID: PMC7839302 DOI: 10.1186/s12951-021-00770-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The use of drug nanocarriers to encapsulate drugs for oral administration may become an important strategy in addressing the challenging oral absorption of some drugs. In this study-with the premise of controlling single variables-we prepared model nanoparticles with different particle sizes, surface charges, and surface hydrophobicity/hydrophilicity. The two key stages of intestinal nanoparticles (NPs) absorption-the intestinal mucus layer penetration stage and the trans-intestinal epithelial cell stage-were decoupled and analyzed. The intestinal absorption of each group of model NPs was then investigated. RESULTS Differences in the behavioral trends of NPs in each stage of intestinal absorption were found to result from differences in particle properties. Small size, low-magnitude negative charge, and moderate hydrophilicity helped NPs pass through the small intestinal mucus layer more easily. Once through the mucus layer, an appropriate size, positive surface charge, and hydrophobic properties helped NPs complete the process of transintestinal epithelial cell transport. CONCLUSIONS To achieve high drug bioavailability, the basic properties of the delivery system must be suitable for overcoming the physiological barrier of the gastrointestinal tract.
Collapse
Affiliation(s)
- Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Lanze Liu
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Miaomiao Yin
- China Resources Double-crane Pharmaceutical Co., Ltd., Beijing, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China.
| | - Yanan Shi
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
16
|
Transport of environmental natural organic matter coated silver nanoparticle across cell membrane based on membrane etching treatment and inhibitors. Sci Rep 2021; 11:507. [PMID: 33436771 PMCID: PMC7803783 DOI: 10.1038/s41598-020-79901-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Environmental natural organic matters (NOMs) have great effects on the physicochemical properties of engineering nanoparticles, which may impact the transport of nanoparticles across plasma membrane and the cytotoxicity. Therefore, the kinetics, uptake pathway and mass of transporting into A549 cell membrane of silver nanoparticles (AgNPs) coated with citric acid (CA), tartaric acid (TA) and fulvic acid (FA) were investigated, respectively. CA, FA and TA enhanced the colloidal stability of AgNPs in culture medium and have greatly changed the surface plasmon resonance spectrum of AgNPs due to the absorption of CA, FA and TA on surface of AgNPs. Internalizing model showed that velocity of CA-, TA- and FA-nAg transporting into A549 cell were 5.82-, 1.69- and 0.29-fold higher than those of the control group, respectively. Intracellular mass of Ag was dependent on mass of AgNPs delivered to cell from suspension, which obeyed Logistic model and was affected by NOMs that CA- and TA-nAg showed a large promotion on intracellular mass of Ag. The lipid raft/caveolae-mediated endocytosis (LME) of A549 cell uptake of AgNPs were susceptible to CA, TA and FA that uptake of CA-, TA- and FA-nAg showed lower degree of dependent on LME than that of the control (uncoated AgNPs). Actin-involved uptake pathway and macropinocytosis would have less contribution to uptake of FA-nAg. Overall, transmembrane transport of NOMs-coated AgNPs differs greatly from that of the pristine AgNPs.
Collapse
|
17
|
Water/pH dual responsive in situ calcium supplement collaborates simvastatin for osteoblast promotion mediated osteoporosis therapy via oral medication. J Control Release 2020; 329:121-135. [PMID: 33279604 DOI: 10.1016/j.jconrel.2020.11.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022]
Abstract
Calcium supplement is the most commonly adopted treatment for osteoporosis but usually requires high dose and frequency. The modality of calcium supplement is therefore overlooked by current nanomedicine-based osteoporosis therapies without proper oral formulations. Herein, we proposed a tetracycline (Tc) modified and monostearin (MS) coated amorphous calcium carbonate (ACC) platform (TMA) as oral bone targeted and osteoporosis microenvironment (water/pH) responsive carrier for in situ calcium supplement. Moreover, current osteoporosis therapies also fall short of finding suitable molecular target and effective therapeutic regimen to further increase the therapeutic efficacy over available treatment means. As a result, the simvastatin (Sim) was loaded into TMA to construct drug delivery system (TMA/Sim) capable of synergistically activating the bone morphogenetic proteins (BMPs)-Smad pathway to provide a novel therapeutic regimen for osteoblast promotion mediated osteoporosis therapy. Our results revealed that optimized TMA showed high accessibility and oral availability with targeted drug delivery to bone tissue. Most importantly, benefit from the effective in situ calcium supplement and targeted Sim delivery, this therapeutic regime (TMA/Sim) achieved better synergetic effects than conventional combination strategies with promising osteoporosis reversion performance under low calcium dosage (1/10 of commercial calcium carbonate tablet) and significantly attenuated side effects.
Collapse
|
18
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
19
|
Chen SQ, Wang C, Song YQ, Tao S, Yu FY, Lou HY, Hu FQ, Yuan H. Quercetin Covalently Linked Lipid Nanoparticles: Multifaceted Killing Effect on Tumor Cells. ACS OMEGA 2020; 5:30274-30281. [PMID: 33251462 PMCID: PMC7689951 DOI: 10.1021/acsomega.0c04795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The encapsulation of hydrophobic drugs is a problem that many researchers are working on. The goal of this study is to achieve the delivery of hydrophobic drugs by means of prodrugs and nanoformulations for a stronger tumor cell-killing effect and explore related killing mechanisms. Lipophilic quercetin (Qu) was covalently linked to glyceryl caprylate-caprate (Gcc) via disulfide bonds-containing 3,3'-dithiodipropionic acid (DTPA) to synthesize novel lipid Qu-SS-Gcc. Qu-SS-Gcc lipid nanoparticles (Qu-SS-Gcc LNPs) were fabricated using the solvent diffusion technique. The intracellular release of Qu by cleavage of nanocarriers was determined by liquid chromatography and compared with the uptake of free Qu. Detection methods, such as fluorescent quantitation, flow cytometry, and western blot were applied to explore the action mechanism induced by Qu. It was revealed that Qu-SS-Gcc LNPs could be cleaved by the high concentrations of reduction molecules in MCF-7/ADR (human multidrug-resistant breast cancer) cells, followed by the release of Qu. The intracellular Qu content produced by dissociation of Qu-SS-Gcc LNPs was higher than that produced by internalization of free Qu. The resulting release of Qu exerted superior cell-killing effects on MCF-7/ADR cells, such as P-gp inhibition by binding to P-gp binding sites, blocking the cell cycle in the G2 phase, and causing cell apoptosis and autophagy. Moreover, it was revealed autophagy triggered by a low concentration of Qu-SS-Gcc LNPs was beneficial to cell survival, while at a higher concentration, it acted as a cell killer. Qu-SS-Gcc LNPs can realize massive accumulation of Qu in tumor cells and exert a multifaceted killing effect on tumor cells, which is a reference for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Shao-qing Chen
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Cheng Wang
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Yan-qing Song
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shan Tao
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fang-ying Yu
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hai-ya Lou
- Sir
Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun East Road, Hangzhou 310016, China
| | - Fu-qiang Hu
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hong Yuan
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
20
|
Scioli Montoto S, Muraca G, Ruiz ME. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front Mol Biosci 2020; 7:587997. [PMID: 33195435 PMCID: PMC7662460 DOI: 10.3389/fmolb.2020.587997] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.
Collapse
Affiliation(s)
- Sebastián Scioli Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Giuliana Muraca
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto Nacional de Medicamentos (INAME, ANMAT), Buenos Aires, Argentina
| | - María Esperanza Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
21
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
22
|
Garanti T, Alhnan MA, Wan KW. RGD-decorated solid lipid nanoparticles enhance tumor targeting, penetration and anticancer effect of asiatic acid. Nanomedicine (Lond) 2020; 15:1567-1583. [DOI: 10.2217/nnm-2020-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Asiatic acid (AA) is a promising anticancer agent, however, its delivery to glioblastoma is a major challenge. This work investigates the beneficial therapeutic efficacy of RGD-conjugated solid lipid nanoparticles (RGD-SLNs) for the selective targeting of AA to gliblastoma. Materials & methods: AA-containing RGD-SLNs were prepared using two different PEG-linker size. Targetability and efficacy were tested using monolayer cells and spheroid tumor models. Results: RGD-SLNs significantly improved cytotoxicity of AA against U87-MG monolayer cells and enhanced cellular uptake compared with non-RGD-containing SLNs. In spheroid models, AA-containing RGD-SLNs showed superior control in tumor growth, improved cytotoxicity and enhanced spheroid penetration when compared with AA alone or non-RGD-containing SLNs. Conclusion: This study illustrates the potential of AA-loaded RGD-SLNs as efficacious target-specific treatment for glioblastoma.
Collapse
Affiliation(s)
- Tanem Garanti
- Faculty of Pharmacy, Cyprus International University, Haspolat, Nicosia, 99258, Cyprus via Mersin 10, Turkey
| | - Mohamed A Alhnan
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Ka-Wai Wan
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| |
Collapse
|
23
|
Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-Controlled Preparation and Behavior Study of Phospholipid-Calcium Carbonate Hybrid Nanoparticles. Int J Nanomedicine 2020; 15:4049-4062. [PMID: 32606663 PMCID: PMC7293410 DOI: 10.2147/ijn.s237156] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Calcium carbonate (CC) nanoparticles have broad biomedical utilizations, owing to their multiple intrinsic merits. However, bare CC nanoparticles do not allow for the development of multifunctional devices suitable for advanced drug delivery in cancer therapy. Methods Phospholipid-modified phospholipid–CC hybrid nanoparticles were prepared in our study using a combination of vapor-diffusion and solvent-diffusion methods to offer optimized pharmaceutical capabilities. Results Considering that particle size is a critical parameter that plays an important role in both in vitro and in vivo behaviors of nanoparticles, we here for the first time a present detailed protocol for the size-controlled preparation of hybrid nanoparticles, as well as analysis of the in vitro/in vivo behaviors of differently sized hybrid nanoparticles. Conclusion Our results might significantly advance the application of this promising material in more varied fields.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xuerong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
24
|
Yin Y, Deng H, Wu K, He B, Dai W, Zhang H, Fu J, Le Y, Wang X, Zhang Q. A multiaspect study on transcytosis mechanism of sorafenib nanogranules engineered by high-gravity antisolvent precipitation. J Control Release 2020; 323:600-612. [PMID: 32278828 DOI: 10.1016/j.jconrel.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Nanotechniques show significant merits in terms of improving the oral bioavailability of poorly water-soluble drugs. However, the mechanisms behind are not clear yet. For instance, what is the contribution of free drug released during nanogranule transcytosis, as well as the impact of drug transporter and chylomicron? To address these issues, sorafenib nanogranules (SFN-NGs) were prepared as model by the high-gravity antisolvent precipitation method which approaches to practical mass production. Then, a multiaspect study on the transcytosis mechanism of SFN-NGs was conducted in Caco-2 cells and rats, including paracellular transport, endocytosis, intracellular trafficking, transmembrane pathway, as well as the involvement of transporter and chylomicron. Pharmacokinetics in rats demonstrated an obvious superiority of SFN-NGs in oral absorption and lymphatic transfer over SFN crude drugs. Different from free SFN, SFN-NGs could be internalized in cells in early stage by caveolin/lipid raft or clathrin induced endocytosis, and transported intactly through the polarized cell monolayers. While in late stage, transporter-mediated transport of free SFN began to play a vital role on the transmembrane of SFN-NGs. No paracellular transport of SFN-NGs was found, and the trafficking of SFN-NGs was affected by the pathway of ER-Golgi complexes. Surprisedly, the intracellular free SFN was the main source of transmembrane for SFN-NGs, which was entrapped into chylomicrons and then secreted into the extracellular space. Generally, the findings in current study may shed light on the absorption mechanism of oral nanoformulations.
Collapse
Affiliation(s)
- Yajie Yin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kai Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jijun Fu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
25
|
Amerigos Daddy J.C. K, Chen M, Raza F, Xiao Y, Su Z, Ping Q. Co-Encapsulation of Mitoxantrone and β-Elemene in Solid Lipid Nanoparticles to Overcome Multidrug Resistance in Leukemia. Pharmaceutics 2020; 12:pharmaceutics12020191. [PMID: 32102214 PMCID: PMC7076650 DOI: 10.3390/pharmaceutics12020191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Multidrug resistance (MDR) due to P-glycoprotein (P-gp) overexpression is a major obstacle to successful leukemia chemotherapy. The combination of anticancer chemotherapy with a chemosensitizer of P-gp inhibitor is promising to overcome MDR, generate synergistic effects, and maximize the treatment effect. Herein, we co-encapsulated a chemotherapeutic drug of mitoxantrone (MTO) and a P-gp inhibitor of β-elemene (βE) in solid lipid nanoparticles (MTO/βE-SLNs) for reversing MDR in leukemia. The MTO/βE-SLNs with about 120 nm particle size possessed good colloidal stability and sustained release behavior. For the cellular uptake study, doxorubicin (DOX) was used as a fluorescence probe to construct SLNs. The results revealed that MTO/βE-SLNs could be effectively internalized by both K562/DOX and K562 cells through the pathway of caveolate-mediated endocytosis. Under the optimized combination ratio of MTO and βE, the in vitro cytotoxicity study indicated that MTO/βE-SLNs showed a better antitumor efficacy in both K562/DOX and K562 cells than other MTO formulations. The enhanced cytotoxicity of MTO/βE-SLNs was due to the increased cellular uptake and blockage of intracellular ATP production and P-gp efflux by βE. More importantly, the in vivo studies revealed that MTO/βE-SLNs could significantly prolong the circulation time and increase plasma half-life of both MTO and βE, accumulate into tumor and exhibit a much higher anti-leukemia effect with MDR than other MTO formulations. These findings suggest MTO/βE-SLNs as a potential combined therapeutic strategy for overcoming MDR in leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Zhigui Su
- Correspondence: (Z.S.); (Q.P.); Tel.: +86-25-83271092 (Q.P.)
| | - Qineng Ping
- Correspondence: (Z.S.); (Q.P.); Tel.: +86-25-83271092 (Q.P.)
| |
Collapse
|
26
|
Wang H, Li L, Ye J, Wang R, Wang R, Hu J, Wang Y, Dong W, Xia X, Yang Y, Gao Y, Gao L, Liu Y. Improving the Oral Bioavailability of an Anti-Glioma Prodrug CAT3 Using Novel Solid Lipid Nanoparticles Containing Oleic Acid-CAT3 Conjugates. Pharmaceutics 2020; 12:E126. [PMID: 32028734 PMCID: PMC7076672 DOI: 10.3390/pharmaceutics12020126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/23/2022] Open
Abstract
13a-(S)-3-pivaloyloxyl-6,7-dimethoxyphenanthro(9,10-b)-indolizidine (CAT3) is a novel oral anti-glioma pro-drug with a potent anti-tumor effect against temozolomide-resistant glioma in vivo. However, poor lipid solubility has limited the encapsulation efficacy during formulation development. Moreover, although the active metabolite of CAT3, 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro(9,10-b)-indolizidine (PF403), can penetrate the blood-brain barrier and approach the brain tissue with a 1000-fold higher anti-glioma activity than CAT3 in vitro, its bioavailability and Cmax were considerably low in plasma, limiting the anti-tumor efficacy. In this study, a novel oleic acid-CAT3 conjugate (OA-CAT3) was synthesized at the first time to increase the lipid solubility of CAT3. The OA-CAT3 loaded solid lipid nanoparticles (OA-CAT3-SLN) were constructed using an ultrasonic technique to enhance the bioavailability and Cmax of PF403 in plasma. Our results demonstrated that CAT3 was amorphous in the lipid core of OA-CAT3-SLN and the in vitro release was well controlled. Furthermore, the encapsulation efficacy and the zeta potential increased to 80.65 ± 6.79% and -26.7 ± 0.46 mV, respectively, compared to the normal CAT3 loaded SLN. As indicated by the high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) quantitation, the monolayer cellular transepithelial transport rate of OA-CAT3-SLN improved by 2.42-fold relied on cholesterol compared to the CAT3 suspension. Hence, the in vitro cell viability of OA-CAT3-SLN in C6 glioma cells decreased to 29.77% ± 2.13% and 10.75% ± 3.12% at 48 and 72 h, respectively. Finally, compared to the CAT3 suspension, the in vivo pharmacokinetics in rats indicated that the plasma bioavailability and Cmax of PF403 as afforded by OA-CAT3-SLN increased by 1.7- and 5.5-fold, respectively. Overall, the results indicate that OA-CAT3-SLN could be an efficacious delivery system in the treatment of glioma.
Collapse
Affiliation(s)
- Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rubing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
| | - Renyun Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.W.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:338-353. [PMID: 32117671 PMCID: PMC7034226 DOI: 10.3762/bjnano.11.25] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/27/2020] [Indexed: 05/17/2023]
Abstract
Nano-sized materials have great potential as drug carriers for nanomedicine applications. Thanks to their size, they can exploit the cellular machinery to enter cells and be trafficked intracellularly, thus they can be used to overcome some of the cellular barriers to drug delivery. Nano-sized drug carriers of very different properties can be prepared, and their surface can be modified by the addition of targeting moieties to recognize specific cells. However, it is still difficult to understand how the material properties affect the subsequent interactions and outcomes at cellular level. As a consequence of this, designing targeted drugs remains a major challenge in drug delivery. Within this context, we discuss the current understanding of the initial steps in the interactions of nano-sized materials with cells in relation to nanomedicine applications. In particular, we focus on the difficult interplay between the initial adhesion of nano-sized materials to the cell surface, the potential recognition by cell receptors, and the subsequent mechanisms cells use to internalize them. The factors affecting these initial events are discussed. Then, we briefly describe the different pathways of endocytosis in cells and illustrate with some examples the challenges in understanding how nanomaterial properties, such as size, charge, and shape, affect the mechanisms cells use for their internalization. Technical difficulties in characterizing these mechanisms are presented. A better understanding of the first interactions of nano-sized materials with cells will help to design nanomedicines with improved targeting.
Collapse
Affiliation(s)
- Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Daphne Montizaan
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| |
Collapse
|
28
|
Bagheri Y, Chedid S, Shafiei F, Zhao B, You M. A quantitative assessment of the dynamic modification of lipid-DNA probes on live cell membranes. Chem Sci 2019; 10:11030-11040. [PMID: 32055389 PMCID: PMC7003967 DOI: 10.1039/c9sc04251b] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic lipid-DNA probes have recently attracted much attention for cell membrane analysis, transmembrane signal transduction, and regulating intercellular networks. These lipid-DNA probes can spontaneously insert onto plasma membranes simply after incubation. The highly precise and controllable DNA interactions have further allowed the programmable manipulation of these membrane-anchored functional probes. However, we still have quite limited understanding of how these lipid-DNA probes interact with cell membranes and also what parameters determine this process. In this study, we have systematically studied the dynamic process of cell membrane modification with a group of lipid-DNA probes. Our results indicated that the hydrophobicity of the lipid-DNA probes is strongly correlated with their membrane insertion and departure rates. Most cell membrane insertion stems from the monomeric form of probes, rather than the aggregates. Lipid-DNA probes can be removed from cell membranes through either endocytosis or direct outflow into the solution. As a result, long-term probe modifications on cell membranes can be realized in the presence of excess probes in the solution and/or endocytosis inhibitors. For the first time, we have successfully improved the membrane persistence of lipid-DNA probes to more than 24 h. Our quantitative data have dramatically improved our understanding of how lipid-DNA probes dynamically interact with cell membranes. These results can be further used to allow a broad range of applications of lipid-DNA probes for cell membrane analysis and regulation.
Collapse
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Sara Chedid
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Fatemeh Shafiei
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Bin Zhao
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Mingxu You
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| |
Collapse
|
29
|
Jiang LQ, Wang TY, Wang Y, Wang ZY, Bai YT. Co-disposition of chitosan nanoparticles by multi types of hepatic cells and their subsequent biological elimination: the mechanism and kinetic studies at the cellular and animal levels. Int J Nanomedicine 2019; 14:6035-6060. [PMID: 31534335 PMCID: PMC6681437 DOI: 10.2147/ijn.s208496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The clearance of nanomaterials (NMs) from the liver is essential for clinical safety, and their hepatic clearance is primarily determined by the co-disposition process of various types of hepatic cells. Studies of this process and the subsequent clearance routes are urgently needed for organic NMs, which are used as drug carriers more commonly than the inorganic ones. Materials and methods: In this study, the co-disposition of chitosan-based nanoparticles (CsNps) by macrophages and hepatocytes at both the cellular and animal levels as well as their subsequent biological elimination were investigated. RAW264.7 and Hepa1-6 cells were used as models of Kupffer cells and hepatocytes, respectively. Results: The cellular studies showed that CsNps released from RAW264.7 cells could enter Hepa1-6 cells through both clathrin- and caveolin-mediated endocytosis. The transport from Kupffer cells to hepatocytes was also studied in mice, and it was observed that most CsNps localized to the hepatocytes after intravenous injection. Following the distribution in hepatocytes, the hepatobiliary-fecal excretion route was shown to be the primary elimination route for CsNps, besides the kidney-urinary excretion route. The elimination of CsNps in mice was a lengthy process, with a half time of about 2 months. Conclusion: The demonstration in this study of the transport of CsNps from macrophages to hepatocytes and the subsequent hepatobiliary-fecal excretion provides basic information for the future development and clinical application of NMs.
Collapse
Affiliation(s)
- Li-Qun Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ting-Yu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Guo M, Wei M, Li W, Guo M, Guo C, Ma M, Wang Y, Yang Z, Li M, Fu Q, Yang L, He Z. Impacts of particle shapes on the oral delivery of drug nanocrystals: Mucus permeation, transepithelial transport and bioavailability. J Control Release 2019; 307:64-75. [PMID: 31207275 DOI: 10.1016/j.jconrel.2019.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Abstract
For drug nanocrystals (NCs), particle shapes can affect aqueous solubility, dissolution rate and oral bioavailability. However, the effects of particle shapes on the transport of NCs across the intestinal barriers remain unclear. In the present study, spherical, rod-shaped and flaky NCs (SNCs, RNCs, and FNCs) were prepared and characterized. Meanwhile, fluorescence resonance energy transfer molecules were used to track the fate of intact NCs. Results showed that particle shapes had great influences on the mucus permeation, cellular uptake and transmembrane transport of NCs, and RNCs exhibited the best absorption efficiency. Besides, we found that endoplasmic reticulum/Golgi and Golgi/plasma membrane pathways might be involved in the transcytosis and exocytosis of NCs. Moreover, the oral bioavailability study showed that AUC0-24h of RNCs was 1.44-fold and 1.8-fold higher than that of SNCs and FNCs, respectively. Collectively, these results provided compelling evidences that RNCs could potentially improve the absoption efficacy of NCs in oral delivery. Our findings give deep insights into the impacts of particle shapes on the oral absoption of NCs and provide valuable knowledge for rational design of optimized NCs for oral drug delivery.
Collapse
Affiliation(s)
- Mengran Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengdi Wei
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wen Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meichen Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Chunlin Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zimeng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, Shenyang 110036, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
31
|
Raveendran S, Sen A, Ito-Tanaka H, Kato K, Maekawa T, Kumar DS. Advanced microscopic evaluation of parallel type I and type II cell deaths induced by multi-functionalized gold nanocages in breast cancer. NANOSCALE ADVANCES 2019; 1:989-1001. [PMID: 36133203 PMCID: PMC9473243 DOI: 10.1039/c8na00222c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/08/2018] [Indexed: 06/16/2023]
Abstract
Despite aggressive surgical resections and combinatorial chemoradiations, certain highly malignant populations of tumor cells resurrect and metastasize. Mixed-grade cancer cells fail to respond to standard-of-care therapies by developing intrinsic chemoresistance and subsequently result in tumor relapse. Macroautophagy is a membrane trafficking process that underlies drug resistance and tumorigenesis in most breast cancers. Manipulating cellular homeostasis by a combinatorial nanotherapeutic model, one can evaluate the crosstalk between type I and type II cell death and decipher the fate of cancer therapy. Here, we present a multi-strategic approach in cancer targeting to mitigate the autophagic flux with subcellular toxicity via lysosome permeation, accompanied by mitochondrial perturbation and apoptosis. In this way, a nanoformulation is developed with a unique blend of a lysosomotropic agent, an immunomodulating sulfated-polysaccharide, an adjuvant chemotherapeutic agent, and a monoclonal antibody as a broad-spectrum complex for combinatorial nanotherapy of all breast cancers. To the best of our knowledge, this manuscript illustrates for the first time the applications of advanced microscopic techniques such as electron tomography, three-dimensional rendering and segmentation of subcellular interactions, and fate of the multifunctional therapeutic gold nanocages specifically targeted toward breast cancer cells.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| | - Anindito Sen
- JEOL Ltd. 13F, Ohtemachi Nomura Building, 2-1-1 Ohtemachi Chiyoda-Ku Tokyo Japan
| | - Hiromi Ito-Tanaka
- Department of Biomedical Engineering, Research Centre for BME, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan
| | - Kazunori Kato
- Department of Biomedical Engineering, Research Centre for BME, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| | - D Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| |
Collapse
|
32
|
Mao Y, Feng S, Li S, Zhao Q, Di D, Liu Y, Wang S. Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs. Biomaterials 2018; 188:173-186. [PMID: 30359884 DOI: 10.1016/j.biomaterials.2018.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023]
Abstract
Lymphatic transport of oral drugs allows extraordinary gains in bioavailability and efficacy through avoidance of first-pass hepatic metabolism and preservation of drugs at lymphatic tissues against lymph-mediated diseases. Chylomicrons can transport dietary lipids absorbed from the intestine to the tissues through lymphatic circulation. Herein, we engineered for the first time a chylomicron-pretended mesoporous silica nanocarrier that utilizes the digestion, re-esterification, and lymphatic transport process of dietary triglyceride to promote lymphatic transport of oral drugs. Taking lopinavir (LNV) as a model antiretroviral drug with disadvantages such as poor solubility, high first-pass effect and off-target deposition, this vehicle exhibited several properties belonging to ideal nanocarriers, including high drug load, amorphous dispersion and controlled release in the gastrointestinal tract. Additionally, a nano-bio interaction was demonstrated between nanoparticles and a key protein involved in chylomicron assembly; this biochemical reaction in cellular was utilized for the first time to promote lymphatic transport of nanocarriers for oral delivery. As a result, the chylomicron-pretended nanocarrier afforded 10.6-fold higher oral bioavailability compared with free LNV and effectively delivered LNV to gut-associated lymphoid tissues, where HIV persists and actively evolves. This approach not only promises a potential application to HIV-infected individuals but also opens a new avenue to other lymph-mediated pathologies such as autoimmune diseases and lymphatic tumor metastasis.
Collapse
Affiliation(s)
- Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shuang Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shuai Li
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, PR China
| | - Yanfeng Liu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
33
|
Chen SQ, Wang C, Tao S, Wang YX, Hu FQ, Yuan H. Rational Design of Redox-Responsive and P-gp-Inhibitory Lipid Nanoparticles with High Entrapment of Paclitaxel for Tumor Therapy. Adv Healthc Mater 2018; 7:e1800485. [PMID: 29995353 DOI: 10.1002/adhm.201800485] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Indexed: 12/31/2022]
Abstract
An insufficient drug concentration at the target site and drug efflux resulting in poor efficacy is recognized as important obstacles in tumor treatment. Herein, novel lipid nanoparticles (LNPs) with redox-responsive properties based on disulfide bond-contained, quercetin (Qu)-grafted glyceryl caprylate-caprate (Gcc) are introduced (Qu-SS-Gcc LNPs). Qu-SS-Gcc LNPs show good entrapment of paclitaxel (PTX) due to π-π stacking between the aromatic rings of Qu and PTX. In vitro experiments indicate that Qu-SS-Gcc LNPs can selectively respond to high levels of reducing substances by breakdown of disulfide bonds, thus achieving rapid and efficient drug release, and only dissociate rapidly in tumor cells rather than in normal cells. Meanwhile, the Qu released concomitantly with the breakdown of disulfide bonds combines with P-gp and inhibits the drug efflux triggered by P-gp. Using an orthotopic 4T1 mouse mammary tumor model in BALB/c mice, PTX/Qu-SS-Gcc LNPs exhibit superior antitumor efficacy compared to Taxol, in addition better biosafety and inhibition of chemotherapy-triggered P-gp overexpression are achieved. Taken together, this work designs and implements redox-responsive drug release and drug efflux inhibition in tumor cells via modified LNPs, which not only leads to efficient drug release but also solves the problem of drug efflux that exists in stimulus-responsive systems.
Collapse
Affiliation(s)
- Shao-Qing Chen
- College of Pharmaceutical Sciences; Zhejiang University; Yuhangtang Road 866 Hangzhou 310058 P. R. China
| | - Cheng Wang
- College of Pharmaceutical Sciences; Zhejiang University; Yuhangtang Road 866 Hangzhou 310058 P. R. China
| | - Shan Tao
- College of Pharmaceutical Sciences; Zhejiang University; Yuhangtang Road 866 Hangzhou 310058 P. R. China
| | - Yun-Xin Wang
- College of Pharmaceutical Sciences; Zhejiang University; Yuhangtang Road 866 Hangzhou 310058 P. R. China
| | - Fu-Qiang Hu
- College of Pharmaceutical Sciences; Zhejiang University; Yuhangtang Road 866 Hangzhou 310058 P. R. China
| | - Hong Yuan
- College of Pharmaceutical Sciences; Zhejiang University; Yuhangtang Road 866 Hangzhou 310058 P. R. China
| |
Collapse
|
34
|
Protein moiety in oligochitosan modified vector regulates internalization mechanism and gene delivery: Polyplex characterization, intracellular trafficking and transfection. Carbohydr Polym 2018; 202:143-156. [PMID: 30286987 DOI: 10.1016/j.carbpol.2018.08.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Oligochitosan-modified proteins have gained attention as efficient non-viral vectors for gene delivery. However, little information exists if protein moieties can serve as an important role for internalization and endosome escape ability of the genetic material. To explore this issue, we designed two cationic oligochitosan-modified vectors that consist of different proteins, namely a hydrophobic plant protein (zein) and a hydrophilic animal protein (ovalbumin (OVA)) to deliver pDNA to epithelial cell line CHO-K1 and HEK 293 T. These cationic vectors were systematically characterized by molecular weight, infrared (IR) structural analysis, transmission electron microscopy (TEM) morphology, and surface charge. A remarkable impact of protein moieties was observed on physiochemical properties of the developed vectors. Oligochitosan-modified zein containing hydrophobic protein exhibited high buffering capacity and excellent DNA binding ability compared to the oligochitosan-modified OVA. The data on transfection in the presence of endocytic inhibitors indicated that the caveolae-mediated pathway (CvME) played a key role in the internalization of the zein-based polyplex. However, the OVA-based polyplex was internalized in CHO-K1 cells via CvME and in HEK 293 T cells via the lipid-mediated pathway. Moreover, oligochitosan-modified zein exhibited lower cytotoxicity, greater lysosomal escape ability, better plasmid stability, and better transfection efficiency than the oligochitosan-modified OVA. This study offers a facile procedure for the synthesis of cationic vectors and elucidates the relationship that exists between protein moieties and transfection activity, thus providing an alternative, non-viral platform for the gene delivery.
Collapse
|
35
|
You L, Wang J, Liu T, Zhang Y, Han X, Wang T, Guo S, Dong T, Xu J, Anderson GJ, Liu Q, Chang YZ, Lou X, Nie G. Targeted Brain Delivery of Rabies Virus Glycoprotein 29-Modified Deferoxamine-Loaded Nanoparticles Reverses Functional Deficits in Parkinsonian Mice. ACS NANO 2018; 12:4123-4139. [PMID: 29617109 DOI: 10.1021/acsnano.7b08172] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Excess iron deposition in the brain often causes oxidative stress-related damage and necrosis of dopaminergic neurons in the substantia nigra and has been reported to be one of the major vulnerability factors in Parkinson's disease (PD). Iron chelation therapy using deferoxamine (DFO) may inhibit this nigrostriatal degeneration and prevent the progress of PD. However, DFO shows very short half-life in vivo and hardly penetrates the blood brain barrier (BBB). Hence, it is of great interest to develop DFO formulations for safe and efficient intracerebral drug delivery. Herein, we report a polymeric nanoparticle system modified with brain-targeting peptide rabies virus glycoprotein (RVG) 29 that can intracerebrally deliver DFO. The nanoparticle system penetrates the BBB possibly through specific receptor-mediated endocytosis triggered by the RVG29 peptide. Administration of these nanoparticles significantly decreased iron content and oxidative stress levels in the substantia nigra and striatum of PD mice and effectively reduced their dopaminergic neuron damage and as reversed their neurobehavioral deficits, without causing any overt adverse effects in the brain or other organs. This DFO-based nanoformulation holds great promise for delivery of DFO into the brain and for realizing iron chelation therapy in PD treatment.
Collapse
Affiliation(s)
- Linhao You
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital , Brisbane , QLD 4029 , Australia
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- College of Pharmaceutical Science , Jilin University , Changchun 130021 , China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ting Wang
- Department of Radiology , The People's Liberation Army General Hospital , No. 28 Fuxing Road , Beijing 100853 , China
| | - Shanshan Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tianyu Dong
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital , Brisbane , QLD 4029 , Australia
| | - Qiang Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences , University of Science and Technology of China , Hefei 230026 , China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
| | - Xin Lou
- Department of Radiology , The People's Liberation Army General Hospital , No. 28 Fuxing Road , Beijing 100853 , China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
36
|
Vieira ACC, Chaves LL, Pinheiro M, Lima SAC, Ferreira D, Sarmento B, Reis S. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:653-663. [PMID: 29433346 DOI: 10.1080/21691401.2018.1434186] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) is still a devastating disease and more people have died of TB than any other infectious diseases throughout the history. The current therapy consists of a multidrug combination in a long-term treatment, being associated with the appearance of several adverse effects. Thus, solid lipid nanoparticles (SLNs) were developed using mannose as a lectin receptor ligand conjugate for macrophage targeting and to increase the therapeutic index of rifampicin (RIF). The developed SLNs were studied in terms of diameter, polydispersity index, zeta potential, encapsulation efficiency (EE) and loading capacity (LC). Morphology, in vitro drug release and differential scanning calorimetry studies, macrophage uptake studies, cell viability and storage stability studies were also performed. The diameter of the SLNs obtained was within the range of 160-250 nm and drug EE was above 75%. The biocompatibility of M-SLNs was verified and the internalization in macrophages was improved with the mannosylation. The overall results suggested that the developed mannosylated formulations are safe and a promising tool for TB therapy targeted for macrophages.
Collapse
Affiliation(s)
- Alexandre C C Vieira
- a UCIBIO, REQUIMTE, Departamento de Ciências Químicas , Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Luíse L Chaves
- a UCIBIO, REQUIMTE, Departamento de Ciências Químicas , Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Marina Pinheiro
- a UCIBIO, REQUIMTE, Departamento de Ciências Químicas , Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Sofia A Costa Lima
- a UCIBIO, REQUIMTE, Departamento de Ciências Químicas , Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Domingos Ferreira
- b UCIBIO, REQUIMTE, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências do Medicamento , Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Bruno Sarmento
- c I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,d INEB - Instituto de Engenharia Biomédica, Universidade do Porto , Porto , Portugal.,e CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Instituto Universitário de Ciências da Saúde , Gandra , Portugal
| | - Salette Reis
- a UCIBIO, REQUIMTE, Departamento de Ciências Químicas , Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| |
Collapse
|
37
|
Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium. J Control Release 2018; 269:159-170. [DOI: 10.1016/j.jconrel.2017.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
|
38
|
Khatri P, Shao J. Impact of digestion on the transport of dextran-loaded self-emulsified nanoemulsion through MDCK epithelial cell monolayer and rat intestines. Int J Pharm 2017; 536:353-359. [PMID: 29217473 DOI: 10.1016/j.ijpharm.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 12/03/2017] [Indexed: 01/03/2023]
Abstract
Many of the lipids and surfactants used to prepare the self-emulsified nanoemulsion (SEN) are subjected to the gastro-intestinal enzymatic digestion, which may affect the absorption of the loaded drug. The present study was to investigate the impact of such digestion on the transport of hydrophilic macromolecules (10-kDa dextran as the model compound) loaded in SEN through the MDCK cell monolayer and ex-vivo rat intestines. FITC-labeled dextran (FD) was loaded inside the inner oil phase of SEN by the formation of FD-phospholipid solid dispersion (FDPS). After digestion, the droplet size increased from 31.06 ± 2.10 nm to 494.6 ± 22.1 nm, and the FD content in the external aqueous phase increased from 41.6 ± 4.2% to 61.1 ± 4.4%. Compared to the FD solution, SEN without digestion enhanced the transport of FD through MDCK cell monolayer 4.1 times and through rat intestines 3.0-7.4 times. However, the digestion reduced the transport of FD 3.5 times through MDCK cell monolayer and 1.3-2.0 times through rat intestines, compared to that without digestion. This reduction was due to the destruction of lipid nano-droplets and release of FD to the external aqueous phase of SEN. This finding should be considered when SEN is used as a delivery system for hydrophilic macromolecules.
Collapse
Affiliation(s)
- Pulkit Khatri
- AmbioPharm, Inc., 1024 Dittman Court, North Augusta, SC, 29842, USA
| | - Jun Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
39
|
Lu CY, Ji JS, Zhu XL, Tang PF, Zhang Q, Zhang NN, Wang ZH, Wang XJ, Chen WQ, Hu JB, Du YZ, Yu RS. T2-Weighted Magnetic Resonance Imaging of Hepatic Tumor Guided by SPIO-Loaded Nanostructured Lipid Carriers and Ferritin Reporter Genes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35548-35561. [PMID: 28944659 DOI: 10.1021/acsami.7b09879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nowadays, there is a high demand for supersensitive contrast agents for the early diagnostics of hepatocarcinoma. It has been recognized that accurate imaging information is able to be achieved by constructing hepatic tumor specific targeting probes, though it still faces challenges. Here, a AGKGTPSLETTP peptide (A54)-functionalized superparamagnetic iron oxide (SPIO)-loaded nanostructured lipid carrier (A54-SNLC), which can be specifically uptaken by hepatoma carcinoma cell (Bel-7402) and exhibited ultralow imaging signal intensity with varied Fe concentration on T2-weighted imaging (T2WI), was first prepared as an effective gene carrier. Then, an endogenous ferritin reporter gene for magnetic resonance imaging (MRI) with tumor-specific promoter (AFP-promoter) was designed, which can also exhibit a decrease in signal intensity on T2WI. At last, using protamine as a cationic mediator, novel ternary nanoparticle of A54-SNLC/protamine/DNA (A54-SNPD) as an active dual-target T2-weighted MRI contrast agent for imaging hepatic tumor was achieved. Owing to the synergistic effect of A54-SNLC and AFP-promoted DNA targeting with Bel-7402 cells, T2 imaging intensity values of hepatic tumors were successfully decreased via the T2 contrast enhancement of ternary nanoparticles. It is emphasized that the novel A54-SNPD ternary nanoparticle as active dual-target T2-weighted MRI contrast agent were able to greatly increase the diagnostic sensitivity and specificity of hepatic cancer.
Collapse
Affiliation(s)
- Chen-Ying Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Jian-Song Ji
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Xiu-Liang Zhu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
| | - Pei-Feng Tang
- Department of Paper and Bioprocesss Engineering, State University of New York, College of Environmental Science and Forestry , New York 13210, United States
| | - Qian Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
| | - Nan-Nan Zhang
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Zu-Hua Wang
- College of Pharmaceutical Sciences, Guiyang College of Traditional Chinese Medicine , Guiyang 550002, China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | - Wei-Qian Chen
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Jing-Bo Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
| |
Collapse
|
40
|
Li Q, Xia D, Tao J, Shen A, He Y, Gan Y, Wang C. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption. J Pharm Sci 2017; 106:3120-3130. [DOI: 10.1016/j.xphs.2017.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/30/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
|
41
|
Li SJ, Wang XJ, Hu JB, Kang XQ, Chen L, Xu XL, Ying XY, Jiang SP, Du YZ. Targeting delivery of simvastatin using ICAM-1 antibody-conjugated nanostructured lipid carriers for acute lung injury therapy. Drug Deliv 2017; 24:402-413. [PMID: 28165814 PMCID: PMC8248938 DOI: 10.1080/10717544.2016.1259369] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute lung injury (ALI) is a critical illness without effective therapeutic modalities currently. Recent studies indicated potential efficacy of statins for ALI, while high-dose statins was suggested to be significant for attenuating inflammation in vivo. Therefore, a lung-targeted drug delivery system (DDS) delivering simvastatin (SV) for ALI therapy was developed, attempting to improve the disease with a decreased dose and minimize potential adverse effects. SV-loaded nanostructured lipid carriers (SV/NLCs) with different size were prepared primarily. With particle size increasing from 143.7 nm to 337.8 nm, SV/NLCs showed increasing drug-encapsulated efficiency from 66.70% to 91.04%. Although larger SV/NLCs exhibited slower in vitro cellular uptake by human vascular endothelial cell line EAhy926 at initial stage, while in vivo distribution demonstrated higher pulmonary accumulation of the larger ones. Thus, the largest size SV/NLCs (337.8 nm) were conjugated with intercellular adhesion molecule 1 (ICAM-1) antibody (anti-ICAM/SV/NLCs) for lung-targeted study. The anti-ICAM/SV/NLCs exhibited ideal lung-targeted characteristic in lipopolysaccharide-induced ALI mice. In vivo i.v. administration of anti-ICAM/SV/NLCs attenuated TNF-α, IL-6 and inflammatory cells infiltration more effectively than free SV or non-targeted SV/NLCs after 48-h administration. Significant histological improvements by anti-ICAM/SV/NLCs were further revealed by H&E stain. Therefore, ICAM-1 antibody-conjugated NLCs may represent a potential lung-targeted DDS contributing to ALI therapy by statins.
Collapse
Affiliation(s)
- Shu-Juan Li
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , PR China and
| | - Xiao-Juan Wang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , PR China and
| | - Jing-Bo Hu
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , PR China and
| | - Xu-Qi Kang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , PR China and
| | - Li Chen
- b Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou , PR China
| | - Xiao-Ling Xu
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , PR China and
| | - Xiao-Ying Ying
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , PR China and
| | - Sai-Ping Jiang
- b Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou , PR China
| | - Yong-Zhong Du
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , PR China and
| |
Collapse
|
42
|
Deng F, Zhang H, Wang X, Zhang Y, Hu H, Song S, Dai W, He B, Zheng Y, Wang X, Zhang Q. Transmembrane Pathways and Mechanisms of Rod-like Paclitaxel Nanocrystals through MDCK Polarized Monolayer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5803-5816. [PMID: 28116899 DOI: 10.1021/acsami.6b15151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Drug nanocrystals (NCs) appear to be favorable to improving oral bioavailability of poorly water-soluble drugs as evidenced by the great success they have had in the market. However, the pathway and mechanism of drug NCs through epithelial membrane are still unclear. In an attempt to clarify their transport features, paclitaxel nanocrystals (PTX-NCs), and paclitaxel hybrid NCs with lipophilic carbocyanine dyes, were prepared and characterized as the models. The endocytosis, intracellular trafficking, paracellular transport, and transcytosis of PTX-NCs were carefully investigated with Förster resonance energy transfer (FRET) analysis, as well as a colocalization assay, flow cytometry, gene silencing, Western-blot, transepithelial electrical resistance (TEER) study and other approaches on MDCK cells. It was found that rod-like PTX-NCs could transport through the monolayer intact, and the process of endocytosis proved to be time and energy dependent. Endoplasmic reticulum (ER) and Golgi complexes were colocalized with PTX-NCs in cells, so the ER-Golgi complexes/Golgi complexes-basolateral membrane pathway may be involved in the intracellular trafficking and transcytosis of PTX-NCs. It was demonstrated here that cav-1, dynamin, and actin filament modulated the endocytosis process, and Cdc 42 regulated the transcytosis process. In addition, no paracellular transport of PTX-NCs was observed. These findings demonstrated that the rod-like nanocrystals not only enhanced the transcytosis of PTX compared with microparticles of raw drug materials but also changed the pathways of drug delivery. This study certainly provides insight for the oral absorption mechanism of nanocrystals of poorly soluble drugs.
Collapse
Affiliation(s)
- Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Hongxiang Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Siyang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, China
| |
Collapse
|
43
|
Kono Y, Iwasaki A, Matsuoka K, Fujita T. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells. Biol Pharm Bull 2017; 39:1293-9. [PMID: 27476939 DOI: 10.1248/bpb.b16-00050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro.
Collapse
Affiliation(s)
- Yusuke Kono
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | | | | | | |
Collapse
|
44
|
Wang XJ, Gao YP, Lu NN, Li WS, Xu JF, Ying XY, Wu G, Liao MH, Tan C, Shao LX, Lu YM, Zhang C, Fukunaga K, Han F, Du YZ. Endogenous Polysialic Acid Based Micelles for Calmodulin Antagonist Delivery against Vascular Dementia. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35045-35058. [PMID: 27750011 DOI: 10.1021/acsami.6b13052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clinical treatment for vascular dementia still remains a challenge mainly due to the blood-brain barrier (BBB). Here, a micelle based on polysialic acid (PSA), which is a hydrophilic and endogenous carbohydrate polymer, was designed to deliver calmodulin antagonist for therapy of vascular dementia. PSA was first chemically conjugated with octadecylamine (ODA), and the obtained PSA-ODA copolymer could self-assemble into micelle in aqueous solution with a 120.0 μg/mL critical micelle concentration. The calmodulin antagonist loaded PSA-ODA micelle, featuring sustained drug release behavior over a period of 72 h with a 3.6% (w/w) drug content and a 107.0 ± 4.0 nm size was then fabricated. The PSA-ODA micelle could cross the BBB mainly via active endocytosis by brain endothelial cells followed by transcytosis. In a water maze test for spatial learning, calmodulin antagonist loaded PSA-ODA micelle significantly reduced the escape latencies of right unilateral common carotid arteries occlusion (rUCCAO) mice with dosage significantly reduced versus free drug. The decrease of hippocampal phospho-CaMKII (Thr286/287) and phospho-synapsin I (Ser603) was partially restored in rUCCAO mice following calmodulin antagonist loaded PSA-ODA micelle treatment. Consistent with the restored CaMKII phosphorylation, the elevation of BrdU/NeuN double-positive cells in the same context was also observed. Overall, the PSA-ODA micelle developed from the endogenous material might promote the development of therapeutic approaches for improving the efficacy of brain-targeted drug delivery and have great potential for vascular dementia treatment.
Collapse
Affiliation(s)
| | - Yin-Ping Gao
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai 980-8574, Japan
| | | | | |
Collapse
|
45
|
Shah RM, Eldridge DS, Palombo EA, Harding IH. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. Int J Pharm 2016; 515:543-554. [DOI: 10.1016/j.ijpharm.2016.10.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/24/2016] [Indexed: 01/21/2023]
|
46
|
Ling G, Zhang T, Zhang P, Sun J, He Z. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition. Int J Nanomedicine 2016; 11:4077-91. [PMID: 27601896 PMCID: PMC5003557 DOI: 10.2147/ijn.s95767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multidrug resistance (MDR) is a severe obstacle to successful chemotherapy due to its complicated nature that involves multiple mechanisms, such as drug efflux by transporters (P-glycoprotein and breast cancer resistance protein, BCRP) and anti-apoptotic defense (B-cell lymphoma, Bcl-2). To synergistically and completely reverse MDR by simultaneous inhibition of pump and non-pump cellular resistance, three-in-one multifunctional lipid-sodium glycocholate (GcNa) nanocarriers (TMLGNs) have been designed for controlled co-delivery of water-soluble cationic mitoxantrone hydrochloride (MTO), cyclosporine A (CsA – BCRP inhibitor), and GcNa (Bcl-2 inhibitor). GcNa and dextran sulfate were incorporated as anionic compounds to enhance the encapsulation efficiency of MTO (up to 97.8%±1.9%) and sustain the release of cationic MTO by electrostatic interaction. The results of a series of in vitro and in vivo investigations indicated that the TMLGNs were taken up by the resistant cancer cells by an endocytosis pathway that escaped the efflux induced by BCRP, and the simultaneous release of CsA with MTO further efficiently inhibited the efflux of the released MTO by BCRP; meanwhile GcNa induced the apoptosis process, and an associated synergistic antitumor activity and reversion of MDR were achieved because the reversal index was almost 1.0.
Collapse
Affiliation(s)
- Guixia Ling
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Peng Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
47
|
Zhang J, Liu D, Zhang M, Sun Y, Zhang X, Guan G, Zhao X, Qiao M, Chen D, Hu H. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. Int J Nanomedicine 2016; 11:3677-90. [PMID: 27536106 PMCID: PMC4977074 DOI: 10.2147/ijn.s106418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Dan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Mengjun Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Yuqi Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang; Department of Pharmaceutics, School of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning Province, People's Republic of China
| | - Xiaojun Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Guannan Guan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Xiuli Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang
| |
Collapse
|
48
|
Fan W, Xia D, Zhu Q, Hu L, Gan Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov Today 2016; 21:856-63. [DOI: 10.1016/j.drudis.2016.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
|
49
|
Chai GH, Xu Y, Chen SQ, Cheng B, Hu FQ, You J, Du YZ, Yuan H. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and their Related Cytotoxicology. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5929-5940. [PMID: 26860241 DOI: 10.1021/acsami.6b00821] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Solid lipid nanoparticles (SLNs) have been extensively investigated and demonstrated to be a potential nanocarriers for improving oral bioavailability of many drugs. However, the molecular mechanisms related to this discovery are not yet understood. Here, the molecular transport mechanisms of the SLNs crossing simulative intestinal epithelial cell monolayers (Caco-2 cell monolayers) were studied. The cytotoxicology results of the SLNs in Caco-2 cells demonstrated that the nanoparticles had low cytotoxicity, had no effect on the integrity of the cell membrane, did not induce oxidative stress, and could significantly reduce cell membrane fluidity. The endocytosis of the SLNs was time-dependent, and their delivery was energy-dependent. For the first time, the transport of the SLNs was directly verified to be a vesicle-mediated process. The internalization of the SLNs was mediated by macropinocytosis pathway and clathrin- and caveolae (or lipid raft)-related routes. Transferrin-related endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus were confirmed to be the main destinations of the SLNs in Caco-2 cells. As for the transport of the SLNs in Caco-2 cell monolayers, the results demonstrated that the SLNs transported to the basolateral side were intact, and the transport of the nanoparticles did not destroy the structure of tight junctions. The transcytosis of the SLNs across the Caco-2 cell monolayer was demonstrated to be mediated by the same routes as that in the endocytosis study. The ER, Golgi apparatus, and microtubules were confirmed to be important for the transport of the SLNs to both the basolateral and apical membrane sides. This study provides a more thoroughly understand of SLNs transportation crossing intestinal epithelial cell monolayers and could be beneficial for the fabrication of SLNs.
Collapse
Affiliation(s)
- Gui-Hong Chai
- Institute of Pharmaceutics, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yingke Xu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University , Hangzhou 310027, China
| | - Shao-Qing Chen
- Institute of Pharmaceutics, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bolin Cheng
- Institute of Pharmaceutics, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fu-Qiang Hu
- Institute of Pharmaceutics, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian You
- Institute of Pharmaceutics, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hong Yuan
- Institute of Pharmaceutics, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
50
|
Chai G, Meng Y, Chen S, Hu F, Gan Y, Yuan H. Transport features and structural optimization of solid lipid nanoparticles crossing the intestinal epithelium. RSC Adv 2016. [DOI: 10.1039/c6ra12978a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vitro simulated intestinal epithelial cell monolayer is a novel avenue to screen optimal SLNs formulations.
Collapse
Affiliation(s)
- Guihong Chai
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- Shanghai Institute of Materia Medica
| | - Yufang Meng
- Zhejiang Medicine Co., Ltd
- Xinchang Pharmaceutical Factory
- Xinchang 312500
- China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Yong Gan
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Hong Yuan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|