1
|
Zheng F, Huang Q, Xiang J, Zhu Z, Lu J, Xu J, Liang Z, Xie L, Song F, Sun Q. Constructing Molecular Networks on Metal Surfaces through Tellurium-Based Chalcogen-Organic Interaction. ACS NANO 2024; 18:28425-28432. [PMID: 39360450 DOI: 10.1021/acsnano.4c11344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
On-surface molecular self-assembly presents an important approach to the development of low-dimensional functional nanostructures and nanomaterials. Traditional strategies primarily exploit hydrogen bonding or metal coordination, yet the potential of chalcogen bonding (ChB) for on-surface self-assemblies remains underexplored. Here, we explore fabricating molecular networks via tellurium (Te)-directed chalcogen-organic interactions. Employing carbonitrile molecules as molecular building blocks, we have achieved extended 2D networks exhibiting a 4-fold binding motif on Au(111), marking a notable difference from the conventional coordinative interaction involving transition metals. Our findings, supported by density functional theory (DFT) and scanning tunneling spectroscopy (STS), show that the Te-carbonitrile interaction exhibits lower stability compared to the metal-organic coordination, and the construction of the Te-directed molecular networks does not alter the electronic properties of the involved molecules. Introducing chalcogen-directed interactions may expand the spectrum of strategies in supramolecular assembly, contributing to the design of advanced molecular architectures for nanotechnological applications.
Collapse
Affiliation(s)
- Fengru Zheng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Qi Huang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Juan Xiang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhiwen Zhu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Jiayi Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Jinyang Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaofeng Liang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lei Xie
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qiang Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
3
|
Lobo-Checa J, Hernández-López L, Otrokov MM, Piquero-Zulaica I, Candia AE, Gargiani P, Serrate D, Delgado F, Valvidares M, Cerdá J, Arnau A, Bartolomé F. Ferromagnetism on an atom-thick & extended 2D metal-organic coordination network. Nat Commun 2024; 15:1858. [PMID: 38424075 PMCID: PMC10904770 DOI: 10.1038/s41467-024-46115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far has eluded experimental realization. In this work, we demonstrate that extended, cooperative ferromagnetism is feasible in an atomically thin two-dimensional metal-organic coordination network, despite only ≈ 5% of the monolayer being composed of Fe atoms. The resulting ferromagnetic state exhibits an out-of-plane easy-axis square-like hysteresis loop with large coercive fields over 2 Tesla, significant magnetic anisotropy, and persists up to TC ≈ 35 K. These properties are driven by exchange interactions mainly mediated by the molecular linkers. Our findings resolve a two decade search for ferromagnetism in two-dimensional metal-organic coordination networks.
Collapse
Affiliation(s)
- Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain.
| | - Leyre Hernández-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain
| | - Mikhail M Otrokov
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018, San Sebastián, Spain.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018, San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain.
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
| | | | - Adriana E Candia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC-UNL-CONICET), 3000, Santa Fe, Argentina
- Instituto de Física del Litoral, Universidad Nacional del Litoral (IFIS-UNL-CONICET), 3000, Santa Fe, Argentina
| | | | - David Serrate
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain
| | - Fernando Delgado
- Instituto de Estudios Avanzados IUDEA, Departamento de Física, Universidad de La Laguna, C/Astrofísico Francisco Sánchez, s/n, 38203, La Laguna, Spain
| | - Manuel Valvidares
- ALBA Synchrotron Light Source, E-08290, Cerdanyola del Vallès, Spain
| | - Jorge Cerdá
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Andrés Arnau
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018, San Sebastián, Spain.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018, San Sebastian, Spain.
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química UPV/EHU, 20080, Donostia-San Sebastián, Spain.
| | - Fernando Bartolomé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain.
| |
Collapse
|
4
|
Song L, Wang J, Zhu H, Huang P, Lin H, Chi L, Li Q. Synthesis of Large-Scale High-Quality Metal-Organic Frameworks on Cu(100) via Hierarchical Dehydrogenation Reactions. J Phys Chem Lett 2023; 14:11286-11291. [PMID: 38063416 DOI: 10.1021/acs.jpclett.3c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Thermal stimulus has been considered as a promising strategy for controlling on-surface reactions, allowing the formation of diverse products on metal substrates. Here, we successfully achieve hierarchical dehydrogenation reactions of amino groups on a Cu(100) surface. By carefully adjusting the experimental parameters, we synthesize large-scale and low-defect density surface metal-organic frameworks on copper surfaces. Our work sheds light on a controllable route for the synthesis of high-quality metal-organic coordination supramolecular structures via on-surface chemistry.
Collapse
Affiliation(s)
- Luying Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Junbo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, P. R. China
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
5
|
Sun K, Sugawara K, Lyalin A, Ishigaki Y, Uosaki K, Custance O, Taketsugu T, Suzuki T, Kawai S. On-Surface Synthesis of Multiple Cu Atom-Bridged Organometallic Oligomers. ACS NANO 2023. [PMID: 38047624 DOI: 10.1021/acsnano.3c10524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A metal-metal bond between coordination complexes has the nature of a covalent bond in hydrocarbons. While bimetallic and trimetallic compounds usually have three-dimensional structures in solution, the high directionality and robustness of the bond can be applied for on-surface syntheses. Here, we present a systematic formation of complex organometallic oligomers on Cu(111) through sequential ring opening of 11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane and bonding of phenanthroline derivatives by multiple Cu atoms. A detailed characterization with a combination of scanning tunneling microscopy and density functional theory calculations revealed the role of the Cu adatoms in both enantiomers of the chiral oligomers. Furthermore, we found sufficient strength of the bonds against sliding friction by manipulating the oligomers up to a hexamer. This finding may help to increase the variety of organometallic nanostructures on surfaces.
Collapse
Affiliation(s)
- Kewei Sun
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Andrey Lyalin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University, Sapporo 001-0021, Japan
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kohei Uosaki
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Oscar Custance
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University, Sapporo 001-0021, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
6
|
Magnetic molecules on surfaces: SMMs and beyond. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Zhong Q, Niu K, Chen L, Zhang H, Ebeling D, Björk J, Müllen K, Schirmeisen A, Chi L. Substrate-Modulated Synthesis of Metal-Organic Hybrids by Tunable Multiple Aryl-Metal Bonds. J Am Chem Soc 2022; 144:8214-8222. [PMID: 35442656 DOI: 10.1021/jacs.2c01338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Assembly of semiconducting organic molecules with multiple aryl-metal covalent bonds into stable one- and two-dimensional (1D and 2D) metal-organic frameworks represents a promising route to the integration of single-molecule electronics in terms of structural robustness and charge transport efficiency. Although various metastable organometallic frameworks have been constructed by the extensive use of single aryl-metal bonds, it remains a great challenge to embed multiple aryl-metal bonds into these structures due to inadequate knowledge of harnessing such complex bonding motifs. Here, we demonstrate the substrate-modulated synthesis of 1D and 2D metal-organic hybrids (MOHs) with the organic building blocks (perylene) interlinked solely with multiple aryl-metal bonds via the stepwise thermal dehalogenation of 3,4,9,10-tetrabromo-1,6,7,12-tetrachloroperylene and subsequent metal-organic connection on metal surfaces. More importantly, the conversion from 1D to 2D MOHs is completely impeded on Au(111) but dominant on Ag(111). We comprehensively study the distinct reaction pathways on the two surfaces by visually tracking the structural evolution of the MOHs with high-resolution scanning tunneling and noncontact atomic force microscopy, supported by first-principles density functional theory calculations. The substrate-dependent structural control of the MOHs is attributed to the variation of the M-X (M = Au, Ag; X = C, Cl) bond strength regulated by the nature of the metal species.
Collapse
Affiliation(s)
- Qigang Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China.,Institute of Applied Physics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Kaifeng Niu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China.,Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183 Linköping, Sweden
| | - Long Chen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China
| | - Daniel Ebeling
- Institute of Applied Physics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183 Linköping, Sweden
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - André Schirmeisen
- Institute of Applied Physics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China
| |
Collapse
|
8
|
Monte Carlo Simulations of the Metal-Directed Self-Assembly of Y-Shaped Positional Isomers. CRYSTALS 2022. [DOI: 10.3390/cryst12040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rational fabrication of low-dimensional materials with a well-defined topology and functions is an incredibly important aspect of nanotechnology. In particular, the on-surface synthesis (OSS) methods based on the bottom-up approach enable a facile construction of sophisticated molecular architectures unattainable by traditional methods of wet chemistry. Among such supramolecular constructs, especially interesting are the surface-supported metal–organic networks (SMONs), composed of low-coordinated metal atoms and π-aromatic bridging linkers. In this work, the lattice Monte Carlo (MC) simulation technique was used to extract the chemical information encoded in a family of Y-shaped positional isomers co-adsorbed with trivalent metal atoms on a flat metallic surface with (111) geometry. Depending on the intramolecular distribution of active centers (within the simulated molecular bricks, we observed a metal-directed self-assembly of two-dimensional (2D) openwork patterns, aperiodic mosaics, and metal–organic ladders. The obtained theoretical findings could be especially relevant for the scanning tunneling microscopy (STM) experimentalists interested in a surface-assisted construction of complex nanomaterials stabilized by directional coordination bonds.
Collapse
|
9
|
Baker Cortés B, Schmidt N, Enache M, Stöhr M. Comparing Cyanophenyl and Pyridyl Ligands in the Formation of Porphyrin-Based Metal-Organic Coordination Networks. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:24557-24567. [PMID: 34795811 PMCID: PMC8591659 DOI: 10.1021/acs.jpcc.1c05360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
In recent studies, porphyrin derivatives have been frequently used as building blocks for the fabrication of metal-organic coordination networks (MOCNs) on metal surfaces under ultrahigh vacuum conditions (UHV). The porphyrin core can host a variety of 3d transition metals, which are usually incorporated in solution. However, the replacement of a pre-existing metal atom in the porphyrin core by a different metallic species has been rarely reported under UHV. Herein, we studied the influence of cyanophenyl and pyridyl functional endgroups in the self-assembly of structurally different porphyrin-based MOCNs by the deposition of Fe atoms on tetracyanophenyl (Co-TCNPP) and tetrapyridyl-functionalized (Zn-TPPyP) porphyrins on Au(111) by means of scanning tunneling microscopy (STM). A comparative analysis of the influence of the cyano and pyridyl endgroups on the formation of different in-plane coordination motifs is performed. Each porphyrin derivative formed two structurally different Fe-coordinated MOCNs stabilized by three- and fourfold in-plane coordination nodes, respectively. Interestingly, the codeposited Fe atoms did not only bind to the functional endgroups but also reacted with the porphyrin core of the Zn-substituted porphyrin (Zn-TPyP), i.e., an atom exchange reaction took place in the porphyrin core where the codeposited Fe atoms replaced the Zn atoms. This was evidenced by the appearance of molecules with an enhanced (centered) STM contrast compared with the appearance of Zn-TPyP, which suggested the formation of a new molecular species, i.e., Fe-TPPyP. Furthermore, the porphyrin core of the Co-substituted porphyrin (Co-TCNPP) displayed an off-centered STM contrast after the deposition of Fe atoms, which was attributed to the binding of the Fe atoms on the top site of the Co-substituted porphyrin core. In summary, the deposition of metal atoms onto organic layers can steer the formation of structurally different MOCNs and may replace pre-existing metal atoms contained in the porphyrin core.
Collapse
|
10
|
Arzola-Rubio A, Arzola-Álvarez C, Camarillo-Cisneros J, Anderson RC, Ruiz-Barrera O, Hinojos-Gallardo LC, Cabral-Lares RM. Novel Self-assembly Coordination Lipid Polymers that Fold into Toroids with DNA-Delivery Potential. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Baker Cortés BD, Enache M, Küster K, Studener F, Lee T, Marets N, Bulach V, Hosseini MW, Stöhr M. Structural Transformation of Surface-Confined Porphyrin Networks by Addition of Co Atoms. Chemistry 2021; 27:12430-12436. [PMID: 34153154 PMCID: PMC8456947 DOI: 10.1002/chem.202101217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/06/2022]
Abstract
The self-assembly of a nickel-porphyrin derivative (Ni-DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni-DPPyP onto Au(111) gave rise to a close-packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two-dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close-packed network and post-deposition annealing at 423 K led to the formation of a Co-coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal-ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni-DPPyP molecule.
Collapse
Affiliation(s)
- Brian D. Baker Cortés
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Mihaela Enache
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Kathrin Küster
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Present address: Max-Planck-Institut für FestkörperforschungHeisenbergstraße 170569StuttgartGermany
| | - Florian Studener
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Tien‐Lin Lee
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Nicolas Marets
- Laboratoire de Tectonique MoléculaireUMR Unistra-CNRS 7140Université de Strasbourg4 rue BlaisePascal67070StrasbourgFrance
| | - Véronique Bulach
- Laboratoire de Tectonique MoléculaireUMR Unistra-CNRS 7140Université de Strasbourg4 rue BlaisePascal67070StrasbourgFrance
| | - Mir Wais Hosseini
- Laboratoire de Tectonique MoléculaireUMR Unistra-CNRS 7140Université de Strasbourg4 rue BlaisePascal67070StrasbourgFrance
| | - Meike Stöhr
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
12
|
On-Surface Synthesis of Ligands to Elaborate Coordination Polymers on an Au(111) Surface. NANOMATERIALS 2021; 11:nano11082102. [PMID: 34443932 PMCID: PMC8401198 DOI: 10.3390/nano11082102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
On-surface metal-organic polymers have emerged as a class of promising 2D materials. Here, we propose a new strategy to obtain coordination polymers by transforming supramolecular networks into coordination polymers by surface-assisted cyclo-dehydrogenation of organic building blocks. All nanostructures are fully characterized by using scanning tunneling microscopy under ultra-high vacuum on a gold surface. We demonstrated that the balance between molecule-molecule interaction and molecule-substrate interaction can be drastically modified by a strong modification of the geometry of the molecules thanks to a thermal annealing. This new way is an efficient method to elaborate on-surface coordination polymers.
Collapse
|
13
|
Kawai S, Kher-Elden MA, Sadeghi A, Abd El-Fattah ZM, Sun K, Izumi S, Minakata S, Takeda Y, Lobo-Checa J. Near Fermi Superatom State Stabilized by Surface State Resonances in a Multiporous Molecular Network. NANO LETTERS 2021; 21:6456-6462. [PMID: 34038137 PMCID: PMC8488955 DOI: 10.1021/acs.nanolett.1c01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Two-dimensional honeycomb molecular networks confine a substrate's surface electrons within their pores, providing an ideal playground to investigate the quantum electron scattering phenomena. Besides surface state confinement, laterally protruding organic states can collectively hybridize at the smallest pores into superatom molecular orbitals. Although both types of pore states could be simultaneously hosted within nanocavities, their coexistence and possible interaction are unexplored. Here, we show that these two types of pore states do coexist within the smallest nanocavities of a two-dimensional halogen-bonding multiporous network grown on Ag(111) studied using a combination of scanning tunneling microscopy and spectroscopy, density functional theory calculations, and electron plane wave expansion simulations. We find that superatom molecular orbitals undergo an important stabilization when hybridizing with the confined surface state, following the significant lowering of its free-standing energy. These findings provide further control over the surface electronic structure exerted by two-dimensional nanoporous systems.
Collapse
Affiliation(s)
- Shigeki Kawai
- Research
Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, Tsukuba 305-8571, Japan
| | - Mohammad A. Kher-Elden
- Physics
Department, Faculty of Science, Al-Azhar
University, Nasr City, E-11884 Cairo, Egypt
| | - Ali Sadeghi
- Department
of Physics, Shahid Beheshti University, 1983969411 Tehran, Iran
- School
of Nano Science, Institute for Research
in Fundamental Sciences (IPM), 19395-5531 Tehran, Iran
| | | | - Kewei Sun
- Research
Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Saika Izumi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1,
Suita, Osaka 565-0871, Japan
| | - Satoshi Minakata
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1,
Suita, Osaka 565-0871, Japan
| | - Youhei Takeda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1,
Suita, Osaka 565-0871, Japan
| | - Jorge Lobo-Checa
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
14
|
Wu T, Xue N, Wang Z, Li J, Li Y, Huang W, Shen Q, Hou S, Wang Y. Surface self-assembly involving the interaction between S and N atoms. Chem Commun (Camb) 2021; 57:1328-1331. [DOI: 10.1039/d0cc07931f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of the self-assembly nanostructures by recruiting the electrostatic interaction between S and N atoms.
Collapse
Affiliation(s)
- Tianhao Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Na Xue
- Central Laboratory
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants
- The Fifth Central Hospital of Tianjin
- Tianjin 300450
- China
| | - Zhichao Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Yaru Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
- Shanxi Institute of Flexible Electronics (SIFE)
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| |
Collapse
|
15
|
Moreno D, Cirera B, Parreiras SO, Urgel JI, Giménez-Agulló N, Lauwaet K, Gallego JM, Galán-Mascarós JR, Martínez JI, Ballester P, Miranda R, Écija D. Dysprosium-directed metallosupramolecular network on graphene/Ir(111). Chem Commun (Camb) 2021; 57:1380-1383. [DOI: 10.1039/d0cc07315f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On-surface design of dysprosium-directed metal-organic network on graphene/Ir(111).
Collapse
Affiliation(s)
- Daniel Moreno
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco
- 28049 Madrid
- Spain
| | - Borja Cirera
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco
- 28049 Madrid
- Spain
| | | | - José I. Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco
- 28049 Madrid
- Spain
| | - Nelson Giménez-Agulló
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology
- Tarragona
- Spain
| | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco
- 28049 Madrid
- Spain
| | - José M. Gallego
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco
- 28049 Madrid
- Spain
| | - José R. Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology
- Tarragona
- Spain
- Catalan Institution for Research and Advanced Studies (ICREA)
- Barcelona 08010
| | - José I. Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
- 28049 Madrid
- Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology
- Tarragona
- Spain
- Catalan Institution for Research and Advanced Studies (ICREA)
- Barcelona 08010
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco
- 28049 Madrid
- Spain
- Departamento de Física de la Materia Condensada. Facultad de Ciencias, Universidad Autónoma de Madrid
- 28049 Madrid
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco
- 28049 Madrid
- Spain
| |
Collapse
|
16
|
Blowey PJ, Sohail B, Rochford LA, Lafosse T, Duncan DA, Ryan PTP, Warr DA, Lee TL, Costantini G, Maurer RJ, Woodruff DP. Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional Metal-Organic Framework. ACS NANO 2020; 14:7475-7483. [PMID: 32392035 PMCID: PMC7315632 DOI: 10.1021/acsnano.0c03133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 05/22/2023]
Abstract
Efficient charge transfer across metal-organic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal-organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metal-organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metal-organic interfaces for organic thin-film devices are discussed.
Collapse
Affiliation(s)
- Phil J. Blowey
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Billal Sohail
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Luke A. Rochford
- Chemistry
Department, University of Birmingham, University Road, Birmingham B15 2TT, U.K.
| | - Timothy Lafosse
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - David A. Duncan
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Paul T. P. Ryan
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
- Department
of Materials, Imperial College, London SW7 2AZ, U.K.
| | | | - Tien-Lin Lee
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | | | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- E-mail:
| | | |
Collapse
|
17
|
Baran Ł, Rżysko W, Słyk E. Simulations of the 2D self-assembly of tripod-shaped building blocks. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:884-890. [PMID: 32566438 PMCID: PMC7296195 DOI: 10.3762/bjnano.11.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
We introduce a molecular dynamics (MD) coarse-grained model for the description of tripod building blocks. This model has been used by us already for linear, V-shape, and tetratopic molecules. We wanted to further extend its possibilities to trifunctional molecules to prove its versatility. For the chosen systems we have also compared the MD results with Monte Carlo results on a triangular lattice. We have shown that the constraints present in the latter method can enforce the formation of completely different structures, not reproducible with off-lattice simulations. In addition to that, we have characterized the obtained structures regarding various parameters such as theoretical diffraction pattern and average association number.
Collapse
Affiliation(s)
- Łukasz Baran
- Department for Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Poland
| | - Wojciech Rżysko
- Department for Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Poland
| | - Edyta Słyk
- Department for Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Poland
| |
Collapse
|
18
|
Jasper-Tönnies T, Gruber M, Ulrich S, Herges R, Berndt R. Coverage-Controlled Superstructures of C 3 -Symmetric Molecules: Honeycomb versus Hexagonal Tiling. Angew Chem Int Ed Engl 2020; 59:7008-7017. [PMID: 32106353 PMCID: PMC7216838 DOI: 10.1002/anie.202001383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 11/06/2022]
Abstract
The competition between honeycomb and hexagonal tiling of molecular units can lead to large honeycomb superstructures on surfaces. Such superstructures exhibit pores that may be used as 2D templates for functional guest molecules. Honeycomb superstructures of molecules that comprise a C3 symmetric platform on Au(111) and Ag(111) surfaces are presented. The superstructures cover nearly mesoscopic areas with unit cells containing up to 3000 molecules, more than an order of magnitude larger than previously reported. The unit cell size may be controlled by the coverage. A fairly general model was developed to describe the energetics of honeycomb superstructures built from C3 symmetric units. Based on three parameters that characterize two competing bonding arrangements, the model is consistent with the present experimental data and also reproduces various published results. The model identifies the relevant driving force, mostly related to geometric aspects, of the pattern formation.
Collapse
Affiliation(s)
- Torben Jasper-Tönnies
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Sandra Ulrich
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| |
Collapse
|
19
|
Jasper‐Tönnies T, Gruber M, Ulrich S, Herges R, Berndt R. Coverage‐Controlled Superstructures of
C
3
‐Symmetric Molecules: Honeycomb versus Hexagonal Tiling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Torben Jasper‐Tönnies
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| | - Sandra Ulrich
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität 24098 Kiel Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität 24098 Kiel Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| |
Collapse
|
20
|
Piquero-Zulaica I, Sadeghi A, Kherelden M, Hua M, Liu J, Kuang G, Yan L, Ortega JE, El-Fattah ZMA, Azizi B, Lin N, Lobo-Checa J. Electron Transmission through Coordinating Atoms Embedded in Metal-Organic Nanoporous Networks. PHYSICAL REVIEW LETTERS 2019; 123:266805. [PMID: 31951458 DOI: 10.1103/physrevlett.123.266805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 06/10/2023]
Abstract
On-surface metal-organic nanoporous networks generally refer to adatom coordinated molecular arrays, which are characterized by the presence of well-defined and regular nanopores. These periodic structures constructed using two types of components confine the surface electrons of the substrate within their nanocavities. However, the confining (or scattering) strength that individual building units exhibit is a priori unknown. Here, we study the modification of the substrate's surface electrons by the interaction with a Cu-coordinated TPyB metal-organic network formed on Cu(111) and disentangle the scattering potentials and confinement properties. By means of STM and angle-resolved photoemission spectroscopy we find almost unperturbed free-electron-like states stemming from the rather weak electron confinement that yields significant coupling between adjacent pores. Electron plane wave expansion simulations match the superlattice induced experimental electronic structure, which features replicating bands and energy renormalization effects. Notably, the electrostatic potential landscape obtained from our ab initio calculations suggests that the molecules are the dominant scattering entities while the coordination metal atoms sandwiched between them act as leaky channels. These metal atom transmission conduits facilitate and enhance the coupling among quantum dots, which are prone to be exploited to engineer the electronic structure of surface electron gases.
Collapse
Affiliation(s)
- Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018 Donostia-San Sebastián, Spain
- Physik Department E20, Technische Universität München, 85748 Garching, Germany
| | - Ali Sadeghi
- Department of Physics, Shahid Beheshti University, GC, Evin, 19839 Tehran, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran, Iran
| | - Mohammad Kherelden
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884 Cairo, Egypt
| | - Muqing Hua
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jing Liu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guowen Kuang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Linghao Yan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018 Donostia-San Sebastián, Spain
- Universidad del País Vasco, Dpto. Física Aplicada I, E-20018 San Sebastián, Spain
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884 Cairo, Egypt
| | - Behnam Azizi
- Department of Physics, Shahid Beheshti University, GC, Evin, 19839 Tehran, Iran
| | - Nian Lin
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jorge Lobo-Checa
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
21
|
Piquero-Zulaica I, Li J, Abd El-Fattah ZM, Solianyk L, Gallardo I, Monjas L, Hirsch AKH, Arnau A, Ortega JE, Stöhr M, Lobo-Checa J. Surface state tunable energy and mass renormalization from homothetic quantum dot arrays. NANOSCALE 2019; 11:23132-23138. [PMID: 31793595 DOI: 10.1039/c9nr07365e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum dot arrays in the form of molecular nanoporous networks are renowned for modifying the electronic surface properties through quantum confinement. Here we show that, compared to the pristine surface state, the band bottom of the confined states can exhibit downward shifts accompanied by a lowering of the effective masses simultaneous to the appearance of tiny gaps at the Brillouin zone boundaries. We observed these effects by angle resolved photoemission for two self-assembled homothetic (scalable) Co-coordinated metal-organic networks. Complementary scanning tunneling spectroscopy measurements confirmed these findings. Electron plane wave expansion simulations and density functional theory calculations provide insight into the nature of this phenomenon, which we assign to metal-organic overlayer-substrate interactions in the form of adatom-substrate hybridization. To date, the absence of the experimental band structure resulting from single metal adatom coordinated nanoporous networks has precluded the observation of the significant surface state renormalization reported here, which we infer to be general for low interacting and well-defined adatom arrays.
Collapse
Affiliation(s)
- Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain. and Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018 Donostia-San Sebastián, Spain and Physik Department E20, Technische Universität München, 85748 Garching, Germany
| | - Jun Li
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City E-11884 Cairo, Egypt and ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Leonid Solianyk
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Iker Gallardo
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain.
| | - Leticia Monjas
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands and Department for Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Andres Arnau
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain. and Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018 Donostia-San Sebastián, Spain and Dpto. de Física de Materiales, Universidad del País Vasco, E-20018 San Sebastián, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain. and Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018 Donostia-San Sebastián, Spain and Universidad del País Vasco, Dpto. Física Aplicada I, E-20018 San Sebastián, Spain
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Jorge Lobo-Checa
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
22
|
Carloni LE, Bezzu CG, Bonifazi D. Patterning Porous Networks through Self-Assembly of Programmed Biomacromolecules. Chemistry 2019; 25:16179-16200. [PMID: 31491049 DOI: 10.1002/chem.201902576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom-up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two-dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self-assembly through specific hydrogen-bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
Collapse
Affiliation(s)
- Laure-Elie Carloni
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - C Grazia Bezzu
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| | - Davide Bonifazi
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| |
Collapse
|
23
|
Zhang LC, Zhang L, Qin G, Zheng QR, Hu M, Yan QB, Su G. Two-dimensional magnetic metal-organic frameworks with the Shastry-Sutherland lattice. Chem Sci 2019; 10:10381-10387. [PMID: 32110327 PMCID: PMC6988603 DOI: 10.1039/c9sc03816g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
Mn-PBP is discovered to be the first ferromagnetic 2D MOF with the Shastry-Sutherland lattice and the predicted Curie temperature is 105 K.
Inspired by the successful synthesis of Fe/Cu-5,5′-bis(4-pyridyl)(2,2′-bipirimidine) (PBP), a family of two-dimensional (2D) metal–organic frameworks (MOFs) with the Shastry-Sutherland lattice, i.e., transition metal (TM)-PBP (TM = Cr, Mn, Fe, Co, Ni, Cu, Zn) has been systematically investigated by means of first-principles density functional theory calculations and Monte Carlo simulations. Mn-PBP is discovered to be the first ferromagnetic 2D MOF with the Shastry-Sutherland lattice and the Curie temperature is predicted to be about 105 K, while Fe-PBP, TM-PBP (TM = Cr, Co, Ni) and TM-PBP (TM = Cu, Zn) are found to be stripe-order antiferromagnetic, magnetic-dimerized and nonmagnetic, respectively. The electronic structure calculations reveal that TM-PBP MOFs are semiconductors with band gaps ranging from 0.12 eV to 0.85 eV, which could be easily modulated by various methods. Particularly, Mn-PBP would exhibit half-metallic behavior under compressive strain or appropriate electron/hole doping and a Mn-PBP based spintronic device has been proposed. This study not only improves the understanding of the geometric, electronic and magnetic properties of the 2D TM-PBP MOF family, but also provides a novel spin lattice playground for the research of 2D magnetic systems, which has diverse modulating possibilities and rich potential applications.
Collapse
Affiliation(s)
- Li-Chuan Zhang
- Center of Materials Science and Optoelectronics Engineering , College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China . .,Peter Grünberg Institut and Institute for Advanced Simulation , Forschungszentrum Jülich , JARA , 52425 Jülich , Germany.,Department of Physics , RWTH Aachen University , 52056 Aachen , Germany
| | - Lizhi Zhang
- Department of Physics and Astronomy , University of Tennessee , Knoxville , Tennessee 37916 , USA
| | - Guangzhao Qin
- Department of Mechanical Engineering , University of South Carolina , Columbia , SC 29208 , USA .
| | - Qing-Rong Zheng
- School of Physics , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Hu
- Department of Mechanical Engineering , University of South Carolina , Columbia , SC 29208 , USA .
| | - Qing-Bo Yan
- Center of Materials Science and Optoelectronics Engineering , College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China .
| | - Gang Su
- School of Physics , University of Chinese Academy of Sciences , Beijing 100049 , China.,CAS Center for Excellence in Topological Quantum Computation , Kavli Institute for Theoretical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China .
| |
Collapse
|
24
|
Baker Cortés B, Schmidt N, Enache M, Stöhr M. Coverage-Dependent Structural Transformation of Cyano-Functionalized Porphyrin Networks on Au(111) via Addition of Cobalt Atoms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:19681-19687. [PMID: 31447961 PMCID: PMC6701168 DOI: 10.1021/acs.jpcc.9b05055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The self-assembly process of a cobalt-porphyrin derivative (Co-TCNPP) containing cyanophenyl substituents at all four meso positions on Au(111) was studied by means of scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) under ultrahigh vacuum conditions. Deposition of Co-TCNPP onto Au(111) gave rise to the formation of a close-packed H-bonded network, which was independent of coverage as revealed by STM and LEED. However, a coverage-dependent structural transformation took place upon the deposition of Co atoms. At monolayer coverage, a reticulated long-range ordered network exhibiting a distinct fourfold Co coordination was observed. By reduction of the molecular coverage, a second metal-organic coordination network (MOCN) was formed in coexistence with the fourfold Co-coordinated network, that is, a chevron structure stabilized by a simultaneous expression of H-bonding and threefold Co coordination. We attribute the coverage-dependent structural transformation to the in-plane compression pressure exerted by the molecules deposited on the surface. Our study shows that a subtle interplay between the chemical nature of the building blocks (molecules and metallic atoms) and molecular coverage can steer the formation of structurally different porphyrin-based MOCNs.
Collapse
|
25
|
Sun X, Yao X, Lafolet F, Lemercier G, Lacroix JC. One-Dimensional Double Wires and Two-Dimensional Mobile Grids: Cobalt/Bipyridine Coordination Networks at the Solid/Liquid Interface. J Phys Chem Lett 2019; 10:4164-4169. [PMID: 31265312 DOI: 10.1021/acs.jpclett.9b01292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Various architectures have been generated and observed by STM at a solid/liquid interface resulting from an in situ chemical reaction between the bipyridine terminal groups of a ditopic ligand and Co(II) ions. Large monodomains of one-dimensional (1D) double wires are formed by Co(II)/ligand coordination, with polymer lengths as long as 150 nm. The polymers are organized as parallel wires 8 nm apart, and the voids between wires are occupied by solvent molecules. Two-dimensional (2D) grids, showing high surface mobility, coexist with the wires. The wires are formed from linear chain motifs where each cobalt center is bonded to two bipyridines. 2D grids are generated from a bifurcation node where one cobalt bonds to three bipyridines. Surface reconstruction of the grids and of the 1D wires was observed under the STM tip. As an exciting result, analysis of these movements strongly indicates surface reactions at the solid/liquid interface.
Collapse
Affiliation(s)
- Xiaonan Sun
- Université de Paris , ITODYS , CNRS, UMR 7086, 15 rue J-A de Baïf , F-75013 Paris , France
| | - Xinlei Yao
- Université de Paris , ITODYS , CNRS, UMR 7086, 15 rue J-A de Baïf , F-75013 Paris , France
| | - Frédéric Lafolet
- Université de Paris , ITODYS , CNRS, UMR 7086, 15 rue J-A de Baïf , F-75013 Paris , France
| | - Gilles Lemercier
- Université de Paris , ITODYS , CNRS, UMR 7086, 15 rue J-A de Baïf , F-75013 Paris , France
- Université Reims Champagne-Ardennes , Institut Chimie Moléculaire Reims , CNRS UMR 7312, 56187 Reims Cedex 2, France
| | | |
Collapse
|
26
|
Hurtado Salinas D, Sarasola A, Stel B, Cometto FP, Kern K, Arnau A, Lingenfelder M. Reactivity of Bioinspired Magnesium-Organic Networks under CO 2 and O 2 Exposure. ACS OMEGA 2019; 4:9850-9859. [PMID: 31460076 PMCID: PMC6649272 DOI: 10.1021/acsomega.9b00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/22/2019] [Indexed: 05/27/2023]
Abstract
Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg-carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal-organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.
Collapse
Affiliation(s)
- Daniel
E. Hurtado Salinas
- Max
Planck-EPFL Laboratory for Molecular Nanoscience, EPFL SB CMNT NL-CMNT, CH 1015 Lausanne, Switzerland
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ane Sarasola
- Departamento
de Física Aplicada I, UPV/EHU, Plaza Europa 1, E-20018 San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Bart Stel
- Max
Planck-EPFL Laboratory for Molecular Nanoscience, EPFL SB CMNT NL-CMNT, CH 1015 Lausanne, Switzerland
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fernando P. Cometto
- Max
Planck-EPFL Laboratory for Molecular Nanoscience, EPFL SB CMNT NL-CMNT, CH 1015 Lausanne, Switzerland
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Departamento
de Fisicoquímica, Instituto de Investigaciones en Fisicoquímica
de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Klaus Kern
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Andrés Arnau
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, UPV/EHU, Paseo Manuel de Lardizabal 3, E-20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM) CSIC-UPV/EHU, Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Magalí Lingenfelder
- Max
Planck-EPFL Laboratory for Molecular Nanoscience, EPFL SB CMNT NL-CMNT, CH 1015 Lausanne, Switzerland
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Li J, Solianyk L, Schmidt N, Baker B, Gottardi S, Moreno Lopez JC, Enache M, Monjas L, van der Vlag R, Havenith RWA, Hirsch AKH, Stöhr M. Low-Dimensional Metal-Organic Coordination Structures on Graphene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12730-12735. [PMID: 31156737 PMCID: PMC6541427 DOI: 10.1021/acs.jpcc.9b00326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Indexed: 06/09/2023]
Abstract
We report the formation of one- and two-dimensional metal-organic coordination structures from para-hexaphenyl-dicarbonitrile (NC-Ph6-CN) molecules and Cu atoms on graphene epitaxially grown on Ir(111). By varying the stoichiometry between the NC-Ph6-CN molecules and Cu atoms, the dimensionality of the metal-organic coordination structures could be tuned: for a 3:2 ratio, a two-dimensional hexagonal porous network based on threefold Cu coordination was observed, while for a 1:1 ratio, one-dimensional chains based on twofold Cu coordination were formed. The formation of metal-ligand bonds was supported by imaging the Cu atoms within the metal-organic coordination structures with scanning tunneling microscopy. Scanning tunneling spectroscopy measurements demonstrated that the electronic properties of NC-Ph6-CN molecules and Cu atoms were different between the two-dimensional porous network and one-dimensional molecular chains.
Collapse
Affiliation(s)
- Jun Li
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Leonid Solianyk
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico Schmidt
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Brian Baker
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Stefano Gottardi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Juan Carlos Moreno Lopez
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Faculty
of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Mihaela Enache
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Leticia Monjas
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ramon van der Vlag
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Remco W. A. Havenith
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Ghent Quantum
Chemistry Group, University of Ghent, 9000 Ghent, Belgium
| | - Anna K. H. Hirsch
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz
Institute
for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre
for Infection Research (HZI), Department of Drug Design and Optimization, Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Meike Stöhr
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
28
|
Clair S, de Oteyza DG. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem Rev 2019; 119:4717-4776. [PMID: 30875199 PMCID: PMC6477809 DOI: 10.1021/acs.chemrev.8b00601] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/06/2023]
Abstract
On-surface synthesis is appearing as an extremely promising research field aimed at creating new organic materials. A large number of chemical reactions have been successfully demonstrated to take place directly on surfaces through unusual reaction mechanisms. In some cases the reaction conditions can be properly tuned to steer the formation of the reaction products. It is thus possible to control the initiation step of the reaction and its degree of advancement (the kinetics, the reaction yield); the nature of the reaction products (selectivity control, particularly in the case of competing processes); as well as the structure, position, and orientation of the covalent compounds, or the quality of the as-formed networks in terms of order and extension. The aim of our review is thus to provide an extensive description of all tools and strategies reported to date and to put them into perspective. We specifically define the different approaches available and group them into a few general categories. In the last part, we demonstrate the effective maturation of the on-surface synthesis field by reporting systems that are getting closer to application-relevant levels thanks to the use of advanced control strategies.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix
Marseille Univ., Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, San
Sebastián 20018, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU-MPC, San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
29
|
Ferreira Q, Delfino CL, Morgado J, Alcácer L. Bottom-Up Self-Assembled Supramolecular Structures Built by STM at the Solid/Liquid Interface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E382. [PMID: 30691079 PMCID: PMC6384807 DOI: 10.3390/ma12030382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
One of the lines of research on organic devices is focused on their miniaturization to obtain denser and faster electronic circuits. The challenge is to build devices adding atom by atom or molecule by molecule until the desired structures are achieved. To do this job, techniques able to see and manipulate matter at this scale are needed. Scanning tunneling microscopy (STM) has been the selected technique by scientists to develop smart and functional unimolecular devices. This review article compiles the latest developments in this field giving examples of supramolecular systems monitored and fabricated at the molecular scale by bottom-up approaches using STM at the solid/liquid interface.
Collapse
Affiliation(s)
- Quirina Ferreira
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Catarina L Delfino
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Department of Bioengineering , Instituto Superior Técnico, University of Lisbon, Av.Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Luís Alcácer
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
30
|
Kuliga J, Zhang L, Lepper M, Lungerich D, Hölzel H, Jux N, Steinrück HP, Marbach H. Metalation and coordination reactions of 2H-meso-trans-di(p-cyanophenyl)porphyrin on Ag(111) with coadsorbed cobalt atoms. Phys Chem Chem Phys 2018; 20:25062-25068. [PMID: 30250951 DOI: 10.1039/c8cp05255g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the metalation and coordination reactions of Co with 2H-5,15-bis(para-cyanophenyl)-10,20-bisphenylporphyrin (2HtransDCNPP) on a Ag(111) surface by scanning tunneling microscopy. At room temperature (RT), 2HtransDCNPPs self-assemble into a supramolecular structure stabilized by intermolecular hydrogen bonding. The metalation of 2HtransDCNPP is achieved either by depositing Co atoms onto the supramolecular structure at RT, or, alternatively, by depositing the molecules onto a submonolayer Co-precovered Ag(111) surface with a subsequent heating to 500 K. In addition, the molecules coordinate to Co atoms through the N atoms in the peripheral cyano groups with a preference of isolated 4-fold coordination motifs at RT.
Collapse
Affiliation(s)
- Jan Kuliga
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Wei Z, Zhang M, Gu X, Huang L. Giant magnetic anisotropy of a two-dimensional metal-dicyanoanthracene framework. NANOSCALE 2018; 10:17335-17340. [PMID: 30198045 DOI: 10.1039/c8nr03442g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Design of novel two-dimensional (2D) magnetic materials with large magnetic anisotropy energy (MAE) is highly desirable for nanoscale magnetic devices. Through systematic first-principles calculations, we found a huge MAE up to 180 meV in a 2D Ir-dicyanoanthracene (Ir-DCA) framework with the easy axis perpendicular to the sheet. Analysis of the electronic structures reveals that the ultra large MAE originates from the coupling between the spin down dxy and dx2-y2 orbitals in the minority spin channel. Moreover, the perpendicular MAE can be further enhanced to 220 meV by applying an external tensile biaxial strain (∼3%). Finally, our calculations indicate that the unique magnetic properties of Ir-DCA can be retained when supported on a hexagonal boron nitride (h-BN) substrate. These features make the Ir-DCA framework a promising candidate for potential applications in spintronic devices at high temperatures.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Physics and Information Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| | | | | | | | | |
Collapse
|
32
|
Nieckarz D, Rżysko W, Szabelski P. On-surface self-assembly of tetratopic molecular building blocks. Phys Chem Chem Phys 2018; 20:23363-23377. [PMID: 30177976 DOI: 10.1039/c8cp03820a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of functional molecules on solid substrates has recently attracted special attention as a versatile method for the fabrication of low dimensional nanostructures with tailorable properties. In this contribution, using theoretical modeling, we demonstrate how the architecture of 2D molecular assemblies can be predicted based on the individual properties of elementary building blocks at play. To that end a model star-shaped tetratopic molecule is used and its self-assembly on a (111) surface is simulated using the lattice Monte Carlo method. Several test cases are studied in which the molecule bears terminal arm centers providing interactions with differently encoded directionality. Our theoretical results show that manipulation of the interaction directions can be an effective way to direct the self-assembly towards extended periodic superstructures (2D crystals) as well as to create assemblies characterized by a lower degree of order, including glassy overlayers and quasi one-dimensional molecular connections. The obtained structures are described and classified with respect to their main geometric parameters. A small library of the tetratopic molecules and the corresponding superstructures is provided to categorize the structure-property relationship in the modeled systems. The results of our simulations can be helpful to 2D crystal engineering and surface-confined polymerization techniques as they give hints on how to functionalize tetrapod organic building blocks which would be able to create superstructures with predefined spatial organization and range of order.
Collapse
Affiliation(s)
- Damian Nieckarz
- Department of Theoretical Chemistry, Maria-Curie Skłodowska University, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland.
| | | | | |
Collapse
|
33
|
Kumar A, Banerjee K, Foster AS, Liljeroth P. Two-Dimensional Band Structure in Honeycomb Metal-Organic Frameworks. NANO LETTERS 2018; 18:5596-5602. [PMID: 30134111 PMCID: PMC6179349 DOI: 10.1021/acs.nanolett.8b02062] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/08/2018] [Indexed: 05/31/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) have been recently proposed as a flexible material platform for realizing exotic quantum phases including topological and anomalous quantum Hall insulators. Experimentally, direct synthesis of 2D MOFs has been essentially confined to metal substrates, where the strong interaction with the substrate masks the intrinsic electronic properties of the MOF. In addition to electronic decoupling from the underlying metal support, synthesis on weakly interacting substrates (e.g., graphene) would enable direct realization of heterostructures of 2D MOFs with inorganic 2D materials. Here, we demonstrate synthesis of 2D honeycomb MOFs on epitaxial graphene substrate. Using low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) complemented by density-functional theory (DFT) calculations, we show the formation of a 2D band structure in the MOF decoupled from the substrate. These results open the experimental path toward MOF-based designer electronic materials with complex, engineered electronic structures.
Collapse
Affiliation(s)
- Avijit Kumar
- Department
of Applied Physics, Aalto University School
of Science, PO Box 15100, 00076 Aalto, Finland
| | - Kaustuv Banerjee
- Department
of Applied Physics, Aalto University School
of Science, PO Box 15100, 00076 Aalto, Finland
| | - Adam S. Foster
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box 11100, 00076 Aalto, Finland
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate
School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Peter Liljeroth
- Department
of Applied Physics, Aalto University School
of Science, PO Box 15100, 00076 Aalto, Finland
| |
Collapse
|
34
|
Schiffrin A, Capsoni M, Farahi G, Wang CG, Krull C, Castelli M, Roussy T, Cochrane KA, Yin Y, Medhekar NV, Fuhrer M, Shaw AQ, Ji W, Burke SA. Designing Optoelectronic Properties by On-Surface Synthesis: Formation and Electronic Structure of an Iron-Terpyridine Macromolecular Complex. ACS NANO 2018; 12:6545-6553. [PMID: 29911862 DOI: 10.1021/acsnano.8b01026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supramolecular chemistry protocols applied on surfaces offer compelling avenues for atomic-scale control over organic-inorganic interface structures. In this approach, adsorbate-surface interactions and two-dimensional confinement can lead to morphologies and properties that differ dramatically from those achieved via conventional synthetic approaches. Here, we describe the bottom-up, on-surface synthesis of one-dimensional coordination nanostructures based on an iron (Fe)-terpyridine (tpy) interaction borrowed from functional metal-organic complexes used in photovoltaic and catalytic applications. Thermally activated diffusion of sequentially deposited ligands and metal atoms and intraligand conformational changes lead to Fe-tpy coordination and formation of these nanochains. We used low-temperature scanning tunneling microscopy and density functional theory to elucidate the atomic-scale morphology of the system, suggesting a linear tri-Fe linkage between facing, coplanar tpy groups. Scanning tunneling spectroscopy reveals the highest occupied orbitals, with dominant contributions from states located at the Fe node, and ligand states that mostly contribute to the lowest unoccupied orbitals. This electronic structure yields potential for hosting photoinduced metal-to-ligand charge transfer in the visible/near-infrared. The formation of this unusual tpy/tri-Fe/tpy coordination motif has not been observed for wet chemistry synthetic methods and is mediated by the bottom-up on-surface approach used here, offering pathways to engineer the optoelectronic properties and reactivity of metal-organic nanostructures.
Collapse
Affiliation(s)
- Agustin Schiffrin
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
| | - Martina Capsoni
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
| | - Gelareh Farahi
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
| | - Chen-Guang Wang
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices , Renmin University of China , Beijing 100872 , People's Republic of China
| | - Cornelius Krull
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
| | - Marina Castelli
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
| | - Tanya Roussy
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
| | - Katherine A Cochrane
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
| | - Yuefeng Yin
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
- Department of Materials Science and Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Nikhil V Medhekar
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
- Department of Materials Science and Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Michael Fuhrer
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
| | - Adam Q Shaw
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices , Renmin University of China , Beijing 100872 , People's Republic of China
| | - Sarah A Burke
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
- Quantum Matter Institute , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z4
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia , Canada , V6T 1Z1
| |
Collapse
|
35
|
Li W, Jin J, Liu X, Wang L. Structural Transformation of Guanine Coordination Motifs in Water Induced by Metal Ions and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8092-8098. [PMID: 29905486 DOI: 10.1021/acs.langmuir.8b01263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transformation effects of metal ions and temperature on the DNA base guanine (G) metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules form an ordered hydrogen-bonded structure at the water-highly oriented pyrolytic graphite interface. The STM observations reveal that the canonical G/9H form can be transformed into the G/(3H,7H) tautomer by increasing the temperature of the G solution to 38.6 °C. Moreover, metal ions bind with G molecules to form G4Fe13+, G3Fe32+, and the heterochiral intermixed G4Na1+ metal-organic networks after the introduction of alkali-metal ions in cellular environment.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
- Department of Science , Nanchang Institute of Technology , Nanchang 330099 , P. R. China
| | - Jing Jin
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
| | - Xiaoqing Liu
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
| | - Li Wang
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
| |
Collapse
|
36
|
He Y, Cai Z, Shao J, Xu L, She L, Zheng Y, Zhong D. Quaterrylene molecules on Ag(111): self-assembly behavior and voltage pulse induced trimer formation. Phys Chem Chem Phys 2018; 20:12217-12222. [PMID: 29687133 DOI: 10.1039/c8cp01005f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.
Collapse
Affiliation(s)
- Yangyong He
- School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Xingang Xi Road 135, 510275 Guangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Synthesis of armchair graphene nanoribbons from the 10,10'-dibromo-9,9'-bianthracene molecules on Ag(111): the role of organometallic intermediates. Sci Rep 2018; 8:3506. [PMID: 29472611 PMCID: PMC5823938 DOI: 10.1038/s41598-018-21704-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/01/2018] [Indexed: 11/08/2022] Open
Abstract
We investigate the bottom-up growth of N = 7 armchair graphene nanoribbons (7-AGNRs) from the 10,10′-dibromo-9,9′-bianthracene (DBBA) molecules on Ag(111) with the focus on the role of the organometallic (OM) intermediates. It is demonstrated that DBBA molecules on Ag(111) are partially debrominated at room temperature and lose all bromine atoms at elevated temperatures. Similar to DBBA on Cu(111), debrominated molecules form OM chains on Ag(111). Nevertheless, in contrast with the Cu(111) substrate, formation of polyanthracene chains from OM intermediates via an Ullmann-type reaction is feasible on Ag(111). Cleavage of C–Ag bonds occurs before the thermal threshold for the surface-catalyzed activation of C–H bonds on Ag(111) is reached, while on Cu(111) activation of C–H bonds occurs in parallel with the cleavage of the stronger C–Cu bonds. Consequently, while OM intermediates obstruct the Ullmann reaction between DBBA molecules on the Cu(111) substrate, they are required for the formation of polyanthracene chains on Ag(111). If the Ullmann-type reaction on Ag(111) is inhibited, heating of the OM chains produces nanographenes instead. Heating of the polyanthracene chains produces 7-AGNRs, while heating of nanographenes causes the formation of the disordered structures with the possible admixture of short GNRs.
Collapse
|
38
|
Yang Z, Gebhardt J, Schaub TA, Sander T, Schönamsgruber J, Soni H, Görling A, Kivala M, Maier S. Two-dimensional delocalized states in organometallic bis-acetylide networks on Ag(111). NANOSCALE 2018; 10:3769-3776. [PMID: 29411828 DOI: 10.1039/c7nr08238j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The electronic structure of surface-supported organometallic networks with Ag-bis-acetylide bonds that are intermediate products in the bottom-up synthesis of graphdiyne and graphdiyne-like networks were studied. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a frontier, unoccupied electronic state that is delocalized along the entire organometallic network and proves the covalent nature of the Ag-bis-acetylide bonds. Density-functional theory (DFT) calculations corroborate the spatial distribution of the observed delocalized state and attribute it to band mixing of carbon and silver atoms combined with n-doping of the metal surface. The metal-bis-acetylide bonds are typical metal-organic bonds with mixed character containing covalent and strong ionic contributions. Moreover, the organometallic networks exhibit a characteristic graphene-like band structure with linear band dispersion at each K point.
Collapse
Affiliation(s)
- Zechao Yang
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Écija D, Urgel JI, Seitsonen AP, Auwärter W, Barth JV. Lanthanide-Directed Assembly of Interfacial Coordination Architectures-From Complex Networks to Functional Nanosystems. Acc Chem Res 2018; 51:365-375. [PMID: 29420010 DOI: 10.1021/acs.accounts.7b00379] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metallo-supramolecular engineering on surfaces provides a powerful strategy toward low-dimensional coordination architectures with prospects for several application fields. To date, most efforts have relied on transition metal centers, and only recently did we pioneer lanthanide-directed assembly. Coordination spheres and motifs with rare-earth elements generally display distinct properties and structural features. The size of the cations and shielding role of the 4f orbitals induces high coordination numbers, frequently entailing flexible coordination geometries. Following Pearson's hard and soft acid-base theory, lanthanide cations are hard Lewis acids and thus feature strong affinity for nitrile, terpyridine, and carboxylate donor moieties. The prevailing oxidation state is +3, although in certain compounds stable +2 or +4 cations occur. The chemistry of rare-earth elements is currently receiving widespread attention, as they are key ingredients for established and emerging 21st century science and technology with relevance for energy conversion, sensing, catalysis, magnetism, photonics, telecommunications, superconductivity, biomedicine, and quantum engineering. In this Account, we review recent advances toward the design of interfacial supramolecular nanoarchitectures incorporating lanthanide centers. We apply controlled ultrahigh vacuum conditions whereby atomistically clean substrates are prepared and exposed to ultrapure atomic and molecular beams of the chosen sublimable constituents. We focus on direct molecular-level investigations and in situ assembly operative close to equilibrium conditions. Our scanning probe microscopy techniques provide atomistic insights regarding the formation, stability, and manipulability of metal-organic compounds and networks. In order to gain deeper insights into the experimental findings, complementary computational analysis of bond characteristics, electronic properties, and coordination motifs has been performed for several case studies. Exemplary elements under consideration include cerium, gadolinium, dysprosium, and europium. By the use of ditopic molecular linkers equipped with carbonitrile moieties, adaptive coordination spheres are unveiled, yielding vertices with two- to sixfold symmetry. The respective coordination nodes underlie the expression of complex networks, such as semiregular Archimedean tessellations for cerium- or gadolinium-directed assemblies and random-tiling quasicrystalline characteristics for europium. Tunability via constituent stoichiometry regulation is revealed for bimolecular arrangements embedding europium centers, simultaneously connecting to carbonitrile and terypyridine ligands. Ditopic carboxylate linkers yield robust reticular networks based on a lateral coordination number of 8 for either gadolinium or dysprosium complexation, featuring a prevalent ionic nature of the coordination bond. Orthogonal insertion protocols give rise to d-f reticular architectures exploiting macrocyclic tetradentate cobalt complexation and peripheral carbonitrile-gadolinium coordination, respectively. Furthermore, lanthanides may afford metalation of adsorbed free-base tetrapyrrole species and can be engaged for interfacial synthesis of sandwich compounds, thus providing prospects for columnar design of coordination architectures. Finally, direct manipulation experiments achieved lateral displacement of single supramolecules and molecular rotation of sandwich or other molecular units. These findings evidence prospects for advancing molecular machinery components. The presented accomplishements herald further advancements in metallo-supramolecular design on surfaces, with versatile nanosystems and architectures emanating from the flexible coordination spheres. The embedding and systematic rationalization of lanthanide centers in tailored interfacial environments are keys to establishing relations between structure and physicochemical characteristics toward the generation of novel functionalities with technological significance.
Collapse
Affiliation(s)
| | - José I. Urgel
- Physik-Department
E20, Technische Universität München, D-85748 Garching, Germany
| | - Ari P. Seitsonen
- Département der Chimie, École Normale Supérieure, F-75005 Paris, France
| | - Willi Auwärter
- Physik-Department
E20, Technische Universität München, D-85748 Garching, Germany
| | - Johannes V. Barth
- Physik-Department
E20, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
40
|
Patera LL, Zou Z, Dri C, Africh C, Repp J, Comelli G. Imaging on-surface hierarchical assembly of chiral supramolecular networks. Phys Chem Chem Phys 2018; 19:24605-24612. [PMID: 28853744 DOI: 10.1039/c7cp01341h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bottom-up assembly of chiral structures usually relies on a cascade of molecular recognition interactions. A thorough description of these complex stereochemical mechanisms requires the capability of imaging multilevel coordination in real-time. Here we report the first direct observation of hierarchical expression of supramolecular chirality at work, for 10,10'-dibromo-9,9'-bianthryl (DBBA) on Cu(111). Molecular recognition first steers the growth of chiral organometallic chains and then leads to the formation of enantiopure islands. The structure of the networks was determined by noncontact atomic force microscopy (nc-AFM), while high-speed scanning tunnelling microscopy (STM) revealed details of the assembly mechanisms at the ms time-scale. The direct observation of the chirality transfer pathways allowed us to evaluate the enantioselectivity of the interchain coupling.
Collapse
Affiliation(s)
- Laerte L Patera
- IOM-CNR Laboratorio TASC, Area Science Park, 34149 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Liu J, Fu X, Chen Q, Zhang Y, Wang Y, Zhao D, Chen W, Xu GQ, Liao P, Wu K. Stabilizing surface Ag adatoms into tunable single atom arrays by terminal alkyne assembly. Chem Commun (Camb) 2018; 52:12944-12947. [PMID: 27747352 DOI: 10.1039/c6cc06444b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ordered two-dimensional arrays of silver adatoms with tunable metal atom density stabilized by 1,4-diethynyl-2,5-dimethylbenzene, a terminal alkyne, were prepared on Ag(111) and scrutinized by scanning tunneling microscopy and density functional theory calculations. Stabilization of the adatom arrays was attributed to the substrate-mediated electron localizations of the Ag adatom and terminal alkynyl in the molecule.
Collapse
Affiliation(s)
- Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. and College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China
| | - Xiangyu Fu
- MOE Key Lab of Polymer Chemistry & Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiwei Chen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yajie Zhang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Dahui Zhao
- MOE Key Lab of Polymer Chemistry & Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore and SPURc, 1 CREATE Way, #15-01, CREATE Tower, Singapore 138602, Singapore
| | - Guo Qin Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore and SPURc, 1 CREATE Way, #15-01, CREATE Tower, Singapore 138602, Singapore
| | - Peilin Liao
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. and SPURc, 1 CREATE Way, #15-01, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
42
|
Teyssandier J, Feyter SD, Mali KS. Host-guest chemistry in two-dimensional supramolecular networks. Chem Commun (Camb) 2018; 52:11465-11487. [PMID: 27709179 DOI: 10.1039/c6cc05256h] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoporous supramolecular networks physisorbed on solid surfaces have been extensively used to immobilize a variety of guest molecules. Host-guest chemistry in such two-dimensional (2D) porous networks is a rapidly expanding field due to potential applications in separation technology, catalysis and nanoscale patterning. Diverse structural topologies with high crystallinity have been obtained to capture molecular guests of different sizes and shapes. A range of non-covalent forces such as hydrogen bonds, van der Waals interactions, coordinate bonds have been employed to assemble the host networks. Recent years have witnessed a surge in the activity in this field with the implementation of rational design strategies for realizing controlled and selective guest capture. In this feature article, we review the development in the field of surface-supported host-guest chemistry as studied by scanning tunneling microscopy (STM). Typical host-guest architectures studied on solid surfaces, both under ambient conditions at the solution-solid interface as well as those formed at the ultrahigh vacuum (UHV)-solid interface, are described. We focus on isoreticular host networks, hosts functionalized pores and dynamic host-guest systems that respond to external stimuli.
Collapse
Affiliation(s)
- Joan Teyssandier
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| |
Collapse
|
43
|
Tao Z, Wang T, Wu D, Feng L, Huang J, Wu X, Zhu J. Construction of molecular regular tessellations on a Cu(111) surface. Chem Commun (Camb) 2018; 54:7010-7013. [PMID: 29872781 DOI: 10.1039/c8cc01719k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Through thermal treatment, three regular molecular tessellations are constructed on Cu(111) with a linear DOD precursor.
Collapse
Affiliation(s)
- Zhijie Tao
- National Synchrotron Radiation Laboratory and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Tao Wang
- National Synchrotron Radiation Laboratory and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Daoxiong Wu
- CAS Key Laboratory of Materials for Energy Conversion
- School of Chemistry and Materials Science
- Synergetic Information of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience
- University of Science and Technology of China
- Hefei
| | - Lin Feng
- National Synchrotron Radiation Laboratory and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Jianmin Huang
- National Synchrotron Radiation Laboratory and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Xiaojun Wu
- CAS Key Laboratory of Materials for Energy Conversion
- School of Chemistry and Materials Science
- Synergetic Information of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience
- University of Science and Technology of China
- Hefei
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
44
|
Hötger D, Carro P, Gutzler R, Wurster B, Chandrasekar R, Klyatskaya S, Ruben M, Salvarezza RC, Kern K, Grumelli D. Polymorphism and metal-induced structural transformation in 5,5′-bis(4-pyridyl)(2,2′-bispyrimidine) adlayers on Au(111). Phys Chem Chem Phys 2018; 20:15960-15969. [DOI: 10.1039/c7cp07746g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of iron to a self-assembled molecular network can lift polymorphism and leads to the expression of one single metal–organic structure on a surface.
Collapse
Affiliation(s)
- Diana Hötger
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Pilar Carro
- Área de Química Física
- Departamento de Química, Facultad de Ciencias
- Universidad de La Laguna
- Instituto de Materiales y Nanotecnología
- Tenerife
| | - Rico Gutzler
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Benjamin Wurster
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Rajadurai Chandrasekar
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Svetlana Klyatskaya
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- IPCMS-CNRS, Université de Strasbourg
| | - Roberto C. Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET – Sucursal 4 Casilla de Correo 16
- (1900) La Plata
- Argentina
| | - Klaus Kern
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
- Institut de Physique
- École polytechnique fédérale de Lausanne
| | - Doris Grumelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET – Sucursal 4 Casilla de Correo 16
- (1900) La Plata
- Argentina
| |
Collapse
|
45
|
|
46
|
Lewis SM, Fernandez A, DeRose GA, Hunt MS, Whitehead GFS, Lagzda A, Alty HR, Ferrando-Soria J, Varey S, Kostopoulos AK, Schedin F, Muryn CA, Timco GA, Scherer A, Yeates SG, Winpenny REP. Use of Supramolecular Assemblies as Lithographic Resists. Angew Chem Int Ed Engl 2017; 56:6749-6752. [PMID: 28504420 DOI: 10.1002/anie.201700224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Indexed: 12/18/2022]
Abstract
A new resist material for electron beam lithography has been created that is based on a supramolecular assembly. Initial studies revealed that with this supramolecular approach, high-resolution structures can be written that show unprecedented selectivity when exposed to etching conditions involving plasmas.
Collapse
Affiliation(s)
- Scott M Lewis
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Antonio Fernandez
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Guy A DeRose
- The Kavli Nanoscience Institute, California Institute of Technology, 1200 East California Boulevard, 107-81, Pasadena, CA, 91125, USA
| | - Matthew S Hunt
- The Kavli Nanoscience Institute, California Institute of Technology, 1200 East California Boulevard, 107-81, Pasadena, CA, 91125, USA
| | - George F S Whitehead
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Agnese Lagzda
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hayden R Alty
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jesus Ferrando-Soria
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah Varey
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andreas K Kostopoulos
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Fredrik Schedin
- The National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Christopher A Muryn
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Grigore A Timco
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Axel Scherer
- The Kavli Nanoscience Institute, California Institute of Technology, 1200 East California Boulevard, 107-81, Pasadena, CA, 91125, USA
| | - Stephen G Yeates
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard E P Winpenny
- The School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
47
|
Rapakousiou A, Sakamoto R, Shiotsuki R, Matsuoka R, Nakajima U, Pal T, Shimada R, Hossain A, Masunaga H, Horike S, Kitagawa Y, Sasaki S, Kato K, Ozawa T, Astruc D, Nishihara H. Liquid/Liquid Interfacial Synthesis of a Click Nanosheet. Chemistry 2017; 23:8443-8449. [PMID: 28419580 DOI: 10.1002/chem.201700201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Indexed: 01/04/2023]
Abstract
A liquid/liquid interfacial synthesis is employed, for the first time, to synthesize a covalent two-dimensional polymer nanosheet. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) between a three-way terminal alkyne and azide at a water/dichloromethane interface generates a 1,2,3-triazole-linked nanosheet. The resultant nanosheet, with a flat and smooth texture, has a maximum domain size of 20 μm and minimum thickness of 5.3 nm. The starting monomers in the organic phase and the copper catalyst in the aqueous phase can only meet at the liquid/liquid interface as a two-dimensional reaction space; this allows them to form the two-dimensional polymer. The robust triazole linkage generated by irreversible covalent-bond formation allows the nanosheet to resist hydrolysis under both acidic and alkaline conditions, and to endure pyrolysis up to more than 300 °C. The coordination ability of the triazolyl group enables the nanosheet to act as a reservoir for metal ions, with an affinity order of Pd2+ >Au3+ >Cu2+ .
Collapse
Affiliation(s)
- Amalia Rapakousiou
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,IMDEA Nanociencia Ciudad Universitaria de Cantoblanco, C/Faraday 9, 28049, Madrid, Spain
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ryo Shiotsuki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Matsuoka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ukyo Nakajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tigmansu Pal
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Rintaro Shimada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Amran Hossain
- Venture Laboratory, Kyoto Institute of Technology, Matsugasaki Hashigami cho 1, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Sono Sasaki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Matsugasaki Hashikami-cho 1, Sakyo-ku, Kyoto, 606-8585, Japan.,RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Didier Astruc
- ISM, UMR CNRS No. 5255, University of Bordeaux, 33405, Talence Cedex, France
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
48
|
Iritani K, Tahara K, De Feyter S, Tobe Y. Host-Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid-Solid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4601-4618. [PMID: 28206764 DOI: 10.1021/acs.langmuir.7b00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C6 to C20. Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.
Collapse
Affiliation(s)
- Kohei Iritani
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
- Department of Applied Chemistry, School of Science and Technology, Meiji University , Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven - University of Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
49
|
Lewis SM, Fernandez A, DeRose GA, Hunt MS, Whitehead GFS, Lagzda A, Alty HR, Ferrando-Soria J, Varey S, Kostopoulos AK, Schedin F, Muryn CA, Timco GA, Scherer A, Yeates SG, Winpenny REP. Use of Supramolecular Assemblies as Lithographic Resists. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Scott M. Lewis
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Antonio Fernandez
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Guy A. DeRose
- The Kavli Nanoscience Institute; California Institute of Technology; 1200 East California Boulevard, 107-81 Pasadena CA 91125 USA
| | - Matthew S. Hunt
- The Kavli Nanoscience Institute; California Institute of Technology; 1200 East California Boulevard, 107-81 Pasadena CA 91125 USA
| | - George F. S. Whitehead
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Agnese Lagzda
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Hayden R. Alty
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Jesus Ferrando-Soria
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Sarah Varey
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Andreas K. Kostopoulos
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Fredrik Schedin
- The National Graphene Institute; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Christopher A. Muryn
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Grigore A. Timco
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Axel Scherer
- The Kavli Nanoscience Institute; California Institute of Technology; 1200 East California Boulevard, 107-81 Pasadena CA 91125 USA
| | - Stephen G. Yeates
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Richard E. P. Winpenny
- The School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
50
|
Interfacial phenomena between conjugated organic molecules and noble metals. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|