1
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Michałowska A, Kudelski A. Hollow Gold-Silver Nanorods-A New, Very Efficient Nanomaterial for Surface-Enhanced Raman Scattering (SERS) Measurements. Molecules 2024; 29:4540. [PMID: 39407470 PMCID: PMC11477765 DOI: 10.3390/molecules29194540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Anisotropic plasmonic nanoparticles usually generate SERS enhancement factors that are significantly larger than those generated by spherical plasmonic nanostructures, so the former are usually preferred as substrates for SERS measurements. Gold nanorods are one of the most commonly used anisotropic nanomaterials for SERS experiments. Unfortunately, even a slight contamination of the surfactant used in the process of the synthesis of gold nanorods has a significant impact on the geometry of the resulting nanostructures. In this work, using easily formed silver nanorods as templates, hollow AuAg nanorods are formed by means of a silver-gold galvanic exchange reaction (in this process, nanostructures with a cavity inside form because one gold atom replaces three silver atoms). Hollow AuAg nanorods are highly active during SERS measurements-for shorter wavelengths of the excitation radiation, they display greater SERS activity than Au nanorods. To our knowledge, this is the first example of the use of hollow plasmonic nanorods for SERS measurements. Elemental mapping of the rods showed that the silver, some of which remained after the galvanic replacement, is mainly located close to the internal cavity that was formed, whereas the gold is mainly located at the outermost regions of the nanostructure. This explains the high chemical stability of these nanostructures.
Collapse
Affiliation(s)
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland;
| |
Collapse
|
3
|
Nguyen HA, Mai QD, Nguyet Nga DT, Pham MK, Nguyen QK, Do TH, Luong VT, Lam VD, Le AT. Paper/GO/e-Au flexible SERS sensors for in situ detection of tricyclazole in orange juice and on cucumber skin at the sub-ppb level: machine learning-assisted data analysis. NANOSCALE ADVANCES 2024; 6:3106-3118. [PMID: 38868820 PMCID: PMC11166118 DOI: 10.1039/d3na01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Despite being an excellent surface enhanced Raman scattering (SERS) active material, gold nanoparticles were difficult to be loaded onto the surface of filter paper to fabricate flexible SERS substrates. In this study, electrochemically synthesized gold nanoparticles (e-AuNPs) were deposited on graphene oxide (GO) nanosheets in solution by ultrasonication, resulting in the formation of a GO/Au hybrid material. Thanks to the support of GO, the hybrid material could adhere onto the surface of filter paper, which was immersed into a GO/Au solution for 24 h and dried naturally at room temperature. The paper-based materials were then employed as substrates for a surface enhanced Raman scattering (SERS) sensing platform to detect tricyclazole (TCZ), a widely used pesticide, resulting in better sensitivity compared to the use of paper/Au SERS sensors. With the most optimal GO content of 4%, paper/GO/Au SERS sensors could achieve a limit of detection of 1.32 × 10-10 M in standard solutions. Furthermore, the filter paper-based SERS sensors also exhibited significant advantages in sample collection in real samples. On one hand, the sensors were dipped into orange juice, allowing TCZ molecules in this real sample to be adsorbed onto their SERS active surface. On the other hand, they were pasted onto cucumber skin to collect the analytes. As a result, the paper/GO/Au SERS sensors could sense TCZ in orange juice and on cucumber skin at concentrations as low as 10-9 M (∼2 ppb). In addition, a machine learning model was designed and developed, allowing the sensing system to discriminate TCZ from nine other organic compounds and predict the presence of TCZ on cucumber skin at concentrations down to 10-9 M.
Collapse
Affiliation(s)
- Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Quan Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Minh Khanh Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Quoc Khanh Nguyen
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Trong Hiep Do
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Van Thien Luong
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Vu Dinh Lam
- Institute of Materials Science (IMS), Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 10000 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering (MSE), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
4
|
Le Ru EC, Auguié B. Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS NANO 2024; 18:9773-9783. [PMID: 38529815 DOI: 10.1021/acsnano.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this Perspective, we provide an overview of the core concepts around surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs), including both theoretical and experimental considerations: EF definitions, the distinction between maximum and average EFs, EF distribution and hot-spot localization, EF measurement and its order of magnitude. We then highlight some of the current challenges in this field, focusing on a selection of topics that we feel are both topical and important: analyte-capture onto a SERS substrate, surface-enhanced resonant Raman scattering, orientation/tensorial effects, and nonradiative effects. We hope this Perspective can provide a platform to reflect on the past 50 years of SERS and its future.
Collapse
Affiliation(s)
- Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Baptiste Auguié
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
5
|
Zhang CC, Zhang JY, Feng JR, Liu ST, Ding SJ, Ma L, Wang QQ. Plasmon-enhanced second harmonic generation of metal nanostructures. NANOSCALE 2024; 16:5960-5975. [PMID: 38446099 DOI: 10.1039/d3nr06675d] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
As the most common nonlinear optical process, second harmonic generation (SHG) has important application value in the field of nanophotonics. With the rapid development of metal nanomaterial processing and chemical preparation technology, various structures based on metal nanoparticles have been used to achieve the enhancement and modulation of SHG. In the field of nonlinear optics, plasmonic metal nanostructures have become potential candidates for nonlinear optoelectronic devices because of their highly adjustable physical characteristics. In this article, first, the basic optical principles of SHG and the source of surface symmetry breaking in metal nanoparticles are briefly introduced. Next, the related reports on SHG in metal nanostructures are reviewed from three aspects: the enhancement of SHG efficiency by double resonance structures, the SHG effect based on magnetic resonance and the harmonic energy transfer. Then, the applications of SHG in the sensing, imaging and in situ monitoring of metal nanostructures are summarized. Future opportunities for SHG in composite systems composed of metal nanostructures and two-dimensional materials are also proposed.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Jia-Yi Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Jing-Ru Feng
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Si-Ting Liu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Qu-Quan Wang
- School of Science, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| |
Collapse
|
6
|
Wang Z, Zhou W, Yang M, Yang Y, Hu J, Qin C, Zhang G, Liu S, Chen R, Xiao L. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:53. [PMID: 38202508 PMCID: PMC10780556 DOI: 10.3390/nano14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has garnered substantial attention due to its ability to achieve single-molecule sensitivity by utilizing metallic nanostructures to amplify the exceedingly weak Raman scattering process. However, the introduction of metal nanostructures can induce a background continuum which can reduce the ultimate sensitivity of SERS in ways that are not yet well understood. Here, we investigate the impact of laser irradiation on both Raman scattering and backgrounds from self-assembled monolayers within nanoparticle-on-mirror plasmonic nanocavities with variable geometry. We find that laser irradiation can reduce the height of the monolayer by inducing an irreversible change in molecular conformation. The resulting increased plasmon confinement in the nanocavities not only enhances the SERS signal, but also provides momentum conservation in the inelastic light scattering of electrons, contributing to the enhancement of the background continuum. The plasmon confinement can be modified by changing the size and the geometry of nanoparticles, resulting in a nanoparticle geometry-dependent background continuum in SERS. Our work provides new routes for further modifying the geometry of plasmonic nanostructures to improve SERS sensitivity.
Collapse
Affiliation(s)
- Zixin Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Wenjin Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Min Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yong Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jianyong Hu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Shaoding Liu
- Key Laboratory of Advanced Transducers and Intelligence Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
7
|
Tang X, Kishimoto N, Kitahama Y, You TT, Adachi M, Shigeta Y, Tanaka S, Xiao TH, Goda K. Deciphering the Potential of Multidimensional Carbon Materials for Surface-Enhanced Raman Spectroscopy through Density Functional Theory. J Phys Chem Lett 2023; 14:10208-10218. [PMID: 37930960 DOI: 10.1021/acs.jpclett.3c02962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a potent analytical tool, particularly for molecular identification and structural analysis. Conventional metallic SERS substrates, however, suffer from low reproducibility and compatibility with biological molecules. Recently, metal-free SERS substrates based on chemical enhancement have emerged as a promising alternative with carbon-based materials offering excellent reproducibility and compatibility. Nevertheless, our understanding of carbon materials in SERS remains limited, which hinders their rational design. Here we systematically explore multidimensional carbon materials, including zero-dimensional fullerenes (C60), one-dimensional carbon nanotubes, two-dimensional graphene, and their B-, N-, and O-doped derivatives, for SERS applications. Using density functional theory, we elucidate the nonresonant polarizability-enhanced and resonant charge-transfer-based chemical enhancement mechanisms of these materials by evaluating their static/dynamic polarizability and electron excitation properties. This work provides a critical reference for the future design of carbon-based SERS substrates, opening a new avenue in this field.
Collapse
Affiliation(s)
- Xuke Tang
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoki Kishimoto
- Department of Chemistry, Tohoku University, Sendai 9800-8578, Japan
| | - Yasutaka Kitahama
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0052, Japan
| | - Ting-Ting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Motoyasu Adachi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| | - Ting-Hui Xiao
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keisuke Goda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0052, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Mizuno A, Shibata Y, Fujikake H, Ono A. Plasmonic Color Switching by a Combination Device with Nematic Liquid Crystals and a Silver Nanocube Monolayer. ACS OMEGA 2023; 8:41579-41585. [PMID: 37970021 PMCID: PMC10634223 DOI: 10.1021/acsomega.3c05707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
We experimentally demonstrated electrical plasmonic color modulation by combining a nematic-phase liquid crystal (LC) layer and a silver nanocube (AgNC) monolayer. The color modulation LC/AgNC device was fabricated by filling LCs with negative dielectric anisotropy onto a densely assembled AgNC monolayer. The transmitted light color through the LC/AgNC device was modulated between green and magenta by applying voltages of 0-15 V. The peaks and dips in the transmission spectrum of the LC/AgNC device at wavelengths of 500-600 nm were switched with voltage. The switching effect of light transmission in the green region was achieved by overlapping the plasmon resonance of the AgNC monolayer and multiple transmittance peaks caused by the birefringence of the LC layer. In addition, the color inversion appeared at cross-Nicole and parallel-Nicole because the LC layer functioned like a half-wave plate due to birefringence. The electrical modulation of the plasmonic color with LCs has a high implementation capability in microdevices and is anticipated to be applied in display devices or color filters.
Collapse
Affiliation(s)
- Ayana Mizuno
- Graduate
School of Science and Technology, Shizuoka
University, Hamamatsu 432-8561, Japan
| | - Yosei Shibata
- Department
of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hideo Fujikake
- Department
of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Atsushi Ono
- Graduate
School of Science and Technology, Shizuoka
University, Hamamatsu 432-8561, Japan
- Research
Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan
| |
Collapse
|
9
|
Mansoor F, Ju H, Saeed M, Kanwal S. Facile synthesis of gold nanocages with silver nanocubes templates dual metal effects enabled SERS imaging and catalytic reduction. RSC Adv 2023; 13:31366-31374. [PMID: 37901276 PMCID: PMC10603383 DOI: 10.1039/d3ra06344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
Silver (Ag) nanomaterials featuring a cubic shape particularly represent supreme class of advance nanomaterials. This work explored a new precursor and its effect on morphological features of silver (Ag) nanocubes (NCs) serving as sacrificial templates for facile synthesis of gold NCs. The AgNCs were initially prepared utilizing sodium thiosulphate (Na2S2O3) as relatively stable S2- producing species along with a soft etchant source KCl. The effects of different potassium halides were evaluated to grasp control over seed mediated growth of Ag nanocubes. Taking the advantages of dual metallic properties, Ag@4MBA@AuNCs nanostructure was synthesized using 4-mercaptobenzoic acid (4MBA) as a Raman reporter molecule. This nanostructure showed 1010-times enhancement in surface enhanced Raman scattering (SERS) signal, leading to a highly sensitive imaging probe for the detection of even three breast cancer cells (MCF-7 cells) in vitro. Subsequently, the oxidative nanopeeling well accompanied by incorporation of Au/Ag alloy nanoparticles on AuNCs corona assembly was achieved, which facilitated the catalytic reduction of toxic nitrophenol to eco-friendly aminophenol. Such sophisticated and engineered nanoassemblies possess broad applications in bioanalysis.
Collapse
Affiliation(s)
- Farukh Mansoor
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Sciences Department of Chemistry, Nanjing University Nanjing 210023 China
| | - Madiha Saeed
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University, Islamabad, Lahore Campus Lahore Pakistan
| | - Shamsa Kanwal
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| |
Collapse
|
10
|
Pawlik V, Zhou S, Zhou S, Qin D, Xia Y. Silver Nanocubes: From Serendipity to Mechanistic Understanding, Rational Synthesis, and Niche Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3427-3449. [PMID: 37181675 PMCID: PMC10173382 DOI: 10.1021/acs.chemmater.3c00472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Silver has long been interwoven into human history, and its uses have evolved from currency and jewelry to medicine, information technology, catalysis, and electronics. Within the last century, the development of nanomaterials has further solidified the importance of this element. Despite this long history, there was essentially no mechanistic understanding or experimental control of silver nanocrystal synthesis until about two decades ago. Here we aim to provide an account of the history and development of the colloidal synthesis of silver nanocubes, as well as some of their major applications. We begin with a description of the first accidental synthesis of silver nanocubes that spurred subsequent investigations into each of the individual components of the protocol, revealing piece by piece parts of the mechanistic puzzle. This is followed by a discussion of the various obstacles inherent to the original method alongside mechanistic details developed to optimize the synthetic protocol. Finally, we discuss a range of applications enabled by the plasmonic and catalytic properties of silver nanocubes, including localized surface plasmon resonance, surface-enhanced Raman scattering, metamaterials, and ethylene epoxidation, as well as further derivatization and development of size, shape, composition, and related properties.
Collapse
Affiliation(s)
- Veronica Pawlik
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Shan Zhou
- Department
of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Siyu Zhou
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dong Qin
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Wang H, Li H, Gu P, Huang C, Chen S, Hu C, Lee E, Xu J, Zhu J. Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. NANOSCALE 2023; 15:2018-2035. [PMID: 36648016 DOI: 10.1039/d2nr05821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ordered assemblies of inorganic nanoparticles (NPs) have shown tremendous potential for wide applications due to their unique collective properties, which differ from those of individual NPs. Various assembly methods, such as external field-directed assembly, interfacial assembly, template assembly, biomolecular recognition-mediated assembly, confined assembly, and others, have been employed to generate ordered inorganic NP assemblies with hierarchical structures. Among them, the external field-directed assembly method is particularly fascinating, as it can remotely assemble NPs into well-ordered superstructures. Moreover, external fields (e.g., electric, magnetic, and shear fields) can introduce a local and/or global field intensity gradient, resulting in an additional force on NPs to drive their rotation and/or translation. Therefore, the external field-directed assembly of NPs becomes a robust method to fabricate well-defined functional materials with the desired optical, electronic, and magnetic properties, which have various applications in catalysis, sensing, disease diagnosis, energy conversion/storage, photonics, nano-floating-gate memory, and others. In this review, the effects of an electric field, magnetic field, and shear field on the organization of inorganic NPs are highlighted. The methods for controlling the well-ordered organization of inorganic NPs at different scales and their advantages are reviewed. Finally, future challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Huayang Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hao Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Pan Gu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Caili Huang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430074, China
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
12
|
Eskandari V, Sahbafar H, Zeinalizad L, Sabzian F, Abbas MH, Hadi A. A Surface-Enhanced Raman Scattering (SERS) Biosensor Fabricated Using the Electrodeposition Method for Ultrasensitive Detection of Amino Acid Histidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Dikmen G. Ultrasensitive detection of amoxicillin using the plasmonic silver nanocube as SERS active substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121308. [PMID: 35561447 DOI: 10.1016/j.saa.2022.121308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Even though amoxicillin is used as an antibacterial drug in some foods such as fish, chick, etc. However, the use of amoxicillin in the food industry is prohibited. Therefore, rapid detection and sensitive detection at ultra-low concentration of amoxicillin is very important for human. Surface enhanced Raman scattering (SERS) is fast and reliable method to determine the molecules at ultra-low concentration. In this study, silver nanocubes were synthesized and used as SERS active substrate. The synthesized Ag NCs exhibit an excellent sensitivity towards the detection of amoxicillin at the lowest concentration of 10-9 M based on the effect resulting from Ag NCs leading to the high electromagnetic effect and chemical mechanism. The dynamic linear regression between the Raman intensity and amoxicillin concentration over seven orders of magnitude (from 10-4 to 10-9 M) was excellent with high reliability (R2 = 0.99). On the one hand, SERS substrate can be used after storing for 20 days. Because Ag NCs also demonstrated remarkable recyclability, reproducibility, and chemical stability. As a result, Ag NCs can be used as a potential SERS substrate to detect amoxicillin at ultra-low concentration.
Collapse
Affiliation(s)
- Gökhan Dikmen
- Eskisehir Osmangazi University, Central Research Laboratory Application and Research Center (ARUM), Eskisehir 26040, Turkey.
| |
Collapse
|
14
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
15
|
Krause B, Mishra D, Chen J, Argyropoulos C, Hoang T. Nonlinear Strong Coupling by Second-Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas. ADVANCED OPTICAL MATERIALS 2022; 10:2200510. [PMID: 36275124 PMCID: PMC9586148 DOI: 10.1002/adom.202200510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 05/25/2023]
Abstract
Enhanced electromagnetic fields within plasmonic nanocavity mode volumes enable multiple significant effects that lead to applications in both the linear and nonlinear optical regimes. In this work, we demonstrate enhanced second harmonic generation from individual plasmonic nanopatch antennas which are formed by separating silver nanocubes from a smooth gold film using a sub-10 nm zinc oxide spacer layer. When the nanopatch antennas are excited at their fundamental plasmon frequency, a 104-fold increase in the intensity of the second harmonic generation wave is observed. Moreover, by integrating quantum emitters that have an absorption energy at the fundamental frequency, a second order nonlinear exciton - polariton strong coupling response is observed with a Rabi splitting energy of 19 meV. The nonlinear frequency conversion using nanopatch antennas thus provides an excellent platform for nonlinear control of the light-matter interactions in both weak and strong coupling regimes which will have a great potential for applications in optical engineering and information processing.
Collapse
Affiliation(s)
- Bryson Krause
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152
| | - Dhananjay Mishra
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Jiyang Chen
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152
| | - Christos Argyropoulos
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Thang Hoang
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152
| |
Collapse
|
16
|
Eskandari V, Sahbafar H, Zeinalizad L, Hadi A. A review of applications of surface-enhanced raman spectroscopy laser for detection of biomaterials and a quick glance into its advances for COVID-19 investigations. ISSS JOURNAL OF MICRO AND SMART SYSTEMS 2022; 11:363-382. [PMID: 35540110 PMCID: PMC9070975 DOI: 10.1007/s41683-022-00103-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is one of the most sensitive analytical tools. In some cases, it is possible to record a high-quality SERS spectrum in which even a single molecule is involved. Therefore, SERS is considered a significantly promising option as an alternative to routine analytical techniques used in food, environmental, biochemical, and medical analyzes. In this review, the definitive applications of SERS developed to identify biochemically important species (especially medical and biological) from the simplest to the most complex are briefly discussed. Moreover, the potential capability of SERS for being used as an alternative to routine methods in diagnostic and clinical cases is demonstrated. In addition, this article describes how SERS-based sensors work, addresses its advancements in the last 20 years, discusses its applications for detecting Coronavirus Disease 2019 (COVID-19), and finally describes future works. The authors hope that this article will be useful for researchers who want to enter this amazing field of research.
Collapse
Affiliation(s)
- Vahid Eskandari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sahbafar
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Leila Zeinalizad
- Faculty of Biomedical Engineering, Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
17
|
Zhang D, Liang P, Chen W, Tang Z, Li C, Xiao K, Jin S, Ni D, Yu Z. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy. Mikrochim Acta 2021; 188:370. [PMID: 34622367 DOI: 10.1007/s00604-021-05025-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022]
Abstract
Surface-enhanced Raman spectroscopy is an alternative detection tool for monitoring food security. However, there is still a lack of a conclusion of SERS detection with respect to pesticides and real sample analysis, and the summary of intelligent algorithms in SERS is also a blank. In this review, a comprehensive report of pesticides detection using SERS technology is given. The SERS detection characteristics of different types of pesticides and the influence of substrate on inspection are discussed and compared by the typical ways of classification. The key points, including the progress in real sample analysis and Raman data processing methods with intelligent algorithm, are highlighted. Lastly, major challenges and future research trends of SERS analysis of pesticide residue are also addressed. SERS has been proven to be a powerful technique for rapid test of residue pesticides in complex food matrices, but there still is a tremendous development space for future research.
Collapse
Affiliation(s)
- De Zhang
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Wenwen Chen
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhexiang Tang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330203, China
| | - Kunyue Xiao
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Dejiang Ni
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Yu
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Liao J, Zhou J, Song Y, Liu B, Chen Y, Wang F, Chen C, Lin J, Chen X, Lu J, Jin D. Preselectable Optical Fingerprints of Heterogeneous Upconversion Nanoparticles. NANO LETTERS 2021; 21:7659-7668. [PMID: 34406016 DOI: 10.1021/acs.nanolett.1c02404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The control in optical uniformity of single nanoparticles and tuning their diversity in multiple dimensions, dot to dot, holds the key to unlocking nanoscale applications. Here we report that the entire lifetime profile of the single upconversion nanoparticle (τ2 profile) can be resolved by confocal, wide-field, and super-resolution microscopy techniques. The advances in both spatial and temporal resolutions push the limit of optical multiplexing from microscale to nanoscale. We further demonstrate that the time-domain optical fingerprints can be created by utilizing nanophotonic upconversion schemes, including interfacial energy migration, concentration dependency, energy transfer, and isolation of surface quenchers. We exemplify that three multiple dimensions, including the excitation wavelength, emission color, and τ2 profile, can be built into the nanoscale derivative τ2-dots. Creating a vast library of individually preselectable nanotags opens up a new horizon for diverse applications, spanning from sub-diffraction-limit data storage to high-throughput single-molecule digital assays and super-resolution imaging.
Collapse
Affiliation(s)
- Jiayan Liao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yiliao Song
- Centre for Artificial Intelligence, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Baolei Liu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yinghui Chen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Fan Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Chaohao Chen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Jie Lu
- Centre for Artificial Intelligence, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
19
|
Lee S, Kim J, Baek K, Kim NH, Hyun JK, Park SJ, Lee H. Concurrent Imaging of Surface-Enhanced Raman and Mie Scattering from Built-in Nanogap Plasmonic Particles. J Phys Chem Lett 2021; 12:5889-5896. [PMID: 34143636 DOI: 10.1021/acs.jpclett.1c01524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a bimodal imaging method that can spatially resolve and concurrently correlate SERS and background-free Mie scattering signals. By examining two types of nanoparticle assemblies with different types of plasmonic junctions, namely raspberry-like metamolecules (raspberry-MMs) containing intraparticle nanogaps and groups of Au nanocubes forming interparticle gaps, we were able to rapidly screen SERS-active particles among the entire population of nanoparticles. Ratiometric analysis of SERS/Mie scattering revealed distinct behaviors for these intra- and interparticle nanogaps. In particular, raspberry-MMs showed a high fraction of SERS-active particles with the SERS intensity essentially insensitive to the nanoparticle aggregation state and a predictable environmental dependence. In comparison, nanocube clusters exhibited highly heterogeneous SERS/Mie scattering ratios and unpredictable intensity fluctuations but higher maximum SERS intensity. This dual-imaging approach constitutes an in situ visualization tool that enables simultaneous and stoichiometric analysis of dual signals consisting of elastic and inelastic scattering, which can significantly improve the reliability of SERS measurements.
Collapse
Affiliation(s)
- Sunghee Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jungwoo Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
- Center for National R&D Budget Strategy, Korea Institute of Science & Technology Evaluation and Planning (KISTEP), 1339 Wonjung-ro, Eumseong-gun, Chungcheongbuk-do 27740, Korea
| | - Kyungnae Baek
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Nam Hoon Kim
- Center for Convergent research of Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| | - Jerome K Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Haemi Lee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| |
Collapse
|
20
|
Polarized SERS Controlled by Anisotropic Growth on Ordered Curvature Substrate. Molecules 2021; 26:molecules26082338. [PMID: 33920637 PMCID: PMC8073224 DOI: 10.3390/molecules26082338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
Colloidal lithography is an efficient and low-cost method to prepare an ordered nanostructure array with new shapes and properties. In this study, square-shaped and cone-shaped Au nanostructures were obtained by 70° angle deposition onto polystyrene bead array with the diameter of 500 nm when a space of 120 nm is created between the neighbor beads by plasma etching. The gaps between the units decrease when the Au deposition time increases, which leads to the polarized enhanced local field, in agreement with the surface-enhanced Raman scattering spectra (SERS) observations and finite-difference time-domain (FDTD) simulations. When the Au deposition time increased to 5 min, 5 nm gaps form between the neighbor units, which gave an enhancement factor of 5 × 109. The SERS chip was decorated for the detection of the liver cancer cell marker Alpha-fetoprotein (AFP) with the detection limit down to 5 pg/mL.
Collapse
|
21
|
Zheng X, Yan X, Ma J, Yao X, Zhang J, Wang L. Unidirectional/Bidirectional Electron Transfer at the Au/TiO 2 Interface Operando Tracked by SERS Spectra from Au and TiO 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16498-16506. [PMID: 33784060 DOI: 10.1021/acsami.1c02540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although it is well-known that the size can influence the surface plasmon resonance property of coinage metals and the electronic state of the Mott-Schottky junction formed at the metal/semiconductor interface, insights into how the size can be exploited to optimize the photocatalytic activity and selectivity of metal/semiconductor composites are lacking. Here we utilize operando SERS spectroscopy to identify the size effect on the electron-transfer dynamics and the direction at the Au/TiO2 interface. This effect was characterized by the photocatalytic reduction sites of p-nitrothiophenol, which were self-tracked with the SERS spectra from Au nanoparticle and inverse-opal structured TiO2, respectively. The size-dependent unidirectional/bidirectional transfer of photoinduced electrons at the Au/TiO2 interface was revealed by operando SERS spectroscopy, which enables the rational tuning of the reduction selectivity.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xuefeng Yan
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jiayu Ma
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xinyun Yao
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
22
|
Li J, Wuethrich A, Sina AAI, Cheng HH, Wang Y, Behren A, Mainwaring PN, Trau M. A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy. Nat Commun 2021; 12:1087. [PMID: 33597530 PMCID: PMC7889912 DOI: 10.1038/s41467-021-21431-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 12/29/2022] Open
Abstract
The introduction of immune checkpoint inhibitors has demonstrated significant improvements in survival for subsets of cancer patients. However, they carry significant and sometimes life-threatening toxicities. Prompt prediction and monitoring of immune toxicities have the potential to maximise the benefits of immune checkpoint therapy. Herein, we develop a digital nanopillar SERS platform that achieves real-time single cytokine counting and enables dynamic tracking of immune toxicities in cancer patients receiving immune checkpoint inhibitor treatment - broader applications are anticipated in other disease indications. By analysing four prospective cytokine biomarkers that initiate inflammatory responses, the digital nanopillar SERS assay achieves both highly specific and highly sensitive cytokine detection down to attomolar level. Significantly, we report the capability of the assay to longitudinally monitor 10 melanoma patients during immune inhibitor blockade treatment. Here, we show that elevated cytokine concentrations predict for higher risk of developing severe immune toxicities in our pilot cohort of patients. There is a clinical need to monitor immune-related toxicities of immune checkpoint blockade therapy. Here, the authors develop a digital SERS platform for multiplexed single cytokine counting to track immune-toxicities and demonstrate the ability to use pre-screening to identify patients at higher risk.
Collapse
Affiliation(s)
- Junrong Li
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
| | - Abu A I Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Han-Hao Cheng
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Yuling Wang
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia.
| | - Andreas Behren
- Oliva Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| | - Paul N Mainwaring
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
|
24
|
Physical, Chemical, and Genetic Techniques for Diatom Frustule Modification: Applications in Nanotechnology. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diatom frustules represent one of the most complex examples of micro- and nano-structured materials found in nature, being the result of a biomineralization process refined through tens of milions of years of evolution. They are constituted by an intricate, ordered porous silica matrix which recently found several applications in optoelectronics, sensing, solar light harvesting, filtering, and drug delivery, to name a few. The possibility to modify the composition and the structure of frustules can further broaden the range of potential applications, adding new functions and active features to the material. In the present work the most remarkable physical and chemical techniques aimed at frustule modification are reviewed, also examining the most recent genetic techniques developed for its controlled morphological mutation.
Collapse
|
25
|
Optical alignment of achiral nanoparticles via the use of induced chiral force. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Kim J, Yoo S, Kim JM, Choi S, Kim J, Park SJ, Park D, Nam JM, Park S. Synthesis and Single-Particle Surface-Enhanced Raman Scattering Study of Plasmonic Tripod Nanoframes with Y-Shaped Hot-Zones. NANO LETTERS 2020; 20:4362-4369. [PMID: 32364741 DOI: 10.1021/acs.nanolett.0c01084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, plasmonic metal tripod nanoframes with three-fold symmetry were synthesized in a high yield (∼83%), and their electric field distribution and single-particle surface-enhanced Raman scattering (SERS) were studied. We realized such complex frame morphology by synthesizing analogous tripod nanoframes through multiple transformations. The precise control of the Au growth pattern led to uniform tripod nanoframes embedded with circle or line-shaped hot spots. The linear-shaped nanogaps ("Y"-shaped hot-zone) of the frame structures can strongly and efficiently confine the electric field, allowing for strong SERS signals. Coupled with a high synthetic yield of the targeted frame structure, strong and uniform SERS signals were obtained inside the nanoframe gaps. Remarkably, quite reproducible SERS signals were obtained with these structures-the SERS enhancement factors with an average value of 7.9 × 107 with a distribution of enhancement factors from 2.2 × 107 to 2.2 × 108 for 45 measured individual particles.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sungwoo Choi
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Juri Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Doojae Park
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
27
|
Zhang L, Zhu T, Yang C, Jang HY, Jang HJ, Liu L, Park S. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity. NANOMATERIALS 2020; 10:nano10030519. [PMID: 32183019 PMCID: PMC7153256 DOI: 10.3390/nano10030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 01/05/2023]
Abstract
Most previous studies relating to surface-enhanced Raman spectroscopy (SERS) signal enhancement were focused on the interaction between the light and the substrate in the x-y axis. 3D SERS substrates reported in the most of previous papers could contribute partial SERS enhancement via z axis, but the increases of the surface area were the main target for those reports. However, the z axis is also useful in achieving improved SERS intensity. In this work, hot spots along the z axis were specifically created in a sandwich nanofilm. Sandwich nanofilms were prepared with self-assembly and Langmuir-Blodgett techniques, and comprised of monolayer Au nanorings sandwiched between bottom Ag mirror and top Ag cover films. Monolayer Au nanorings were formed by self-assembly at the interface of water and hexane, followed by Langmuir-Blodgett transfer to a substrate with sputtered Ag mirror film. Their hollow property allows the light transmitted through a cover film. The use of a Ag cover layer of tens nanometers in thickness was critical, which allowed light access to the middle Au nanorings and the bottom Ag mirror, resulting in more plasmonic resonance and coupling along perpendicular interfaces (z-axis). The as-designed sandwich nanofilms could achieve an overall ~8 times SERS signals amplification compared to only the Au nanorings layer, which was principally attributed to enhanced electromagnetic fields along the created z-axis. Theoretical simulations based on finite-difference time-domain (FDTD) method showed consistent results with the experimental ones. This study points out a new direction to enhance the SERS intensity by involving more hot spots in z-axis in a designer nanostructure for high-performance molecular recognition and detection.
Collapse
Affiliation(s)
- Liqiu Zhang
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China;
- Correspondence: (L.Z.); (S.P.)
| | - Tiying Zhu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (T.Z.); (C.Y.)
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (T.Z.); (C.Y.)
| | - Ho Young Jang
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
| | - Hee-Jeong Jang
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
| | - Lichun Liu
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China;
| | - Sungho Park
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
- Correspondence: (L.Z.); (S.P.)
| |
Collapse
|
28
|
Tavakkoli Yaraki M, Daqiqeh Rezaei S, Tan YN. Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Phys Chem Chem Phys 2020; 22:5673-5687. [PMID: 32103209 DOI: 10.1039/c9cp06029d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmonic nanostructures such as gold and silver could alter the intrinsic properties of fluorophores, photosensitizers or Raman reporters in their close vicinity. In this study, we have conducted systematic simulations to provide insight for the design of silver nanostructures with appropriate geometrical features for metal-enhanced fluorescence (MEF), metal-enhanced singlet oxygen generation (ME-SOG) and surface-enhanced Raman scattering (SERS) applications. The size-dependent optical properties and electric field enhancement of single and dimeric nanocubes were simulated. The extinction spectra of silver nanocubes were analysed by the multipole expansion method. Results show that a suitable size of Ag nanocubes for MEF and ME-SOG can be selected based on their maximum light scattering yield, the excitation and emission wavelengths of a particular fluorophore/photosensitizer and their maximum spectral overlap. Simulations of the 'hot-spot' or gap distance between two silver nanocubes with different configurations (i.e., face-to-face, edge-to-edge and corner-to-corner) were also performed. A direct correlation was found between the size and enhanced electric field around the Ag nanocubes simulated under 15 common Raman laser wavelengths from the UV to near-infrared region. The maximum SERS enhancement factor can be achieved by selecting the silver nanocubes with the right orientation, suitable edge length and gap distance that give the highest electric field at a specific Raman laser wavelength. It was also found that the higher order of silver nanostructures, e.g., trimer and tetramer, can lead to better enhancement effects. These simulation results can serve as generic guidelines to rationally design metal-enhancement systems including MEF, ME-SOG and SERS for different application needs without cumbersome optimization and tedious trial-and-error experimentation.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| | | | | |
Collapse
|
29
|
Liu S, Cui R, Ma Y, Yu Q, Kannegulla A, Wu B, Fan H, Wang AX, Kong X. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117664. [PMID: 31670224 DOI: 10.1016/j.saa.2019.117664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Flexible plasmonic Surface-enhanced Raman scattering (SERS) substrates were fabricated using cellulose textile fibers, in which the textile fibers were recycled from waste paper in an eco-friendly way. The Glycidyltrimethylammonium chloride (GTAC) with positive charges was grafted onto the surface of the cellulose textile fibers through cationization. Plasmonic silver nanoparticles (Ag NPs) with negative charges were decorated onto the cellulose textile fibers via electrostatic interactions. After cationization, the variation range of the diameter of the cellulose textile fibers was significantly increased because part of the cellulose was dissolved under alkaline condition, leading to more 'hot spots' for SERS during the shrinking process. The cellulose textile fiber-Ag NPs nanocomposite was employed for monitoring bisphenol A (BPA) in water and soft drink by SERS and the sensitivity of BPA detection achieved 50 ppb. The recovery values of BPA in soda water samples were from 96% to 105%. These results illustrate that the cellulose textile fiber-Ag NPs nanocomposite can be used as flexible, high sensitivity SERS substrates for detecting harmful ingredients in food or environment.
Collapse
Affiliation(s)
- Sijia Liu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Rongkai Cui
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Yibo Ma
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076, Aalto, Finland
| | - Qian Yu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China.
| | - Akash Kannegulla
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bo Wu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Hongtao Fan
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Alan X Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Xianming Kong
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China.
| |
Collapse
|
30
|
Yang J, Zhou L, Wang XY, Song G, You LJ, Li JM. Core-satellite Ag/TiO2/Ag composite nanospheres for multiple SERS applications in solution by a portable Raman spectrometer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Clark BD, Jacobson CR, Lou M, Renard D, Wu G, Bursi L, Ali AS, Swearer DF, Tsai AL, Nordlander P, Halas NJ. Aluminum Nanocubes Have Sharp Corners. ACS NANO 2019; 13:9682-9691. [PMID: 31397561 DOI: 10.1021/acsnano.9b05277] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Of the many plasmonic nanoparticle geometries that have been synthesized, nanocubes have been of particular interest for creating nanocavities, facilitating plasmon coupling, and enhancing phenomena dependent upon local electromagnetic fields. Here we report the straightforward colloidal synthesis of single-crystalline {100} terminated Al nanocubes by decomposing AlH3 with Tebbe's reagent in tetrahydrofuran. The size and shape of the Al nanocubes is controlled by the reaction time and the ratio of AlH3 to Tebbe's reagent, which, together with reaction temperature, establish kinetic control over Al nanocube growth. Al nanocubes possess strong localized field enhancements at their sharp corners and resonances highly amenable to coupling with metallic substrates. Their native oxide surface renders them extremely air stable. Chemically synthesized Al nanocubes provide an earth-abundant alternative to noble metal nanocubes for plasmonics and nanophotonics applications.
Collapse
Affiliation(s)
| | | | | | | | - Gang Wu
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin St , Houston , Texas 77030 , United States
| | | | | | | | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin St , Houston , Texas 77030 , United States
| | | | | |
Collapse
|
32
|
Chien PJ, Zhou Y, Tsai KH, Duong HP, Chen CY. Self-formed silver nanoparticles on freestanding silicon nanowire arrays featuring SERS performances. RSC Adv 2019; 9:26037-26042. [PMID: 35531020 PMCID: PMC9070120 DOI: 10.1039/c9ra03273h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Herein, the universal luminescence characteristics of porous Si nanowire arrays were exploited using a wide range of doping types and concentrations; we found that the dual-band photoluminescence intensities were correlated with the formation rates of Si nanowires with porous features; however, these intensities exhibited no evident dependence on the doping conditions. Furthermore, we demonstrated a facile and reliable transfer method implementing the freestanding Si nanowire arrays while maintaining the robust photoluminescence behaviors under bending conditions. The fabrication protocol, involving lateral etching locally at the nanowire ends, enabled the controlled formation of uniform and large-area transferred nanowires with vertical regularity. Without the additional deposition of Ag nanoparticles, these transferred Si nanowire films inherently possessed SERS sensing capability with a relative enhancement factor over 1.8 times that of the Si nanowires with electroless-deposited Ag nanoparticles, which could practically emerge as a functional design for the integration of practical biochip devices.
Collapse
Affiliation(s)
- Pin-Ju Chien
- Department of Materials Science and Engineering, National Cheng Kung University No. 1 University Road Tainan 70101 Taiwan
| | - Yongcun Zhou
- School of Materials Science and Engineering, Northwestern Polytechnical University Xi'an 710072 Shaanxi People's Republic of China
| | - Kun-Hung Tsai
- Department of Materials Science and Engineering, National Cheng Kung University No. 1 University Road Tainan 70101 Taiwan
| | - Hong Phan Duong
- The University of Danang, University of Science and Technology 54 Nguyen Luong Bang Vietnam
| | - Chia-Yun Chen
- Department of Materials Science and Engineering, National Cheng Kung University No. 1 University Road Tainan 70101 Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University No. 1 University Road Tainan 70101 Taiwan
| |
Collapse
|
33
|
Modulation of HCHO, H2O and H adsorption on AgPd cocatalyst by optimizing of selective exposed facet to enhancing the efficiency of conversion toxic formaldehyde into hydrogen driven by visible light. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Yin G, Bai S, Tu X, Li Z, Zhang Y, Wang W, Lu J, He D. Highly Sensitive and Stable SERS Substrate Fabricated by Co-sputtering and Atomic Layer Deposition. NANOSCALE RESEARCH LETTERS 2019; 14:168. [PMID: 31104182 PMCID: PMC6525682 DOI: 10.1186/s11671-019-2997-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/29/2019] [Indexed: 05/31/2023]
Abstract
In this study, we develop a facile method to fabricate highly sensitive and stable surface-enhanced Raman scattering (SERS) substrate, which is realized by combining co-sputtering with atomic layer deposition technology. To accomplish the SERS substrate preparation, we firstly utilized co-sputtering silver and aluminum on glass slides to form uniform discontinuous Ag film by removing Al later, which acted as SERS active moiety and presented high sensitivity in glycerin detection. After coating an ultrathin TiO2 layer via atomic layer deposition (ALD), the samples could further enhance the Raman signal due to the chemical effect as well as the long-range effect of the enhanced electromagnetic field generated by the encapsulated Ag nanoparticles (NPs). Besides, the coated sample could maintain the significant enhancement in air condition for more than 30 days. The high stability is induced by TiO2 layer, which efficiently prevents Ag NPs from surface oxidation. This highly sensitive and stable SERS substrate might highlight the application of interface state investigation for exploring novel liquid lubricating materials.
Collapse
Affiliation(s)
- Guilin Yin
- School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 People’s Republic of China
- National Engineering Research Center for Nanotechnology, No. 28 East Jiangchuan Road, Shanghai, 200241 People’s Republic of China
| | - Shiheng Bai
- School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 People’s Republic of China
- National Engineering Research Center for Nanotechnology, No. 28 East Jiangchuan Road, Shanghai, 200241 People’s Republic of China
| | - Xinglong Tu
- School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 People’s Republic of China
| | - Zheng Li
- School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 People’s Republic of China
- National Engineering Research Center for Nanotechnology, No. 28 East Jiangchuan Road, Shanghai, 200241 People’s Republic of China
| | - Yanpeng Zhang
- School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 People’s Republic of China
- National Engineering Research Center for Nanotechnology, No. 28 East Jiangchuan Road, Shanghai, 200241 People’s Republic of China
| | - Weiming Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240 People’s Republic of China
| | - Jing Lu
- National Engineering Research Center for Nanotechnology, No. 28 East Jiangchuan Road, Shanghai, 200241 People’s Republic of China
| | - Dannong He
- School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 People’s Republic of China
- National Engineering Research Center for Nanotechnology, No. 28 East Jiangchuan Road, Shanghai, 200241 People’s Republic of China
| |
Collapse
|
35
|
Lee J, Min K, Kim Y, Yu HK. Surface-Enhanced Raman Spectroscopy (SERS) Study Using Oblique Angle Deposition of Ag Using Different Substrates. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1581. [PMID: 31091815 PMCID: PMC6566392 DOI: 10.3390/ma12101581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
The oblique angle deposition of Ag with different deposition rates and substrates was studied for surface-enhanced Raman spectroscopy (SERS) efficiency. The deposition rate for the Ag substrate with maximum SERS efficiency was optimized to 2.4 Å/s. We also analyzed the morphology of Ag nanorods deposited at the same rate on various substrates and compared their SERS intensities. Ag deposited on SiO2, sapphire, and tungsten showed straight nanorods shape and showed relatively high SERS efficiency. However, Ag deposited on graphene or plasma-treated SiO2 substrate was slightly or more aggregated (due to high surface energy) and showed low SERS efficiency.
Collapse
Affiliation(s)
- Jaeyeong Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| | - Kyungchan Min
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Youngho Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| | - Hak Ki Yu
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
36
|
Chang H, Lee YY, Lee HE, Ahn HY, Ko E, Nam KT, Jeong DH. Size-controllable and uniform gold bumpy nanocubes for single-particle-level surface-enhanced Raman scattering sensitivity. Phys Chem Chem Phys 2019; 21:9044-9051. [DOI: 10.1039/c9cp00138g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gold nanocubes modified to form roughened structures with very strong and uniform single-particle surface-enhanced Raman scattering intensity were developed.
Collapse
Affiliation(s)
- Hyejin Chang
- Division of Science Education
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Yoon Young Lee
- Department of Materials Science and Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Hye Eun Lee
- Department of Materials Science and Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Eunbyeol Ko
- Department of Chemistry Education
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education
- Seoul National University
- Seoul 08826
- Republic of Korea
- Center for Education Research
| |
Collapse
|
37
|
Kwon N, Oh H, Kim R, Sinha A, Kim J, Shin J, Chon JWM, Lim B. Direct Chemical Synthesis of Plasmonic Black Colloidal Gold Superparticles with Broadband Absorption Properties. NANO LETTERS 2018; 18:5927-5932. [PMID: 30075632 DOI: 10.1021/acs.nanolett.8b02629] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-assembly of plasmonic metal nanoparticles can provide an opportunity of creating colloidal superparticles with fascinating optical properties arising from interparticle plasmonic coupling, but typically requires multiple steps involving solvent and/or ligand exchange. We developed a direct, one-step chemical synthesis of plasmonic black colloidal Au superparticles with broadband absorption in visible and near-infrared regions. During the synthesis, the Au superparticles were formed through self-assembly of in-situ-formed Au nanoparticles driven by solvophobic interactions between nanoparticles and solvent. These superparticles could be solution-processed to fabricate a thin film, which exhibited near-perfect absorption over a broad range from 400 nm to 2.5 μm as well as the excellent antireflective property. Thanks to their broadband absorption property, the Au superparticles showed good performances for near-infrared surface-enhanced Raman spectroscopy and light-to-heat conversion.
Collapse
Affiliation(s)
- Nayoung Kwon
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Hwisu Oh
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Reehyang Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - Arjyabaran Sinha
- School of Chemical Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Jaeyun Kim
- School of Chemical Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - James W M Chon
- Centre for Micro-Photonics, Department of Physics, Faculty of Science, Engineering and Technology , Swinburne University of Technology , PO Box 218, Hawthorn , 3122 Victoria , Australia
| | - Byungkwon Lim
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| |
Collapse
|
38
|
Tong Q, Wang W, Fan Y, Dong L. Recent progressive preparations and applications of silver-based SERS substrates. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Zhao C, Zhu Y, Chen L, Zhou S, Su Y, Ji X, Chen A, Gui X, Tang Z, Liu Z. Multi-layer nanoarrays sandwiched by anodized aluminium oxide membranes: an approach to an inexpensive, reproducible, highly sensitive SERS substrate. NANOSCALE 2018; 10:16278-16283. [PMID: 30128448 DOI: 10.1039/c8nr05875j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A large-scale sub-5 nm nanofabrication technique is developed based on double layer anodized aluminium oxide (AAO) porous membrane masking. This technique also provides a facile route to form multilayer nano-arrays (metal nanoarrays sandwiched by AAO membranes), which is very challenging for other techniques. Normally the AAO mask has to be sacrificed, yet in this work it is preserved as a part of the nanostructure. The preserved AAO layers as the support for the second/third layer of the metal arrays provide a high-refractive index background for the multilayer metal arrays. This background concentrates the local E-field more significantly and results in a much higher Surface-Enhanced Raman Spectroscopy (SERS) signal than single layer metal arrays. This technique may lead to the advent of an inexpensive, reproducible, highly sensitive SERS substrate. Moreover, the physical essence of the plasmonic enhancement is unveiled by finite element method based numerical simulations. Enhancements from the gaps and the multilayer nanostructure agree very well with the experiments. The calculated layer-by-layer electric field distribution determines the contribution from different layers and provides more insights into the 3D textured structure.
Collapse
Affiliation(s)
- Chengchun Zhao
- College of Innovation and Entrepreneurship, Southern University of Science and technology, Shenzhen 518055, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kundu S, Yi SI, Ma L, Chen Y, Dai W, Sinyukov AM, Liang H. Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds. Dalton Trans 2018; 46:9678-9691. [PMID: 28713887 DOI: 10.1039/c7dt01474k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium nanoparticles (Pd NPs) of three different morphologies viz., nanocubes with cetyltrimethylammonium bromide (CTAB), nanowires with polyvinyl alcohol (PVA) and Pd NPs with deoxyribonucleic acid (DNA) scaffolds were synthesized by UV-irradiation. Catalysis and surface enhanced Raman scattering (SERS) studies were done with the synthesized morphologically distinct Pd nanostructures for the very first time. The catalytic rate was extremely high with Pd nanowires templated with PVA and the order of the catalytic rate was Pd nanowires in PVA > Pd nanocubes in CTAB > DNA-Pd wire-like assemblies. The highest catalytic rate was observed for PVA capped Pd nanowires which is a few hundred fold higher than other metal NP catalysts. Methylene blue (MB) was used as a Raman analyte for the SERS study and the largest EF of 1.9 × 105 at a peak position of 1391 cm-1 was observed with Pd nanowires in the DNA scaffold as a SERS substrate. The order of the SERS EF values was DNA-Pd wire-like assemblies > Pd nanocubes in CTAB > Pd nanowires in PVA. Beyond everything, the present synthesis route is easy, faster, candid, highly reproducible and cost-effective. In the near future, the same protocol could be applied to synthesize other materials for various applications.
Collapse
Affiliation(s)
- Subrata Kundu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas TX-77843, USA. and Electrochemical Materials Science (ECMS) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India
| | - Su-In Yi
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas TX-77843, USA
| | - Lian Ma
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas TX-77843, USA
| | - Yunyun Chen
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas TX-77843, USA.
| | - Wei Dai
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas TX-77843, USA
| | - Alexander M Sinyukov
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Hong Liang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas TX-77843, USA. and Department of Mechanical Engineering, Texas A&M University, College Station, Texas TX-77843, USA
| |
Collapse
|
41
|
Šubr M, Procházka M. Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E418. [PMID: 29890758 PMCID: PMC6027211 DOI: 10.3390/nano8060418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
A sometimes overlooked degree of freedom in the design of many spectroscopic (mainly Raman) experiments involve the choice of experimental geometry and polarization arrangement used. Although these aspects usually play a rather minor role, their neglect may result in a misinterpretation of the experimental results. It is well known that polarization- and/or angular- resolved spectroscopic experiments allow one to classify the symmetry of the vibrations involved or the molecular orientation with respect to a smooth surface. However, very low detection limits in surface-enhancing spectroscopic techniques are often accompanied by a complete or partial loss of this detailed information. In this review, we will try to elucidate the extent to which this approach can be generalized for molecules adsorbed on plasmonic nanostructures. We will provide a detailed summary of the state-of-the-art experimental findings for a range of plasmonic platforms used in the last ~ 15 years. Possible implications on the design of plasmon-based molecular sensors for maximum signal enhancement will also be discussed.
Collapse
Affiliation(s)
- Martin Šubr
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic.
| | - Marek Procházka
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic.
| |
Collapse
|
42
|
Tian Y, Shuai Z, Shen J, Zhang L, Chen S, Song C, Zhao B, Fan Q, Wang L. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800669. [PMID: 29736956 DOI: 10.1002/smll.201800669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/28/2018] [Indexed: 06/08/2023]
Abstract
A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhenhua Shuai
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jingjing Shen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Baomin Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
43
|
Chen S, Liu B, Zhang X, Mo Y, Chen F, Shi H, Zhang W, Hu C, Chen J. Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Mejía-Salazar JR, Camacho SA, Constantino CJL, Oliveira ON. New trends in plasmonic (bio)sensing. AN ACAD BRAS CIENC 2018; 90:779-801. [PMID: 29742207 DOI: 10.1590/0001-3765201820170571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The strong enhancement and localization of electromagnetic field in plasmonic systems have found applications in many areas, which include sensing and biosensing. In this paper, an overview will be provided of the use of plasmonic phenomena in sensors and biosensors with emphasis on two main topics. The first is related to possible ways to enhance the performance of sensors and biosensors based on surface plasmon resonance (SPR), where examples are given of functionalized magnetic nanoparticles, magnetoplasmonic effects and use of metamaterials for SPR sensing. The other topic is focused on surface-enhanced Raman scattering (SERS) for sensing, for which uniform, flexible, and reproducible SERS substrates have been produced. With such recent developments, there is the prospect of improving sensitivity and lowering the limit of detection in order to overcome the limitations inherent in ultrasensitive detection of chemical and biological analytes, especially at single molecule levels.
Collapse
|
45
|
Managò S, Zito G, Rogato A, Casalino M, Esposito E, De Luca AC, De Tommasi E. Bioderived Three-Dimensional Hierarchical Nanostructures as Efficient Surface-Enhanced Raman Scattering Substrates for Cell Membrane Probing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12406-12416. [PMID: 29569901 DOI: 10.1021/acsami.7b19285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, we propose the use of complex, bioderived nanostructures as efficient surface-enhanced Raman scattering (SERS) substrates for chemical analysis of cellular membranes. These structures were directly obtained from a suitable gold metalization of the Pseudonitzchia multistriata diatom silica shell (the so called frustule), whose grating-like geometry provides large light coupling with external radiation, whereas its extruded, subwavelength lateral edge provides an excellent interaction with cells without steric hindrance. We carried out numerical simulations and experimental characterizations of the supported plasmonic resonances and optical near-field amplification. We thoroughly evaluated the SERS substrate enhancement factor as a function of the metalization parameters and finally applied the nanostrucures for discriminating cell membrane Raman signals. In particular, we considered two cases where the membrane composition plays a fundamental role in the assessment of several pathologies, that is, red blood cells and B-leukemia REH cells.
Collapse
Affiliation(s)
| | | | - Alessandra Rogato
- Department of Integrative Marine Ecology , Stazione Zoologica Anton Dohrn , Naples 80121 , Italy
| | | | | | | | | |
Collapse
|
46
|
Starowicz Z, Wojnarowska-Nowak R, Ozga P, Sheregii EM. The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect. Colloid Polym Sci 2018; 296:1029-1037. [PMID: 29780199 PMCID: PMC5948265 DOI: 10.1007/s00396-018-4308-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 12/04/2022]
Abstract
The Surface-enhanced Raman spectroscopy is the essential tool for various levels of the molecular studies. In order to become widely used as a fast analytical tool, the enhancing structures such as the nanoparticles have to be simple, inexpensive, and offer good flexibility in enhancing properties and the spectral range. In this paper, we investigated the plasmonic properties of the metal nanoparticles, to which the molecules of interest can be adsorbed, forming the bionanocomplexes. Here, for the first time, we provided the collection of the results gathered in one article, which can serve as the basis or guidance for designing the SERS studies on different bionanocomplexes, various nanoparticle structures, sizes, and excitation wavelengths. The presented plasmonic properties describe the spectral position of the plasmonic resonances as results of their size and structure. The electric field enhancement as a key contributor to the SERS effect is given as well. We considered silver and gold nanoparticles and their variations. Gold is one of the best choice, due to its relevant surface properties, however, suffers from the plasmonic activity and rather static spectral position of the plasmonic resonances. Therefore, one of the main purposes was to show the effective resonance tuning using simple and less expensive geometries. We showed the possibility to adjust the plasmonic resonances with the excitation wavelengths from the blue region to the near infrared region of lasers most commonly used for Raman spectroscopy. The presented studies indicated the high potential of the core-shell structures for this kind of applications.
Collapse
Affiliation(s)
- Z Starowicz
- 1Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str, 30-059 Krakow, Poland
| | - R Wojnarowska-Nowak
- 2Centre for Microelectronics and Nanotechnology, University of Rzeszow, 1 Pigonia Str, 35-959 Rzeszow, Poland
| | - P Ozga
- 1Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str, 30-059 Krakow, Poland
| | - E M Sheregii
- 2Centre for Microelectronics and Nanotechnology, University of Rzeszow, 1 Pigonia Str, 35-959 Rzeszow, Poland
| |
Collapse
|
47
|
|
48
|
Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev 2018; 118:4946-4980. [PMID: 29638112 DOI: 10.1021/acs.chemrev.7b00668] [Citation(s) in RCA: 1001] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) inherits the rich chemical fingerprint information on Raman spectroscopy and gains sensitivity by plasmon-enhanced excitation and scattering. In particular, most Raman peaks have a narrow width suitable for multiplex analysis, and the measurements can be conveniently made under ambient and aqueous conditions. These merits make SERS a very promising technique for studying complex biological systems, and SERS has attracted increasing interest in biorelated analysis. However, there are still great challenges that need to be addressed until it can be widely accepted by the biorelated communities, answer interesting biological questions, and solve fatal clinical problems. SERS applications in bioanalysis involve the complex interactions of plasmonic nanomaterials with biological systems and their environments. The reliability becomes the key issue of bioanalytical SERS in order to extract meaningful information from SERS data. This review provides a comprehensive overview of bioanalytical SERS with the main focus on the reliability issue. We first introduce the mechanism of SERS to guide the design of reliable SERS experiments with high detection sensitivity. We then introduce the current understanding of the interaction of nanomaterials with biological systems, mainly living cells, to guide the design of functionalized SERS nanoparticles for target detection. We further introduce the current status of label-free (direct) and labeled (indirect) SERS detections, for systems from biomolecules, to pathogens, to living cells, and we discuss the potential interferences from experimental design, measurement conditions, and data analysis. In the end, we give an outlook of the key challenges in bioanalytical SERS, including reproducibility, sensitivity, and spatial and time resolution.
Collapse
Affiliation(s)
- Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Li-Jia Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ting Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
49
|
Zhang Y, Yang C, Xue B, Peng Z, Cao Z, Mu Q, Xuan L. Highly effective and chemically stable surface enhanced Raman scattering substrates with flower-like 3D Ag-Au hetero-nanostructures. Sci Rep 2018; 8:898. [PMID: 29343742 PMCID: PMC5772549 DOI: 10.1038/s41598-018-19165-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022] Open
Abstract
We demonstrated flower-like 3D Ag-Au hetero-nanostructures on an indium tin oxide glass (ITO glass) for surface enhanced Raman scattering (SERS) applications. The flower-like 3D Ag nanostructures were obtained through electrodeposition with liquid crystalline soft template which is simple, controllable and cost effective. The flower-like 3D Ag-Au hetero-nanostructures were further fabricated by galvanic replacement reaction of gold (III) chloride trihydrate (HAuCl4·3H2O) solution and flower-like Ag. The flower-like Ag-Au hetero-nanostructure exhibited stronger SERS effects and better chemical stability compared with flower-like Ag nanostructure. The localized surface plasmon resonance (LSPR) spectra, field emission scanning electron microscope (FESEM) photos and Ag-Au ratios were studied which show that the surface morphology and shape of the flower-like Ag-Au hetero-nanostructure play significant roles in enhancing SERS. The flower-like 3D Ag-Au hetero-nanostructures fabricated by electrodeposition in liquid crystalline template and galvanic replacement reaction are simple, cheap, controllable and chemical stable. It is a good candidate for applications in SERS detection and imaging.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengliang Yang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.
| | - Bin Xue
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Zenghui Peng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Zhaoliang Cao
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Quanquan Mu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Li Xuan
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| |
Collapse
|
50
|
Jia Y, Zhang L, Song L, Dai L, Lu X, Huang Y, Zhang J, Guo Z, Chen T. Giant Vesicles with Anchored Tiny Gold Nanowires: Fabrication and Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13376-13383. [PMID: 29057659 DOI: 10.1021/acs.langmuir.7b03261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sensitivity and reproducibility are two major concerns to improve the performance and extend the range of practical applications of surface-enhanced Raman scattering (SERS). A theoretical report reveals that hot spots formed by gold nanoparticles with a tip-to-tip configuration would generate the maximum electric field enhancement because of the lightning rod effect. In our present study, we constructed a giant vesicle consisting of anchored tiny gold nanowires to provide a high density of sharp tip-to-tip nanogaps for SERS application. The tiny gold nanowires were directly grown and anchored onto the surfaces of polystyrene (PS) microspheres by a seed-mediated method. Then, the removal of PS microspheres by tetrahydrofuran led to the formation of the giant gold vesicles with hierarchical cage structures, providing the sharp tips and high density of hot spots for improving SERS performance. Compared with the nonwire structure (island and inhibited nanoparticle), giant gold vesicles with tiny wires showed a higher SERS enhancement factor (9.90 × 107) and quantitative SERS analysis in the range of 10-4 to 10-7 M. In addition, the large-scale giant gold vesicle array on the silica substrate resulted in a high reproducibility of SERS signals with the variation of intensities less than 7.6%.
Collapse
Affiliation(s)
- Yaru Jia
- Faculty of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, P. R. China
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| | - Lei Zhang
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| | - Liping Song
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| | - Liwei Dai
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| | - Xuefei Lu
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| | - Youju Huang
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| | - Jiawei Zhang
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, P. R. China
| | - Tao Chen
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province, Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo 315201, P. R. China
| |
Collapse
|