1
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
3
|
Toprak K, Inanır M, Memioğlu T, Kaplangoray M, Palice A, Tascanov MB. Could Zonulin and Presepsin Be Biomarkers and Therapeutic Targets for Acute Myocarditis? Arq Bras Cardiol 2023; 120:e20230017. [PMID: 37556677 PMCID: PMC10464857 DOI: 10.36660/abc.20230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The diagnosis of acute myocarditis is usually made with clinical and laboratory parameters. This can sometimes be mixed up with diseases that have similar clinical features, making the diagnosis difficult. Therefore, the use of more specific biomarkers, in addition to the classically used biomarkers such as troponin, will accelerate the diagnosis. In addition, these biomarkers may help us to understand the mechanism of myocarditis development and thus predict unpredictable clinical outcomes. OBJECTIVE This study aims to reveal the possible relationship between intestinal permeability and acute myocarditis. METHODS In this study, we wanted to evaluate serum levels of zonulin and presepsin in 138 consecutive subjects, including 68 patients with myocarditis and another 70 as the control group, matched for age, gender, and cardiovascular risk factors. P-values <0.05 were considered to be statistically significant. RESULTS Compared to the control group, zonulin and presepsin were significantly higher in the patient group with myocarditis (p < 0.001, for all). Zonulin levels were positively correlated with presepsin, peak CK-MB, and peak troponin levels (r = 0.461, p < 0.001; r = 0.744, p < 0.001; r = 0.627, p < 0.001; respectively). In regression analysis, presepsin and zonulin were determined as independent predictors for myocarditis (OR 1.002, 95% CI 1.001-1.003, p = 0.025; OR 12.331, 95% CI 4.261-35.689; p < 0.001; respectively). The predictive value of acute myocarditis of presepsin and zonulin in ROC curve analysis was statistically significant (p < 0.001, for both). CONCLUSION This study showed that zonulin and presepsin could be biomarkers that can be used in the diagnosis of myocarditis, and they can also be therapeutic targets by shedding light on the developmental mechanism of myocarditis.
Collapse
Affiliation(s)
- Kenan Toprak
- Harran UniversityFaculty of MedicineDepartment of CardiologySanliurfaTurquiaHarran University Faculty of Medicine – Department of Cardiology, Sanliurfa – Turquia
| | - Mehmet Inanır
- Abant Izzet Baysal University HospitalBoluTurquiaAbant Izzet Baysal University Hospital – Cardiology, Bolu – Turquia
| | - Tolga Memioğlu
- Abant Izzet Baysal University HospitalBoluTurquiaAbant Izzet Baysal University Hospital – Cardiology, Bolu – Turquia
| | - Mustafa Kaplangoray
- Sanliurfa Mehmet Akif Inan Training and ResearchSanliurfaTurquiaSanliurfa Mehmet Akif Inan Training and Research – Cardiology, Sanliurfa – Turquia
| | - Ali Palice
- Sanliurfa Mehmet Akif Inan Training and ResearchSanliurfaTurquiaSanliurfa Mehmet Akif Inan Training and Research – Cardiology, Sanliurfa – Turquia
| | - Mustafa Begenc Tascanov
- Harran UniversityFaculty of MedicineDepartment of CardiologySanliurfaTurquiaHarran University Faculty of Medicine – Department of Cardiology, Sanliurfa – Turquia
| |
Collapse
|
4
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
5
|
|
6
|
Luo H, Zheng J, Chen Y, Wang T, Zhang Z, Shan Y, Xu J, Yue M, Fang W, Li X. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro. Front Microbiol 2020; 11:821. [PMID: 32390999 PMCID: PMC7191032 DOI: 10.3389/fmicb.2020.00821] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel emerging enteric coronavirus found in pigs. Intestinal enteroids, which partially recreate the structure and function of intestinal villi-crypts, have many physiological similarities to the intestinal tissues in vivo. Enteroids exhibit advantages in studying the interactions between intestines and enteric pathogens. To create a novel infection model for PDCoV, we developed an in vitro system to generate porcine intestinal enteroids from crypts of duodenum, jejunum, and ileum of pigs. Enterocytes, enteroendocrine cells, Paneth cells, stem cells, proliferating cells, and goblet cells were found in the differentiated enteroids. Replication of PDCoV was detected in the cultured enteroids by immunofluorescence and quantitative RT-PCR. Double immunofluorescence labeling demonstrated that PDCoV was present in Sox9-positive intestinal cells and Villin1-positive enterocytes. There were multiple cellular responses shown as changes of transcription of genes related to mucosal immunity, antiviral genes, and marker genes of stem cells and other cells in the enteroids infected with PDCoV. We conclude that the 2-D enteroids derived from porcine jejunum can be used as an in vitro multicellular model for the investigation of pathogenesis and host immune responses to porcine enteric pathogens, such as PDCoV.
Collapse
Affiliation(s)
- Hao Luo
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jingyou Zheng
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yunlu Chen
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tingjun Wang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenning Zhang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying Shan
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jidong Xu
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Yue
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weihuan Fang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Oral Vaccination with Replication-Competent Adenovirus in Mice Reveals Dissemination of the Viral Vaccine beyond the Gastrointestinal Tract. J Virol 2019; 93:JVI.00237-19. [PMID: 30996103 DOI: 10.1128/jvi.00237-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/13/2019] [Indexed: 01/11/2023] Open
Abstract
Since the 1970s, replication-competent human adenoviruses 4 and 7 have been used as oral vaccines to protect U.S. soldiers against the severe respiratory diseases caused by these viruses. These vaccines are thought to establish a digestive tract infection conferring protection against respiratory challenge through antibodies. The success of these vaccines makes replication-competent adenoviruses attractive candidates for use as oral vaccine vectors. However, the inability of human adenoviruses to replicate efficiently in laboratory animals has hampered the study of such vectors. Here, we used mouse adenovirus type 1 (MAV-1) in mice to study oral replication-competent adenovirus-based vaccines. We show that MAV-1 oral administration provides protection that recapitulates the protection against homologous respiratory challenge observed with adenovirus 4 and 7 vaccines. Moreover, live oral MAV-1 vaccine better protected against a respiratory challenge than inactivated vaccines. This protection was linked not only with the presence of MAV-1-specific antibodies but also with a better recruitment of effector CD8 T cells. However, unexpectedly, we found that such oral replication-competent vaccine systemically spread all over the body. Our results therefore support the use of MAV-1 to study replication-competent oral adenovirus-based vaccines but also highlight the fact that those vaccines can disseminate widely in the body.IMPORTANCE Replication-competent adenoviruses appear to be promising vectors for the development of oral vaccines in humans. However, the study and development of these vaccines suffer from the lack of any reliable animal model. In this study, mouse adenovirus type 1 was used to develop a small-animal model for oral replication-competent adenovirus vaccines. While this model reproduced in mice what is observed with human adenovirus oral vaccines, it also highlighted that oral immunization with such a replication-competent vaccine is associated with the systemic spread of the virus. This study is therefore of major importance for the future development of such vaccine platforms and their use in large human populations.
Collapse
|
8
|
Cole H, Bryan D, Lancaster L, Mawas F, Vllasaliu D. Chitosan nanoparticle antigen uptake in epithelial monolayers can predict mucosal but not systemic in vivo immune response by oral delivery. Carbohydr Polym 2018; 190:248-254. [DOI: 10.1016/j.carbpol.2018.02.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
|
9
|
Revaud J, Unterfinger Y, Rol N, Suleman M, Shaw J, Galea S, Gavard F, Lacour SA, Coulpier M, Versillé N, Havenga M, Klonjkowski B, Zanella G, Biacchesi S, Cordonnier N, Corthésy B, Ben Arous J, Richardson JP. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination. Front Cell Infect Microbiol 2018; 8:6. [PMID: 29423380 PMCID: PMC5788964 DOI: 10.3389/fcimb.2018.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches.
Collapse
Affiliation(s)
- Julien Revaud
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.,SEPPIC Paris La Défense, Paris, France
| | - Yves Unterfinger
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Nicolas Rol
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Muhammad Suleman
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Julia Shaw
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Galea
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Françoise Gavard
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sandrine A Lacour
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Coulpier
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | | | | - Bernard Klonjkowski
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Gina Zanella
- Anses, Epidemiology Unit, Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | | | - Nathalie Cordonnier
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Jennifer P Richardson
- UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
10
|
Buckinx R, Timmermans JP. Targeting the gastrointestinal tract with viral vectors: state of the art and possible applications in research and therapy. Histochem Cell Biol 2016; 146:709-720. [PMID: 27665281 DOI: 10.1007/s00418-016-1496-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
While there is a large body of preclinical data on the use of viral vectors in gene transfer, relatively little is known about viral gene transfer in the gastrointestinal tract. Viral vector technology is especially underused in the field of neurogastroenterology when compared to brain research. This review provides an overview of the studies employing viral vectors-in particular retroviruses, adenoviruses and adeno-associated viruses-to transduce different cell types in the intestine. Early work mainly focused on mucosal transduction, but had limited success due to the harsh luminal conditions in the gastrointestinal tract and the high turnover rate of enterocytes. More recently, several studies have successfully employed viral gene transfer to target the enteric nervous system and its progenitors. Although several hurdles still need to be overcome, in particular on how to augment transduction efficiency and specific cell targeting, viral vector technology holds strong potential not only as a valid research tool in fundamental gastroenterological research but also as a therapeutic agent in translational (bio)medical research.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
11
|
Asai T, Morrison SL. The SRC family tyrosine kinase HCK and the ETS family transcription factors SPIB and EHF regulate transcytosis across a human follicle-associated epithelium model. J Biol Chem 2013; 288:10395-405. [PMID: 23439650 DOI: 10.1074/jbc.m112.437475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A critical step in the induction of adaptive mucosal immunity is antigen transcytosis, in which luminal antigens are transported to organized lymphoid tissues across the follicle-associated epithelium (FAE) of Peyer's patches. However, virtually nothing is known about intracellular signaling proteins and transcription factors that regulate apical-to-basolateral transcytosis. The FAE can transcytose a variety of luminal contents, including inert particles, in the absence of specific opsonins. Furthermore, it expresses receptors for secretory immunoglobulin A (SIgA), the main antibody in mucosal secretions, and uses them to efficiently transcytose SIgA-opsonized particles present in the lumen. Using a human FAE model, we show that the tyrosine kinase HCK regulates apical-to-basolateral transcytosis of non-opsonized and SIgA-opsonized particles. We also show that, in cultured intestinal epithelial cells, ectopic expression of the transcription factor SPIB or EHF is sufficient to activate HCK-dependent apical-to-basolateral transcytosis of these particles. Our results provide the first molecular insights into the intracellular regulation of antigen sampling at mucosal surfaces.
Collapse
Affiliation(s)
- Tsuneaki Asai
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California 90095, USA.
| | | |
Collapse
|
12
|
The PDZ1 and PDZ3 domains of MAGI-1 regulate the eight-exon isoform of the coxsackievirus and adenovirus receptor. J Virol 2012; 86:9244-54. [PMID: 22718816 DOI: 10.1128/jvi.01138-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epithelial integrity is essential for homeostasis and poses a formidable barrier to pathogen entry. Major factors for viral entry into epithelial cells are the localization and abundance of the primary receptor. The coxsackievirus and adenovirus receptor (CAR) is a primary receptor for these two pathogenic groups of viruses. In polarized epithelia, a low-abundance, alternatively spliced eight-exon isoform of CAR, CAR(Ex8), is localized apically where it can support viral infection from the air-exposed surface. Using biochemical, cell biology, genetic, and spectroscopic approaches, we show that the levels of apical CAR(Ex8) are negatively regulated by the PDZ domain-containing protein MAGI-1 (membrane-associated guanylate kinase with inverted orientation protein-1) and that two MAGI-1 PDZ domains, PDZ1 and PDZ3, regulate CAR(Ex8) levels in opposing ways. Similar to full-length MAGI-1, expression of the isolated PDZ3 domain significantly reduces cell surface CAR(Ex8) abundance and adenovirus infection. In contrast, the PDZ1 domain is able to rescue CAR(Ex8) and adenovirus infection from MAGI-1-mediated suppression. These data suggest a novel cell-based strategy to either suppress viral infection or augment adenovirus-based gene therapy.
Collapse
|
13
|
Polyak S, Mach A, Porvasnik S, Dixon L, Conlon T, Erger KE, Acosta A, Wright AJ, Campbell-Thompson M, Zolotukhin I, Wasserfall C, Mah C. Identification of adeno-associated viral vectors suitable for intestinal gene delivery and modulation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G296-308. [PMID: 22114116 DOI: 10.1152/ajpgi.00562.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effective gene transfer with sustained gene expression is an important adjunct to the study of intestinal inflammation and future therapy in inflammatory bowel disease. Recombinant adeno-associated virus (AAV) vectors are ideal for gene transfer and long-term transgene expression. The purpose of our study was to identify optimal AAV pseudotypes for transduction of the epithelium in the small intestine and colon, which could be used for studies in experimental colitis. The tropism and transduction efficiencies of AAV pseudotypes 1-10 were examined in murine small intestine and colon 8 wk after administration by real-time PCR and immunohistochemistry. The clinical and histopathological effects of IL-10-mediated intestinal transduction delivered by AAVrh10 were examined in the murine IL-10⁻/⁻ enterocolitis model. Serum IL-10 levels and IL-10 expression were followed by ELISA and real-time PCR, respectively. AAV pseudotypes 4, 7, 8, 9, and 10 demonstrated optimal intestinal transduction. Transgene expression was sustained 8 wk after administration and was frequently observed in enteroendocrine cells. Long-term IL-10 gene expression and serum IL-10 levels were observed following AAV transduction in an IL-10-/- model of enterocolitis. Animals treated with AAVrh10-IL-10 had lower disease activity index scores, higher colon weight-to-length ratios, and lower microscopic inflammation scores. This study identifies novel AAV pseudotypes with small intestine and colon tropism and sustained transgene expression capable of modulating mucosal inflammation in a murine model of enterocolitis.
Collapse
Affiliation(s)
- Steven Polyak
- Univ. of Iowa College of Medicine, 200 Hawkins Dr., JCP4574, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
O'Neill MJ, Bourre L, Melgar S, O'Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 2011; 16:203-18. [PMID: 21262379 DOI: 10.1016/j.drudis.2011.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/18/2010] [Accepted: 01/14/2011] [Indexed: 01/12/2023]
Abstract
The future of nucleic acid-based therapeutics is dependent on achieving successful delivery. Recently, there has been an increasing interest in delivery via the gastrointestinal tract. Gene therapy via this route has many advantages, including non-invasive access and the versatility to treat local diseases, such as inflammatory bowel disease, as well as systemic diseases, such as haemophilia. However, the intestine presents several distinct barriers and, therefore, the design of robust non-viral delivery systems is key to future success. Several non-viral delivery strategies have provided evidence of activity in vivo. To facilitate the design of more efficient and safe gene medicines, more physiologically relevant models, at both the in vitro and in vivo levels, are essential.
Collapse
Affiliation(s)
- Martin J O'Neill
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
15
|
Tanaka K, Kanazawa T, Ogawa T, Suda Y, Takashima Y, Fukuda T, Okada H. A Novel, Bio-Reducible Gene Vector Containing Arginine and Histidine Enhances Gene Transfection and Expression of Plasmid DNA. Chem Pharm Bull (Tokyo) 2011; 59:202-7. [DOI: 10.1248/cpb.59.202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Tanaka
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Takanori Kanazawa
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Takaya Ogawa
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yumiko Suda
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yuuki Takashima
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | - Hiroaki Okada
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|