1
|
Ramos Montero GE, Ballarini AD, Yañez MJ, de Miguel SR, Bocanegra SA, Zgolicz PD. Unprecedented selectivity behavior in the direct dehydrogenation of n-butane to n-butenes with similar active Pt nanoparticle size: unveiling structural and electronic characteristics of supported monometallic catalysts. Phys Chem Chem Phys 2024; 26:26984-27006. [PMID: 39422659 DOI: 10.1039/d4cp00922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, supported Pt monometallic catalysts were prepared using oxide and carbon supports by conventional impregnation methods. Similar Pt metallic nanoparticle sizes (mean sizes about 1.8-2 nm) have been obtained using different Pt precursor loadings (0.3 to 5 wt%). For comparison, catalysts with larger nanoparticle sizes were prepared using the liquid phase reduction method. Characterization results indicate different electronic and structural characteristics for the Pt nanoparticles, comparing nanoparticles with similar and different sizes, implying that both the Pt loading and the preparation method affect the formation of different metallic phases. We used the direct dehydrogenation of n-butane to n-butenes reaction as a test reaction to study the catalytic behavior of the Pt nanoparticles obtained at different Pt atomic concentrations. Surprisingly, Pt catalysts with the lowest metallic loading show the highest selectivities to olefins. Besides, Pt catalysts supported on carbon materials showed higher selectivity to butenes than those supported on oxide materials, this was attributed to a higher electron density in the Pt active sites. Likewise, at low Pt loadings, the CNP-supported Pt nanoparticles could be confined at the defect in the nanotube structure as crystalline agglomerates of atoms with few layers or monolayers with very few surface adatom or stepped adatom nanostructures or simply as a group of atoms, thus creating active Pt sites that favor the dehydrogenation reaction over secondary reactions.
Collapse
Affiliation(s)
- Gustavo Enrique Ramos Montero
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
- Physicochemistry Department, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Paraná, Entre Ríos, Argentina
| | - Adriana Daniela Ballarini
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
| | - María Julia Yañez
- Centro Científico Tecnológico CONICET Bahía Blanca (CCT-BB), Camino La Carrindanga, Km 7, (8000) Bahía Blanca, Argentina
| | - Sergio Rubén de Miguel
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
| | - Sonia Alejandra Bocanegra
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
| | - Patricia Daniela Zgolicz
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
- Physicochemistry Department, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Paraná, Entre Ríos, Argentina
| |
Collapse
|
2
|
Choi J, Kim BH. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1685. [PMID: 39453021 PMCID: PMC11510505 DOI: 10.3390/nano14201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Nanoparticle-based thin films are increasingly being used in various applications. One of the key factors that determines the properties and performances of these films is the type of ligands attached to the nanoparticle surfaces. While long-chain surfactants, such as oleic acid, are commonly employed to stabilize nanoparticles and ensure high monodispersity, these ligands often hinder charge transport due to their insulating nature. Although thermal annealing can remove the long-chain ligands, the removal process often introduces defects such as cracks and voids. In contrast, the use of short-chain organic or inorganic ligands can minimize interparticle distance, improving film conductivity, though challenges such as incomplete ligand exchange and residual barriers remain. Polymeric ligands, especially block copolymers, can also be employed to create films with tailored porosity. This review discusses the effects of various ligand types on the morphology and performance of nanoparticle-based films, highlighting the trade-offs between conductivity, structural integrity, and functionality.
Collapse
Affiliation(s)
- Jungwook Choi
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Byung Hyo Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
3
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Ivanytsya MO, Subotin VV, Gavrilenko KS, Ryabukhin SV, Volochnyuk DM, Kolotilov SV. Advances and Challenges in Development of Transition Metal Catalysts for Heterogeneous Hydrogenation of Organic Compounds. CHEM REC 2024; 24:e202300300. [PMID: 38063808 DOI: 10.1002/tcr.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Indexed: 02/10/2024]
Abstract
Actual problems of development of catalysts for hydrogenation of heterocyclic compounds by hydrogen are summarized and discussed. The scope of review covers composites of nanoparticles of platinum group metals and 3d metals for heterogeneous catalytic processes. Such problems include increase of catalyst activity, which is important for reduction of precious metals content; development of new catalytic systems which do not contain metals of platinum group or contain cheaper analogues of Pd; control of factors which make influence on the selectivity of the catalysts; achievement of high reproducibility of the catalyst's performance and quality control of the catalysts. Own results of the authors are also summarized and described. The catalysts were prepared by decomposition of Pd0 and Ni0 complexes, pyrolysis of Ni2+ and Co2+ complexes deposited on aerosil and reduction of Ni2+ in pores of porous support in situ. The developed catalysts were used for hydrogenation of multigram batches of heterocyclic compounds.
Collapse
Affiliation(s)
- Mykyta O Ivanytsya
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
| | - Vladyslav V Subotin
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
| | - Konstantin S Gavrilenko
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Chemical Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
| | - Serhiy V Ryabukhin
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, 02660, Kyiv, Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, 02660, Kyiv, Ukraine
| | - Sergey V Kolotilov
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
| |
Collapse
|
5
|
Vicente RA, Raju SP, Gomes HVN, Neckel IT, Tolentino HCN, Fernández PS. Development of Electrochemical Cells and Their Application for Spatially Resolved Analysis Using a Multitechnique Approach: From Conventional Experiments to X-Ray Nanoprobe Beamlines. Anal Chem 2023; 95:16144-16152. [PMID: 37883715 DOI: 10.1021/acs.analchem.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Real (electro)catalysts are often heterogeneous, and their activity and selectivity depend on the properties of specific active sites. Therefore, unveiling the so-called structure-activity relationship is essential for a rational search for better materials and, consequently, for the development of the field of (electro-)catalysis. Thus, spatially resolved techniques are powerful tools as they allow us to characterize and/or measure the activity and selectivity of different regions of heterogeneous catalysts. To take full advantage of that, we have developed spectroelectrochemical cells to perform spatially resolved analysis using X-ray nanoprobe synchrotron beamlines and conventional pieces of equipment. Here, we describe the techniques available at the Carnaúba beamline at the Sirius-LNLS storage ring, and then we show how our cells enable obtaining X-ray (XRF, XRD, XAS, etc.) and vibrational spectroscopy (FTIR and Raman) contrast images. Through some proof-of-concept experiments, we demonstrate how using a multi-technique approach could render a complete and detailed analysis of an (electro)catalyst overall performance.
Collapse
Affiliation(s)
- Rafael Alcides Vicente
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Swathi Patchaiammal Raju
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Heloisa Vampré Nascimento Gomes
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Itamar Tomio Neckel
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas 13083-970, Brazil
| | - Hélio Cesar Nogueira Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas 13083-970, Brazil
| | - Pablo Sebastián Fernández
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| |
Collapse
|
6
|
Cipriano LA, Kristoffersen HH, Munhos RL, Pittkowski R, Arenz M, Rossmeisl J. Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolution. NANOSCALE 2023; 15:16697-16705. [PMID: 37772911 DOI: 10.1039/d3nr02808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The dissolution of nanoparticles under corrosive environments represents one of the main issues in electrochemical processes. Here, a model for alloying and protecting nanoparticles from corrosion with an anti-corrosive element (e.g. Au) is proposed based on the hypothesis that under-coordinated atoms are the first atoms to dissolve. The model considers the dissolution of atoms with coordination number ≤6 on A-B nanoparticles with different sizes, shapes, chemical compositions, and exposed crystallographic orientations. The results revealed that the nanoparticle's size and chemical composition play a key role in the dissolution, suggesting that a certain composition of an element with corrosive resistance could be used to protect nanoparticles. DFT simulations were performed to support our model on the dissolution of four types of atoms commonly found on the surface of Au0.20Pd0.80 binary alloys - terrace, edge, kink, and ad atoms. The simulations suggest that the less coordinated ad and kink Pd atoms on Au0.20Pd0.80 alloys are dissolved in a potential window between 0.26-0.56 V, while the rest of the Pd and Au atoms are protected. Furthermore, to show that a corrosion-resistant element can indeed protect nanoparticles, we experimentally investigated the electrochemical dissolution of immobilized Pd, Au0.20Pd0.80, and Au0.40Pd0.60 nanoparticles in a harsh environment. In line with the dissolution model, the experimental results show that an Au molar fraction of the nanoparticle of 0.20, i.e., Au0.20Pd0.80 binary alloy, is a good compromise between maximizing the active surface area (Pd atoms) and corrosion protection by the inactive Au.
Collapse
Affiliation(s)
- Luis A Cipriano
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Henrik H Kristoffersen
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Renan L Munhos
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Rebecca Pittkowski
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Matthias Arenz
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Jan Rossmeisl
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
8
|
Gupta N, Jayaraman A. Computational approach for structure generation of anisotropic particles (CASGAP) with targeted distributions of particle design and orientational order. NANOSCALE 2023; 15:14958-14970. [PMID: 37656010 DOI: 10.1039/d3nr02425c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The macroscopic properties of materials are governed by their microscopic structure which depends on the materials' composition (i.e., building blocks) and processing conditions. In many classes of synthetic, bioinspired, or natural soft and/or nanomaterials, one can find structural anisotropy in the microscopic structure due to anisotropic building blocks and/or anisotropic domains formed through the processing conditions. Experimental characterization and complementary physics-based or data-driven modeling of materials' structural anisotropy are critical for understanding structure-property relationships and enabling targeted design of materials with desired macroscopic properties. In this pursuit, to interpret experimentally obtained characterization results (e.g., scattering profiles) of soft materials with structural anisotropy using data-driven computational approaches, there is a need for creating real space three-dimensional structures of the designer soft materials with realistic physical features (e.g., dispersity in building block sizes) and anisotropy (i.e., aspect ratios of the building blocks, their orientational and positional order). These real space structures can then be used to compute and complement experimentally obtained characterization results or be used as initial configurations for physics-based simulations/calculations that can then provide training data for machine learning models. To address this need, we present a new computational approach called CASGAP - Computational Approach for Structure Generation of Anisotropic Particles - for generating any desired three dimensional real-space structure of anisotropic building blocks (modeled as particles) adhering to target distributions of particle shape, size, and positional and orientational order.
Collapse
Affiliation(s)
- Nitant Gupta
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE 19716, USA.
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, DE 19716, USA
| |
Collapse
|
9
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
10
|
Li H, Dai S, Wu Y, Dong Q, Chen J, Chen HT, Hu A, Chou J, Chen T. Atomic Scaled Depth Correlation to the Oxygen Reduction Reaction Performance of Single Atom Ni Alloy to the NiO 2 Supported Pd Nanocrystal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207109. [PMID: 36752398 PMCID: PMC10104651 DOI: 10.1002/advs.202207109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
This study demonstrates the intercalation of single-atom Ni (NiSA ) substantially reduces the reaction activity of Ni oxide supported Pd nanoparticle (NiO2 /Pd) in the oxygen reduction reaction (ORR). The results indicate the transition states kinetically consolidate the adsorption energy for the chemisorbed O and OH species on the ORR activity. Notably, the NiO2 /Ni1 /Pd performs the optimum ORR behavior with the lowest barrier of 0.49 eV and moderate second-step barrier of 0.30 eV consequently confirming its utmost ORR performance. Through the stepwise cross-level demonstrations, a structure-Eads -ΔE correspondence for the proposed NiO2 /Nin /Pd systems is established. Most importantly, such a correspondence reveals that the electronic structure of heterogeneous catalysts can be significantly differed by the segregation of atomic clusters in different dimensions and locations. Besides, the doping-depth effect exploration of the NiSA in the NiO2 /Pd structure intrinsically elucidates that the Ni atom doping in the subsurface induces the most fruitful NiSA /PdML synergy combining the electronic and strain effects to optimize the ORR, whereas this desired synergy diminishes at high Pd coverages. Overall, the results not only rationalize the variation in the redox properties but most importantly provides a precision evaluation of the process window for optimizing the configuration and composition of bimetallic catalysts in practical experiments.
Collapse
Affiliation(s)
- Haolin Li
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Sheng Dai
- School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200234China
| | - Yawei Wu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Qi Dong
- Department of Electrical EngineeringTsinghua UniversityBeijing100084China
| | - Jianjun Chen
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Hsin‐Yi Tiffany Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Alice Hu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Jyh‐Pin Chou
- Department of PhysicsNational Changhua University of EducationChanghua50007Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Hierarchical Green‐Energy Materials (Hi‐GEM) Research CentreNational Cheng Kung UniversityTainan70101Taiwan
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei10617Taiwan
| |
Collapse
|
11
|
Moreira Da Silva C, Girard A, Le Bouar Y, Fossard F, Dragoe D, Ducastelle F, Loiseau A, Huc V. Structural Size Effect in Capped Metallic Nanoparticles. ACS NANO 2023; 17:5663-5672. [PMID: 36917747 DOI: 10.1021/acsnano.2c11825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The surfactant used during a colloidal synthesis is known to control the size and shape of metallic nanoparticles. However, its influence on the nanoparticle (NP) structure is still not well understood. In this study, we show that the surfactant can significantly modify the lattice parameter of a crystalline particle. First, our electron diffraction measurements reveals that NiPt nanoparticles around 4 nm in diameter covered by a mixture of oleylamine and oleic acid (50:50) display a lattice parameter expansion around 2% when compared to the same particles without surfactant. Using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) techniques, we show that this expansion can not be explained by crystal defects, twinning, oxidation, or atoms insertion. Then, using covered NPs in the 4-22 nm size range, we show that the lattice parameter evolves linearly with the inverse of the NP size, as it is expected when a surface stress is present. Finally, the study is extended to pure nickel and pure platinum NPs, with different sizes, coated by different surfactants (oleylamine, trioctylphosphine, polyvinylpyrrolidone). The surfactants induce lattice parameter variations, whose magnitude could be related to the charge transfer between the surfactant and the particle surface.
Collapse
Affiliation(s)
- Cora Moreira Da Silva
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Armelle Girard
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
- Université Paris-Saclay, UVSQ, 78000 Versailles, France
| | - Yann Le Bouar
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Frédéric Fossard
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - François Ducastelle
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Annick Loiseau
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Vincent Huc
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| |
Collapse
|
12
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
13
|
Wang W, Wang Q, Xu J, Deng F. Understanding Heterogeneous Catalytic Hydrogenation by Parahydrogen-Induced Polarization NMR Spectroscopy. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
14
|
Electrolyte Effects on the Shape-Controlled Synthesis of Pt Nanocrystals by Electrochemical Square-Wave Potential Method. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Zhang SS, Yi J, Cao T, Guan JP, Sun JQ, Zhao QY, Qiu YJ, Ye CL, Xiong Y, Meng G, Chen W, Lin Z, Zhang J. Inserting Single-Atom Zn by Tannic Acid Confinement To Regulate the Selectivity of Pd Nanocatalysts for Hydrogenation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206052. [PMID: 36549675 DOI: 10.1002/smll.202206052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Precisely controlling the selectivity of nanocatalysts has always been a hot topic in heterogeneous catalysis but remains difficult owing to their complex and inhomogeneous catalytic sites. Herein, an effective strategy to regulate the chemoselectivity of Pd nanocatalysts for selective hydrogenation reactions by inserting single-atom Zn into Pd nanoparticles is reported. Taking advantage of the tannic acid coating-confinement strategy, small-sized Pd nanoparticles with inserted single-atom Zn are obtained on the O-doped carbon-coated alumina. Compared with the pure Pd nanocatalyst, the Pd nanocatalyst with single-atom Zn insertion exhibits prominent selectivity for the hydrogenation of p-iodonitrobenzene to afford the hydrodeiodination product instead of nitro hydrogenation ones. Further computational studies reveal that the single-atom Zn on Pd nanoparticles strengthens the adsorption of the nitro group to avoid its reduction and increases the d-band center of Pd atoms to facilitate the reduction of the iodo group, which leads to enhanced selectivity. This work provides new guidelines to tune the selectivity of nanocatalysts with guest single-atom sites.
Collapse
Affiliation(s)
- Sha-Sha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jun Yi
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Tai Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian-Ping Guan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jia-Qiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Qin-Ying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ya-Jun Qiu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Chen-Liang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
16
|
Nguyen QN, Wang C, Shang Y, Janssen A, Xia Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem Rev 2022; 123:3693-3760. [PMID: 36547384 DOI: 10.1021/acs.chemrev.2c00468] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocrystals offer a unique platform for tailoring the physicochemical properties of solid materials to enhance their performances in various applications. While most work on controlling their shapes revolves around symmetrical growth, the introduction of asymmetrical growth and thus symmetry breaking has also emerged as a powerful route to enrich metal nanocrystals with new shapes and complex morphologies as well as unprecedented properties and functionalities. The success of this route critically relies on our ability to lift the confinement on symmetry by the underlying unit cell of the crystal structure and/or the initial seed in a systematic manner. This Review aims to provide an account of recent progress in understanding and controlling asymmetrical growth and symmetry breaking in a colloidal synthesis of noble-metal nanocrystals. With a touch on both the nucleation and growth steps, we discuss a number of methods capable of generating seeds with diverse symmetry while achieving asymmetrical growth for mono-, bi-, and multimetallic systems. We then showcase a variety of symmetry-broken nanocrystals that have been reported, together with insights into their growth mechanisms. We also highlight their properties and applications and conclude with perspectives on future directions in developing this class of nanomaterials. It is hoped that the concepts and existing challenges outlined in this Review will drive further research into understanding and controlling the symmetry breaking process.
Collapse
Affiliation(s)
- Quynh N. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Yuxin Shang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States
| |
Collapse
|
17
|
Single Metal Atoms Embedded in the Surface of Pt Nanocatalysts: The Effect of Temperature and Hydrogen Pressure. Catalysts 2022. [DOI: 10.3390/catal12121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Embedding energetically stable single metal atoms in the surface of Pt nanocatalysts exposed to varied temperature (T) and hydrogen pressure (P) could open up new possibilities in selective and dynamical engineering of alloyed Pt catalysts, particularly interesting for hydrogenation reactions. In this work, an environmental segregation energy model is developed to predict the stability and the surface composition evolution of 24 Metal M-promoted Pt surfaces (with M: Cu, Ag, Au, Ni, Pd, Co, Rh and Ir) under varied T and P. Counterintuitive to expectations, the results show that the more reactive alloy component (i.e., the one forming the strongest chemical bond with the hydrogen) is not the one that segregates to the surface. Moreover, using DFT-based Multi-Scaled Reconstruction (MSR) method and by extrapolation of M-promoted Pt nanoparticles (NPs), the shape dynamics of M-Pt are investigated under the same ranges of T and P. The results show that under low hydrogen pressure and high temperature ranges, Ag and Au—single atoms (and Cu to a less extent) are energetically stable on the surface of truncated octahedral and/or cuboctahedral shaped NPs. This indicated that coinage single-atoms might be used to tune the catalytic properties of Pt surface under hydrogen media. In contrast, bulk stability within wide range of temperature and pressure is predicted for all other M-single atoms, which might act as bulk promoters. This work provides insightful guides and understandings of M-promoted Pt NPs by predicting both the evolution of the shape and the surface compositions under reaction gas condition.
Collapse
|
18
|
Bis(phosphine) Pd(II) and Pt(II) Ethylene Glycol Carboxylates: Synthesis, Nanoparticle Formation, Catalysis. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Onn TM, Gathmann SR, Guo S, Solanki SPS, Walton A, Page BJ, Rojas G, Neurock M, Grabow LC, Mkhoyan KA, Abdelrahman OA, Frisbie CD, Dauenhauer PJ. Platinum Graphene Catalytic Condenser for Millisecond Programmable Metal Surfaces. J Am Chem Soc 2022; 144:22113-22127. [DOI: 10.1021/jacs.2c09481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tzia Ming Onn
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Sallye R. Gathmann
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Silu Guo
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Surya Pratap S. Solanki
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- William A. Brookshire Department of Chemical and Biomolecular Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas77204, United States
| | - Amber Walton
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Benjamin J. Page
- Department of Chemical Engineering, University Massachusetts Amherst, 686 N. Pleasant Street, Amherst, Massachusetts01003, United States
| | - Geoffrey Rojas
- Characterization Facility, University of Minnesota, 100 Union Street SE, Minneapolis, Minnesota55455, United States
| | - Matthew Neurock
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Lars C. Grabow
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- William A. Brookshire Department of Chemical and Biomolecular Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas77204, United States
| | - K. Andre Mkhoyan
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Omar A. Abdelrahman
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering, University Massachusetts Amherst, 686 N. Pleasant Street, Amherst, Massachusetts01003, United States
| | - C. Daniel Frisbie
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Paul J. Dauenhauer
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
20
|
Niu G, Zhang L, Xia Y. Continuous and Scalable Production of Platinum Nanocubes with Uniform and Controllable Sizes in Air-Free Droplet Reactors. J Phys Chem B 2022; 126:8588-8595. [PMID: 36255856 DOI: 10.1021/acs.jpcb.2c05507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Platinum (Pt) nanocrystals hold the key to a variety of catalytic applications, and those with a cubic shape are attractive as a reference catalyst due to their well-defined {100} facets on the surface. Here we demonstrate the use of droplet reactors as a viable platform for the continuous and scalable production of Pt nanocubes with uniform and controllable sizes. The synthesis was found to be sensitive to the O2 from air because of the oxidative etching associated with the O2/Br- pair. As such, either silicone oil or an inert gas had to be employed as the carrier phase to keep the droplets isolated from air. By controlling the amounts of the precursor and halide ions, the edge length of the Pt nanocubes could be tuned from 5-7 nm. In the setting of a millifluidic device, the droplet reactors could be used to achieve a production rate as high as 31.8 mg min-1, about 10-100 times greater than what has been reported in the literature. We also evaluated the electrocatalytic properties of the as-obtained Pt nanocubes toward the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). For the Pt nanocubes of 6 nm in edge length, they showed a specific activity of 0.27 mA cm-2 toward ORR at 0.9 V and a specific activity of 0.96 mA cm-2 toward MOR at the anodic potential.
Collapse
Affiliation(s)
- Guangda Niu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Crystal growth and catalytic properties of AgPt and AuPt bimetallic nanostructures under surfactant effect. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Elucidating the Morphology Effect of Pt Nanocrystals on Pt/CNT-USY Catalysts for Selective Ring Opening of Decalin. Catal Letters 2022. [DOI: 10.1007/s10562-022-04118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Bahadur Singh K, Gautam N, Upadhyay DD, Abbas G, Rizvi M, Pandey G. Morphology Controlled Biogenic Fabrication Of Metal/Metal Oxide Nanostructures Using Plant Extract And Their Application In Organic Transformations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Moreira Da Silva C, Amara H, Fossard F, Girard A, Loiseau A, Huc V. Colloidal synthesis of nanoparticles: from bimetallic to high entropy alloys. NANOSCALE 2022; 14:9832-9841. [PMID: 35771172 DOI: 10.1039/d2nr02478k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At the nanoscale, the synthesis of a random alloy (i.e. without phase segregation, whatever the composition) by chemical synthesis remains a difficult task, even for simple binary type systems. In this context, a unique approach based on the colloidal route is proposed enabling the synthesis of face-centred cubic and monodisperse bimetallic, trimetallic, tetrametallic and pentametallic nanoparticles with diameters around 5 nm as solid solutions. The Fe-Co-Ni-Pt-Ru alloy (and its subsets) is considered a challenging task as each element has fairly different physico-chemical properties. Particles are prepared by temperature-assisted co-reduction of metal acetylacetonate precursors in the presence of surfactants. It is highlighted how the correlation between precursors' degradation temperatures and reduction potential values of the metal cations is the driving force to achieve a homogeneous distribution of all elements within the nanoparticles.
Collapse
Affiliation(s)
- Cora Moreira Da Silva
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay, Châtillon, 92322, France.
| | - Hakim Amara
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay, Châtillon, 92322, France.
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013 Paris, France
| | - Fédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay, Châtillon, 92322, France.
| | - Armelle Girard
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay, Châtillon, 92322, France.
- Université Versailles Saint-Quentin, U. Paris-Saclay, Versailles, 78035, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay, Châtillon, 92322, France.
| | - Vincent Huc
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Paris Sud, U. Paris-Saclay, Orsay, 91045, France.
| |
Collapse
|
25
|
Lyu S, Zhang Y, Li Z, Liu X, Tian Z, Liu C, Li J, Wang L. Electronic Metal-Support Interactions Between Cu xO and ZnO for Cu xO/ZnO Catalysts With Enhanced CO Oxidation Activity. Front Chem 2022; 10:912550. [PMID: 35646814 PMCID: PMC9136224 DOI: 10.3389/fchem.2022.912550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Metal-support interaction has been one of the main topics of research on supported catalysts all the time. However, many other factors including the particle size, shape and chemical composition can have significant influences on the catalytic performance when considering the role of metal-support interaction. Herein, we have designed a series of CuxO/ZnO catalysts as examples to quantitatively investigate how the metal-support interaction influences the catalytic performance. The electronic metal-support interactions between CuxO and ZnO were regulated successfully without altering the structure of CuxO/ZnO catalyst. Due to the lower work function of ZnO, electrons would transfer from ZnO to CuO, which is favorable for the formation of higher active Cu species. Combined experimental and theoretical calculations revealed that electron-rich interface result from interaction was favorable for the adsorption of oxygen and CO oxidation reaction. Such strategy represents a new direction to boost the catalytic activity of supported catalysts in various applications.
Collapse
Affiliation(s)
- Shuai Lyu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Zhe Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Xinyue Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Zhenfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, China
| | - Chengchao Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| |
Collapse
|
26
|
Shichijo K, Watanabe M, Hisaeda Y, Shimakoshi H. Development of Visible Light-Driven Hybrid Catalysts Composed of Earth Abundant Metal Ions Modified TiO 2 and B 12 Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keita Shichijo
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Midori Watanabe
- Center of Advanced Instrumental Analysis, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Yoshio Hisaeda
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Hisashi Shimakoshi
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| |
Collapse
|
27
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Mehta VN, Ghinaiya N, Rohit JV, Singhal RK, Basu H, Kailasa SK. Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
30
|
Crawley JM, Gow IE, Lawes N, Kowalec I, Kabalan L, Catlow CRA, Logsdail AJ, Taylor SH, Dummer NF, Hutchings GJ. Heterogeneous Trimetallic Nanoparticles as Catalysts. Chem Rev 2022; 122:6795-6849. [PMID: 35263103 PMCID: PMC8949769 DOI: 10.1021/acs.chemrev.1c00493] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/13/2022]
Abstract
The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field.
Collapse
Affiliation(s)
- James
W. M. Crawley
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Isla E. Gow
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Naomi Lawes
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Igor Kowalec
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Lara Kabalan
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - C. Richard A. Catlow
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 OFA, U.K.
- Department
of Chemistry, University College London, Gordon Street, London WC1H 0AJ, U.K.
| | - Andrew J. Logsdail
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Nicholas F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 OFA, U.K.
| |
Collapse
|
31
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
32
|
Chen L, Verma P, Hou K, Qi Z, Zhang S, Liu YS, Guo J, Stavila V, Allendorf MD, Zheng L, Salmeron M, Prendergast D, Somorjai GA, Su J. Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst. Nat Commun 2022; 13:1092. [PMID: 35232968 PMCID: PMC8888751 DOI: 10.1038/s41467-022-28607-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Developing highly efficient and reversible hydrogenation-dehydrogenation catalysts shows great promise for hydrogen storage technologies with highly desirable economic and ecological benefits. Herein, we show that reaction sites consisting of single Pt atoms and neighboring oxygen vacancies (VO) can be prepared on CeO2 (Pt1/CeO2) with unique catalytic properties for the reversible dehydrogenation and rehydrogenation of large molecules such as cyclohexane and methylcyclohexane. Specifically, we find that the dehydrogenation rate of cyclohexane and methylcyclohexane on such sites can reach values above 32,000 molH2 molPt-1 h-1, which is 309 times higher than that of conventional supported Pt nanoparticles. Combining of DRIFTS, AP-XPS, EXAFS, and DFT calculations, we show that the Pt1/CeO2 catalyst exhibits a super-synergistic effect between the catalytic Pt atom and its support, involving redox coupling between Pt and Ce ions, enabling adsorption, activation and reaction of large molecules with sufficient versatility to drive abstraction/addition of hydrogen without requiring multiple reaction sites.
Collapse
Affiliation(s)
- Luning Chen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pragya Verma
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kaipeng Hou
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Zhiyuan Qi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shuchen Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | - Lansun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Miquel Salmeron
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Science and Engineering Department, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Gabor A Somorjai
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 94720, USA.
| | - Ji Su
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
33
|
Murthy PR, Parasuraman S. Ordered Mesoporous Carbon‐supported Morphologically‐controlled Nano‐Gold: Role of Support as well as the Shape and Size of Gold Nanoparticles on the Selective Oxidation of Glycerol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Selvam Parasuraman
- Indian Institute of Technology Madras chemistry IIT-Madras Campus 600036 Chennai INDIA
| |
Collapse
|
34
|
Kilian AS, Abreu GJP, de Siervo A, Landers R, Morais J. Evidencing the formation of Pt nano-islands on Cr2O3/Ag(111). CrystEngComm 2022. [DOI: 10.1039/d1ce01628h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work reports on a comprehensive surface atomic structure investigation on the Pt/Cr2O3/Ag(111) model catalyst. Molecular beam epitaxy (MBE) was applied to achieve the Pt/Cr2O3 model system and in...
Collapse
|
35
|
Huang K, Shin K, Henkelman G, Crooks RM. Correlating Surface Structures and Electrochemical Activity Using Shape-Controlled Single-Pt Nanoparticles. ACS NANO 2021; 15:17926-17937. [PMID: 34730934 DOI: 10.1021/acsnano.1c06281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a method for synthesizing and studying shape-controlled, single Pt nanoparticles (NPs) supported on carbon nanoelectrodes. The key advance is that the synthetic method makes it possible to produce single, electrochemically active NPs with a vast range of crystal structures and sizes. Equally important, the NPs can be fully characterized, and, therefore, the electrochemical properties of the NPs can be directly correlated to the size and structure of a single shape. This makes it possible to directly correlate experimental results to first-principles theory. Because just one well-characterized NP is analyzed at a time, the difficulty of applying a theoretical analysis to an ensemble of NPs having different sizes and structures is avoided. In this article, we report on two specific Pt NP shapes having sizes on the order of 200 nm: concave hexoctahedral (HOH) and concave trapezohedral (TPH). The former has {15 6 1} facets and the latter {10 1 1} facets. The electrochemical properties of these single NPs for the formic acid oxidation (FAO) reaction are compared to those of a single, spherical polycrystalline Pt NP of the same size. Finally, density functional theory, performed prior to the electrochemical studies, were used to interpret the experimental results of the FAO experiments.
Collapse
|
36
|
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00124-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
He H, Meyer RJ, Rioux RM, Janik MJ. Catalyst Design for Selective Hydrogenation of Benzene to Cyclohexene through Density Functional Theory and Microkinetic Modeling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Haoran He
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Randall J. Meyer
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Robert M. Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Michael J. Janik
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Li H, Wang KW, Hu A, Chou JP, Chen TY. Tri-atomic Pt clusters induce effective pathways in a Co core-Pd shell nanocatalyst surface for a high-performance oxygen reduction reaction. Phys Chem Chem Phys 2021; 23:18012-18025. [PMID: 34612275 DOI: 10.1039/d1cp01989a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crux of the hot topic concerning the widespread replacement of fuel cells (FCs) with traditional petrochemical energy is to balance improving the oxygen reduction reaction (ORR) and reducing the cost. The present study employs density functional theory (DFT) to investigate the effect of Pt ensemble size regulation from a single atom to full coverage on the physio-chemical properties, oxygen adsorption energies and overall ORR efficiency of bimetallic nanocatalysts (NCs) with a Cocore-Pdshell structure. Our results reveal that the electronegativity difference and lattice strain between neighboring heteroatoms are enhanced to trigger a synergetic effect in local domains, with the Pt cluster size reduced from nanometers to subnanometers. They induce a directed and tunable charge relocation mechanism from deep Co to topmost Pt to optimize the adsorption energies of O2/O* and achieve excellent ORR kinetics performance with minimum Pt usage but maximum Pt atom utilization (i.e., Pt1 to Pt3) compared with benchmark Pt(111). Such a dependency between the cluster size and corresponding ORR performance for the established Co@Pd-Ptn system can be applied to accurately guide the experimental synthesis of ordered heterogeneous catalysts (e.g., other core@shell-clusters structures) toward low Pt, high efficiency and green economy.
Collapse
Affiliation(s)
- Haolin Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
39
|
Jenewein C, Cölfen H. Mesocrystals from Platinum Nanocubes. NANOMATERIALS 2021; 11:nano11082122. [PMID: 34443951 PMCID: PMC8398057 DOI: 10.3390/nano11082122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
Platinum nanoparticles are widely known for their numerous electrochemical and catalytic applications. Enhanced or novel properties that may arise when ordering such particles in a highly defined manner, however, are still subject to ongoing research, as superstructure formation on the mesoscale is still a major challenge to be overcome. In this work, we therefore established a reproducible method to fabricate micrometer-sized superstructures from platinum nanocubes. Through small-angle X-ray scattering and electron diffraction methods we demonstrate that the obtained superstructures have a high degree of ordering up to the atomic scale and, therefore, fulfill all criteria of a mesocrystal. By changing the solvent and stabilizer in which the platinum nanocubes were dispersed, we were able to control the resulting crystal habit of the mesocrystals. Aside from mesocrystal fabrication, this method can be further utilized to purify nanoparticle dispersions by recrystallization with respect to narrowing down the particle size distribution and removing contaminations.
Collapse
|
40
|
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
41
|
Zhao M, Chen Z, Shi Y, Hood ZD, Lyu Z, Xie M, Chi M, Xia Y. Kinetically Controlled Synthesis of Rhodium Nanocrystals with Different Shapes and a Comparison Study of Their Thermal and Catalytic Properties. J Am Chem Soc 2021; 143:6293-6302. [PMID: 33852314 DOI: 10.1021/jacs.1c02734] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the synthesis of Rh nanocrystals with different shapes by controlling the kinetics involved in the growth of preformed Rh cubic seeds. Specifically, Rh nanocrystals with cubic, cuboctahedral, and octahedral shapes can all be obtained from the same cubic seeds under suitable reduction kinetics for the precursor. The success of such a synthesis also relies on the use of a halide-free precursor to avoid oxidative etching, as well as the involvement of a sufficiently high temperature to remove Br- ions from the seeds while ensuring adequate surface diffusion. The availability of Rh nanocrystals with cubic and octahedral shapes allows for an evaluation of the facet dependences of their thermal and catalytic properties. The data from in situ electron microscopy studies indicate that the cubic and octahedral Rh nanocrystals can keep their original shapes up to 700 and 500 °C, respectively. When tested as catalysts for hydrazine decomposition, the octahedral nanocrystals exhibit almost 4-fold enhancement in terms of H2 selectivity relative to the cubic counterpart. As for ethanol oxidation, the order is reversed, with the cubic nanocrystals being about three times more active than the octahedral sample.
Collapse
Affiliation(s)
- Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zachary D Hood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
42
|
Yao Z, Yang J, Liu Z, Shan B, Chen R, Wen Y, Li Y. Synergetic effect dependence on activated oxygen in the interface of NiO x-modified Pt nanoparticles for the CO oxidation from first-principles. Phys Chem Chem Phys 2021; 23:8541-8548. [PMID: 33876016 DOI: 10.1039/d1cp00149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO oxidation on NiOx-modified Pt nanoparticles (NPs) was investigated by first-principles calculations and microkinetic methods. The binding energies of O2 and CO on NiOx/Pt suggest that CO adsorption is dominant and the CO oxidation mainly follows the Mars-van Krevelen (M-vK) mechanism. It was found that the interfacial O of NiOx/Pt played a key role in the combination of adsorbed CO to O, as well as the O2 dissociation. With a lower O vacancy formation energy, NiOx/Ptedge shows about four orders higher reaction rates than NiOx/Pt(100). Microkinetic analysis suggests that the rate-determining step also depends on the active O at the interface. The calculations highlight the synergetic effect difference of NiOx selectively deposited on the different sites of Pt NPs on the CO oxidation from the atomic reaction mechanism, and throws light on the high activity of CO oxidation on partially covered NiOx/Ptedge nanoparticles.
Collapse
Affiliation(s)
- Zihang Yao
- Department of Physics and Institute of Condensed Matter Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Lu S, Weng B, Chen A, Li X, Huang H, Sun X, Feng W, Lei Y, Qian Q, Yang MQ. Facet Engineering of Pd Nanocrystals for Enhancing Photocatalytic Hydrogenation: Modulation of the Schottky Barrier Height and Enrichment of Surface Reactants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13044-13054. [PMID: 33595268 DOI: 10.1021/acsami.0c19260] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal cocatalyst loading is one of the most widely explored strategies in promoting photocatalytic solar energy conversion. Engineering surface-active facets of metal cocatalyst and exploring how they modulate the reactivity is crucial for the further development of advanced photocatalysts. In this work, through controlled hybridization of two-dimensional (2D) TiO2 nanosheets with well-designed Pd nanocube (Pd NC) with exposed {100} facet and Pd nano-octahedron (NO) with exposed {111} facet, we unravel the distinct crystal facet effect of Pd cocatalyst in promoting the selective hydrogenation of nitroarenes to amines of TiO2 photocatalyst. The activity tests show that the Pd NO with {111} facet is a more efficient cocatalyst than the Pd NC with exposed {100} facet. The prepared TiO2-Pd NO composite displays a 900% enhancement of photocatalytic hydrogenation rate in comparison with bare TiO2, while the TiO2-Pd NC sample only shows a 200% photoactivity enhancement. Microscopic mechanism study discloses that the distinctive photoactivity improvement of Pd NO is ascribed to the concurrent modulation of the Schottky barrier height and enrichment of surface reactants: (i) the Pd NO with a lower Fermi level could result in steeper band bending of TiO2 (i.e., higher Schottky barrier) than the Pd NC, which is more efficient in boosting interfacial separation and inhibiting the recombination of photoexcited charge pairs; and (ii) the {111} facet of Pd has higher nitroarenes adsorption ability and especially stronger hydrogen enrichment capability, thus accelerating the surface hydrogenation process and contributing to a higher reaction rate. This work emphasizes the rational facet control of cocatalysts for enhancing the photocatalytic hydrogenation performance.
Collapse
Affiliation(s)
- Suwei Lu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Aizhu Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xinwei Li
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Xiaoming Sun
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P. R. China
| | - Yanhua Lei
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, P. R. China
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
44
|
Xie WF, Zhu HR, Wei SH. Geometric and electronic properties of Au lPt m ( l + m ≤ 10) clusters: a first-principles study. Phys Chem Chem Phys 2021; 23:3050-3062. [PMID: 33491018 DOI: 10.1039/d0cp05642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural evolutions and electronic properties of AulPtm (l + m ≤ 10) clusters are investigated by using the first-principles methods. We use the inverse design of materials using the multi-objective differential evolution (IM2ODE) package to globally search the equilibrium structures and investigate the evolving trend from a two-dimensional structure to a three-dimensional structure on horizontal extension and vertical extension for AulPtm (l + m ≤ 10) clusters. The three-dimensional stable geometry of Au8Pt and Au8Pt2 is discovered for the first time in our work. We also notice that the equilibrium structures of AulPtm (l + m = 10 and l ≤ 8) tend to form a tetrahedral geometry and can be obtained by replacing the Au atom in the most stable structure of Aul+1Ptm-1 with the Pt atom, where Pt atoms assemble together and occupy the center of clusters and Au atoms prefer to lie on the vertex or edge position. The average binding energy (Eb) is mostly decided by Pt-Pt bond numbers, namely the numbers of Pt atoms, followed by Au-Pt bond numbers. The second-order energy difference (Δ2Ev and Δ2Eh) and the nearest-neighbor energy difference (Δ4Enn) show that Au6Pt, Au4Pt2, Au3Pt3, Au2Pt4 and AuPt7 clusters exhibit high relative physical stability, so we suggest that these clusters could be defined as the magic number clusters for AulPtm (l + m ≤ 10) clusters. The HOMO-LUMO energy gap (Eg), adiabatic ionization potential (AIP) and the adiabatic electron affinity (AEA) are also investigated to elaborate the relative electronic stability of all the clusters.
Collapse
Affiliation(s)
- Wei-Feng Xie
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China. and College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Hao-Ran Zhu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China. and College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Shi-Hao Wei
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
45
|
Nguyen QN, Chen R, Lyu Z, Xia Y. Using Reduction Kinetics to Control and Predict the Outcome of a Colloidal Synthesis of Noble-Metal Nanocrystals. Inorg Chem 2021; 60:4182-4197. [PMID: 33522790 DOI: 10.1021/acs.inorgchem.0c03576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improving the performance of noble-metal nanocrystals in various applications critically depends on our ability to manipulate their synthesis in a rational, robust, and controllable fashion. Different from a conventional trial-and-error approach, the reduction kinetics of a colloidal synthesis has recently been demonstrated as a reliable knob for controlling the synthesis of noble-metal nanocrystals in a deterministic and predictable manner. Here we present a brief Viewpoint on the recent progress in leveraging reduction kinetics for controlling and predicting the outcome of a synthesis of noble-metal nanocrystals. With a focus on Pd nanocrystals, we first offer a discussion on the correlation between the initial reduction rate and the internal structure of the resultant seeds. The kinetic approaches for controlling both nucleation and growth in a one-pot setting are then introduced with an emphasis on manipulation of the reduction pathways taken by the precursor. We then illustrate how to extend the strategy into a bimetallic system for the preparation of nanocrystals with different shapes and elemental distributions. Finally, the influence of speciation of the precursor on reduction kinetics is highlighted, followed by our perspectives on the challenges and future endeavors in achieving a controllable and predictable synthesis of noble-metal nanocrystals.
Collapse
Affiliation(s)
- Quynh N Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
46
|
Kim S, Kwag J, Machello C, Kang S, Heo J, Reboul CF, Kang D, Kang S, Shim S, Park SJ, Kim BH, Hyeon T, Ercius P, Elmlund H, Park J. Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. NANO LETTERS 2021; 21:1175-1183. [PMID: 33416334 DOI: 10.1021/acs.nanolett.0c04873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Active sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN (CN_) for individual surface atoms of sub-3 nm Pt nanocrystals. Our results reveal that the synthesized Pt nanocrystals are enclosed by islands of atoms with nonuniform shapes that lead to complex surface structures, including a high ratio of low-coordination surface atoms, reduced domain size of low-index facets, and various types of exposed high-index facets. 3D maps of CN_ are directly correlated to catalytic activities assigned to individual surface atoms with distinct local coordination structures, which explains the origin of high catalytic performance of small Pt nanocrystals in important reactions such as oxygen reduction reactions and CO electro-oxidation.
Collapse
Affiliation(s)
- Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jimin Kwag
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
47
|
Li W, Taylor MG, Bayerl D, Mozaffari S, Dixit M, Ivanov S, Seifert S, Lee B, Shanaiah N, Lu Y, Kovarik L, Mpourmpakis G, Karim AM. Solvent manipulation of the pre-reduction metal-ligand complex and particle-ligand binding for controlled synthesis of Pd nanoparticles. NANOSCALE 2021; 13:206-217. [PMID: 33325939 DOI: 10.1039/d0nr06078j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal-ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal-ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Porkovich AJ, Kumar P, Ziadi Z, Lloyd DC, Weng L, Jian N, Sasaki T, Sowwan M, Datta A. Defect-assisted electronic metal-support interactions: tuning the interplay between Ru nanoparticles and CuO supports for pH-neutral oxygen evolution. NANOSCALE 2021; 13:71-80. [PMID: 33350421 DOI: 10.1039/d0nr06685k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electronic metal-support interactions (EMSIs) comprise an area of intense study, the manipulation of which is of paramount importance in the improvement of heterogeneous metal nanoparticle (NP) supported catalysts. EMSI is the transfer of charge from the support to NP, enabling more effective adsorption and interaction of reactants during catalysis. Ru NPs on CuO supports show different levels of EMSI (via charge transfer) depending on their crystal structure, with multiple twinned NPs showing greater potential for EMSI. We use magnetron-assisted gas phase aggregation for the synthesis of batches of Ru NPs with different populations of single crystal and multiple twinned nanoparticles, which were deposited on CuO nanowires (NWs). The surface charging of the Ru-CuO catalysts was investigated by Kelvin probe force microscopy (KPFM) and X-ray photoelectron spectroscopy (XPS). By doubling the population of multiple twinned NPs, the surface potential of the Ru-CuO catalysts increases roughly 4 times, coinciding with a similar increase in the amount of Ru4+. Therefore, tuning the amount of EMSI in a catalyst is possible through changing the population of multiple twinned Ru NPs in the catalyst. Increasing the amount of multiple twin NPs resulted in improved activity in the oxygen evolution reaction (a roughly 2.5 times decrease in the overpotentials when the population of multiple twinned NPs is increased) and better catalyst stability. This improvement is attributed to the fact that the multiple twin NPs maintained a metallic character under oxidation conditions (unlike single crystal NPs) due to the EMSI between the NP and support.
Collapse
Affiliation(s)
- Alexander J Porkovich
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna-Son, Okinawa 904-0495, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Prabhakar Reddy K, Choi H, Kim D, Ryoo R, Park JY. Cu oxide deposited on shape-controlled ceria nanocrystals for CO oxidation: influence of interface-driven oxidation states on catalytic activity. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01269j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polar CeO2 (100) surface facets contribute considerably to the formation of surface hydroxyl groups, which are necessary for selective, stable Cu1+ state loading and enhancement of CO oxidation activity.
Collapse
Affiliation(s)
- Kasala Prabhakar Reddy
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hanseul Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryong Ryoo
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|