1
|
Chen S, He W, Li J, Xu D, Zhao R, Zhu L, Wu H, Xu F. Pulley Effect in the Capture of DNA Translocation through Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5799-5808. [PMID: 38501264 DOI: 10.1021/acs.langmuir.3c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nanopores are powerful single-molecule sensors for analyzing biomolecules such as DNA and proteins. Understanding the dynamics of DNA capture and translocation through nanopores is essential for optimizing their performance. In this study, we examine the effects of applied voltage and pore diameter on current blockage, translocation time, collision, and capture location by translocating λ-DNA through 5.7 and 16 nm solid-state nanopores. Ionic current changes are used to infer DNA conformations during translocation. We find that translocation time increases with pore diameter, which can be attributed to the decrease of the stall force. Linear and exponential decreases of collision frequency with voltage are observed in the 16 and 5.7 nm pores, respectively, indicating a free energy barrier in the small pore. Moreover, the results reveal a voltage-dependent bias in the capture location toward the DNA ends, which is explained by a "pulley effect" deforming the DNA as it approaches the pore. This study provides insights into the physics governing DNA capture and translocation, which can be useful for promoting single-file translocation to enhance nanopore sensing.
Collapse
Affiliation(s)
- Shulan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Wen He
- Analysis and Testing Center, Nanchang Hangkong University, Nanchang 330063, China
| | - Jun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Derong Xu
- Jiangxi Institute of Translational Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Libo Zhu
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Hongwen Wu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Jiangxi Hospital, Nanchang 330006, China
| |
Collapse
|
2
|
Sandler SE, Weckman NE, Yorke S, Das A, Chen K, Gutierrez R, Keyser UF. Sensing the DNA-mismatch tolerance of catalytically inactive Cas9 via barcoded DNA nanostructures in solid-state nanopores. Nat Biomed Eng 2024; 8:325-334. [PMID: 37550424 DOI: 10.1038/s41551-023-01078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/30/2023] [Indexed: 08/09/2023]
Abstract
Single-molecule quantification of the strength and sequence specificity of interactions between proteins and nucleic acids would facilitate the probing of protein-DNA binding. Here we show that binding events between the catalytically inactive Cas9 ribonucleoprotein and any pre-defined short sequence of double-stranded DNA can be identified by sensing changes in ionic current as suitably designed barcoded linear DNA nanostructures with Cas9-binding double-stranded DNA overhangs translocate through solid-state nanopores. We designed barcoded DNA nanostructures to study the relationships between DNA sequence and the DNA-binding specificity, DNA-binding efficiency and DNA-mismatch tolerance of Cas9 at the single-nucleotide level. Nanopore-based sensing of DNA-barcoded nanostructures may help to improve the design of efficient and specific ribonucleoproteins for biomedical applications, and could be developed into sensitive protein-sensing assays.
Collapse
Affiliation(s)
- Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Nicole E Weckman
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Institute for Studies in Transdisciplinary Engineering Education & Practice, Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Canada
| | - Sarah Yorke
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, Cambridge, UK
| | - Akashaditya Das
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Schiopu I, Dragomir I, Asandei A. Single molecule technique unveils the role of electrostatic interactions in ssDNA-gp32 molecular complex stability. RSC Adv 2024; 14:5449-5460. [PMID: 38352678 PMCID: PMC10862658 DOI: 10.1039/d3ra07746b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
The exploration of single-strand DNA-binding protein (SSB)-ssDNA interactions and their crucial roles in essential biological processes lagged behind other types of protein-nucleic acid interactions, such as protein-dsDNA and protein-RNA interactions. The ssDNA binding protein gene product 32 (gp32) of the T4 bacteriophage is a central integrating component of the replication complex that must continuously bind to and unbind from transiently exposed template strands during the DNA synthesis. To gain deeper insights into the electrostatic conditions influencing the stability of the ssDNA-gp32 molecular complex, like the salt concentration or some metal ions proven to specifically bind to gp32, we employed a method that performs rapid measurements of the DNA-protein stability using an α-Hemolysin (α-HL) protein nanopore. We indirectly probed the stability of a protein-nucleic acid complex by monitoring the dissociation process between the gp32 protein and the ssDNA molecular complex in single-molecular electrophysiology experiments, but also through fluorescence spectroscopy techniques. We have shown that the complex is more stable in 0.5 M KCl solution than in 2 M KCl solution and that the presence of Zn2+ ions further increases this stability for any salt used in the present study. This method can be applied to other nucleic acid-protein molecular complexes, as well as for an accurate determination of the drug-protein carrier stability.
Collapse
Affiliation(s)
- Irina Schiopu
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| | - Isabela Dragomir
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| | - Alina Asandei
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| |
Collapse
|
4
|
Seth S, Bhattacharya A. DNA Barcodes Using a Dual Nanopore Device. Methods Mol Biol 2024; 2744:197-211. [PMID: 38683320 PMCID: PMC11442030 DOI: 10.1007/978-1-0716-3581-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
We report a novel method based on the current blockade (CB) characteristics obtained from a dual nanopore device that can determine DNA barcodes with near-perfect accuracy using a Brownian dynamics simulation strategy. The method supersedes our previously reported velocity correction algorithm (S. Seth and A. Bhattacharya, RSC Advances, 11:20781-20787, 2021), taking advantage of the better measurement of the time-of-flight (TOF) protocol offered by the dual nanopore setup. We demonstrate the efficacy of the method by comparing our simulation data from a coarse-grained model of a polymer chain consisting of 2048 excluded volume beads of diameter 𝜎 = 24 bp using with those obtained from experimental CB data from a 48,500 bp λ-phage DNA, providing a 48500 2400 ≅ 24 base pair resolution in simulation. The simulation time scale is compared to the experimental time scale by matching the simulated time-of-flight (TOF) velocity distributions with those obtained experimentally (Rand et al., ACS Nano, 16:5258-5273, 2022). We then use the evolving coordinates of the dsDNA and the molecular features to reconstruct the current blockade characteristics on the fly using a volumetric model based on the effective van der Waal radii of the species inside and in the immediate vicinity of the pore. Our BD simulation mimics the control-zoom-in-logic to understand the origin of the TOF distributions due to the relaxation of the out-of-equilibrium conformations followed by a reversal of the electric fields. The simulation algorithm is quite general and can be applied to differentiate DNA barcodes from different species.
Collapse
|
5
|
Hong H, Wei J, Lei X, Chen H, Sarro PM, Zhang G, Liu Z. Study on the controllability of the fabrication of single-crystal silicon nanopores/nanoslits with a fast-stop ionic current-monitored TSWE method. MICROSYSTEMS & NANOENGINEERING 2023; 9:63. [PMID: 37206700 PMCID: PMC10188523 DOI: 10.1038/s41378-023-00532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023]
Abstract
The application of single-crystal silicon (SCS) nanopore structures in single-molecule-based analytical devices is an emerging approach for the separation and analysis of nanoparticles. The key challenge is to fabricate individual SCS nanopores with precise sizes in a controllable and reproducible way. This paper introduces a fast-stop ionic current-monitored three-step wet etching (TSWE) method for the controllable fabrication of SCS nanopores. Since the nanopore size has a quantitative relationship with the corresponding ionic current, it can be regulated by controlling the ionic current. Thanks to the precise current-monitored and self-stop system, an array of nanoslits with a feature size of only 3 nm was obtained, which is the smallest size ever reported using the TSWE method. Furthermore, by selecting different current jump ratios, individual nanopores of specific sizes were controllably prepared, and the smallest deviation from the theoretical value was 1.4 nm. DNA translocation measurement results revealed that the prepared SCS nanopores possessed the excellent potential to be applied in DNA sequencing.
Collapse
Affiliation(s)
- Hao Hong
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Xin Lei
- School of Chemistry, Beihang University, 100084 Beijing, China
| | - Haiyun Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, 100084 Beijing, China
| | - Pasqualina M. Sarro
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
6
|
Li H, Li Y, Gui C, Chen D, Chen L, Luo L, Huang G, Yuan Y, He R, Xia F, Wang J. Bare glassy nanopore for length-resolution reading of PCR amplicons from various pathogenic bacteria and viruses. Talanta 2023; 256:124275. [PMID: 36701856 DOI: 10.1016/j.talanta.2023.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/16/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
In this study, it is confirmed that without addition of organic solvent and embedding polymer hydrogel into glass nanopore, bare glass nanopore can faithfully measure various lengths of DNA duplexes from 200 to 3000 base pairs with 200 base pairs resolution, showing well-separated peak amplitudes of blockage currents. Furthermore, motivated by this readout capability of duplex DNA, amplicons from Polymerase Chain Reaction (PCR) amplification are straightforwardly discriminated by bare glassy nanopore without fluorescent labeling. Except simultaneous discrimination of up to 7 different segments of the same lambda genome, various pathogenic bacteria and viruses including SARS-CoV-2 and its mutants in clinical samples can be discriminated at high resolution. Moreover, quantitative measurement of PCR amplicons is obtained with detection range spanning from 0.75 aM to 7.5 pM and detection limit of 7.5 aM, which reveals that bare glass nanopore can faithfully disclose PCR results without any extra labeling.
Collapse
Affiliation(s)
- Huizhen Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Yunhui Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Cenlin Gui
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Lanfang Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Rong He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China.
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
7
|
Bhullar AS, Zhang L, Burns N, Cheng X, Guo P. Voltage controlled shutter regulates channel size and motion direction of protein aperture as durable nano-electric rectifier-----An opinion in biomimetic nanoaperture. Biomaterials 2022; 291:121863. [PMID: 36356474 PMCID: PMC9766157 DOI: 10.1016/j.biomaterials.2022.121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
In optical devices such as camera or microscope, an aperture is used to regulate light intensity for imaging. Here we report the discovery and construction of a durable bio-aperture at nanometerscale that can regulate current at the pico-ampere scale. The nano-aperture is made of 12 identical protein subunits that form a 3.6-nm channel with a shutter and "one-way traffic" property. This shutter responds to electrical potential differences across the aperture and can be turned off for double stranded DNA translocation. This voltage enables directional control, and three-step regulation for opening and closing. The nano-aperture was constructed in vitro and purified into homogeneity. The aperture was stable at pH2-12, and a temperature of -85C-60C. When an electrical potential was held, three reproducible discrete steps of current flowing through the channel were recorded. Each step reduced 32% of the channel dimension evident by the reduction of the measured current flowing through the aperture. The current change is due to the change of the resistance of aperture size. The transition between these three distinct steps and the direction of the current was controlled via the polarity of the voltage applied across the aperture. When the C-terminal of the aperture was fused to an antigen, the antibody and antigen interaction resulted in a 32% reduction of the channel size. This phenomenon was used for disease diagnosis since the incubation of the antigen-nano-aperture with a specific cancer antibody resulted in a change of 32% of current. The purified truncated cone-shape aperture automatically self-assembled efficiently into a sheet of the tetragonal array via head-to-tail self-interaction. The nano-aperture discovery with a controllable shutter, discrete-step current regulation, formation of tetragonal sheet, and one-way current traffic provides a nanoscale electrical circuit rectifier for nanodevices and disease diagnosis.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Recent advances on CRISPR/Cas system-enabled portable detection devices for on-site agri-food safety assay. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Li C, Wang Z, Ma L. Drilling accurate nanopores for biosensors by energetic multi-wall carbon nanotubes: a molecular dynamics investigation. J Mol Model 2022; 28:304. [PMID: 36074180 DOI: 10.1007/s00894-022-05276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Drilling precise nanopores in thin layers is in rapid demand for biosensing applications. We demonstrate that an energetic multi-wall carbon nanotube (MWCNT) can be a good candidate to fabricate nanopores on graphene from molecular dynamics simulations with a bond-order potential. High-quality nanopores with expected size and smooth margins could be created by an incident nanotube at chosen size and energy. Besides, a nanotube is in advantage of absorbing and translocating many biological macromolecules due to its strong adsorption capacity. It implies a feasible way to drill nanopores and carry big molecules through the fabricated nanopores in one step for fast biosensing applications.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Physics, Hunan University of Arts and Science, Dongting Road 3150, Changde, 415000, Hunan, China.
| | - Zilin Wang
- Department of Physics, Hunan University of Arts and Science, Dongting Road 3150, Changde, 415000, Hunan, China
| | - Lei Ma
- Department of Physics, Hunan University of Arts and Science, Dongting Road 3150, Changde, 415000, Hunan, China
| |
Collapse
|
10
|
Mereuta L, Asandei A, Dragomir I, Park J, Park Y, Luchian T. A Nanopore Sensor for Multiplexed Detection of Short Polynucleotides Based on Length-Variable, Poly-Arginine-Conjugated Peptide Nucleic Acids. Anal Chem 2022; 94:8774-8782. [PMID: 35666169 DOI: 10.1021/acs.analchem.2c01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Real-time and easy-to-use detection of nucleic acids is crucial for many applications, including medical diagnostics, genetic screening, forensic science, or monitoring the onset and progression of various diseases. Herein, an exploratory single-molecule approach for multiplexed discrimination among similar-sized single-stranded DNAs (ssDNA) is presented. The underlying strategy combined (i) a method based on length-variable, short arginine (poly-Arg) tags appended to peptide nucleic acid (PNA) probes, designed to hybridize with selected regions from complementary ssDNA targets (cDNA) in solution and (ii) formation and subsequent detection with the α-hemolysin nanopore of (poly-Arg)-PNA-cDNA duplexes containing two overhangs associated with the poly-Arg tail and the non-hybridized segment from ssDNA. We discovered that the length-variable poly-Arg tail marked distinctly the molecular processes associated with the nanopore-mediated duplexes capture, trapping and unzipping. This enabled the detection of ssDNA targets via the signatures of (poly-Arg)-PNA-cDNA blockade events, rendered most efficient from the β-barrel entrance of the nanopore, and scaled proportional in efficacy with a larger poly-Arg moiety. We illustrate the approach by sensing synthetic ssDNAs designed to emulate fragments from two regions of SARS-CoV-2 nucleocapsid phosphoprotein N-gene.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Isabela Dragomir
- Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, 38065 Kongju, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, 61452 Gwangju, Republic of Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
11
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
12
|
Asandei A, Mereuta L, Bucataru IC, Park Y, Luchian T. A single-molecule insight into the ionic strength dependent, cationic peptide nucleic acids - oligonucleotides interactions. Chem Asian J 2022; 17:e202200261. [PMID: 35419929 DOI: 10.1002/asia.202200261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Indexed: 11/08/2022]
Abstract
To alleviate solubility-related shortcomings associated with the use of neutral peptide nucleic acids (PNA), a powerful strategy is incorporate various charged sidechains onto the PNA structure. Here we employ a single-molecule technique and prove that the ionic current blockade signature of free poly(Arg)-PNAs and their corresponding duplexes with target ssDNAs interacting with a single a-hemolysin (a-HL) nanopore is highly ionic strength dependent, with high salt-containing electrolytes facilitating both capture and isolation of such complexes. Our data illustrate the effect of low ionic strength in reducing the effective volume of free poly(Arg)-PNAs and augmentation of their electrophoretic mobility while traversing the nanopore. We found that unlike in high salt electrolytes, the specific hybridization of cationic moiety-containing PNAs with complementary negatively charged ssDNAs in a salt concentration as low as 0.5 M is dramatically impeded. We suggest a scenario in which reduced charge screening by counterions in low salt electrolytes enables non-specific, electrostatic interactions with the anionic backbone of polynucleotides, thus reducing the ability of PNA-DNA complementary association via hydrogen bonding patterns. We applied an experimental strategy with spatially-separated poly(Arg)-PNAs and ssDNAs, and present evidence at the single-molecule level suggestive of the real-time, long-range interactions-driven formation of poly(Arg)-PNA-DNA complexes, as individual strands entering the nanopore from opposite directions collide inside a nanocavity.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, ICI, ROMANIA
| | - Loredana Mereuta
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Ioana C Bucataru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Yoonkyung Park
- Chosun University, Department of Biomedical Science, ROMANIA
| | - Tudor Luchian
- Alexandru I. Cuza University, Physics, Blvd. Carol I, no. 11, 700506, Iasi, ROMANIA
| |
Collapse
|
13
|
Chen X, Zhao X, Ma R, Hu Y, Cui C, Mi Z, Dou R, Pan D, Shan X, Wang L, Fan C, Lu X. Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107237. [PMID: 35092143 DOI: 10.1002/smll.202107237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Understanding the dynamic behavior of a nanostructure translocating through a nanopore is important for various applications. In this paper, the characteristics in ion current traces of tetrahedral DNA nanostructures (TDN) translocating through a solid-state nanopore are examined, by combined experimental and theoretical simulations. The results of finite element analysis reveal the correlation between orientation of TDN and the conductance blockade. The experimentally measured fluctuations in the conductance blockade, expressed as voltage-dependent histogram profiles, are consistent with the simulation, revealing the nature of a random distribution in orientation and weak influence of electrostatic and viscous torques. The step changes in orientation of a TDN during translocation are further explained by the collision with the nanopore, while the gradual changes in orientation illustrate the impact of a weak torque field in the nano-fluidic channel. The results demonstrate a general method and basic understanding in the dynamic behavior of nanostructures translocating through solid-state nanopores.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruiping Ma
- Beijing Normal University, Beijing, 100088, China
| | - Ying Hu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengjun Cui
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
| | - Zhuang Mi
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruifen Dou
- Beijing Normal University, Beijing, 100088, China
| | - Dun Pan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University Shanghai, Shanghai, 200030, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lihua Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Center for Excellence in Topological Quantum Computation, Beijing, 100190, China
| |
Collapse
|
14
|
Review of the use of nanodevices to detect single molecules. Anal Biochem 2022; 654:114645. [DOI: 10.1016/j.ab.2022.114645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
|
15
|
King S, Briggs K, Slinger R, Tabard-Cossa V. Screening for Group A Streptococcal Disease via Solid-State Nanopore Detection of PCR Amplicons. ACS Sens 2022; 7:207-214. [PMID: 34995448 DOI: 10.1021/acssensors.1c01972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-molecule detection methods are becoming increasingly important for diagnostic applications. Practical early detection of disease requires sensitivity down to the level of single copies of the targeted biomarkers. Of the candidate technologies that can address this need, solid-state nanopores show great promise as digital sensors for single-molecule detection. Here, we present work detailing the use of solid-state nanopores as downstream sensors for a polymerase chain reaction (PCR)-based assay targeting group A streptococcus (strep A), which can be readily extended to detect any pathogen that can be identified with a short nucleic acid sequence. We demonstrate that with some simple modifications to the standard PCR reaction mixture, nanopores can be used to reliably identify strep A in clinical samples. We also discuss methodological best practices for both adapting PCR-based assays to solid-state nanopore readout and analytical approaches by which to decide on sample status.
Collapse
Affiliation(s)
- Simon King
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Robert Slinger
- Division of Microbiology and Infectious Disease, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | | |
Collapse
|
16
|
Tang W, Wu Y, Mehdipour M, Chen HS, Tilley RD, Gooding JJ. Key Parameters That Determine the Magnitude of the Decrease in Current in Nanopore Blockade Sensors. NANO LETTERS 2021; 21:9374-9380. [PMID: 34726925 DOI: 10.1021/acs.nanolett.1c01855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore blockade sensors were developed to address the challenges of sensitivity and selectivity for conventional nanopore sensors. To date, the parameters affecting the current of the sensor have not been elucidated. Herein, the impacts of nanopore size and charge and the shape, size, surface charge, and aggregation state of magnetic nanoparticles were assessed. The sensor was tolerant to all parameters contrary to predictions from electronic or geometric arguments on the current change. Theoretical models showed the greater importance of the polymers around nanoparticles and the access resistance of nanopores to the current, when compared with translocation-based nanopore sensors. The signal magnitude was dominated by the change in access resistance of ∼4.25 MΩ for all parameters, resulting in a robust system. The findings provide understandings of changes in current when nanopores are blocked, like in RNA trapping or nanopore blockade sensors, and are important for designing sensors based on nanopore blockades.
Collapse
Affiliation(s)
- Wenxian Tang
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Milad Mehdipour
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hsiang-Sheng Chen
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
17
|
Shin SJ, Chung TD. Electrochemistry of the Silicon Oxide Dielectric Layer: Principles, Electrochemical Reactions, and Perspectives. Chem Asian J 2021; 16:3014-3025. [PMID: 34402214 DOI: 10.1002/asia.202100798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/11/2021] [Indexed: 01/26/2023]
Abstract
Electrochemistry of the silicon oxide dielectric layer, a notable insulator often used as a gate oxide, is counterintuitive, but addresses fundamental questions to yield novel scientific discoveries. In this minireview, the fundamental electron transfer mechanism of silicon oxide in the electrolyte solution is elucidated. The possible electrochemical reactions to date are discussed in detail, providing numerous potential areas of application which are elaborated and justified. This minireview not only provides background but also guides future research.
Collapse
Affiliation(s)
- Samuel J Shin
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 16229, Korea
| |
Collapse
|
18
|
He L, Tessier DR, Briggs K, Tsangaris M, Charron M, McConnell EM, Lomovtsev D, Tabard-Cossa V. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat Commun 2021; 12:5348. [PMID: 34504071 PMCID: PMC8429538 DOI: 10.1038/s41467-021-25566-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Single-molecule counting is the most accurate and precise method for determining the concentration of a biomarker in solution and is leading to the emergence of digital diagnostic platforms enabling precision medicine. In principle, solid-state nanopores—fully electronic sensors with single-molecule sensitivity—are well suited to the task. Here we present a digital immunoassay scheme capable of reliably quantifying the concentration of a target protein in complex biofluids that overcomes specificity, sensitivity, and consistency challenges associated with the use of solid-state nanopores for protein sensing. This is achieved by employing easily-identifiable DNA nanostructures as proxies for the presence (“1”) or absence (“0”) of the target protein captured via a magnetic bead-based sandwich immunoassay. As a proof-of-concept, we demonstrate quantification of the concentration of thyroid-stimulating hormone from human serum samples down to the high femtomolar range. Further optimization to the method will push sensitivity and dynamic range, allowing for development of precision diagnostic tools compatible with point-of-care format. The concentration of a biomarker in solution can be determined by counting single molecules. Here the authors report a digital immunoassay scheme with solid-state nanopore readout to quantify a target protein and use this to measure thyroid-stimulating hormone from human serum.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
19
|
Ren R, Sun M, Goel P, Cai S, Kotov NA, Kuang H, Xu C, Ivanov AP, Edel JB. Single-Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103067. [PMID: 34323323 PMCID: PMC11469134 DOI: 10.1002/adma.202103067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Indexed: 06/13/2023]
Abstract
The ability to measure biomarkers, both specifically and selectively at the single-molecule level in biological fluids, has the potential to transform the diagnosis, monitoring, and therapeutic intervention of diseases. The use of nanopores has been gaining prominence in this area, not only for sequencing but more recently in screening applications. The selectivity of nanopore sensing can be substantially improved with the use of labels, but substantial challenges remain, especially when trying to differentiate between bound from unbound targets. Here highly sensitive and selective molecular probes made from nanoparticles (NPs) that self-assemble and dimerize upon binding to a biological target are designed. It is shown that both single and paired NPs can be successfully resolved and detected at the single-molecule nanopore sensing and can be used for applications such as antigen/antibody detection and microRNA (miRNA) sequence analysis. It is expected that such technology will contribute significantly to developing highly sensitive and selective strategies for the diagnosis and screening of diseases without the need for sample processing or amplification while requiring minimal sample volume.
Collapse
Affiliation(s)
- Ren Ren
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Maozhong Sun
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Pratibha Goel
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Shenglin Cai
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Materials Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Hua Kuang
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Aleksandar P. Ivanov
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Joshua B. Edel
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
20
|
Luchian T, Mereuta L, Park Y, Asandei A, Schiopu I. Single-molecule, hybridization-based strategies for short nucleic acids detection and recognition with nanopores. Proteomics 2021; 22:e2100046. [PMID: 34275186 DOI: 10.1002/pmic.202100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of detection and discovery of DNAs, and solid phase synthesis to increase the chemical functionalities on nucleic acids, leading to the emergence of novel and sophisticated in features, nucleic acids-based biopolymers. Arguably, nanopores developed for fast and direct detection of a large variety of molecules, are part of a revolutionary technological evolution which led to cheaper, smaller and considerably easier to use devices enabling DNA detection and sequencing at the single-molecule level. Through their versatility, the nanopore-based tools proved useful biomedicine, nanoscale chemistry, biology and physics, as well as other disciplines spanning materials science to ecology and anthropology. This mini-review discusses the progress of nanopore- and hybridization-based DNA detection, and explores a range of state-of-the-art applications afforded through the combination of certain synthetically-derived polymers mimicking nucleic acids and nanopores, for the single-molecule biophysics on short DNA structures.
Collapse
Affiliation(s)
- Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| | - Irina Schiopu
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| |
Collapse
|
21
|
Seth S, Bhattacharya A. DNA barcode by flossing through a cylindrical nanopore. RSC Adv 2021; 11:20781-20787. [PMID: 34178311 PMCID: PMC8190898 DOI: 10.1039/d1ra00349f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We report an accurate method to determine DNA barcodes from the dwell time measurement of protein tags (barcodes) along the DNA backbone using Brownian dynamics simulation of a model DNA and use a recursive theoretical scheme which improves the measurements to almost 100% accuracy. The heavier protein tags along the DNA backbone introduce a large speed variation in the chain that can be understood using the idea of non-equilibrium tension propagation theory. However, from an initial rough characterization of velocities into “fast” (nucleotides) and “slow” (protein tags) domains, we introduce a physically motivated interpolation scheme that enables us to determine the barcode velocities rather accurately. Our theoretical analysis of the motion of the DNA through a cylindrical nanopore opens up the possibility of its experimental realization and carries over to multi-nanopore devices used for barcoding. We report a method for DNA barcoding from the dwell time measurement of protein tags (barcodes) along the DNA backbone using Brownian dynamics simulation of a model DNA and use a recursive scheme to improve the measurements to almost 100% accuracy.![]()
Collapse
Affiliation(s)
- Swarnadeep Seth
- Department of Physics, University of Central Florida Orlando FL 32816-2385 USA
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida Orlando FL 32816-2385 USA
| |
Collapse
|
22
|
Liang S, Zhang W, Xiang F. The effect of laser irradiation on reducing the noise of solid-state nanopore. NANOTECHNOLOGY 2021; 32:345301. [PMID: 33979783 DOI: 10.1088/1361-6528/ac007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The performance of solid-state nanopore is affected by the noise level. This study aimed to investigate the effect of laser irradiation on the noise performance of solid-state nanoporein situ. Laser irradiation is applied to fresh and contaminated nanopores. The measurement results show that the noise of fresh and contaminated nanopores decreases with the laser power and there is a threshold of laser power in reducing the noise of contaminated nanopores. The possible reasons for reducing noise in the laser irradiation process are discussed. The laser treatment is proven to provide a convenient method for reducing the noise of solid-state nanopore.
Collapse
Affiliation(s)
- Shengfa Liang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenchang Zhang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Feibin Xiang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
- School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
23
|
Chen K, Gularek F, Liu B, Weinhold E, Keyser UF. Electrical DNA Sequence Mapping Using Oligodeoxynucleotide Labels and Nanopores. ACS NANO 2021; 15:2679-2685. [PMID: 33478224 PMCID: PMC7905879 DOI: 10.1021/acsnano.0c07947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Identifying DNA species is crucial for diagnostics. For DNA identification, single-molecule DNA sequence mapping is an alternative to DNA sequencing toward fast point-of-care testing, which traditionally relies on targeting and labeling DNA sequences with fluorescent labels and readout using optical imaging methods. A nanopore is a promising sensor as a complement to optical mapping with advantages of electric measurement suitable for portable devices and potential for high resolution. Here, we demonstrate a high-resolution nanopore-based DNA sequence mapping by labeling specific short sequence motifs with oligodeoxynucleotides (ODNs) using DNA methyltransferase (MTase) and detecting them using nanopores. We successfully detected ODNs down to the size of 11 nucleotides without introducing extra reporters and resolved neighboring sites with a distance of 141 bp (∼48 nm) on a single DNA molecule. To accurately locate the sequence motif positions on DNA, a nanopore data analysis method is proposed by considering DNA velocity change through nanopores and using ensemble statistics to translate the time-dependent signals to the location information. Our platform enables high-resolution detection of small labels on DNA and high-accuracy localization of them for DNA species identification in an all-electrical format. The method presents an alternative to optical techniques relying on fluorescent labels and is promising for miniature-scale integration for diagnostic applications.
Collapse
Affiliation(s)
- Kaikai Chen
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Felix Gularek
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Boyao Liu
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Elmar Weinhold
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
24
|
Liu W, Xiong J, Zhu L, Ye S, Zhao H, Liu J, Zhang H, Hou L, Marsh JH, Dong L, Gao XW, Shi D, Liu X. Characterization of deep sub-wavelength nanowells by imaging the photon state scattering spectra. OPTICS EXPRESS 2021; 29:1221-1231. [PMID: 33726341 DOI: 10.1364/oe.413942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Optical-matter interactions and photon scattering in a sub-wavelength space are of great interest in many applications, such as nanopore-based gene sequencing and molecule characterization. Previous studies show that spatial distribution features of the scattering photon states are highly sensitive to the dielectric and structural properties of the nanopore array and matter contained on or within them, as a result of the complex optical-matter interaction in a confined system. In this paper, we report a method for shape characterization of subwavelength nanowells using photon state spatial distribution spectra in the scattering near field. Far-field parametric images of the near-field optical scattering from sub-wavelength nanowell arrays on a SiN substrate were obtained experimentally. Finite-difference time-domain simulations were used to interpret the experimental results. The rich features of the parametric images originating from the interaction of the photons and the nanowells were analyzed to recover the size of the nanowells. Experiments on nanoholes modified with Shp2 proteins were also performed. Results show that the scattering distribution of modified nanoholes exhibits significant differences compared to empty nanoholes. This work highlights the potential of utilizing the photon status scattering of nanowells for molecular characterization or other virus detection applications.
Collapse
|
25
|
Zhang Y, Gu Z, Zhao J, Shao L, Kan Y. Sequence-Specific Detection of DNA Strands Using a Solid-State Nanopore Assisted by Microbeads. MICROMACHINES 2020; 11:mi11121097. [PMID: 33322605 PMCID: PMC7763196 DOI: 10.3390/mi11121097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023]
Abstract
Simple, rapid, and low-cost detection of DNA with specific sequence is crucial for molecular diagnosis and therapy applications. In this research, the target DNA molecules are bonded to the streptavidin-coated microbeads, after hybridizing with biotinylated probes. A nanopore with a diameter significantly smaller than the microbeads is used to detect DNA molecules through the ionic pulse signals. Because the DNA molecules attached on the microbead should dissociate from the beads before completely passing through the pore, the signal duration time for the target DNA is two orders of magnitude longer than free DNA. Moreover, the high local concentration of target DNA molecules on the surface of microbeads leads to multiple DNA molecules translocating through the pore simultaneously, which generates pulse signals with amplitude much larger than single free DNA translocation events. Therefore, the DNA molecules with specific sequence can be easily identified by a nanopore sensor assisted by microbeads according to the ionic pulse signals.
Collapse
|
26
|
Rozevsky Y, Gilboa T, van Kooten XF, Kobelt D, Huttner D, Stein U, Meller A. Quantification of mRNA Expression Using Single-Molecule Nanopore Sensing. ACS NANO 2020; 14:13964-13974. [PMID: 32930583 PMCID: PMC7510349 DOI: 10.1021/acsnano.0c06375] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNA quantification methods are broadly used in life science research and in clinical diagnostics. Currently, real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most common analytical tool for RNA quantification. However, in cases of rare transcripts or inhibiting contaminants in the sample, an extensive amplification could bias the copy number estimation, leading to quantification errors and false diagnosis. Single-molecule techniques may bypass amplification but commonly rely on fluorescence detection and probe hybridization, which introduces noise and limits multiplexing. Here, we introduce reverse transcription quantitative nanopore sensing (RT-qNP), an RNA quantification method that involves synthesis and single-molecule detection of gene-specific cDNAs without the need for purification or amplification. RT-qNP allows us to accurately quantify the relative expression of metastasis-associated genes MACC1 and S100A4 in nonmetastasizing and metastasizing human cell lines, even at levels for which RT-qPCR quantification produces uncertain results. We further demonstrate the versatility of the method by adapting it to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA against a human reference gene. This internal reference circumvents the need for producing a calibration curve for each measurement, an imminent requirement in RT-qPCR experiments. In summary, we describe a general method to process complicated biological samples with minimal losses, adequate for direct nanopore sensing. Thus, harnessing the sensitivity of label-free single-molecule counting, RT-qNP can potentially detect minute expression levels of RNA biomarkers or viral infection in the early stages of disease and provide accurate amplification-free quantification.
Collapse
Affiliation(s)
- Yana Rozevsky
- Department
of Biomedical Engineering, The Technion—IIT, Haifa 32000, Israel
| | - Tal Gilboa
- Department
of Biomedical Engineering, The Technion—IIT, Haifa 32000, Israel
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute, Harvard University, Boston, Massachusetts 02115, United States
| | | | - Dennis Kobelt
- Experimental
and Clinical Research Center, Charité
Universitätsmedizin, Berlin 10117, Germany
- Max-Delbrück-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- German
Cancer Consortium, Heidelberg 69120, Germany
| | - Diana Huttner
- Department
of Biomedical Engineering, The Technion—IIT, Haifa 32000, Israel
| | - Ulrike Stein
- Experimental
and Clinical Research Center, Charité
Universitätsmedizin, Berlin 10117, Germany
- Max-Delbrück-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- German
Cancer Consortium, Heidelberg 69120, Germany
| | - Amit Meller
- Department
of Biomedical Engineering, The Technion—IIT, Haifa 32000, Israel
| |
Collapse
|
27
|
Mereuta L, Asandei A, Dragomir IS, Bucataru IC, Park J, Seo CH, Park Y, Luchian T. Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Sci Rep 2020; 10:11323. [PMID: 32647249 PMCID: PMC7347621 DOI: 10.1038/s41598-020-68258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Fast, cheap and easy to use nucleic acids detection methods are crucial to mitigate adverse impacts caused by various pathogens, and are essential in forensic investigations, food safety monitoring or evolution of infectious diseases. We report here a method based on the α-hemolysin (α-HL) nanopore, working in conjunction to unmodified citrate anion-coated gold nanoparticles (AuNPs), to detect nanomolar concentrations of short single-stranded DNA sequences (ssDNA). The core idea was to use charge neutral peptide nucleic acids (PNA) as hybridization probe for complementary target ssDNAs, and monitor at the single-particle level the PNA-induced aggregation propensity AuNPs during PNA–DNA duplexes formation, by recording ionic current blockades signature of AuNP–α-HL interactions. This approach offers advantages including: (1) a simple to operate platform, producing clear-cut readout signals based on distinct size differences of PNA-induced AuNPs aggregates, in relation to the presence in solution of complementary ssDNAs to the PNA fragments (2) sensitive and selective detection of target ssDNAs (3) specific ssDNA detection in the presence of interference DNA, without sample labeling or signal amplification. The powerful synergy of protein nanopore-based nanoparticle detection and specific PNA–DNA hybridization introduces a new strategy for nucleic acids biosensing with short detection time and label-free operation.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, 'Alexandru I. Cuza' University, 700506, Iasi, Romania.
| | - Alina Asandei
- Sciences Department, Interdisciplinary Research Institute, 'Alexandru I. Cuza' University, 700506, Iasi, Romania
| | - Isabela S Dragomir
- Sciences Department, Interdisciplinary Research Institute, 'Alexandru I. Cuza' University, 700506, Iasi, Romania
| | - Ioana C Bucataru
- Department of Physics, 'Alexandru I. Cuza' University, 700506, Iasi, Romania
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea.
| | - Tudor Luchian
- Department of Physics, 'Alexandru I. Cuza' University, 700506, Iasi, Romania.
| |
Collapse
|
28
|
Chen K, Zhu J, Bošković F, Keyser UF. Nanopore-Based DNA Hard Drives for Rewritable and Secure Data Storage. NANO LETTERS 2020; 20:3754-3760. [PMID: 32223267 DOI: 10.1021/acs.nanolett.0c00755] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanopores are powerful single-molecule tools for label-free sensing of nanoscale molecules including DNA that can be used for building designed nanostructures and performing computations. Here, DNA hard drives (DNA-HDs) are introduced based on DNA nanotechnology and nanopore sensing as a rewritable molecular memory system, allowing for storing, operating, and reading data in the changeable three-dimensional structure of DNA. Writing and erasing data are significantly improved compared to previous molecular storage systems by employing controllable attachment and removal of molecules on a long double-stranded DNA. Data reading is achieved by detecting the single molecules at the millisecond time scale using nanopores. The DNA-HD also ensures secure data storage where the data can only be read after providing the correct physical molecular keys. Our approach allows for easy-writing and easy-reading, rewritable, and secure data storage toward a promising miniature scale integration for molecular data storage and computation.
Collapse
Affiliation(s)
- Kaikai Chen
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Filip Bošković
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
29
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
30
|
Wen Q, Liang X, Pan H, Li J, Zhang Y, Zhu W, Long Z. Rapid and sensitive electrochemical detection of microRNAs by gold nanoparticle-catalyzed silver enhancement. Analyst 2020; 145:7893-7897. [DOI: 10.1039/d0an01606c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the proposed method the microRNA assay was successfully carried out in less than 70 min and the detection limit was as low as 15 fM.
Collapse
Affiliation(s)
- Qilin Wen
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guangxi
- China
| | - Xiaolin Liang
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guangxi
- China
| | - Hongcheng Pan
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guangxi
- China
| | - Jianping Li
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guangxi
- China
| | - Yun Zhang
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guangxi
- China
| | - Wenyuan Zhu
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guangxi
- China
| | - Zhixiang Long
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research
- Guangxi
- China
| |
Collapse
|
31
|
Liu X, Zimny P, Zhang Y, Rana A, Nagel R, Reisner W, Dunbar WB. Flossing DNA in a Dual Nanopore Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905379. [PMID: 31858745 DOI: 10.1002/smll.201905379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/12/2019] [Indexed: 05/16/2023]
Abstract
Solid-state nanopores are a single-molecule technique that can provide access to biomolecular information that is otherwise masked by ensemble averaging. A promising application uses pores and barcoding chemistries to map molecular motifs along single DNA molecules. Despite recent research breakthroughs, however, it remains challenging to overcome molecular noise to fully exploit single-molecule data. Here, an active control technique termed "flossing" that uses a dual nanopore device is presented to trap a proteintagged DNA molecule and up to 100's of back-and-forth electrical scans of the molecule are performed in a few seconds. The protein motifs bound to 48.5 kb λ-DNA are used as detectable features for active triggering of the bidirectional control. Molecular noise is suppressed by averaging the multiscan data to produce averaged intertag distance estimates that are comparable to their known values. Since nanopore feature-mapping applications require DNA linearization when passing through the pore, a key advantage of flossing is that trans-pore linearization is increased to >98% by the second scan, compared to 35% for single nanopore passage of the same set of molecules. In concert with barcoding methods, the dual-pore flossing technique could enable genome mapping and structural variation applications, or mapping loci of epigenetic relevance.
Collapse
Affiliation(s)
- Xu Liu
- Ontera Inc., Santa Cruz, CA, 95060, USA
| | | | - Yuning Zhang
- Department of Physics, McGill University Montreal, QC H3A 2T8, Canada
| | | | | | - Walter Reisner
- Department of Physics, McGill University Montreal, QC H3A 2T8, Canada
| | | |
Collapse
|
32
|
Pearson MD, Nguyen L, Zhao Y, McKenna WL, Morin TJ, Dunbar WB. Fast and accurate quantification of insertion-site specific transgene levels from raw seed samples using solid-state nanopore technology. PLoS One 2019; 14:e0226719. [PMID: 31881056 PMCID: PMC6934305 DOI: 10.1371/journal.pone.0226719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022] Open
Abstract
Many modern crop varieties contain patented biotechnology traits, and an increasing number of these crops have multiple (stacked) traits. Fast and accurate determination of transgene levels is advantageous for a variety of use cases across the food, feed and fuel value chain. With the growing number of new transgenic crops, any technology used to quantify them should have robust assays that are simple to design and optimize, thereby facilitating the addition of new traits to an assay. Here we describe a PCR-based method that is simple to design, starts from whole seeds, and can be run to end-point in less than 5 minutes. Subsequent relative quantification (trait vs. non-trait) using capillary electrophoresis performed in 5% increments across the 0-100% range showed a mean absolute error of 1.9% (s.d. = 1.1%). We also show that the PCR assay can be coupled to non-optical solid-state nanopore sensors to give seed-to-trait quantification results with a mean absolute error of 2.3% (s.d. = 1.6%). In concert, the fast PCR and nanopore sensing stages demonstrated here can be fully integrated to produce seed-to-trait quantification results in less than 10 minutes, with high accuracy across the full dynamic range.
Collapse
Affiliation(s)
| | - Leslee Nguyen
- Ontera, Inc., Santa Cruz, California, United States of America
| | - Yanan Zhao
- Ontera, Inc., Santa Cruz, California, United States of America
| | | | - Trevor J. Morin
- Ontera, Inc., Santa Cruz, California, United States of America
| | | |
Collapse
|
33
|
Waugh M, Briggs K, Gunn D, Gibeault M, King S, Ingram Q, Jimenez AM, Berryman S, Lomovtsev D, Andrzejewski L, Tabard-Cossa V. Solid-state nanopore fabrication by automated controlled breakdown. Nat Protoc 2019; 15:122-143. [DOI: 10.1038/s41596-019-0255-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022]
|
34
|
Ultra-slow growth rate: Accurate control of the thickness of porous anodic aluminum oxide films. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Knowles SF, Keyser UF, Thorneywork AL. Noise properties of rectifying and non-rectifying nanopores. NANOTECHNOLOGY 2019; 31:10LT01. [PMID: 31770739 DOI: 10.1088/1361-6528/ab5be3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Achieving a full understanding of the noise in resistive pulse sensing experiments is central to the development of this important single molecule technique. Here, we present a comprehensive study of the noise properties of conical glass nanopores as components in an ionic circuit by studying the power spectral density of the system in salt solutions at a range of concentrations. We begin by investigating the ionic current rectification of the pores, showing that it is only observed above a critical Dukhin number in agreement with theoretical predictions. We then investigate the noise properties of the pores and demonstrate that the fluctuations in the ionic current at no applied potential difference can be well modelled over four decades of frequency as thermal fluctuations over a complex impedance. Finally, we show that-when an ionic current flows-1/f noise dominates the power spectrum below ∼100 Hz. Fluctuations in the surface current govern the low-frequency 1/f noise, with the asymmetric shape of the pore leading the magnitude to scale with [Formula: see text], faster than predicted by Hooge's empirical relation.
Collapse
Affiliation(s)
- S F Knowles
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | | | | |
Collapse
|
36
|
Weckman NE, Ermann N, Gutierrez R, Chen K, Graham J, Tivony R, Heron A, Keyser UF. Multiplexed DNA Identification Using Site Specific dCas9 Barcodes and Nanopore Sensing. ACS Sens 2019; 4:2065-2072. [PMID: 31340637 DOI: 10.1021/acssensors.9b00686] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decorating double-stranded DNA with dCas9 barcodes to identify characteristic short sequences provides an alternative to fully sequencing DNA samples for rapid and highly specific analysis of a DNA sample. Solid state nanopore sensors are especially promising for this type of single-molecule sensing because of the ability to analyze patterns in the ionic current signatures of DNA molecules. Here, we systematically demonstrate the use of highly specific dCas9 probes to create unique barcodes on the DNA that can be read out using nanopore sensors. Single dCas9 probes are targeted to various positions on DNA strands up to 48 kbp long and are effectively measured in high salt conditions typical of nanopore sensing. Multiple probes bound to the same DNA strand at characteristic target sequences create distinct barcodes of double and triple peaks. Finally, double and triple barcodes are used to simultaneously identify two different DNA targets in a background mixture of bacterial DNA. Our method forms the basis of a fast and versatile assay for multiplexed DNA sensing applications in complex samples.
Collapse
Affiliation(s)
- Nicole E. Weckman
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Niklas Ermann
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Richard Gutierrez
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - James Graham
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, United Kingdom
| | - Ran Tivony
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Andrew Heron
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, United Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
37
|
Madejski GR, Briggs K, DesOrmeaux JP, Miller JJ, Roussie JA, Tabard-Cossa V, McGrath JL. Monolithic Fabrication of NPN/SiN x Dual Membrane Cavity for Nanopore-based DNA Sensing. ADVANCED MATERIALS INTERFACES 2019; 6:1900684. [PMID: 32577337 PMCID: PMC7310959 DOI: 10.1002/admi.201900684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 06/11/2023]
Abstract
Nanoscale preconfinement of DNA has been shown to reduce the variation of passage times through solid-state nanopores. Preconfinement has been previously achieved by forming a femtoliter-sized cavity capped with a highly porous layer of nanoporous silicon nitride (NPN). This cavity was formed by sealing a NPN nanofilter membrane against a substrate chip using water vapor delamination. Ultimately, this method of fabrication cannot keep a consistent spacing between the filter and solid-state nanopore due to thermal fluctuations and wrinkles in the membrane, nor can it be fabricated on thousands of individual devices reliably. To overcome these issues, we present a method to fabricate the femtoliter cavity monolithically, using a selective XeF2 etch to hollow out a polysilicon spacer sandwiched between silicon nitride layers. These monolithically fabricated cavities behave identically to their counterparts formed by vapor delamination, exhibiting similar translocation passage time variation reduction and folding suppression of DNA without requiring extensive manual assembly. The ability to form nanocavity sensors with nanometer-scale precision and to reliably manufacture them at scale using batch wafer processing techniques will find numerous applications, including motion control of polymers for single-molecule detection applications, filtering of dirty samples prior to nanopore detection, and simple fabrication of single-molecule nanobioreactors.
Collapse
Affiliation(s)
- Gregory R. Madejski
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall Box 270168 Rochester, NY 14627, USA
| | - Kyle Briggs
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N6N5, Canada
| | | | - Joshua J. Miller
- SiMPore Inc, 150 Lucius Gordon Dr, West Henrietta, NY, 14586, USA
| | - James A. Roussie
- SiMPore Inc, 150 Lucius Gordon Dr, West Henrietta, NY, 14586, USA
| | - Vincent Tabard-Cossa
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N6N5, Canada
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall Box 270168 Rochester, NY 14627, USA
| |
Collapse
|
38
|
Albrecht T. Single-Molecule Analysis with Solid-State Nanopores. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:371-387. [PMID: 30707594 DOI: 10.1146/annurev-anchem-061417-125903] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Solid-state nanopores and nanopipettes are an exciting class of single-molecule sensors that has grown enormously over the last two decades. They offer a platform for testing fundamental concepts of stochasticity and transport at the nanoscale, for studying single-molecule biophysics and, increasingly, also for new analytical applications and in biomedical sensing. This review covers some fundamental aspects underpinning sensor operation and transport and, at the same time, it aims to put these into context as an analytical technique. It highlights new and recent developments and discusses some of the challenges lying ahead.
Collapse
Affiliation(s)
- Tim Albrecht
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
39
|
Kumar VS, Webster M. Nanopore Detection Aims Mainstream. Clin Chem 2019; 63:1778-1780. [PMID: 29089326 DOI: 10.1373/clinchem.2016.266908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/10/2017] [Indexed: 11/06/2022]
|
40
|
Zhao X, Ma R, Hu Y, Chen X, Dou R, Liu K, Cui C, Liu H, Li Q, Pan D, Shan X, Wang L, Fan C, Lu X. Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. NANOSCALE 2019; 11:6263-6269. [PMID: 30882811 DOI: 10.1039/c8nr10474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are programmable DNA nanostructures that have great potential in bio-sensing, cell imaging and therapeutic applications. In this study, we investigate the translocation behavior of individual TDNs through solid-state nanopores. Pronounced translocation signals for TDNs are observed that are sensitive to the size of the nanostructures. TDNs bound to linear DNA molecules produce an extra signal in the ionic current traces. Statistical analysis of its relative temporal position reveals distinct features between TDNs bound to the end and those bound to the middle of the linear DNA molecules. A featured current trace for two TDNs bound to the same linear DNA molecule has also been observed. Our study demonstrates the potential of using TDNs as sensitive bio-sensors to detect specific segments of a single DNA molecule in real time, based on solid-state nanopore devices.
Collapse
Affiliation(s)
- Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen K, Kong J, Zhu J, Ermann N, Predki P, Keyser UF. Digital Data Storage Using DNA Nanostructures and Solid-State Nanopores. NANO LETTERS 2019; 19:1210-1215. [PMID: 30585490 DOI: 10.1021/acs.nanolett.8b04715] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Solid-state nanopores are powerful tools for reading the three-dimensional shape of molecules, allowing for the translation of molecular structure information into electric signals. Here, we show a high-resolution integrated nanopore system for identifying DNA nanostructures that has the capability of distinguishing attached short DNA hairpins with only a stem length difference of 8 bp along a DNA double strand named the DNA carrier. Using our platform, we can read up to 112 DNA hairpins with a separating distance of 114 bp attached on a DNA carrier that carries digital information. Our encoding strategy allows for the creation of a library of molecules with a size of up to 5 × 1033 (2112) that is only built from a few hundred types of base molecules for data storage and has the potential to be extended by linking multiple DNA carriers. Our platform provides a nanopore- and DNA nanostructure-based data storage method with convenient access and the potential for miniature-scale integration.
Collapse
Affiliation(s)
- Kaikai Chen
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinglin Kong
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Niklas Ermann
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Paul Predki
- Iridia Incorporated , 3156 Lionshead Avenue , Suite 1, Carlsbad , California 92010 , United States
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
42
|
Yu JS, Hong SC, Wu S, Kim HM, Lee C, Lee JS, Lee JE, Kim KB. Differentiation of selectively labeled peptides using solid-state nanopores. NANOSCALE 2019; 11:2510-2520. [PMID: 30672547 DOI: 10.1039/c8nr09315f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Determination of the amino acid sequence of a protein is critical for understanding various biological processes. Mass spectrometry has mainly been used for protein identification; however, there are limitations to its sensitivity when detecting low abundance proteins. In this study, we attempted to distinguish between three similar peptide sequences (∼40 amino acids, ∼5 kDa) that differed only by the location or number of cysteine residues with solid-state nanopores. The cysteine residues are located at one end, one at the center, and at both ends for each of the three peptides. We found that differentiation of the three types of peptides by nanopore signals was difficult. However, when the cysteine residue was labeled with a negatively charged molecule, Flamma® 496, the labeled peptides showed distinct signals for each peptide. Comparing the relative current blockades of labeled peptides with applied voltages, we found that the label was able to change peptide conformations and the resulting ionic current signals from the three labeled peptides were distinguished based on the relative current blockade, full width at half-maximum of the current blockade distribution, and single-molecule level peak shape analysis. Our results suggest that solid-state nanopores combined with a targeted labeling strategy could be used to obtain characteristic peptide signatures that could ultimately be used for protein identification.
Collapse
Affiliation(s)
- Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Loh AYY, Burgess CH, Tanase DA, Ferrari G, McLachlan MA, Cass AEG, Albrecht T. Electric Single-Molecule Hybridization Detector for Short DNA Fragments. Anal Chem 2018; 90:14063-14071. [PMID: 30398852 DOI: 10.1021/acs.analchem.8b04357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipets, we demonstrate an electric, label-free hybridization sensor for short DNA sequences (<100 nucleotides). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system an 88-mer target from the RV1910c gene in Mycobacterium tuberculosis, which is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive-pulse sensing in nanopipets is capable of identifying rather subtle structural differences, such as the hybridization state of the probes, in a statistically robust manner. With significant potential toward multiplexing and high-throughput analysis, our study points toward a new, single-molecule DNA-assay technology that is fast, easy to use, and compatible with point-of-care environments.
Collapse
Affiliation(s)
- A Y Y Loh
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - C H Burgess
- Department of Materials and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| | - D A Tanase
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - G Ferrari
- Dipartimento di Elettronica, Informazione e Bioingegneria , Politecnico di Milano , Piazza Leonardo da Vinci 32 , Milano 20133 , Italy
| | - M A McLachlan
- Department of Materials and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| | - A E G Cass
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - T Albrecht
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom.,School of Chemistry , University of Birmingham , Edgbaston Campus, Birmingham B15 2TT , United Kingdom
| |
Collapse
|
44
|
Zhang Y, Liu X, Zhao Y, Yu JK, Reisner W, Dunbar WB. Single Molecule DNA Resensing Using a Two-Pore Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801890. [PMID: 30334362 DOI: 10.1002/smll.201801890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/21/2018] [Indexed: 06/08/2023]
Abstract
A nanofluidic device is presented that, enables independent sensing and resensing of a single DNA molecule translocating through two nanopores with sub-micrometer spacing. The device concept is based upon integrating a thin nitride membrane with microchannels etched in borosilicate glass. Pores, coupled to each microchannel, are connected via a fluid-filled half-space on the device backside, enabling translocation of molecules across each pore in sequence. Critically, this approach allows for independent application of control voltage and measurement of trans-pore ionic current at each of the two pores, leading to 1) controlled assessment of molecular time of flight, 2) voltage-tuned selective molecule recapture, and 3) ability to acquire two correlated translocation signatures for each molecule analyzed. Finally, the rare cocapture of a single chain threading simultaneously through each of the two pores is reported.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
| | - Xu Liu
- Two Pore Guys, Inc., 2155 Delaware Ave #225, Santa Cruz, CA, 95060, USA
| | - Yanan Zhao
- Two Pore Guys, Inc., 2155 Delaware Ave #225, Santa Cruz, CA, 95060, USA
| | - Jen-Kan Yu
- Two Pore Guys, Inc., 2155 Delaware Ave #225, Santa Cruz, CA, 95060, USA
| | - Walter Reisner
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
| | - William B Dunbar
- Two Pore Guys, Inc., 2155 Delaware Ave #225, Santa Cruz, CA, 95060, USA
| |
Collapse
|
45
|
Ermann N, Hanikel N, Wang V, Chen K, Weckman NE, Keyser UF. Promoting single-file DNA translocations through nanopores using electro-osmotic flow. J Chem Phys 2018; 149:163311. [DOI: 10.1063/1.5031010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Niklas Ermann
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Nikita Hanikel
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Vivian Wang
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Nicole E. Weckman
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
46
|
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent Progress in Solid-State Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704680. [PMID: 30260506 DOI: 10.1002/adma.201704680] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/08/2018] [Indexed: 05/28/2023]
Abstract
The solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained. The efforts to reduce the electrical noise of solid-state nanopore devices, and thus to enhance the sensitivity of detection, are presented along with detailed descriptions of the noise properties of the solid-state nanopore. Applications of 2D materials including graphene, h-BN, and MoS2 as a nanopore membrane to enhance the spatial resolution of nanopore detection, and organic coatings on the nanopore membranes for the addition of chemical functionality to the nanopore are summarized. Finally, the recently reported applications of the solid-state nanopore are categorized and described according to the target biomolecules: DNA-bound proteins, modified DNA structures, proteins, and protein oligomers.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
47
|
Zhu L, Xu Y, Ali I, Liu L, Wu H, Lu Z, Liu Q. Solid-State Nanopore Single-Molecule Sensing of DNAzyme Cleavage Reaction Assisted with Nucleic Acid Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26555-26565. [PMID: 30016075 DOI: 10.1021/acsami.8b09505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The detection and investigation of biomolecules at a single-molecule level is important for improving diagnosis in biomedicine. Solid-state nanopores are a unique tool that have the potential to accomplish this task because they are label-free and require only low sample consumption. However, the event-readouts of current small polymer molecules are still limited because of its relatively large size and low signal-to-noise ratios. Here, we present a rapid sensing approach for the detection of GR-5 DNAzyme cleaving specific substrate reactions using relatively larger size silicon nitride nanopores by introducing a type of nucleic acid nanostructure (DNA tetrahedron) as a carrier. The proposed method is convenient and sensitive enough to detect the cleavage reactions by identifying translocation events before and after reactions with nanomolar concentrations of the target sample. Furthermore, this assay was also carried out by using larger size nanopores (60 nm diameter) to achieve the DNAzyme cleavage sensing with the same sample concentration. This approach can improve event detectability of other smaller molecules' translocation, which opens up a wide range of applications for analytes detection by incorporating solid-state nanopores. Nucleic acid nanostructure-assisted nanopore sensing can promote the development of single-molecule studies.
Collapse
Affiliation(s)
- Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Ying Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Irshad Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Liping Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
- Guizhou Institute of Technology , Guiyang , Guizhou 550003 , People's Republic of China
| | - Hongwen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
- Department of Medical Devices , First Affiliated Hospital of Nanchang University , Nanchang 330006 , China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| |
Collapse
|
48
|
Ciuca A, Asandei A, Schiopu I, Apetrei A, Mereuta L, Seo CH, Park Y, Luchian T. Single-Molecule, Real-Time Dissecting of Peptide Nucleic Acid-DNA Duplexes with a Protein Nanopore Tweezer. Anal Chem 2018; 90:7682-7690. [PMID: 29799733 DOI: 10.1021/acs.analchem.8b01568] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide nucleic acids (PNAs) are artificial, oligonucleotides analogues, where the sugar-phosphate backbone has been substituted with a peptide-like N-(2-aminoethyl)glycine backbone. Because of their inherent benefits, such as increased stability and enhanced binding affinity toward DNA or RNA substrates, PNAs are intensively studied and considered beneficial for the fields of materials and nanotechnology science. Herein, we designed cationic polypeptide-functionalized, 10-mer PNAs, and demonstrated the feasible detection of hybridization with short, complementary DNA substrates, following analytes interaction with the vestibule entry of an α-hemolysin (α-HL) nanopore. The opposite charged state at the polypeptide-functionalized PNA-DNA duplex extremities, facilitated unzipping of a captured duplex at the lumen entry of a voltage-biased nanopore, followed by monomers threading. These processes were resolvable and identifiable in real-time, from the temporal profile of the ionic current through a nanopore accompanying conformational changes of a single PNA-DNA duplex inside the α-HL nanopore. By employing a kinetic description within the discrete Markov chains theory, we proposed a minimalist kinetic model to successfully describe the electric force-induced strand separation in the duplex. The distinct interactions of the duplex at either end of the nanopore present powerful opportunities for introducing new generations of force-spectroscopy nanopore-based platforms, enabling from the same experiment duplex detection and assessment of interstrand base pairing energy.
Collapse
Affiliation(s)
- Andrei Ciuca
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Alina Asandei
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Irina Schiopu
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Aurelia Apetrei
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Loredana Mereuta
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Chang Ho Seo
- Department of Bioinformatics , Kongju National University , Kongju 32588 , South Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM) , Chosun University , Gwangju 61452 , South Korea
| | - Tudor Luchian
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| |
Collapse
|
49
|
Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnology 2018; 16:40. [PMID: 29653577 PMCID: PMC5897953 DOI: 10.1186/s12951-018-0368-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/07/2018] [Indexed: 12/31/2022] Open
Abstract
Nanobiotechnology has the potential to revolutionize diverse sectors including medicine, agriculture, food, textile and pharmaceuticals. Disease diagnostics, therapeutics and crop protection strategies are fast emerging using nanomaterials preferably nanobiomaterials. It has potential for development of novel nanobiomolecules which offer several advantages over conventional treatment methods. RNA nanoparticles with many unique features are promising candidates in disease treatment. The miRNAs are involved in many biochemical and developmental pathways and their regulation in plants and animals. These appear to be a powerful tool for controlling various pathological diseases in human, plants and animals, however there are challenges associated with miRNA based nanotechnology. Several advancements made in the field of miRNA therapeutics make it an attractive approach, but a lot more has to be explored in nanotechnology assisted miRNA therapy. The miRNA based technologies can be employed for detection and combating crop diseases as well. Despite these potential advantages, nanobiotechnology applications in the agricultural sector are still in its infancy and have not yet made its mark in comparison with healthcare sector. The review provides a platform to discuss nature, role and use of miRNAs in nanobiotechnology applications.
Collapse
Affiliation(s)
- Vrantika Chaudhary
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Sumit Jangra
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Neelam R. Yadav
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
50
|
Briggs K, Madejski G, Magill M, Kastritis K, de Haan HW, McGrath JL, Tabard-Cossa V. DNA Translocations through Nanopores under Nanoscale Preconfinement. NANO LETTERS 2018; 18:660-668. [PMID: 29087723 PMCID: PMC5814347 DOI: 10.1021/acs.nanolett.7b03987] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To reduce unwanted variation in the passage speed of DNA through solid-state nanopores, we demonstrate nanoscale preconfinement of translocating molecules using an ultrathin nanoporous silicon nitride membrane separated from a single sensing nanopore by a nanoscale cavity. We present comprehensive experimental and simulation results demonstrating that the presence of an integrated nanofilter within nanoscale distances of the sensing pore eliminates the dependence of molecular passage time distributions on pore size, revealing a global minimum in the coefficient of variation of the passage time. These results provide experimental verification that the inter- and intramolecular passage time variation depends on the conformational entropy of each molecule prior to translocation. Furthermore, we show that the observed consistently narrower passage time distributions enables a more reliable DNA length separation independent of pore size and stability. We also demonstrate that the composite nanofilter/nanopore devices can be configured to suppress the frequency of folded translocations, ensuring single-file passage of captured DNA molecules. By greatly increasing the rate at which usable data can be collected, these unique attributes will offer significant practical advantages to many solid-state nanopore-based sensing schemes, including sequencing, genomic mapping, and barcoded target detection.
Collapse
Affiliation(s)
- Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Gregory Madejski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Martin Magill
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | | | - Hendrick W. de Haan
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|