1
|
Nowotnick AG, Xi Z, Jin Z, Khalatbarizamanpoor S, Brauer DS, Löffler B, Jandt KD. Antimicrobial Biomaterials Based on Physical and Physicochemical Action. Adv Healthc Mater 2024:e2402001. [PMID: 39301968 DOI: 10.1002/adhm.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Developing effective antimicrobial biomaterials is a relevant and fast-growing field in advanced healthcare materials. Several well-known (e.g., traditional antibiotics, silver, copper etc.) and newer (e.g., nanostructured, chemical, biomimetic etc.) approaches have been researched and developed in recent years and valuable knowledge has been gained. However, biomaterials associated infections (BAIs) remain a largely unsolved problem and breakthroughs in this area are sparse. Hence, novel high risk and potential high gain approaches are needed to address the important challenge of BAIs. Antibiotic free antimicrobial biomaterials that are largely based on physical action are promising, since they reduce the risk of antibiotic resistance and tolerance. Here, selected examples are reviewed such antimicrobial biomaterials, namely switchable, protein-based, carbon-based and bioactive glass, considering microbiological aspects of BAIs. The review shows that antimicrobial biomaterials mainly based on physical action are powerful tools to control microbial growth at biomaterials interfaces. These biomaterials have major clinical and application potential for future antimicrobial healthcare materials without promoting microbial tolerance. It also shows that the antimicrobial action of these materials is based on different complex processes and mechanisms, often on the nanoscale. The review concludes with an outlook and highlights current important research questions in antimicrobial biomaterials.
Collapse
Affiliation(s)
- Adrian G Nowotnick
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhongqian Xi
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhaorui Jin
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Sadaf Khalatbarizamanpoor
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Delia S Brauer
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Bettina Löffler
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| |
Collapse
|
2
|
Zhou J, Ji X, Wang H, Hsu JC, Hua C, Yang X, Liu Z, Guo H, Huang Y, Li Y, Cai W, Lin X, Ni D. Design of Ultrasound-Driven Charge Interference Therapy for Wound Infection. NANO LETTERS 2024; 24:7868-7878. [PMID: 38912706 PMCID: PMC11334693 DOI: 10.1021/acs.nanolett.4c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Wound infections, especially those caused by pathogenic bacteria, present a considerable public health concern due to associated complications and poor therapeutic outcomes. Herein, we developed antibacterial nanoparticles, namely, PGTP, by coordinating guanidine derivatives with a porphyrin-based sonosensitizer. The synthesized PGTP nanoparticles, characterized by their strong positive charge, effectively disrupted the bacterial biosynthesis process through charge interference, demonstrating efficacy against both Gram-negative and Gram-positive bacteria. Additionally, PGTP nanoparticles generated reactive oxygen species under ultrasound stimulation, resulting in the disruption of biofilm integrity and efficient elimination of pathogens. RNA-seq analysis unveiled the detailed mechanism of wound healing, revealing that PGTP nanoparticles, when coupled with ultrasound, impair bacterial metabolism by interfering with the synthesis and transcription of amino acids. This study presents a novel approach to combatting wound infections through ultrasound-driven charge-interfering therapy, facilitated by advanced antibacterial nanomaterials.
Collapse
Affiliation(s)
- Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xi Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zeyang Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Huang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| |
Collapse
|
3
|
Li Y, Xiao H, Qin X, Zhang H, Zheng Y, Cai R, Pang W. Carboxyfullerene C60 preserves porcine sperm by enhancing antioxidant capacity and inhibiting apoptosis and harmful bacteria. J Anim Sci 2024; 102:skae196. [PMID: 39008364 PMCID: PMC11345516 DOI: 10.1093/jas/skae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/13/2024] [Indexed: 07/17/2024] Open
Abstract
This study used a porcine model to systematically investigate whether carboxyfullerene C60(CF-C60) can be used for sperm preservation. The results indicated that CF-C60 supplementation can preserve porcine sperm quality during storage at 17 °C. This effect was attributable to an improvement in the antioxidant capacity of sperm through a decrease in the reactive oxygen species (ROS) level. Additionally, CF-C60 can maintain mitochondrial function, inhibit sperm apoptosis through the ROS/Cytochrome C (Cyt C)/Caspase 3 signaling pathway, and mediate suppression of bacterial growth through the effects of ROS. Finally, the results of artificial insemination experiments indicated that insemination with CF-C60-treated sperm can increase the total number of offspring born and reduce the number of deformed piglets. Thus, CF-C60 is safe for use as a component of semen diluent for sperm storage.
Collapse
Affiliation(s)
- Yuqing Li
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoqi Xiao
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue Qin
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haize Zhang
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Cai
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
5
|
Aflakian F, Mirzavi F, Aiyelabegan HT, Soleimani A, Gholizadeh Navashenaq J, Karimi-Sani I, Rafati Zomorodi A, Vakili-Ghartavol R. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur J Pharm Sci 2023; 188:106515. [PMID: 37402428 DOI: 10.1016/j.ejps.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University-Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq
| | | | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Mayani SV, Bhatt SP, Mayani VJ, Sanghvi G. Development of sustainable strontium ferrite graphene nanocomposite for highly effective catalysis and antimicrobial activity. Sci Rep 2023; 13:6678. [PMID: 37095200 PMCID: PMC10126001 DOI: 10.1038/s41598-023-33901-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Graphene oxide (GO) has layered structure with carbon atoms that are highly coated with oxygen-containing groups, increasing the interlayer distance while simultaneously making hydrophilic atomic-thick layers. It is exfoliated sheets that only have one or a few layers of carbon atoms. In our work, Strontium Ferrite Graphene Composite (SF@GOC) has been synthesized and thoroughly characterized by physico-chemical methods like XRD, FTIR, SEM-EDX, TEM, AFM, TGA and Nitrogen adsorption desorption analysis. A very few catalysts have been manufactured so far that are capable of degrading Eosin-Y and Orange (II) dyes in water by heterogeneous catalytic method. The current study offers an overview of the recyclable nanocomposite SF@GOC used in mild reaction conditions to breakdown the hazardous water pollutant dyes Eosin-Y (96.2%) and Orange (II) (98.7%). The leaching experiment has demonstrated that the use of the transition metals strontium and iron have not result in any secondary contamination. Moreover, antibacterial and antifungal assay have been investigated. SF@GOC has shown greater activity with bacterial and fungal species while compared with GO. FESEM analysis shows that the bactericidal mechanism for SF@GOC is same in both gram-negative bacteria. The difference in the antifungal activity among the candida strains can be correlated with the movement of ions release (slower and faster) of synthesized nanoscrolls in SF@GOC. In comparison to previous reports, this new environmentally safe and novel catalyst showed substantial degrading activity. It can also be applied to new multifunctional processes such as in the fields of composite materials, solar energy, heterogeneous catalysis and biomedical applications.
Collapse
Affiliation(s)
- Suranjana V Mayani
- Department of Chemistry, Marwadi University, Rajkot-Morbi Road, P.O. Gauridad, Rajkot, Gujarat, 360003, India.
| | - Sandip P Bhatt
- Department of Chemistry, Marwadi University, Rajkot-Morbi Road, P.O. Gauridad, Rajkot, Gujarat, 360003, India
| | - Vishal J Mayani
- Hansgold ChemDiscovery Center (HCC), Hansgold ChemDiscoveries Pvt. Ltd., Rajkot, Gujarat, India
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot-Morbi Road, P.O. Gauridad, Rajkot, Gujarat, 360003, India
| |
Collapse
|
7
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
8
|
Ryan A, Patel P, Ratrey P, O'Connor PM, O'Sullivan J, Ross RP, Hill C, Hudson SP. The development of a solid lipid nanoparticle (SLN)-based lacticin 3147 hydrogel for the treatment of wound infections. Drug Deliv Transl Res 2023:10.1007/s13346-023-01332-9. [PMID: 36964439 PMCID: PMC10382363 DOI: 10.1007/s13346-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
Chronic wounds affect millions of people globally. This number is set to rise with the increasing incidence of antimicrobial-resistant bacterial infections, such as methicillin-resistant Staphylococcus aureus (MRSA), which impair the healing of chronic wounds. Lacticin 3147 is a two-peptide chain bacteriocin produced by Lactococcus lactis that is active against S. aureus including MRSA strains. Previously, poor physicochemical properties of the peptides were overcome by the encapsulation of lacticin 3147 into solid lipid nanoparticles. Here, a lacticin 3147 solid lipid nanoparticle gel is proposed as a topical treatment for S. aureus and MRSA wound infections. Initially, lacticin 3147's antimicrobial activity against S. aureus was determined before encapsulation into solid lipid nanoparticles. An optimised gel formulation with the desired physicochemical properties for topical application was developed, and the lacticin-loaded solid lipid nanoparticles and free lacticin 3147 aqueous solution were incorporated into separate gels. The release of lacticin 3147 from both the solid lipid nanoparticle and free lacticin gels was measured where the solid lipid nanoparticle gel exhibited increased activity for a longer period (11 days) compared to the free lacticin gel (9 days). Both gels displayed potent activity ex vivo against S. aureus-infected pig skin with significant bacterial eradication (> 75%) after 1 h. Thus, a long-acting potent lacticin 3147 solid lipid nanoparticle gel with the required physicochemical properties for topical delivery of lacticin 3147 to the skin for the potential treatment of S. aureus-infected chronic wounds was developed.
Collapse
Affiliation(s)
- Aoibhín Ryan
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Pratikkumar Patel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Poonam Ratrey
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Julie O'Sullivan
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
- SSPC the SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick, Ireland.
| |
Collapse
|
9
|
Chakachaka V, Mahlangu O, Tshangana C, Mamba B, Muleja A. Highly adhesive CoFe2O4 nanoengineered PES membranes for salts and Naproxen removal and antimicrobial activities. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Niu B, Zhang G. Effects of Different Nanoparticles on Microbes. Microorganisms 2023; 11:542. [PMID: 36985116 PMCID: PMC10054709 DOI: 10.3390/microorganisms11030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Nanoparticles widely exist in nature and may be formed through inorganic or organic pathways, exhibiting unique physical and chemical properties different from those of bulk materials. However, little is known about the potential consequences of nanomaterials on microbes in natural environments. Herein, we investigated the interactions between microbes and nanoparticles by performing experiments on the inhibition effects of gold, ludox and laponite nanoparticles on Escherichia coli in liquid Luria-Bertani (LB) medium at different nanoparticle concentrations. These nanoparticles were shown to be effective bactericides. Scanning electron microscopy (SEM) images revealed the distinct aggregation of cells and nanoparticles. Transmission electron microscopy (TEM) images showed considerable cell membrane disruption due to nanoparticle accumulation on the cell surfaces, resulting in cell death. We hypothesized that this nanoparticle accumulation on the cell surfaces not only disrupted the cell membranes but also physically blocked the microbes from accessing nutrients. An iron-reducing bacterium, Shewanella putrefaciens, was tested for its ability to reduce the Fe (III) in solid ferrihydrite (HFO) or aqueous ferric citrate in the presence of laponite nanoparticles. It was found that the laponite nanoparticles inhibited the reduction of the Fe (III) in solid ferrihydrite. Moreover, direct contact between the cells and solid Fe (III) coated with the laponite nanoparticles was physically blocked, as confirmed by SEM images and particle size measurements. However, the laponite particles had an insignificant effect on the extent of aqueous Fe (III) bioreduction but slightly enhanced the rate of bioreduction of the Fe (III) in aqueous ferric citrate. The slightly increased rate of bioreduction by laponite nanoparticles may be due to the removal of inhibitory Fe (II) from the cell surface by its sorption onto the laponite nanoparticle surface. This result indicates that the scavenging of toxic heavy metals, such as Fe (II), by nanoparticles may be beneficial for microbes in the environment. On the other hand, microbial cells are also capable of detoxifying nanoparticles by coagulating nanoparticles with extracellular polymeric substances or by changing nanoparticle morphologies. Hence, the interactions between microbes and nanoparticles in natural environments should receive more attention.
Collapse
Affiliation(s)
- Bin Niu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
12
|
Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Blackman LD, Sutherland TD, De Barro PJ, Thissen H, Locock KES. Addressing a future pandemic: how can non-biological complex drugs prepare us for antimicrobial resistance threats? MATERIALS HORIZONS 2022; 9:2076-2096. [PMID: 35703580 DOI: 10.1039/d2mh00254j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Loss of effective antibiotics through antimicrobial resistance (AMR) is one of the greatest threats to human health. By 2050, the annual death rate resulting from AMR infections is predicted to have climbed from 1.27 million per annum in 2019, up to 10 million per annum. It is therefore imperative to preserve the effectiveness of both existing and future antibiotics, such that they continue to save lives. One way to conserve the use of existing antibiotics and build further contingency against resistant strains is to develop alternatives. Non-biological complex drugs (NBCDs) are an emerging class of therapeutics that show multi-mechanistic antimicrobial activity and hold great promise as next generation antimicrobial agents. We critically outline the focal advancements for each key material class, including antimicrobial polymer materials, carbon nanomaterials, and inorganic nanomaterials, and highlight the potential for the development of antimicrobial resistance against each class. Finally, we outline remaining challenges for their clinical translation, including the need for specific regulatory pathways to be established in order to allow for more efficient clinical approval and adoption of these new technologies.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Tara D Sutherland
- CSIRO Health & Biosecurity, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| | - Paul J De Barro
- CSIRO Health & Biosecurity, Boggo Road, Dutton Park, QLD 4102, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
14
|
Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
During the orthodontic process, increased microbial colonization and dental plaque formation on the orthodontic appliances and auxiliaries are major complications, causing oral infectious diseases, such as dental caries and periodontal diseases. To reduce plaque accumulation, antimicrobial materials are increasingly being investigated and applied to orthodontic appliances and auxiliaries by various methods. Through the development of nanotechnology, nanoparticles (NPs) have been reported to exhibit excellent antibacterial properties and have been applied in orthodontic materials to decrease dental plaque accumulation. In this review, we present the current development, antibacterial mechanisms, biocompatibility, and application of antibacterial NPs in orthodontic materials.
Collapse
Affiliation(s)
- Zhang Yun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| | - Du Qin
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Fei Wei
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Li Xiaobing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
15
|
Tshangana CS, Muleja AA, Kuvarega AT, Mamba BB. The synergistic effect of peracetic acid activated by graphene oxide quantum dots in the inactivation of E. coli and organic dye removal with LED reactor light. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:268-281. [PMID: 35354352 DOI: 10.1080/10934529.2022.2056385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
This study presents a low-impact process that uses the synergy of peracetic acid (PAA) and graphene oxide quantum GQDs to degrade poorly biodegradable organic compounds and potentially substitute chlorination in wastewater treatment. The role of GQDs in GQDs/PAA activity and the effect of GQDs loading were examined. The results showed that increasing GQDs loading in the GQDs/PAA system greatly improved the photodegradation efficiency. Conversely, increasing the PAA concentration slightly enhanced efficiency due to few active sites being available. GQDs acted as catalysts and radical scavenging experiments confirmed that the degradation occurred via generation of hydroxyl (•OH) and peroxy (CH3C(=O)OO•)) radicals. A probable degradation mechanism of the organic dye was presented based on the reaction by-products detected after HPLC-MS studies. The E. coli inactivation mechanism was elucidated by monitoring the morphological changes of E. coli using scanning microscopy. The proposed antimicrobial mechanism includes the initial diffusion of PAA through the cell membrane which caused damage and induced cellular matter leakage, resulting in cell death. Bacterial regrowth studies confirmed GQDs/PAA were able to bypass the natural mechanisms of microorganisms that enables them to repair any damages in their DNA.
Collapse
Affiliation(s)
- Charmaine Sesethu Tshangana
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Adolph Anga Muleja
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Bhekie Brilliance Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| |
Collapse
|
16
|
Ladaycia A, Passirani C, Lepeltier E. Microbiota and nanoparticles: Description and interactions. Eur J Pharm Biopharm 2021; 169:220-240. [PMID: 34736984 DOI: 10.1016/j.ejpb.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The healthy human body is inhabited with a large number of bacteria, forming natural flora. It is even estimated that for a human body, its amount of DNA is less important that its bacterial genetic material. This flora plays major roles in the sickness and health of the human body and any change in its composition may lead to different diseases. Nanoparticles are widely used in numerous fields: cosmetics, food, industry, and as drug delivery carrier in the medical field. Being included in these various applications, nanoparticles may interact with the human body at various levels and with different mechanisms. These interactions differ depending on the nanoparticle nature, its structure, its concentration and manifest in different ways on the microbiota, leading to its destabilization, its restoring or showing no toxic effect. Nanoparticles may also be used as a vehicle to regulate the microbiota or to treat some of its diseases.
Collapse
Affiliation(s)
- Abdallah Ladaycia
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
17
|
Zhao B, Zheng K, Liu C. Bio-dissolution process and mechanism of copper phosphate hybrid nanoflowers by Pseudomonas aeruginosa and its bacteria-toxicity in life cycle. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126494. [PMID: 34323740 DOI: 10.1016/j.jhazmat.2021.126494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Copper phosphate hybrid nanoflowers (HNF) have been widely used in chemical industries and wastewater treatment owing to its excellent catalytic activity and high stability. However, their fate and ecological risks have not received due attention after being discharged into natural environment. The significance of bacteria on the dissolution and fate of HNF and its toxicity to bacteria was evaluated from the perspective of its life cycle. Results showed that in the presence of Pseudomonas aeruginosa, HNF was gradually 'disassembled' into smaller nanoparticles (NPs), and then dissolved completely. More than half of the dissolution products (Cu2+) entered biological phase, and PO43- was absorbed and utilized by bacteria as a phosphorus source. The mechanisms of HNF bio-dissolution are as follows: the metabolites of bacteria dissolve HNF through complexation and acidification, in which small molecular organic acids and amino acids play an important role. Bacteria toxicity experiments of HNF in its cycle life show that HNF exhibits lower cell toxicity, but its intermediate (smaller NPs) and final dissolved products (Cu2+) exhibit stronger cytotoxicity by increasing the level of intracellular ROS and membrane permeability of bacteria. This research is helpful to provide ecological risk assessment, develop targeted applications, and rationally design future nanomaterials.
Collapse
Affiliation(s)
- Bo Zhao
- China-America CRC for Environment & Health of Shandong Province, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Kai Zheng
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong street, Tai'an, Shandong 271018, PR China
| | - Chunguang Liu
- China-America CRC for Environment & Health of Shandong Province, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
18
|
Slepičková Kasálková N, Slepička P, Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2368. [PMID: 34578684 PMCID: PMC8466887 DOI: 10.3390/nano11092368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 01/15/2023]
Abstract
The versatility of the arrangement of C atoms with the formation of different allotropes and phases has led to the discovery of several new structures with unique properties. Carbon nanomaterials are currently very attractive nanomaterials due to their unique physical, chemical, and biological properties. One of these is the development of superconductivity, for example, in graphite intercalated superconductors, single-walled carbon nanotubes, B-doped diamond, etc. Not only various forms of carbon materials but also carbon-related materials have aroused extraordinary theoretical and experimental interest. Hybrid carbon materials are good candidates for high current densities at low applied electric fields due to their negative electron affinity. The right combination of two different nanostructures, CNF or carbon nanotubes and nanoparticles, has led to some very interesting sensors with applications in electrochemical biosensors, biomolecules, and pharmaceutical compounds. Carbon materials have a number of unique properties. In order to increase their potential application and applicability in different industries and under different conditions, they are often combined with other types of material (most often polymers or metals). The resulting composite materials have significantly improved properties.
Collapse
Affiliation(s)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (N.S.K.); (V.Š.)
| | | |
Collapse
|
19
|
Qin W, Ma J, Liang Q, Li J, Tang B. Tribological, cytotoxicity and antibacterial properties of graphene oxide/carbon fibers/polyetheretherketone composite coatings on Ti-6Al-4V alloy as orthopedic/dental implants. J Mech Behav Biomed Mater 2021; 122:104659. [PMID: 34229171 DOI: 10.1016/j.jmbbm.2021.104659] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022]
Abstract
In this work, graphene oxide/carbon fibers/polyetheretherketone (GO/CF/PEEK) composite coatings on Ti-6Al-4V (TC4) alloy were fabricated by electrostatic powder spraying method. The coatings with 0.02 wt% GO and 25 wt% CF were made to improve the wear resistance, cytocompatibility and antibacterial properties of the TC4 as orthopedic/dental implants. The physicochemical properties involving coating thickness, Vickers hardness, micromorphology, phase structures and contact angles were investigated. The results indicated that the GO/CF/PEEK coatings can significantly decrease the coefficient of friction (COF) (from 0.433 ± 0.017 to 0.085 ± 0.008) and enhance the wear resistance of TC4 alloy during the wet friction process in sliding contact with a Si3N4 ball. The results showed that few scratches appeared on the GO/CF/PEEK coating. As the in vitro cytotoxicity test by murine fibroblast L929 cells shown, the GO/CF/PEEK coating revealed good cytocompatibility. More importantly, GO/CF/PEEK coating exhibited excellent suppression toward Staphylococcus aureus (S. aureus) owing to the antibacterial nature of GO. Therefore, the GO/CF/PEEK composite coated TC4 could be considered as a prospective orthopedic/dental implant material for bone tissue engineering.
Collapse
Affiliation(s)
- Wen Qin
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jing Ma
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Qian Liang
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jingdan Li
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Tang
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
20
|
Mamun MM, Sorinolu AJ, Munir M, Vejerano EP. Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Front Chem 2021; 9:687660. [PMID: 34055750 PMCID: PMC8155581 DOI: 10.3389/fchem.2021.687660] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
One primary mechanism for bacteria developing resistance is frequent exposure to antibiotics. Nanoantibiotics (nAbts) is one of the strategies being explored to counteract the surge of antibiotic resistant bacteria. nAbts are antibiotic molecules encapsulated with engineered nanoparticles (NPs) or artificially synthesized pure antibiotics with a size range of ≤100 nm in at least one dimension. NPs may restore drug efficacy because of their nanoscale functionalities. As carriers and delivery agents, nAbts can reach target sites inside a bacterium by crossing the cell membrane, interfering with cellular components, and damaging metabolic machinery. Nanoscale systems deliver antibiotics at enormous particle number concentrations. The unique size-, shape-, and composition-related properties of nAbts pose multiple simultaneous assaults on bacteria. Resistance of bacteria toward diverse nanoscale conjugates is considerably slower because NPs generate non-biological adverse effects. NPs physically break down bacteria and interfere with critical molecules used in bacterial processes. Genetic mutations from abiotic assault exerted by nAbts are less probable. This paper discusses how to exploit the fundamental physical and chemical properties of NPs to restore the efficacy of conventional antibiotics. We first described the concept of nAbts and explained their importance. We then summarized the critical physicochemical properties of nAbts that can be utilized in manufacturing and designing various nAbts types. nAbts epitomize a potential Trojan horse strategy to circumvent antibiotic resistance mechanisms. The availability of diverse types and multiple targets of nAbts is increasing due to advances in nanotechnology. Studying nanoscale functions and properties may provide an understanding in preventing future outbreaks caused by antibiotic resistance and in developing successful nAbts.
Collapse
Affiliation(s)
- M. Mustafa Mamun
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Adeola Julian Sorinolu
- Civil and Environmental Engineering, The William States Lee College of Engineering, University of North Carolina, Charlotte, NC, United States
| | - Mariya Munir
- Civil and Environmental Engineering, The William States Lee College of Engineering, University of North Carolina, Charlotte, NC, United States
| | - Eric P. Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
21
|
Optimization delivery of 5-fluorouracil onto different morphologies of ZnO NPs: release and functional effects against colorectal cancer cell lines. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01625-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
New Nanostructured Carbon Coating Inhibits Bacterial Growth, but Does Not Influence on Animal Cells. NANOMATERIALS 2020; 10:nano10112130. [PMID: 33120890 PMCID: PMC7692575 DOI: 10.3390/nano10112130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
An electrospark technology has been developed for obtaining a colloidal solution containing nanosized amorphous carbon. The advantages of the technology are its low cost and high performance. The colloidal solution of nanosized carbon is highly stable. The coatings on its basis are nanostructured. They are characterized by high adhesion and hydrophobicity. It was found that the propagation of microorganisms on nanosized carbon coatings is significantly hindered. At the same time, eukaryotic animal cells grow and develop on nanosized carbon coatings, as well as on the nitinol medical alloy. The use of a colloidal solution as available, cheap and non-toxic nanomaterial for the creation of antibacterial coatings to prevent biofilm formation seems to be very promising for modern medicine, pharmaceutical and food industries.
Collapse
|
23
|
Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci 2020; 284:102250. [PMID: 32966964 DOI: 10.1016/j.cis.2020.102250] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Recently, antibiotic resistance of pathogens has grown given the excessive and inappropriate usage of common antimicrobial agents. Hence, producing novel antimicrobial compounds is a necessity. Carbon nanomaterials (CNMs) such as carbon nanotubes, graphene/graphene oxide, and fullerenes, as an emerging class of novel materials, can exhibit a considerable antimicrobial activity, especially in the nanocomposite forms suitable for different fields including biomedical and food applications. These nanomaterials have attracted a great deal of interest due to their broad efficiency and novel features. The most important factor affecting the antimicrobial activity of CNMs is their size. Smaller particles with a higher surface to volume ratio can easily attach onto the microbial cells and affect their cell membrane integrity, metabolic procedures, and structural components. As these unique characteristics are found in CNMs, a wide range of possibilities have raised in terms of antimicrobial applications. This study aims to cover the antimicrobial activities of CNMs (both as individual forms and in nanocomposites) and comprehensively explain their mechanisms of action. The results of this review will present a broad perspective, summarizes the most remarkable findings, and provides an outlook regarding the antimicrobial properties of CNMs and their potential applications.
Collapse
|
24
|
Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4030135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, adsorption and disinfection processes. CNTs have grabbed the attention of the scientific community and they have the potential to adsorb most of the organic compounds from water. Unlike, reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) membranes aligned CNT membranes can act as high-flow desalination membranes. CNTs provide a relatively safer electrode solution for biosensors. The article is of the utmost importance for the scientists and technologists working in water purification technologies to eliminate the water crisis in the future. This review summarizes about the application of CNTs in water purification.
Collapse
|
25
|
Zhang Q, Cui Y, Gu C, Zhang C. Potential concerns in fullerene application to water treatment related to transformation, cellular uptake and intracellular catalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138754. [PMID: 32388024 DOI: 10.1016/j.scitotenv.2020.138754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Fullerene (C60) exhibits versatile properties that shows great potential for improving water treatment technologies. However, the probable transformation of C60 during water treatment, which consequently changes the physicochemical properties and toxicity of the parent compound, may introduce doubt concerning its application. Our results demonstrated that the C60 aggregate (nC60) was transformed to a more oxidized form under common water disinfection processes (i.e., ultraviolet irradiation and photochlorination). The light-irradiated product (UV_nC60) exhibited lower cytotoxicity toward macrophage J774A.1 cells relative to nC60, whereas the photochlorinated product (UV/Cl_nC60) increased the toxic effect. Particularly, the internalization of nanoparticles and the mimetic superoxide dismutase (SOD) activity resulted in the selective accumulation of intracellular hydrogen peroxide. Thus, sequential exposure to a nonlethal dose of nanoparticles followed by 5 μM copper ions (which is a much lower level than the EPA-regulated level of 20 μM in drinking water) led to the significant production of hydroxyl radicals inside cells. The uptake and SOD-like activity were highly structure-related, with the most noteworthy activity obtained for UV/Cl_nC60. These results emphasize that environmental transformation-induced property changes should be given adequate consideration in the risk assessment of C60.
Collapse
Affiliation(s)
- Qiurong Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yueting Cui
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Chuanhui Gu
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100857, China..
| |
Collapse
|
26
|
Nano on micro: tuning microbial metabolisms by nano-based artificial mediators to enhance and expand production of biochemicals. Curr Opin Biotechnol 2020; 64:161-168. [PMID: 32361627 DOI: 10.1016/j.copbio.2020.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/27/2022]
Abstract
Advances in synthetic biology and metabolic engineering across the past few decades have enabled the successful production of many novel chemicals. However, bioproduction of such chemicals is often limited by low yield and titer due to disrupted metabolic homeostasis. Finely tuning cellular metabolism to restore robust metabolic functions entails various genetic modifications, which is often not practical. Alternatively, artificial mediators capable of tailoring microbial metabolisms open a new avenue for restoring physiological functions. In this context, nanoparticle-based artificial mediators have been pursued to tune cellular metabolisms. They can not only enhance production of molecules from endogenous metabolism, but also expand bioproducts spectrum. Here, we reviewed recent advances toward the employment of nano-based artificial mediators for the tuning of cellular metabolism, with a focus on their positive effects on electron transfer and pathway flux. Perspectives for potential applications of artificial mediators for mediating microbial metabolisms in the future were also provided.
Collapse
|
27
|
Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front Chem 2020; 8:286. [PMID: 32391321 PMCID: PMC7193053 DOI: 10.3389/fchem.2020.00286] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic bacteria infection is a major public health problem due to the high morbidity and mortality rates, as well as the increased expenditure on patient management. Although there are several options for antimicrobial therapy, their efficacy is limited because of the occurrence of drug-resistant bacteria. Many conventional antibiotics have failed to show significant amelioration in overall survival of infectious patients. Nanomedicine for delivering antibiotics provides an opportunity to improve the efficiency of the antibacterial regimen. Nanosystems used for antibiotic delivery and targeting to infection sites render some benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged antibiotic half-life, tissue targeting, and minimal adverse effects. The nanocarriers' sophisticated material engineering tailors the controllable physicochemical properties of the nanoparticles for bacterial targeting through passive or active targeting. In this review, we highlight the recent progress on the development of antibacterial nanoparticles loaded with antibiotics. We systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for bacterial eradication. Passive targeting by modulating the nanoparticle structure and the physicochemical properties is an option for efficient drug delivery to the bacteria. In addition, active targeting, such as magnetic hyperthermia induced by iron oxide nanoparticles, is another efficient way to deliver the drugs to the targeted site. The nanoparticles are also designed to respond to the change in environment pH or enzymes to trigger the release of the antibiotics. This article offers an overview of the benefits of antibacterial nanosystems for treating infectious diseases.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung City, Taiwan
| | - Chin-Chang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Jia-You Fang
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
28
|
Abstract
The research presented in this article concerns Zr–C coatings which were deposited on 304L steel by reactive magnetron sputtering from the Zr target in an Ar–C2H2 atmosphere at various acetylene flow rates, resulting in various atomic carbon concentrations in the coating. The article describes research covering the change in the antibacterial and anticorrosive properties of these coatings due to the change in their chemical and phase composition. The concentration of C in the coatings varied from 21 to 79 at.%. The coating morphology and the elemental distribution in individual coatings were characterized using field emission scanning electron microscopy with an energy-dispersive X-ray analytical system. X-ray diffraction and Raman spectroscopy were used to analyze their microstructure and phase composition. Parallel changes in the mechanical properties of the coatings were analyzed. Based on the obtained results, it was concluded that the wide possibility of shaping the mechanical properties of Zr–C coatings in combination with relatively good antibacterial properties after exceeding 50 at.% of carbon concentration in coatings and high protective potential of these coatings make them a good candidate for medical applications. In particular, corrosion tests showed the high anti-pitting potential of Zr–C coatings in the environment of artificial saliva.
Collapse
|
29
|
Wang JZ, Yan CH, Zhang XR, Tu QB, Xu Y, Sheng S, Wu FA, Wang J. A novel nanoparticle loaded with methyl caffeate and caffeic acid phenethyl ester against Ralstonia solanacearum—a plant pathogenic bacteria. RSC Adv 2020; 10:3978-3990. [PMID: 35492651 PMCID: PMC9049244 DOI: 10.1039/c9ra09441e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/24/2019] [Indexed: 11/23/2022] Open
Abstract
Developing a novel agent and understanding the interaction model between multipolymer nanoparticles and bacteria could be worthwhile to induce the protection of crops with the prevalence of frequent hazards because of the use of pesticides and chemical resistance. Unlike metal nanoparticles, multipolymer nanoparticles have bacteriostatic properties against Ralstonia solanacearum that can trigger bacterial wilt by infecting the plant. Therefore, a novel poly(lactic-co-glycolic acid) nanoparticle containing caffeic acid phenethyl ester (CAPE) and methyl caffeate (MC) was prepared with the sustained-release property (for 10 d at pH 6.5); here, 50% of the cumulative release rate was achieved. It was observed that the cytomembrane of R. solanacearum was jeopardized by the nanoparticle by the creation of large holes on the bacterial surface. The nanoparticle has an approximate EC50 value of 0.285 mg mL−1 with active pharmaceutical ingredients (APIs), while the drug dosage could be reduced by 2/3. Furthermore, to reveal the possible mechanism of interaction between the multipolymer nanoparticles and bacteria, a formidable inhibition effect was observed; the pathogenicity-related genes, namely, phcA, phcB, pehC, egl, pilT, and polA, of R. solanacearum were downregulated by 1/2, 1/42, 1/13, 1/6, 1/2, and 1/8, respectively, showing significant effects on the major virulence-related genes. Hence, a novel nanoparticle with excellent antibacterial and sustained-release properties has been prepared, possessing the potential to replace chemical pesticides and serve as a new control strategy for mulberry blight disease. Developing a novel agent and understanding an interaction model between multipolymer nanoparticles and bacteria could be worthwhile to induce the protection of crops with the prevalence of frequent hazards because of the use of chemical pesticides.![]()
Collapse
Affiliation(s)
- Jin-Zheng Wang
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Cheng-Hai Yan
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Xiao-Rui Zhang
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Qing-Bo Tu
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Yan Xu
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| | - Sheng Sheng
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| | - Fu-An Wu
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| | - Jun Wang
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| |
Collapse
|
30
|
Sahu JN, Karri RR, Zabed HM, Shams S, Qi X. Current Perspectives and Future Prospects of Nano-Biotechnology in Wastewater Treatment. SEPARATION AND PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1630430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. N. Sahu
- Institute of Chemical Technology, Faculty of Chemistry, University of Stuttgart, Stuttgart, Germany
- , South Ural State University, Chelyabinsk, Russia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam
| | - Hossain M. Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shahriar Shams
- Civil Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei, Darussalam
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
31
|
Wang L, Yuan Z, Karahan HE, Wang Y, Sui X, Liu F, Chen Y. Nanocarbon materials in water disinfection: state-of-the-art and future directions. NANOSCALE 2019; 11:9819-9839. [PMID: 31080989 DOI: 10.1039/c9nr02007a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water disinfection practices are critical for supplying safe drinking water. Existing water disinfection methods come with various drawbacks, calling for alternative or complementary solutions. Nanocarbon materials (NCMs) offer unique advantages for water disinfection owing to their high antimicrobial activity, often low environmental/human toxicity, and tunable physicochemical properties. Nevertheless, it is a challenge to assess the research progress made so far due to the structure and property diversity in NCMs as well as their different targeted applications. Because of these, here we provide a broad outline of this emerging field in three parts. First, we introduce the antimicrobial activities of the different types of NCMs, including fullerenes, nanodiamonds, carbon (nano)dots, carbon nanotubes, and graphene-family materials. Next, we discuss the current status in applying these NCMs for different water disinfection problems, especially as hydrogel filters, filtration membranes, recyclable aggregates, and electrochemical devices. We also introduce the use of NCMs in photocatalysts for photocatalytic water disinfection. Lastly, we put forward the key hurdles of the field that hamper the realization of the practical applications and propose possible directions for future investigations to address those. We hope that this minireview will encourage researchers to tackle these challenges and innovate NCM-based water disinfection platforms in the near future.
Collapse
Affiliation(s)
- Liang Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ziwen Yuan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia.
| | - H Enis Karahan
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, 637459, Singapore
| | - Yilei Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiao Sui
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia.
| | - Fei Liu
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia. and State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Yuan Chen
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia.
| |
Collapse
|
32
|
Hlongwane GN, Sekoai PT, Meyyappan M, Moothi K. Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:808-833. [PMID: 30530150 DOI: 10.1016/j.scitotenv.2018.11.257] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 11/17/2018] [Indexed: 04/14/2023]
Abstract
The steady increase in population, coupled with the rapid utilization of resources and continuous development of industry and agriculture has led to excess amounts of wastewater with changes in its composition, texture, complexity and toxicity due to the diverse range of pollutants being present in wastewater. The challenges faced by wastewater treatment today are mainly with the complexity of the wastewater as it complicates treatment processes by requiring a combination of technologies, thus resulting in longer treatment times and higher operational costs. Nanotechnology opens up a novel platform that is free from secondary pollution, inexpensive and an effective way to simultaneously remove multiple pollutants from wastewater. Currently, there are a number of studies that have presented a myriad of multi-purpose/multifunctional nanoparticles that simultaneously remove multiple pollutants in water. However, these studies have not been collated to review the direction that nanoparticle assisted wastewater treatment is heading towards. Hence, this critical review explores the feasibility and efficiency of simultaneous removal of co-existing/multiple pollutants in water using nanomaterials. The discussion begins with an introduction of different classes of pollutants and their toxicity followed by an overview and highlights of current research on multipollutant control in water using different nanomaterials as adsorbents, photocatalysts, disinfectants and microbicides. The analysis is concluded with a look at the current attempts being made towards commercialization of multipollutant control/multifunctional nanotechnology inventions. The review presents evidence of simultaneous removal of pathogenic microorganisms, inorganic and organic compound chemical pollutants using nanoparticles. Accordingly, not only is nanotechnology showcased as a promising and an environmentally-friendly way to solve the limitations of current and conventional centralised water and wastewater treatment facilities but is also presented as a good substitute or supplement in areas without those facilities.
Collapse
Affiliation(s)
- Gloria Ntombenhle Hlongwane
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa
| | - Patrick Thabang Sekoai
- Hydrogen Infrastructure Centre of Competence, Faculty of Engineering, North-West University, Potchefstroom 2520, South Africa
| | - Meyya Meyyappan
- Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Kapil Moothi
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa.
| |
Collapse
|
33
|
Barreto A, Luis LG, Pinto E, Almeida A, Paíga P, Santos LHMLM, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Effects and bioaccumulation of gold nanoparticles in the gilthead seabream (Sparus aurata) - Single and combined exposures with gemfibrozil. CHEMOSPHERE 2019; 215:248-260. [PMID: 30317096 DOI: 10.1016/j.chemosphere.2018.09.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNPs) are found in a wide range of applications and therefore expected to present increasing levels in the environment. There is however limited knowledge concerning the potential toxicity of AuNPs as well as their combined effects with other pollutants. Hence, the present study aimed to investigate the effects of AuNPs alone and combined with the pharmaceutical gemfibrozil (GEM) on different biological responses (behaviour, neurotransmission, biotransformation and oxidative stress) in one of the most consumed fish in southern Europe, the seabream Sparus aurata. Fish were exposed for 96 h to waterborne 40 nm AuNPs with two coatings - citrate and polyvinylpyrrolidone (PVP), alone or combined with GEM. Antioxidant defences were induced in liver and gills upon both AuNPs exposure. Decreased swimming performance (1600 μg.L-1) and oxidative damage in gills (4 and 80 μg.L-1) were observed following exposure to polyvinylpyrrolidone coated gold nanoparticles (PVP-AuNPs). Generally, accumulation of gold in fish tissues and deleterious effects in S. aurata were higher for PVP-AuNPs than for cAuNPs exposures. Although AuNPs and GEM combined effects in gills were generally low, in liver, they were higher than the predicted. The accumulation and effects of AuNPs showed to be dependent on the size, coating, surface charge and aggregation/agglomeration state of nanoparticles. Additionally, it was tissue' specific and dependent on the presence of other contaminants. Although, gold intake by humans is expected to not exceed the estimated tolerable daily intake, it is highly recommended to keep it on track due to the increasing use of AuNPs.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - L G Luis
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Almeida
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Paíga
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - L H M L M Santos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - C Delerue-Matos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Nakanishi H, Deák A, Hólló G, Lagzi I. Existence of a Precipitation Threshold in the Electrostatic Precipitation of Oppositely Charged Nanoparticles. Angew Chem Int Ed Engl 2018; 57:16062-16066. [PMID: 30325100 DOI: 10.1002/anie.201809779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/10/2018] [Indexed: 01/23/2023]
Abstract
Oppositely charged nanoparticles precipitate rapidly only at the point of electroneutrality, wherein their charges are macroscopically compensated. We investigated the aggregation and precipitation of oppositely charged nanoparticles at concentrations ranging from 10 to 10-3 mm (based on gold atoms) by using UV/Vis measurements. We employed solutions of equally sized (4.6 nm) gold nanoparticles, which were functionalized and stabilized with either positively or with negatively charged alkanethiols. Results showed that oppositely charged nanoparticles do not precipitate if their concentration is below a certain threshold even if the electroneutrality condition is fulfilled. This finding suggests a universal behavior of chemical systems comprising oppositely charged building blocks such as ions and charged nanoparticles.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - András Deák
- Hungarian Academy of Sciences Centre for Energy Research, Konkoly-Thege út 29-33, 1120, Budapest, Hungary
| | - Gábor Hólló
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, 1111, Budafoki út 8, Budapest, Hungary
| | - István Lagzi
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, 1111, Budafoki út 8, Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Hungary
| |
Collapse
|
35
|
Zhu Z, Wang Z, Li S, Yuan X. Antimicrobial strategies for urinary catheters. J Biomed Mater Res A 2018; 107:445-467. [PMID: 30468560 DOI: 10.1002/jbm.a.36561] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
Over 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 16% of hospitalized patients. Taking the United States as an example, the costs of catheter-associated urinary tract infections (CAUTI) are in excess of $451 million dollars/year. The biofilm formation by pathogenic microbes that protects pathogens from host immune defense and antimicrobial agents is the leading cause for CAUTI. Thus, tremendous efforts have been devoted to antimicrobial coating for urinary catheters in the past few decades, and it has been demonstrated to be one of the most direct and efficient strategies to reduce infections. In this article, we briefly summarize the current methods for preparation of antimicrobial coatings based on different stages in the biofilm formation, highlight recent progress in the urinary catheter coating material design and selection, discuss approaches to improving their long-term antimicrobial efficacy, biocompatibility, multidrug resistance and recurrent infections, and finally outline future requirements and prospects in antimicrobial coating material design. The scope of the works surveyed is confined to antimicrobial urinary catheters. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 445-467, 2019.
Collapse
Affiliation(s)
- Zhiling Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
36
|
Nakanishi H, Deák A, Hólló G, Lagzi I. Existence of a Precipitation Threshold in the Electrostatic Precipitation of Oppositely Charged Nanoparticles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and TechnologyKyoto Institute of Technology Matsugasaki Kyoto 606-8585 Japan
| | - András Deák
- Hungarian Academy of Sciences Centre for Energy Research Konkoly-Thege út 29–33 1120 Budapest Hungary
| | - Gábor Hólló
- MTA-BME Condensed Matter Research GroupBudapest University of Technology and Economics 1111 Budafoki út 8 Budapest Hungary
| | - István Lagzi
- MTA-BME Condensed Matter Research GroupBudapest University of Technology and Economics 1111 Budafoki út 8 Budapest Hungary
- Department of PhysicsBudapest University of Technology and Economics Hungary
| |
Collapse
|
37
|
Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018; 234:298-319. [PMID: 30078182 DOI: 10.1002/jcp.26899] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
One of the major components in the development of nanomedicines is the choice of the right biomaterial, which notably determines the subsequent biological responses. The popularity of carbon nanomaterials (CNMs) has been on the rise due to their numerous applications in the fields of drug delivery, bioimaging, tissue engineering, and biosensing. Owing to their considerably high surface area, multifunctional surface chemistry, and excellent optical activity, novel functionalized CNMs possess efficient drug-loading capacity, biocompatibility, and lack of immunogenicity. Over the past few decades, several advances have been made on the functionalization of CNMs to minimize their health concerns and enhance their biosafety. Recent evidence has also implied that CNMs can be functionalized with bioactive peptides, proteins, nucleic acids, and drugs to achieve composites with remarkably low toxicity and high pharmaceutical efficiency. This review focuses on the three main classes of CNMs, including fullerenes, graphenes, and carbon nanotubes, and their recent biomedical applications.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Benzoxazine derivatives of phytophenols show anti-plasmodial activity via sodium homeostasis disruption. Bioorg Med Chem Lett 2018; 28:1629-1637. [DOI: 10.1016/j.bmcl.2018.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022]
|
39
|
Di Giosia M, Valle F, Cantelli A, Bottoni A, Zerbetto F, Calvaresi M. C 60 Bioconjugation with Proteins: Towards a Palette of Carriers for All pH Ranges. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E691. [PMID: 29702620 PMCID: PMC5978068 DOI: 10.3390/ma11050691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
The high hydrophobicity of fullerenes and the resulting formation of aggregates in aqueous solutions hamper the possibility of their exploitation in many technological applications. Noncovalent bioconjugation of fullerenes with proteins is an emerging approach for their dispersion in aqueous media. Contrary to covalent functionalization, bioconjugation preserves the physicochemical properties of the carbon nanostructure. The unique photophysical and photochemical properties of fullerenes are then fully accessible for applications in nanomedicine, sensoristic, biocatalysis and materials science fields. However, proteins are not universal carriers. Their stability depends on the biological conditions for which they have evolved. Here we present two model systems based on pepsin and trypsin. These proteins have opposite net charge at physiological pH. They recognize and disperse C60 in water. UV-Vis spectroscopy, zeta-potential and atomic force microscopy analysis demonstrates that the hybrids are well dispersed and stable in a wide range of pH’s and ionic strengths. A previously validated modelling approach identifies the protein-binding pocket involved in the interaction with C60. Computational predictions, combined with experimental investigations, provide powerful tools to design tailor-made C60@proteins bioconjugates for specific applications.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Consiglio Nazionale delle Ricerche, via P. Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Andrea Bottoni
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
40
|
Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:328-337. [PMID: 29154051 DOI: 10.1016/j.scitotenv.2017.11.095] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 05/20/2023]
Abstract
An increasing amount of carbon-based nanomaterials (CNM) (mostly fullerenes, carbon nanotubes and graphene) has been observed in aquatic systems over the last years. However, the potential toxicity of these CNM on aquatic ecosystems remains unclear. This paper reviews the existing literature on the toxic effects of CNM in aquatic organisms as well as the toxic effects of CNM through influencing the toxicity of other micro-pollutants, and outlines a series of research needs to reduce the uncertainty associated with CNMs toxic effects. The results show that environmental concentrations of CNM do not pose a threat on aquatic organisms on their own. The observed concentrations of CNM in aquatic environments are in the order of ngL-1 or even lower, much below than the lowest observed effect concentrations (LOEC) on different aquatic organisms (in the order of mgL-1). Toxic effects have been mainly observed in short-term experiments at high concentrations, and toxicity principally depends on the type of organisms, exposition time and CNM preparation methods. Moreover, we observed that CNM interact (establishing synergistic and/or antagonistic effects) with other micro-pollutants. Apparently, the resulting interaction is highly dependent on the chemical properties of each micro-pollutant, CNM acting either as carriers or as sorbents, thereby modifying the original toxicity of the contaminants. Results stress the need of studying the interactive effects of CNM with other micro-pollutants at environmental relevant concentrations, as well as their effects on biological communities in the long-term.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain.
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain
| | - Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain; GRECO, Institute of Aquatic Ecology, Campus Montilivi, 17130. University of Girona, Spain
| |
Collapse
|
41
|
Abstract
Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.
Collapse
|
42
|
Fullerene quinazolinone conjugates targeting Mycobacterium tuberculosis: a combined molecular docking, QSAR, and ONIOM approach. Struct Chem 2018. [DOI: 10.1007/s11224-018-1100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV. Review on the Antimicrobial Properties of Carbon Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1066. [PMID: 28892011 PMCID: PMC5615720 DOI: 10.3390/ma10091066] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Swift developments in nanotechnology have prominently encouraged innovative discoveries across many fields. Carbon-based nanomaterials have emerged as promising platforms for a broad range of applications due to their unique mechanical, electronic, and biological properties. Carbon nanostructures (CNSs) such as fullerene, carbon nanotubes (CNTs), graphene and diamond-like carbon (DLC) have been demonstrated to have potent broad-spectrum antibacterial activities toward pathogens. In order to ensure the safe and effective integration of these structures as antibacterial agents into biomaterials, the specific mechanisms that govern the antibacterial activity of CNSs need to be understood, yet it is challenging to decouple individual and synergistic contributions of physical, chemical and electrical effects of CNSs on cells. In this article, recent progress in this area is reviewed, with a focus on the interaction between different families of carbon nanostructures and microorganisms to evaluate their bactericidal performance.
Collapse
Affiliation(s)
- Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Surjith Alancherry
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
44
|
Xin Q, Liu Q, Geng L, Fang Q, Gong JR. Chiral Nanoparticle as a New Efficient Antimicrobial Nanoagent. Adv Healthc Mater 2017; 6. [PMID: 28026134 DOI: 10.1002/adhm.201601011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/29/2016] [Indexed: 11/10/2022]
Abstract
d-type functionalized nanoparticles (NPs) can bind to MurD ligase with high affinity and inhibit its peptidoglycan synthetic enzyme activity, and finally cause bacterial killing. In contrast, its L-type counterpart displays a negligible effect, indicating that the chiral structure of the functionalized NPs plays an essential role in their binding interaction with MurD and therefore the antibacterial activity.
Collapse
Affiliation(s)
- Qi Xin
- CAS Center of Excellence for Nanoscience; CAS Key Laboratory for Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; 11 Beiyitiao Zhongguancun Beijing 100190 P. R. China
| | - Qian Liu
- CAS Center of Excellence for Nanoscience; CAS Key Laboratory for Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; 11 Beiyitiao Zhongguancun Beijing 100190 P. R. China
| | - Lingling Geng
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; 11 Beiyitiao Zhongguancun Beijing 100190 P. R. China
| | - Qiaojun Fang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; 11 Beiyitiao Zhongguancun Beijing 100190 P. R. China
| | - Jian Ru Gong
- CAS Center of Excellence for Nanoscience; CAS Key Laboratory for Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; 11 Beiyitiao Zhongguancun Beijing 100190 P. R. China
| |
Collapse
|
45
|
Lukowiak A, Kedziora A, Strek W. Antimicrobial graphene family materials: Progress, advances, hopes and fears. Adv Colloid Interface Sci 2016; 236:101-12. [PMID: 27569200 DOI: 10.1016/j.cis.2016.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
Abstract
Graphene-based materials have become very popular bionanotechnological instruments in the last few years. Since 2010, the graphene family materials have been recognized as worthy of attention due to its antimicrobial properties. Functionalization of graphene (or rather graphene oxide) surface creates the possibilities to obtain efficient antimicrobial agents. In this review, progress and advances in this field in the last few years are described and discussed. Special attention is devoted to materials based on graphene oxide in which specifically selected components significantly modify biological activity of this carbon structure. Short introduction concerns the physicochemical properties of the graphene family materials. In the section on antimicrobial properties, proposed mechanisms of activity against microorganisms are given showing enhanced action of nanocomposites also under light irradiation (photoinduced activity). Another important feature, i.e. toxicity against eukaryotic cells, is presented with up-to-date data. Taking into account all the information on the properties of the described materials and usefulness of the graphene family as antimicrobial agents, hopes and fears concerning their application are discussed. Finally, some examples of promising usage in medicine and other fields, e.g. in phytobiology and water remediation, are shown.
Collapse
|
46
|
Maas M. Carbon Nanomaterials as Antibacterial Colloids. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E617. [PMID: 28773737 PMCID: PMC5509023 DOI: 10.3390/ma9080617] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022]
Abstract
Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.
Collapse
Affiliation(s)
- Michael Maas
- Faculty of Production Engineering, Advanced Ceramics, MAPEX-Centre for Materials and Processes, University of Bremen, Bremen 28359, Germany.
| |
Collapse
|
47
|
Li Z, Tang XZ, Zhu W, Thompson BC, Huang M, Yang J, Hu X, Khor KA. Single-Step Process toward Achieving Superhydrophobic Reduced Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10985-10994. [PMID: 27064825 DOI: 10.1021/acsami.6b01227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the first use of spark plasma sintering (SPS) as a single-step process to achieve superhydrophobic reduced graphene oxide (rGO). It was found that SPS was capable of converting smooth and electrically insulating graphene oxide (GO) sheets into highly electrically conductive rGO with minimum residual oxygen and hierarchical roughness which could be well retained after prolonged ultrasonication. At a temperature of 500 °C, which is lower than the conventional critical temperature for GO exfoliation, GO was successfully exfoliated, reduced, and hierarchically roughened. rGO fabricated by only 1 min of treatment at 1050 °C was superhydrophobic with a surface roughness (Ra) 10 times as large as that of GO as well as an extraordinarily high C:O ratio of 83.03 (atom %) and water contact angle of 153°. This demonstrates that SPS is a superior GO reduction technique, which enabled superhydrophobic rGO to be quickly and effectively achieved in one single step. Moreover, the superhydrophobic rGO fabricated by SPS showed an impressive bacterial antifouling and inactivation effect against Escherichia coli in both aqueous solution and the solid state. It is envisioned that the superhydrophobic rGO obtained in this study can be potentially used for a wide range of industrial and biomedical applications, such as the fabrication of self-cleaning and antibacterial surfaces.
Collapse
Affiliation(s)
- Zhong Li
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Xiu-Zhi Tang
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Wenyu Zhu
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Brianna C Thompson
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Mingyue Huang
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Jinglei Yang
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Xiao Hu
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Khiam Aik Khor
- School of Mechanical & Aerospace Engineering, ‡School of Civil & Environmental Engineering, and §School of Materials Science & Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
48
|
Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials 2016; 89:38-55. [DOI: 10.1016/j.biomaterials.2016.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
|
49
|
Yang XN, Xue DD, Li JY, Liu M, Jia SR, Chu LQ, Wahid F, Zhang YM, Zhong C. Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr Polym 2016; 136:1152-60. [DOI: 10.1016/j.carbpol.2015.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 01/18/2023]
|
50
|
Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, Yang L. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles. PLoS One 2015; 10:e0141050. [PMID: 26474396 PMCID: PMC4608711 DOI: 10.1371/journal.pone.0141050] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/01/2015] [Indexed: 01/10/2023] Open
Abstract
Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.
Collapse
Affiliation(s)
- Jessica Jenkins Broglie
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Brittny Alston
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Chang Yang
- Department of Physics, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Lun Ma
- Department of Physics, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Audrey F. Adcock
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Wei Chen
- Department of Physics, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Liju Yang
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| |
Collapse
|