1
|
Longhena F, Boujebene R, Brembati V, Sandre M, Bubacco L, Abbate S, Longhi G, Bellucci A. Nanorod-associated plasmonic circular dichroism monitors the handedness and composition of α-synuclein fibrils from Parkinson's disease models and post-mortem brain. NANOSCALE 2024; 16:18882-18898. [PMID: 39318230 DOI: 10.1039/d4nr03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Human full-length (fl) αSyn fibrils, key neuropathological hallmarks of Parkinson's disease (PD), generate intense optical activity corresponding to the surface plasmon resonance of interacting gold nanorods. Herein, we analysed fibril-enriched protein extracts from mouse and human brain samples as well as from SK-N-SH cell lines with or without human fl and C-terminally truncated (Ctt) αSyn overexpression and exposed them to αSyn monomers, recombinant fl αSyn fibrils or Ctt αSyn fibrils. In vitro-generated human recombinant fl and Ctt αSyn fibrils and fibrils purified from SK-N-SH cells with fl or Ctt αSyn overexpression were also analysed using transmission electron microscopy (TEM) to gain insights into the nanorod-fibril complexes. We found that under the same experimental conditions, bisignate circular dichroism (CD) spectra of Ctt αSyn fibrils exhibited a blue-wavelength shift compared to that of fl αSyn fibrils. TEM results supported that this could be attributed to the different properties of nanorods. In our experimental conditions, fibril-enriched PD brain extract broadened the longitudinal surface plasmonic band with a bisignate CD couplet centred corresponding to the absorption band maximum. Plasmonic CD (PCD) couplets of in vivo- and in vitro-generated fibrils displayed sign reversal, suggesting their opposite handedness. Moreover, the incubation of in vitro-generated human recombinant fl αSyn fibrils in mouse brain extracts from αSyn null mice resulted in PCD couplet inversion, indicating that the biological environment may shape the handedness of αSyn fibrils. These findings support that nanorod-based PCD can provide useful information on the composition and features of αSyn fibrils from biological materials.
Collapse
Affiliation(s)
- Francesca Longhena
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Department of Clinical Neurosciences-Clifford Allbutt Building, University of Cambridge, Hills Road CB2 0AH, Cambridge, UK
| | - Rihab Boujebene
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Michele Sandre
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Sergio Abbate
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Arianna Bellucci
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
2
|
Peng R, Guo L, Chen L, Liu L, Deng W, Li D. Reaction-Modulated Surface-Enhanced Raman Scattering Strategy for Stereoselective Differentiation and Identification of Amino Acids. Anal Chem 2024. [PMID: 39235974 DOI: 10.1021/acs.analchem.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Surface-enhanced Raman scattering (SERS) sensing of racemates is a remarkably fascinating yet very sophisticated objective because of similar physicochemical features of enantiomers. Inspired by the enantiomeric selectivity of nucleophilic addition reaction (NAR) toward amino acids, we herein propose highly effective, robust SERS discrimination of d- and l-valine by synergizing asymmetric gold nanorods-embedded ZIF-8 nanoparticles (AGNZ) with NAR to engender stereoselective molecular fingerprint. Experimental and chemometric analyses disclose that enantioselectivity lies in dual aspects: (i) abundant interfacial cavities and 3D hot-spots in AGNZ offer necessary confined asymmetrical surroundings to trigger enantiospecific molecular adsorption and interaction affinity, and (ii) the specified NAR drags the racemates adjacent to the interfacial area of AGNZ for maximum analytes-substrate interaction. This strategy is universal and can be utilized for the recognition of different amino acid enantiomers. Importantly, multiple quantifications of the racemic ratio can be realized with superior prognostic performances. This synergizing strategy therefore provides a significant paradigm shift from traditional methods to realize highly effective SERS discrimination of racemates.
Collapse
Affiliation(s)
- Ruiqi Peng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Lei Guo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Lu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Lulu Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
3
|
Ghosh S, Banerjee D, Guleria A, Chakravarty R. Production, purification and formulation of nanoradiopharmaceutical with 211At: An emerging candidate for targeted alpha therapy. Nucl Med Biol 2024; 138-139:108947. [PMID: 39216162 DOI: 10.1016/j.nucmedbio.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Astatine-211 has attained significant interest in the recent times as a promising radioisotope for targeted alpha therapy (TAT) of cancer. In this study, we report the production of 211At via 209Bi (α, 2n) 211At reaction in a cyclotron and development of a facile radiochemical separation procedure to isolate 211At for formulation of nanoradiopharmaceuticals. METHODS Natural bismuth oxide target in pelletized form wrapped in Al foil was irradiated with 30 MeV α-beam in an AVF cyclotron. The irradiated target was dissolved in 2 M HNO3 followed by selective precipitation of Bi as Bi(OH)3 under alkaline condition. The radiochemically separated 211At was used for labeling cyclic RGD peptide conjugated gold nanoparticles (Au-RGD NPs) by surface adsorption. The radiochemical stability of 211At-Au-RGD NPs was evaluated in phosphate buffered saline (PBS) and human serum media. RESULTS The batch yield of 211At at the end of irradiation was ∼6 MBq.μA-1.h-1. After radiochemical separation, ∼80 % of 211At could be retrieved with >99.9 % radionuclidic purity. Au-RGD NPs (particle size 8.4±0.8 nm) could be labeled with 211At with >99 % radiolabeling yield. The radiolabeled nanoparticles retained their integrity in PBS and human serum media over a period of 21 h. CONCLUSIONS The present strategy simplifies 211At production in terms of purification and would increase affordable access to this radioisotope for TAT of cancer.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Debashis Banerjee
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiochemistry Division (BARC), Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata 700064, India
| | - Apurav Guleria
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Ji J, Wang J, Jiang T, Chen Z, Wang Z, Feng Y. Engineering the Blackbody Absorption of the Au-Branch-on-Au-Plate Heterostructures. Inorg Chem 2024; 63:14256-14265. [PMID: 39012859 DOI: 10.1021/acs.inorgchem.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Utilizing the strong ligand control effects of l-cysteine (l-Cys), the growth of Au on Au triangular nanoplate (AuTN) seeds was continuously tuned from layer-by-layer (the Frank-van der Merwe) to layer-plus-island (the Stranski-Krastanov), and island (the Volmer-Weber) growth modes, leading to the formation of a series of Au-on-AuTN heterostructures. Within the window of VW growth mode (featured by the growth of Au spikes and branches on AuTNs), the effective localized surface plasmon resonance (LSPR) coupling led to the selective strengthening of the "valley" absorptions, leading to smooth and flat absorption curves. Interestingly, through engineering the number/density, size, and branching degree of the Au branches, except for the black color, full spectrum absorption within 400-1300 nm wavelength was achieved on Au-branch-on-AuTN structures. Mechanistic studies revealed that the blackbody absorption property of the Au-branch-on-AuTN originates from the well-balanced intraparticle LSPR couplings among the neighboring Au branches. The tunable blackness and the full spectrum absorption property made the Au-branch-on-AuTN heterostructure a suitable candidate for various plasmonic-related applications, such as a wide spectrum light absorber, photoacoustic imaging contrast agent, and photothermal therapy medium. In addition, our strong ligand control in Au-branch-on-AuTN heterostructures could be extended to other hybrid systems with diverse material combinations, so long as to find the proper strong ligand.
Collapse
Affiliation(s)
- Jin Ji
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junsheng Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingting Jiang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zijie Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhiwei Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhua Feng
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Tan Y, Lu X, Ding T. Trace-Amount Detection of Chiral Molecules Based on Plasmonic Racemic Arrays Fabricated via Direct Laser Writing. ACS Sens 2024; 9:3290-3295. [PMID: 38832719 DOI: 10.1021/acssensors.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Superchiral fields, supported by chiral plasmonic structures, have shown outstanding performance for chiral molecule sensing via enhanced chiral light-matter interaction. However, this sensing capability cannot fully reveal the chiral origin of the molecules as the chiroptic response of the molecules is intertwined with the chiroptic response of the chiral plasmonic nanostructures, which can potentially be excluded by using a plasmonic racemic mixture. Such a plasmonic racemic mixture is not easily attainable, as it normally requires complex fabrication and expensive instrumentation, whose structural fineness is limited by the fabrication precision. Here, we demonstrate trace-amount chiral molecule detection with plasmonic racemic arrays fabricated by direct laser writing with vector beams, which is facile, cost-effective, and highly controllable. The racemic arrays present no inherent circular differential scattering but a large local superchiral field, which reflects the intrinsic chiral features of the chiral molecules. They are further applied to discriminate enantiomers of phenylalanine with a limit of detection (LOD) of 10.0 ± 2.8 μM, which is an order of magnitude smaller than the LOD of conventional circular dichroism spectroscopy. The strong local superchiral field provided by the plasmonic racemic arrays enlightens the design of a superior sensing platform, which holds promising applications for biomedical detection and enantioselective drug development.
Collapse
Affiliation(s)
- Yong Tan
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaolin Lu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Li H, Xu X, Guan R, Movsesyan A, Lu Z, Xu Q, Jiang Z, Yang Y, Khan M, Wen J, Wu H, de la Moya S, Markovich G, Hu H, Wang Z, Guo Q, Yi T, Govorov AO, Tang Z, Lan X. Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields. Nat Commun 2024; 15:4846. [PMID: 38844481 PMCID: PMC11156920 DOI: 10.1038/s41467-024-49086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The collective light-matter interaction of chiral supramolecular aggregates or molecular ensembles with confined light fields remains a mystery beyond the current theoretical description. Here, we programmably and accurately build models of chiral plasmonic complexes, aiming to uncover the entangled effects of excitonic correlations, intra- and intermolecular charge transfer, and localized surface plasmon resonances. The intricate interplay of multiple chirality origins has proven to be strongly dependent on the site-specificity of chiral molecules on plasmonic nanoparticle surfaces spanning the nanometer to sub-nanometer scale. This dependence is manifested as a distinct circular dichroism response that varies in spectral asymmetry/splitting, signal intensity, and internal ratio of intensity. The inhomogeneity of the surface-localized plasmonic field is revealed to affect excitonic and charge-transfer mixed intermolecular couplings, which are inherent to chirality generation and amplification. Our findings contribute to the development of hybrid classical-quantum theoretical frameworks and the harnessing of spin-charge transport for emergent applications.
Collapse
Affiliation(s)
- Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- Center for Advanced Low-dimension Materials, Donghua University, 201620, Shanghai, China
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Xin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- Center for Advanced Low-dimension Materials, Donghua University, 201620, Shanghai, China
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Rongcheng Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- Center for Advanced Low-dimension Materials, Donghua University, 201620, Shanghai, China
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Artur Movsesyan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH, 45701, USA
| | - Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, China
| | - Qiliang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, China
| | - Ziyun Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- Center for Advanced Low-dimension Materials, Donghua University, 201620, Shanghai, China
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Yurong Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- Center for Advanced Low-dimension Materials, Donghua University, 201620, Shanghai, China
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Majid Khan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- Center for Advanced Low-dimension Materials, Donghua University, 201620, Shanghai, China
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, China
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Gil Markovich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Huatian Hu
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, 73010, LE, Italy
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China
- College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, China
| | - Alexander O Govorov
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China.
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH, 45701, USA.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620, Shanghai, China.
- Center for Advanced Low-dimension Materials, Donghua University, 201620, Shanghai, China.
- College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.
| |
Collapse
|
7
|
Marathe K, Naik J, Maheshwari V. Synthesis, characterisation and in vitro anticancer activity of conjugated protease inhibitor-silver nanoparticles (AgNPs-PI) against human breast MCF-7 and prostate PC-3 cancer cell lines. Bioprocess Biosyst Eng 2024; 47:931-942. [PMID: 38709274 DOI: 10.1007/s00449-024-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
The conjugated silver nanoparticles using biomolecules have attracted great attention of researchers because physical dimensions and surface chemistry play important roles in toxicity and biocompatibility of AgNPs. Hence, in the current study, synthesis of bio-conjugated AgNPs with protein protease inhibitor (PI) isolated from Streptomyces spp. is reported. UV-visible spectra of PI and AgNPs showed stronger peaks at 280 and 405 nm, confirming the synthesis of conjugated AgNPs-PI. TEM and SEM images of AgNPs-PI showed spherical-shaped nanoparticles with a slight increase in particle size and thin amorphous layer around the surface of silver nanomaterial. Circular dichroism, FT-IR and fluorescence spectral studies confirmed AgNPs-PI conjugation. Conjugated AgNPs-PI showed excellent anticancer potential than AgNPs and protease inhibitor separately on human breast MCF-7 and prostate PC-3 cell lines. The findings revealed that surface modification of AgNPs with protein protease inhibitor stabilised the nanomaterial and increased its anticancer activity.
Collapse
Affiliation(s)
- Kiran Marathe
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India.
| | - Jitendra Naik
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| | - Vijay Maheshwari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| |
Collapse
|
8
|
Sun X, Sun L, Lin L, Guo S, Yang Y, Zhang B, Liu C, Tao Y, Zhang Q. Tuning the Geometry and Optical Chirality of Pentatwinned Au Nanoparticles with 5-Fold Rotational Symmetry. ACS NANO 2024; 18:9543-9556. [PMID: 38518176 DOI: 10.1021/acsnano.3c12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lifei Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shaoyuan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yiming Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Kumar A, Majumder S. Silver induced chirality controlled spin filtration observed in ss-DNA functionalized with MoS2. J Chem Phys 2024; 160:124702. [PMID: 38516978 DOI: 10.1063/5.0192066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Chiral molecules can exhibit strong spin-orbit coupling, which can result in a large spin polarization. This is due to the fact that the energy levels of the electrons in a chiral molecule are strongly influenced by the chiral structure of the molecule, which can result in the separation of the energy levels for electrons with different spin orientations. We report a controlled spin-selective transmission of electrons through 20 base-paired poly-cytosine molecules functionalized with MoS2 flakes on ITO glass via the quantum mechanical tunneling effect. A reversion in spin polarization was observed after the silver ions interact with poly-cytosine due to the strong coordination of Ag(I) with cytosine-cytosine (C-C) mismatches, indicating the formation of duplex structural motifs, as confirmed by the circular dichroism spectroscopy at room temperature. Manipulating the spin of an electron through such a small molecule merely controlled by special cations could pave the way for major advances in spin-independent charge transport, advanced bioanalytical system design, and related applications.
Collapse
Affiliation(s)
- Abhinandan Kumar
- Department of Physics, National Institute of Technology, Patna 800005, India
| | - Subrata Majumder
- Department of Physics, National Institute of Technology, Patna 800005, India
| |
Collapse
|
10
|
Lee S, Fan C, Movsesyan A, Bürger J, Wendisch FJ, de S Menezes L, Maier SA, Ren H, Liedl T, Besteiro LV, Govorov AO, Cortés E. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202319920. [PMID: 38236010 DOI: 10.1002/anie.202319920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.
Collapse
Affiliation(s)
- Seunghoon Lee
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Department of Chemistry, Dong-A University, Busan, 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan, 49315, South Korea)
| | - Chenghao Fan
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Artur Movsesyan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Fedja J Wendisch
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
- Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-University München, 80539, München, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
- The Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim Liedl
- Department of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, 80799, München, Germany
| | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio, 45701, United States
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| |
Collapse
|
11
|
Chen PG, Gao H, Tang B, Jin W, Rogach AL, Lei D. Universal Chiral-Plasmon-Induced Upward and Downward Transfer of Circular Dichroism to Achiral Molecules. NANO LETTERS 2024; 24:2488-2495. [PMID: 38198618 DOI: 10.1021/acs.nanolett.3c04219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Electromagnetic chirality transfer represents an effective means of the nanoscale manipulation of optical chirality. While most of the previous reports have exclusively focused on the circular dichroism (CD) transfer from UV-responsive chiral molecules toward visible-resonant achiral colloidal nanoparticles, here we demonstrate a reverse process in which plasmonic chirality can be transferred to achiral molecules, either upward from visible to UV or downward from visible to near infrared (NIR). By hybridizing achiral UV- or NIR-responsive dye molecules with chiral metal nanoparticles in solution, we observe a chiral-plasmon-induced CD (CPICD) signal at the intrinsically achiral molecular absorption bands. Full-wave electromagnetic modeling reveals that both near-field Coulomb interaction and far-field radiative coupling contribute to the observed CPICD, indicating that the mechanism considered here is universal for different material systems and types of optical resonances. Our study provides a set of design guidelines for broadband nanophotonic chiral sensing from the UV to NIR spectral regime.
Collapse
Affiliation(s)
- Pei-Gang Chen
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Han Gao
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Bing Tang
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Wei Jin
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
12
|
Liu W, Han H, Wang J. Recent Advances in the 3D Chiral Plasmonic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305725. [PMID: 37828637 DOI: 10.1002/smll.202305725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Indexed: 10/14/2023]
Abstract
From the view of geometry, chirality is that an object cannot overlap with its mirror image, which has been a fundamental scientific problem in biology and chemistry since the 19th century. Chiral inorganic nanomaterials serve as ideal templates for investigating chiral transfer and amplification mechanisms between molecule and bulk materials, garnering widespread attentions. The chiroptical property of chiral plasmonic nanomaterials is enhanced through localized surface plasmon resonance effects, which exhibits distinctive circular dichroism (CD) response across a wide wavelength range. Recently, 3D chiral plasmonic nanomaterials are becoming a focal research point due to their unique characteristics and planar-independence. This review provides an overview of recent progresses in 3D chiral plasmonic nanomaterials studies. It begins by discussing the mechanisms of plasmonic enhancement of molecular CD response, following by a detailed presentation of novel classifications of 3D chiral plasmonic nanomaterials. Finally, the applications of 3D chiral nanomaterials such as biology, sensing, chiral catalysis, photology, and other fields have been discussed and prospected. It is hoped that this review will contribute to the flourishing development of 3D chiral nanomaterials.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Han
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
13
|
Yang G, Sun L, Zhang Q. Multicomponent chiral plasmonic hybrid nanomaterials: recent advances in synthesis and applications. NANOSCALE ADVANCES 2024; 6:318-336. [PMID: 38235081 PMCID: PMC10790966 DOI: 10.1039/d3na00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Chiral hybrid nanomaterials with multiple components provide a highly promising approach for the integration of desired chirality with other functionalities into one single nanoscale entity. However, precise control over multicomponent chiral plasmonic hybrid nanomaterials to enable their application in diverse and complex scenarios remains a significant challenge. In this review, our focus lies on the recent advances in the preparation and application of multicomponent chiral plasmonic hybrid nanomaterials, with an emphasis on synthetic strategies and emerging applications. We first systematically elucidate preparation methods for multicomponent chiral plasmonic hybrid nanomaterials encompassing the following approaches: physical deposition approach, galvanic replacement reaction, chiral molecule-mediated, chiral heterostructure, circularly polarized light-mediated, magnetically induced, and chiral assembly. Furthermore, we highlight emerging applications of multicomponent chiral plasmonic hybrid nanomaterials in chirality sensing, enantioselective catalysis, and biomedicine. Finally, we provide an outlook on the challenges and opportunities in the field of multicomponent chiral plasmonic hybrid nanomaterials. In-depth investigations of these multicomponent chiral hybrid nanomaterials will pave the way for the rational design of chiral hybrid nanostructures with desirable functionalities for emerging technological applications.
Collapse
Affiliation(s)
- Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
14
|
Engel YL, Feferman D, Ghalawat M, Santiago EY, Avalos-Ovando O, Govorov AO, Markovich G. Reshaping and induction of optical activity in gold@silver nanocuboids by chiral glutathione molecules. J Chem Phys 2024; 160:024706. [PMID: 38214391 DOI: 10.1063/5.0182057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Core-shell gold-silver cuboidal nanoparticles were produced, with either concave or straight facets. Their incubation with a low concentration of chiral l-glutathione (GSH) biomolecules was found to produce near UV plasmonic extinction and induced circular dichroism (CD) peaks. The effect is sensitive to the silver shell thickness. The GSH molecules were found to cause redistribution of silver in the shell, removing silver atoms from edges/corners and re-depositing them at the nanocuboid facets, probably through some redox and complexation processes between the silver and thiol group of the GSH. Other thiolated chiral biomolecules (and drug molecules) did not show this effect. The emerging near UV surface plasmon resonance is a silver slab resonance, which might also possess some multipolar resonance nature. The concave-shaped nanocuboids exhibited stronger induced plasmonic CD relative to the nanocuboids with straight facets.
Collapse
Affiliation(s)
| | - Daniel Feferman
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Monika Ghalawat
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eva Yazmin Santiago
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Oscar Avalos-Ovando
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Alexander O Govorov
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Gil Markovich
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Wang F, Wang X, Lu X, Huang C. Nanophotonic Enhanced Chiral Sensing and Its Biomedical Applications. BIOSENSORS 2024; 14:39. [PMID: 38248416 PMCID: PMC11154488 DOI: 10.3390/bios14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Chiral sensing is crucial in the fields of biology and the pharmaceutical industry. Many naturally occurring biomolecules, i.e., amino acids, sugars, and nucleotides, are inherently chiral. Their enantiomers are strongly associated with the pharmacological effects of chiral drugs. Owing to the extremely weak chiral light-matter interactions, chiral sensing at an optical frequency is challenging, especially when trace amounts of molecules are involved. The nanophotonic platform allows for a stronger interaction between the chiral molecules and light to enhance chiral sensing. Here, we review the recent progress in nanophotonic-enhanced chiral sensing, with a focus on the superchiral near-field and enhanced circular dichroism (CD) spectroscopy generated in both the dielectric and in plasmonic structures. In addition, the recent applications of chiral sensing in biomedical fields are discussed, including the detection and treatment of difficult diseases, i.e., Alzheimer's disease, diabetes, and cancer.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
| | - Xinchao Lu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Lipok M, Obstarczyk P, Żak A, Olesiak-Bańska J. Single Gold Nanobipyramids Sensing the Chirality of Amyloids. J Phys Chem Lett 2023; 14:11084-11091. [PMID: 38051220 DOI: 10.1021/acs.jpclett.3c02762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Plasmonic nanoparticles, due to their sensitivity to small changes in their closest environment and plasmon resonance, can sense the chirality of the surrounding molecules. Therefore, plasmonic nanoparticles can be applied as a next-generation biosensor for peptides or proteins. In this work, we explore the interaction between chiral, ordered protein aggregates (amyloids) and small gold nanobipyramids. We show how the morphology, structure, and chiroptical properties of amyloids induce circular dichroism in the plasmon resonance wavelengths from individual plasmonic nanoparticles upon binding to the chiral amyloid template. Moreover, using the data from microscopic and spectroscopic analyses of formed heterostructures, we propose the most probable mechanism behind the induction of chirality in this system and discuss which specific feature of insulin protein aggregates is sensed by nanobipyramids.
Collapse
Affiliation(s)
- Maciej Lipok
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Patryk Obstarczyk
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Żak
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
17
|
Völkle Nee Evgrafov E, Schulz F, Kanold JM, Michaelis M, Wissel K, Brümmer F, Schenk AS, Ludwigs S, Bill J, Rothenstein D. Functional mimicry of sea urchin biomineralization proteins with CaCO 3-binding peptides selected by phage display. J Mater Chem B 2023; 11:10174-10188. [PMID: 37850271 DOI: 10.1039/d3tb01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The intricate process of biomineralization, e.g. in sea urchins, involves the precise interplay of highly regulated mineralization proteins and the spatiotemporal coordination achieved through compartmentalization. However, the investigation of biomineralization effector molecules, e.g. proteins, is challenging, due to their very low abundance. Therefore, we investigate the functional mimicry in the bioinspired precipitation of calcium carbonate (CaCO3) with artificial peptides selected from a peptide library by phage display based on peptide-binding to calcite and aragonite, respectively. The structure-directing effects of the identified peptides were compared to those of natural protein mixes isolated from skeletal (test) structures of two sea urchin species (Arbacia lixula and Paracentrotus lividus). The calcium carbonate samples deposited in the absence or presence of peptides were analyzed with a set of complementary techniques with regard to morphology, polymorph, and nanostructural motifs. Remarkably, some of the CaCO3-binding peptides induced morphological features in calcite that appeared similar to those obtained in the presence of the natural protein mixes. Many of the peptides identified as most effective in exerting a structure-directing effect on calcium carbonate crystallization were rich in basic amino acid residues. Hence, our in vitro mineralization study further highlights the important, but often neglected, role of positively charged soluble organic matrices associated with biological and bioinspired CaCO3 deposition.
Collapse
Affiliation(s)
- Elke Völkle Nee Evgrafov
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| | - Fabian Schulz
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| | - Julia Maxi Kanold
- Institute for Biomaterials and Biomolecular Systems & Scientific Diving Group (WiTUS), University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Monika Michaelis
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Kerstin Wissel
- Dept. Chemical Materials Synthesis, Institute for Materials Science, University of Stuttgart, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems & Scientific Diving Group (WiTUS), University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Anna S Schenk
- Physical Chemistry IV, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sabine Ludwigs
- IPOC - Functional Polymers, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Stuttgart 70569, Germany
| | - Joachim Bill
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| | - Dirk Rothenstein
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| |
Collapse
|
18
|
Venturi M, Adhikary R, Sahoo A, Ferrante C, Daidone I, Di Stasio F, Toma A, Tani F, Altug H, Mecozzi A, Aschi M, Marini A. Plasmon-enhanced circular dichroism spectroscopy of chiral drug solutions. J Chem Phys 2023; 159:154703. [PMID: 37846957 DOI: 10.1063/5.0169826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023] Open
Abstract
We investigate the potential of surface plasmon polaritons at noble metal interfaces for surface-enhanced chiroptical sensing of dilute chiral drug solutions with nl volume. The high quality factor of surface plasmon resonances in both Otto and Kretschmann configurations enables the enhancement of circular dichroism differenatial absorption thanks to the large near-field intensity of such plasmonic excitations. Furthermore, the subwavelength confinement of surface plasmon polaritons is key to attain chiroptical sensitivity to small amounts of drug volumes placed around ≃100 nm by the metal surface. Our calculations focus on reparixin, a pharmaceutical molecule currently used in clinical studies for patients with community-acquired pneumonia, including COVID-19 and acute respiratory distress syndrome. Considering realistic dilute solutions of reparixin dissolved in water with concentration ≤5 mg/ml and nl volume, we find a circular-dichroism differential absorption enhancement factor of the order ≃20 and chirality-induced polarization distortion upon surface plasmon polariton excitation. Our results are relevant for the development of innovative chiroptical sensors capable of measuring the enantiomeric imbalance of chiral drug solutions with nl volume.
Collapse
Affiliation(s)
- Matteo Venturi
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Raju Adhikary
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Ambaresh Sahoo
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Carino Ferrante
- CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito (L'Aquila) 67100, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | | | - Andrea Toma
- Istituto Italiano di Tecnologia, Via Morego 30, Genova 16136, Italy
| | - Francesco Tani
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Hatice Altug
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Antonio Mecozzi
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Massimiliano Aschi
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Andrea Marini
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito (L'Aquila) 67100, Italy
| |
Collapse
|
19
|
Deng X, Li J, Jin L, Wang Y, Liang K, Yu L. Plexcitonic optical chirality in the chiral plasmonic structure-microcavity-exciton strong coupling system. OPTICS EXPRESS 2023; 31:32082-32092. [PMID: 37859018 DOI: 10.1364/oe.496182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023]
Abstract
Chiral plexcitonic systems exhibit a novel chiroptical phenomenon, which can provide a new route to design chiroptical devices. Reported works focused on the two-mode strong coupling between chiral molecules and nanoparticles, while multiple-mode coupling can provide richer modulation. In this paper, we proposed a three-mode coupling system consisting of a chiral Au helices array, a Fabry-Pérot cavity, and monolayer WSe2, which can provide an extra chiral channel, a more widely tunable region, and more tunable methods compared to two-mode coupled systems. The optical response of this hybrid system was investigated based on the finite element method. Mode splitting observed in the circular dichroism (CD) spectrum demonstrated that the chiroptical response successfully shifted from the resonant position of the chiral structure to three plexcitons through strong coupling, which provided a new route for chiral transfer. Furthermore, we used the coupled oscillator model to obtain the energy and Hopfield coefficients of the plexciton branches to explain the chiroptical phenomenon of the hybrid system. Moreover, the tunability of the hybrid system can be achieved by tuning the temperature and period of the helices array. Our work provides a feasible strategy for chiral sensing and modulation devices.
Collapse
|
20
|
Joseph JP, Miglani C, Maulik A, Abraham SR, Dutta A, Baev A, Prasad PN, Pal A. Stereoselective Plasmonic Interaction in Peptide-tethered Photopolymerizable Diacetylenes Doped with Chiral Gold Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202306751. [PMID: 37483166 DOI: 10.1002/anie.202306751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Designing polymeric systems with ultra-high optical activity is instrumental in the pursuit of smart artificial chiroptical materials, including the fundamental understanding of structure/property relations. Herein, we report a diacetylene (DA) moiety flanked by chiral D- and L-FF dipeptide methyl esters that exhibits efficient topochemical photopolymerization in the solid phase to furnish polydiacetylene (PDA) with desired control over the chiroptical properties. The doping of the achiral gold nanoparticles provides plasmonic interaction with the PDAs to render asymmetric shape to the circular dichroism bands. With the judicious design of the chiral amino acid ligand appended to the AuNPs, we demonstrate the first example of selective chiral amplification mediated by stereo-structural matching of the polymer-plasmonic AuNP hybrid pairs. Such ordered self-assembly aided by topochemical polymerization in peptide-tethered PDA provides a smart strategy to produce soft responsive materials for applications in chiral photonics.
Collapse
Affiliation(s)
- Jojo P Joseph
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), 14260, Buffalo, NY, USA
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, 140306, Mohali, Punjab, India
| | - Antarlina Maulik
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, 140306, Mohali, Punjab, India
| | - Shema R Abraham
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), 14260, Buffalo, NY, USA
| | - Avisek Dutta
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), 14260, Buffalo, NY, USA
| | - Alexander Baev
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), 14260, Buffalo, NY, USA
| | - Paras N Prasad
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), 14260, Buffalo, NY, USA
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, 140306, Mohali, Punjab, India
| |
Collapse
|
21
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
22
|
Goerlitzer ESA, Zapata-Herrera M, Ponomareva E, Feller D, Garcia-Etxarri A, Karg M, Aizpurua J, Vogel N. Molecular-Induced Chirality Transfer to Plasmonic Lattice Modes. ACS PHOTONICS 2023; 10:1821-1831. [PMID: 37363627 PMCID: PMC10288536 DOI: 10.1021/acsphotonics.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Molecular chirality plays fundamental roles in biology. The chiral response of a molecule occurs at a specific spectral position, determined by its molecular structure. This fingerprint can be transferred to other spectral regions via the interaction with localized surface plasmon resonances of gold nanoparticles. Here, we demonstrate that molecular chirality transfer occurs also for plasmonic lattice modes, providing a very effective and tunable means to control chirality. We use colloidal self-assembly to fabricate non-close packed, periodic arrays of achiral gold nanoparticles, which are embedded in a polymer film containing chiral molecules. In the presence of the chiral molecules, the surface lattice resonances (SLRs) become optically active, i.e., showing handedness-dependent excitation. Numerical simulations with varying lattice parameters show circular dichroism peaks shifting along with the spectral positions of the lattice modes, corroborating the chirality transfer to these collective modes. A semi-analytical model based on the coupling of single-molecular and plasmonic resonances rationalizes this chirality transfer.
Collapse
Affiliation(s)
- Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Mario Zapata-Herrera
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Ekaterina Ponomareva
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Déborah Feller
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Matthias Karg
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Javier Aizpurua
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| |
Collapse
|
23
|
Lin X, Zhou Y, Pan X, Zhang Q, Hu N, Li H, Wang L, Xue Q, Zhang W, Ni W. Trace detection of chiral J-aggregated molecules adsorbed on single Au nanorods. NANOSCALE 2023. [PMID: 37314106 DOI: 10.1039/d3nr01147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trace detection of chiral molecules, which is of great significance in chemical, biological, medical and pharmaceutical sciences, requires microscopic techniques at the single-particle or single-molecule level. Although ensemble experiments show that the circular dichroism of chiral molecules can be amplified by plasmonic nanocrystals, trace detection of small chiral molecules remains challenging due to weak signals that are far below the detection limit. Herein, we demonstrate trace detection of chiral J-aggregated molecules adsorbed on individual Au nanorods (NRs) using single-particle circular differential scattering (CDS) spectroscopy. Through measuring the single-particle CDS spectra, we identified dip-peak bisignatures and further determined the chirality by matching them with calculations modelled with chiral media. We therefore find that plasmonic nanocrystals can dramatically amplify the circular dichroism of strongly coupled molecules to a detectable level so that the detection limit is as low as 3.9 × 103 molecules on an individual plasmonic nanoparticle, whereas 2.5 × 1012 molecules free in solution are barely detectable using a commercial circular dichroism instrument, suggesting a significant amplification factor of 108. Our method provides a promising strategy with a high amplification factor, shedding light on the trace detection of chiral molecules using optical microscopic methods.
Collapse
Affiliation(s)
- Xingyue Lin
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Yuhan Zhou
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Xinyang Pan
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Qin Zhang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Ningneng Hu
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Hao Li
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Le Wang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Qi Xue
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
24
|
Guselnikova O, Elashnikov R, Svorcik V, Kartau M, Gilroy C, Gadegaard N, Kadodwala M, Karimullah AS, Lyutakov O. Coupling of plasmonic hot spots with shurikens for superchiral SERS-based enantiomer recognition. NANOSCALE HORIZONS 2023; 8:499-508. [PMID: 36752733 DOI: 10.1039/d3nh00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Detection of enantiomers is a challenging problem in drug development as well as environmental and food quality monitoring where traditional optical detection methods suffer from low signals and sensitivity. Application of surface enhanced Raman scattering (SERS) for enantiomeric discrimination is a powerful approach for the analysis of optically active small organic or large biomolecules. In this work, we proposed the coupling of disposable chiral plasmonic shurikens supporting the chiral near-field distribution with SERS active silver nanoclusters for enantio-selective sensing. As a result of the plasmonic coupling, significant difference in SERS response of optically active analytes is observed. The observations are studied by numerical simulations and it is hypothesized that the silver particles are being excited by superchiral fields generated at the surface inducing additional polarizations in the probe molecules. The plasmon coupling phenomena was found to be extremely sensitive to slight variations in shuriken geometry, silver nanostructured layer parameters, and SERS excitation wavelength(s). Designed structures were able to discriminate cysteine enantiomers at concentrations in the nanomolar range and probe biomolecular chirality, using a common Raman spectrometer within several minutes. The combination of disposable plasmonic substrates with specific near-field polarization can make the SERS enantiomer discrimination a commonly available technique using standard Raman spectrometers.
Collapse
Affiliation(s)
- Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation.
| | - Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - Martin Kartau
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Cameron Gilroy
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Nikolaj Gadegaard
- James Watt School of Engineering, University of Glasgow, Rankine Building, Glasgow, G12 8LT, UK
| | - Malcolm Kadodwala
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Affar S Karimullah
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| |
Collapse
|
25
|
Liu H, Zhou Y, Liu Y, Wang Z, Zheng Y, Peng C, Tian M, Zhang Q, Li J, Tan H, Fu Q, Ding M. Protein-Inspired Polymers with Metal-Site-Regulated Ordered Conformations. Angew Chem Int Ed Engl 2023; 62:e202213000. [PMID: 36353928 DOI: 10.1002/anie.202213000] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Metal ions play critical roles in facilitating peptide folding and inducing conformational transitions, thereby impacting on the biological activity of many proteins. However, the effect of metal sites on the hierarchical structures of biopolymers is still poorly understood. Herein, inspired by metalloproteins, we report an order-to-order conformational regulation in synthetic polymers mediated by a variety of metal ions. The copolymers are decorated with clinically available desferrioxamine (DFO) as an exogenous ligand template, which presents a geometric constraint toward peptide backbone via short-range hydrogen bonding interactions, thus dramatically altering the secondary conformations and self-assembly behaviors of polypeptides and allowing for a controllable β-sheet to α-helix transition modulated by metal-ligand interactions. These metallopolymers could form ferritin-inspired hierarchical structures with high stability and membrane activity for efficient brain delivery across the blood-brain barrier (BBB) and long-lasting magnetic resonance imaging (MRI) in vivo.
Collapse
Affiliation(s)
- Hang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
26
|
Li H, Zhang J, Jiang L, Yuan R, Yang X. Chiral plasmonic Au-Ag core shell nanobipyramid for SERS enantiomeric discrimination of biologically relevant small molecules. Anal Chim Acta 2023; 1239:340740. [PMID: 36628734 DOI: 10.1016/j.aca.2022.340740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The identification of enantiomers is of great importance in chiral separations and medicinal chemistry. While Surface-enhanced Raman spectroscopy (SERS) is a technique that provides vibrational fingerprints of analytes. The enantiomers identification relies on the SERS difference between left and right-handed circularly polarized light or additional selectors for indirect distinction. In this work, Au-Ag core shell nanobipyramid (L/D-Au@Ag BPs) were synthesized guiding by chiral encoder of L/D-cysteine. L/D-Au@Ag BPs produced plasmon-induced circular dichroism signals in the plasmon resonance absorption band, which can be tuned by modulation the amount of cysteine. Moreover, the chiral anisotropy factor of L/D-Au@Ag BPs at 532 nm can reach 5.11 × 10-3. Due to the selective resonance coupling between L/D-Au@Ag BPs and different enantiomers, L/D-Au@Ag BPs were further used as SERS substrates for efficient discrimination of biologically relevant small molecules. Chiral Au@Ag BPs display the potential for chiral drug identification.
Collapse
Affiliation(s)
- Hongying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Jiale Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China.
| |
Collapse
|
27
|
Pantaleone S, Sodupe M, Ugliengo P, Rimola A. On the stability of peptide secondary structures on the TiO 2 (101) anatase surface: a computational insight. Phys Chem Chem Phys 2022; 25:392-401. [PMID: 36477070 DOI: 10.1039/d2cp04395e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The biological activity of proteins is partly due to their secondary structures and conformational states. Peptide chains are rather flexible so that finding ways inducing protein folding in a well-defined state is of great importance. Among the different constraint techniques, the interaction of proteins with inorganic surfaces is a fruitful strategy to stabilize selected folded states. Surface-induced peptide folding can have potential applications in different biomedicine areas, but it can also be of fundamental interest in prebiotic chemistry since the biological activity of a peptide can turn-on when folded in a given state. In this work, periodic quantum mechanical simulations (including implicit solvation effects) at the PBE-D2* level have been carried out to study the adsorption and the stability of the secondary structures (α-helix and β-sheet) of polypeptides with different chemical composition (i.e., polyglycine, polyalanine, polyglutamic acid, polylysine, and polyarginine) on the TiO2 (101) anatase surface. The computational cost is reduced by applying periodic boundary conditions to both the surface and the peptides, thus obtaining full periodic polypeptide/TiO2 surface systems. At variance with polyglycine, the interaction of the other polypeptides with the surface takes place with the lateral chain functionalities, leaving the secondary structures almost undistorted. Results indicate that the preferred conformation upon adsorption is the α-helix over the β-sheet, with the exception of the polyglutamic acid. According to the calculated adsorption energies, the affinity trend of the polypeptides with the (101) anatase surface is: polyarginine ≈ polylysine > polyglutamic acid > polyglycine ≈ polyalanine, both when adsorbed in gas phase and in presence of the implicit water solvent, which is very similar to the trend for the single amino acids. A set of implications related to the areas of surface-induced peptide folding, biomedicine and prebiotic chemistry are finally discussed.
Collapse
Affiliation(s)
- Stefano Pantaleone
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain. .,Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Inter-Departmental Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Inter-Departmental Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
28
|
Torres-Huerta AL, Antonio-Pérez A, García-Huante Y, Alcázar-Ramírez NJ, Rueda-Silva JC. Biomolecule-Based Optical Metamaterials: Design and Applications. BIOSENSORS 2022; 12:962. [PMID: 36354471 PMCID: PMC9688573 DOI: 10.3390/bios12110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.
Collapse
Affiliation(s)
- Ana Laura Torres-Huerta
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Aurora Antonio-Pérez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Yolanda García-Huante
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City 07340, Mexico
| | - Nayelhi Julieta Alcázar-Ramírez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Juan Carlos Rueda-Silva
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
29
|
Li H, Gao X, Zhang C, Ji Y, Hu Z, Wu X. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. BIOSENSORS 2022; 12:957. [PMID: 36354466 PMCID: PMC9688444 DOI: 10.3390/bios12110957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 05/27/2023]
Abstract
As chiral antennas, plasmonic nanoparticles (NPs) can enhance chiral responses of chiral materials by forming hybrid structures and improving their own chirality preference as well. Chirality-dependent properties of plasmonic NPs broaden application potentials of chiral nanostructures in the biomedical field. Herein, we review the wet-chemical synthesis and self-assembly fabrication of gold-NP-based chiral nanostructures. Discrete chiral NPs are mainly obtained via the seed-mediated growth of achiral gold NPs under the guide of chiral molecules during growth. Irradiation with chiral light during growth is demonstrated to be a promising method for chirality control. Chiral assemblies are fabricated via the bottom-up assembly of achiral gold NPs using chiral linkers or guided by chiral templates, which exhibit large chiroplasmonic activities. In describing recent advances, emphasis is placed on the design and synthesis of chiral nanostructures with the tuning and amplification of plasmonic circular dichroism responses. In addition, the review discusses the most recent or even emerging trends in biomedical fields from biosensing and imaging to disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hanbo Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinshuang Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhijian Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Liao X, Gui L, Gao A, Yu Z, Xu K. Intelligent design of the chiral metasurfaces for flexible targets: combining a deep neural network with a policy proximal optimization algorithm. OPTICS EXPRESS 2022; 30:39582-39596. [PMID: 36298906 DOI: 10.1364/oe.471629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Recently, deep reinforcement learning (DRL) for metasurface design has received increased attention for its excellent decision-making ability in complex problems. However, time-consuming numerical simulation has hindered the adoption of DRL-based design method. Here we apply the Deep learning-based virtual Environment Proximal Policy Optimization (DE-PPO) method to design the 3D chiral plasmonic metasurfaces for flexible targets and model the metasurface design process as a Markov decision process to help the training. A well trained DRL agent designs chiral metasurfaces that exhibit the optimal absolute circular dichroism value (typically, ∼ 0.4) at various target wavelengths such as 930 nm, 1000 nm, 1035 nm, and 1100 nm with great time efficiency. Besides, the training process of the PPO agent is exceptionally fast with the help of the deep neural network (DNN) auxiliary virtual environment. Also, this method changes all variable parameters of nanostructures simultaneously, reducing the size of the action vector and thus the output size of the DNN. Our proposed approach could find applications in efficient and intelligent design of nanophotonic devices.
Collapse
|
31
|
Yuan Y, Li H, Yang H, Han C, Hu H, Govorov AO, Yan H, Lan X. Unraveling the Complex Chirality Evolution in DNA‐Assembled High‐Order, Hybrid Chiroplasmonic Superstructures from Multi‐Scale Chirality Mechanisms. Angew Chem Int Ed Engl 2022; 61:e202210730. [DOI: 10.1002/anie.202210730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yongqing Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Hao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Cong Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition Wuhan Institute of Technology Wuhan Hubei 430205 China
| | - Alexander O. Govorov
- Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute Ohio University Athens OH 45701 USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics The Biodesign Institute, School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| |
Collapse
|
32
|
Leite TR, Zschiedrich L, Kizilkaya O, McPeak KM. Resonant Plasmonic-Biomolecular Chiral Interactions in the Far-Ultraviolet: Enantiomeric Discrimination of sub-10 nm Amino Acid Films. NANO LETTERS 2022; 22:7343-7350. [PMID: 36084234 DOI: 10.1021/acs.nanolett.2c01724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Resonant plasmonic-molecular chiral interactions are a promising route to enhanced biosensing. However, biomolecular optical activity primarily exists in the far-ultraviolet regime, posing significant challenges for spectral overlap with current nano-optical platforms. We demonstrate experimentally and computationally the enhanced chiral sensing of a resonant plasmonic-biomolecular system operating in the far-UV. We develop a full-wave model of biomolecular films on Al gammadion arrays using experimentally derived chirality parameters. Our calculations show that detectable enhancements in the chiroptical signals from small amounts of biomolecules are possible only when tight spectral overlap exists between the plasmonic and biomolecular chiral responses. We support this conclusion experimentally by using Al gammadion arrays to enantiomerically discriminate ultrathin (<10 nm thick) films of tyrosine. Notably, the chiroptical signals of the bare films were within instrumental noise. Our results demonstrate the importance of using far-UV active metasurfaces for enhancing natural optical activity.
Collapse
Affiliation(s)
- Tiago Ramos Leite
- Gordon and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lin Zschiedrich
- JCMwave GmbH, 14050 Berlin, Germany
- Zuse Institute Berlin, 14195 Berlin, Germany
| | - Orhan Kizilkaya
- Louisiana State University Center for Advanced Microstructures and Devices, Baton Rouge, Louisiana 70806, United States
| | - Kevin M McPeak
- Gordon and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
33
|
Yuan Y, Li H, Yang H, Han C, Hu H, Govorov AO, Yan H, Lan X. Unraveling the Complex Chirality Evolution in DNA‐Assembled High‐Order, Hybrid Chiroplasmonic Superstructures from Multi‐Scale Chirality Mechanisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongqing Yuan
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Huacheng Li
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Hao Yang
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Cong Han
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Huatian Hu
- Wuhan Institute of Technology Hubei Key Laboratory of Optical Information and Pattern Recognition CHINA
| | - Alexander O. Govorov
- Ohio University Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute UNITED STATES
| | - Hao Yan
- Arizona State University The Biodesign Institute UNITED STATES
| | - Xiang Lan
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-Dimension Materials No.2999 North Renmin Str, Songjiang Dist 201620 Shanghai CHINA
| |
Collapse
|
34
|
Kakkar S, Chauhan S, Bala R, Bharti, Kumar V, Rohit M, Bhalla V. Site-directed dual bioprobes inducing single-step nano-sandwich assay for the detection of cardiac troponin I. Mikrochim Acta 2022; 189:366. [PMID: 36053384 DOI: 10.1007/s00604-022-05461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Bioreceptor functionalized metallic nano-colloids have been identified as effective nanobioprobes to realize the detection of an analyte based on a common phenomenon of salt-induced aggregation. In marked contrast to this, we describe a nano-sandwich assay integrating the novel match-pair of aptamer and peptide functionalized gold nanoparticles. The site-directed biomolecular interaction of high affinity aptamer and peptide bioreceptors directed towards distinct sites of cardiac biomarker troponin I; this was found to form a nano-sandwich assay in a peculiar manner. The gold nanoconjugates interact with specific and distant regions of troponin I to result in collision of probes upon target identification. In the presence of TnI, both nanobioprobes bind at their respective sites forming a nano-sandwich pair providing a visual color change from red to blue. Thus, the presence of target TnI itself causes instant agglomeration in just a single-step without addition of any external aggregator. The assay imparts 100% specificity and 90% sensitivity in a dynamic concentration range of 0.1-500 ng/mL troponin I with detection limit as low as 0.084 ng/mL. The applicability of the assay has been validated in clinical samples of acute myocardial infarction patients thus establishing a promising point-of-care detection of TnI.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Sakshi Chauhan
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Rajni Bala
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Bharti
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Virendra Kumar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | | | - Vijayender Bhalla
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036.
| |
Collapse
|
35
|
Mao Y, Dang M, Zhang J, Huang X, Qiao M, Song L, Zhao Q, Ding M, Wang Y, Li Z, Song K, Shi Q, Zhang X. Peptide amphiphile inspired self-assembled, ordered gold nanocomposites for improved sensitivity of electrochemical immunosensor: Applications in determining the total aflatoxin amount in food stuffs. Talanta 2022; 247:123532. [DOI: 10.1016/j.talanta.2022.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
36
|
Liu Y, Perera T, Shi Q, Yong Z, Mallawaarachchi S, Fan B, Walker JAT, Lupton CJ, Thang SH, Premaratne M, Cheng W. Thermoresponsive chiral plasmonic nanoparticles. NANOSCALE 2022; 14:4292-4303. [PMID: 35244653 DOI: 10.1039/d1nr08343k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral metallic nanoparticles can exhibit novel plasmonic circular dichroism (PCD) in the ultraviolet and visible range of the electromagnetic spectrum. Here, we investigate how thermoresponsive dielectric nanoenvironments will influence such PCD responses through poly(N-isopropylacrylamide) (PNIPAM) modified chiral gold nanorods (AuNRs). We observed the temperature-dependent chiral plasmonic responses distinctly from unmodified counterparts. As for the modified systems, the PCD peaks for both L-AuNRs and D-AuNRs at 50 °C red shifted simultaneously with enhanced intensities compared to the results at 20 °C. In contrast, the unmodified L-AuNRs and D-AuNRs exhibited no peak shift with reduced intensities. Subsequent simulation and experimental studies demonstrated that the enhanced PCD was attributed to PNIPAM chain collapse causing the increase of the refractive index by expelling minute water out of the corona surrounding chiral plasmonic AuNRs. Notably, such thermoresponsive chiral plasmonic responses are reversible, general, and extendable to other types of chiral plasmonic nanoparticles.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Tharaka Perera
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Qianqian Shi
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Zijun Yong
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Sudaraka Mallawaarachchi
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Julia Ann-Therese Walker
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
- Drug Delivery, Disposition and Dynamic, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
37
|
Carone A, Mariani P, Désert A, Romanelli M, Marcheselli J, Garavelli M, Corni S, Rivalta I, Parola S. Insight on Chirality Encoding from Small Thiolated Molecule to Plasmonic Au@Ag and Au@Au Nanoparticles. ACS NANO 2022; 16:1089-1101. [PMID: 34994190 DOI: 10.1021/acsnano.1c08824] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral plasmonic nanomaterials exhibiting intense optical activity are promising for numerous applications. In order to prepare those nanostructures, one strategy is to grow metallic nanoparticles in the presence of chiral molecules. However, in such approach the origin of the observed chirality remains uncertain. In this work, we expand the range of available chiral plasmonic nanostructures and we propose another vision of the origin of chirality in such colloidal systems. For that purpose, we investigated the synthesis of two core-shell Au@Ag and Au@Au systems built from gold nanobipyramid cores, in the presence of cysteine. The obtained nanoparticles possess uniform shape and size and show plasmonic circular dichroism in the visible range, and were characterized by electron microscopy, circular dichroism, and UV-vis-NIR spectroscopy. Opto-chiral responses were found to be highly dependent on the morphology and the plasmon resonance. It revealed (i) the importance of the anisotropy for Au@Au nanoparticles and (ii) the role of the multipolar modes for Au@Ag nanoparticles on the way to achieve intense plasmonic circular dichroism. The role of cysteine as shaping agent and as chiral encoder was particularly evaluated. Our experimental results, supported by theoretical simulations, contrast the hypothesis that chiral molecules entrapped in the nanoparticles determine the chiral properties, highlighting the key role of the outmost part of the nanoparticles shell on the plasmonic circular dichroism. Along with these results, the impact of enantiomeric ratio of cysteine on the final shape suggested that the presence of a chiral shape or chiral patterns should be considered.
Collapse
Affiliation(s)
- Antonio Carone
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Pablo Mariani
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Anthony Désert
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Marco Romanelli
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Jacopo Marcheselli
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- SISSA─Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Stephane Parola
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| |
Collapse
|
38
|
Chen P, Wang G, Hao C, Ma W, Xu L, Kuang H, Xu C, Sun M. Peptide-Directed Synthesis of Chiral nano-bipyramides for Controllable antibacterial application. Chem Sci 2022; 13:10281-10290. [PMID: 36277618 PMCID: PMC9473524 DOI: 10.1039/d2sc03443c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic resistance makes the therapeutic effect of traditional antibiotics far from satisfactory. Here, chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology are reported, and used in the fight against bacterial infection. Specifically, the dipeptide of d-/l-Cys-Phe (CF) caused the nano-bipyramids to form a spike shape with an optical anisotropy factor of 0.102 at 573 nm. The antibacterial effects showed that d-GBPs and l-GBPs could efficiently destroy bacteria with a death ratio of 98% and 70% in vitro. Also, both in vivo skin infection and sepsis models showed that the chiral GBPs could effectively promote wound healing and prevent sepsis in mice. Mechanistic studies showed that the binding affinity of d-GBPs (1.071 ± 0.023 × 108 M−1) was 12.39-fold higher than l-GBPs (8.664 ± 0.251 × 106 M−1) to protein A of Staphylococcus aureus, which caused further adsorption of d-GBPs onto the bacterial surface. Moreover, the physical destruction of the bacterial cell wall caused by the spike chiral GBPs, resulted in a stronger antibacterial effect for d-GBPs than l-GBPs. Furthermore, the excellent PTT of d-/l-GBPs further exacerbated the death of bacteria without any side-effect. Overall, chiral nano-bipyramids have opened a new avenue for improved antibacterial efficacy in the treatment of bacterial infections. Chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology and an optical anisotropy factor of 0.102 at 573 nm are reported, and used in the fight against bacterial infection both in vitro and in vivo.![]()
Collapse
Affiliation(s)
- Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Gaoyang Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
39
|
Besteiro LV, Movsesyan A, Ávalos-Ovando O, Lee S, Cortés E, Correa-Duarte MA, Wang ZM, Govorov AO. Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. NANO LETTERS 2021; 21:10315-10324. [PMID: 34860527 PMCID: PMC8704195 DOI: 10.1021/acs.nanolett.1c03503] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Plasmonic nanocrystals and their assemblies are excellent tools to create functional systems, including systems with strong chiral optical responses. Here we study the possibility of growing chiral plasmonic nanocrystals from strictly nonchiral seeds of different types by using circularly polarized light as the chirality-inducing mechanism. We present a novel theoretical methodology that simulates realistic nonlinear and inhomogeneous photogrowth processes in plasmonic nanocrystals, mediated by the excitation of hot carriers that can drive surface chemistry. We show the strongly anisotropic and chiral growth of oriented nanocrystals with lowered symmetry, with the striking feature that such chiral growth can appear even for nanocrystals with subwavelength sizes. Furthermore, we show that the chiral growth of nanocrystals in solution is fundamentally challenging. This work explores new ways of growing monolithic chiral plasmonic nanostructures and can be useful for the development of plasmonic photocatalysis and fabrication technologies.
Collapse
Affiliation(s)
- Lucas V. Besteiro
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Centre
Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
| | - Artur Movsesyan
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Oscar Ávalos-Ovando
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Seunghoon Lee
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | | | - Zhiming M. Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Alexander O. Govorov
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
40
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
John N, Mariamma AT. Recent developments in the chiroptical properties of chiral plasmonic gold nanostructures: bioanalytical applications. Mikrochim Acta 2021; 188:424. [PMID: 34811580 PMCID: PMC8608422 DOI: 10.1007/s00604-021-05066-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022]
Abstract
The presence of excess L-amino acid in the Murchison meteorite, circular polarization effect in the genesis of stars and existence of chirality in interstellar molecules contribute to the origin of life on earth. Chiral-sensitive techniques have been employed to untangle the secret of the symmetries of the universe, designing of effective secure drugs and investigation of chiral biomolecules. The relationship between light and chiral molecules was employed to probe and explore such molecules using spectroscopy techniques. The mutual interaction between electromagnetic spectrum and chirality of matter give rise to distinct optical response, which advances vital information contents in chiroptical spectroscopy. Chiral plasmonic gold nanoparticle exhibits distinctive circular dichroism peaks in broad wavelength range thereby crossing the limits of its characterization. The emergence of strong optical activity of gold nanosystem is related to its high polarizability, resulting in plasmonic and excitonic effects on incident photons. Inspired by the development of advanced chiral plasmonic nanomaterials and exploring its properties, this review gives an overview of various chiral gold nanostructures and the mechanism behind its chiroptical properties. Finally, we highlight the application of different chiral gold nanomaterials in the field of catalysis and medical applications with special emphasis to biosensing and biodetection.
Collapse
Affiliation(s)
- Nebu John
- The Post Graduate and Research Department of Chemistry, Mar Thoma College, Mahatma Gandhi University, Tiruvalla, 689103 Kerala India
| | - Anslin Thankachan Mariamma
- The Post Graduate Department of Mathematics, St. Gregorios College, University of Kerala, Kottarakara, 691531 Kerala India
| |
Collapse
|
42
|
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun China
| | - Nicholas A. Kotov
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Materials Science University of Michigan Ann Arbor Michigan 48109 United States
| |
Collapse
|
43
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
44
|
Nizar NSS, Sujith M, Swathi K, Sissa C, Painelli A, Thomas KG. Emergent chiroptical properties in supramolecular and plasmonic assemblies. Chem Soc Rev 2021; 50:11208-11226. [PMID: 34522920 DOI: 10.1039/d0cs01583k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This tutorial provides a comprehensive description of the origin of chiroptical properties of supramolecular and plasmonic assemblies in the UV-visible region of the electromagnetic spectrum. The photophysical concepts essential for understanding chiroptical signatures are presented in the first section. Just as the oscillator strength (a positive quantity) is related to absorption, the rotational strength (either a positive or a negative quantity) defines the emergence of chiroptical signatures in molecular/plasmonic systems. In supramolecular systems, induced circular dichroism (ICD) originates through the off-resonance coupling of transition dipoles in chiral inclusion complexes, while exciton coupled circular dichroism (ECD) originates through the on-resonance exciton coupling of transition dipoles in chiral assemblies resulting in the formation of a bisignated CD signal. In bisignated ECD spectra, the sign of the couplet is determined not only by the handedness of chiral supramolecular assemblies, but also by the sign of the interaction energy between transition dipoles. Plasmonic chirality is briefly addressed in the last section, focusing on inherent chirality, induced chirality, and surface plasmon-coupled circular dichroism (SP-CD). The oscillator strength is of the order of 1 in molecular systems, while it becomes very large (104-105) in plasmonic systems due to the collective plasmonic excitations, resulting in intense CD signals, which can be exploited for the design of plasmonic metamaterial platforms for chiral sensing applications.
Collapse
Affiliation(s)
- N S Shahana Nizar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695 551, India.
| | - Meleppatt Sujith
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695 551, India.
| | - K Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695 551, India. .,Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.
| | - Anna Painelli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695 551, India.
| |
Collapse
|
45
|
Guo J, Wu F, Song G, Huang Y, Jiao R, Yu L. Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles. NANOSCALE 2021; 13:15812-15818. [PMID: 34528651 DOI: 10.1039/d1nr02634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plexcitonic hybrids, consisting of metal nanoparticles and J-aggregates, are effective nanostructures to achieve a strong coupling regime. The chirality of the exciton in the strong coupled plexcitons provides more potential for the design of advanced optoelectronic devices. Here, we experimentally measured the circular dichroism (CD) spectra of plexcitonic hybrids, and researched the diverse chirality of J-aggregates assembled on the surface of the achiral Au nanorods. We found that the chirality of J-aggregates is not only related to the quantity of dye molecules in the plexcitonic, but also to the distribution in different positions of the nanorods, by analyzing the composition of the CD spectra with a quasistatic theory. The J-aggregates assembled on both ends and both sides of the nanorods had opposite chirality. The interaction between the longitudinal localized surface plasmon resonance (LLSPR) of the nanorods and J-aggregates achieved the strong coupling regime, and Rabi splitting of about 198.3 meV was observed. The research into the chirality of the plexcitons provided more detail on the chiral J-aggregates assembly on the nanoparticles, and give a perspective on the development of the strong coupling interactions and the design of optoelectronic systems.
Collapse
Affiliation(s)
- Jiaqi Guo
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Fan Wu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Gang Song
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yuming Huang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Rongzhen Jiao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
46
|
Sankari SS, Dahms HU, Tsai MF, Lo YL, Wang LF. Comparative study of an antimicrobial peptide and a neuropeptide conjugated with gold nanorods for the targeted photothermal killing of bacteria. Colloids Surf B Biointerfaces 2021; 208:112117. [PMID: 34564040 DOI: 10.1016/j.colsurfb.2021.112117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
There are certain disadvantages in treating bacterial infections through conventional methods. For this reason, the current study does focus on combating bacterial wound infections by photothermal therapy assisted by gold nanorod-peptide conjugates (GNR-peptide conjugates). Two peptides, the cationic antimicrobial peptide LL-37 and neuropeptide ANGIOPEP-2 both with specificity for targeted bacterial binding, were conjugated with GNR surface through electrostatic interactions. The GNR-peptide conjugates showed good biocompatibility, sufficient stability, enhanced targeting, potential photothermal killing of bacteria, and possible acceleration of wound healing. The photo-biomodulation properties of NIR improved the wound closure rates through enhanced cell migration. The multifunctional LL37-conjugated GNRs significantly enhanced photothermal therapeutic outcomes based on bacterial targeting with promising wound healing properties.
Collapse
Affiliation(s)
- Sivasoorian Siva Sankari
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Research Centre for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ming-Fong Tsai
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
47
|
Rosales SA, Albella P, González F, Gutiérrez Y, Moreno F. CDDA: extension and analysis of the discrete dipole approximation for chiral systems. OPTICS EXPRESS 2021; 29:30020-30034. [PMID: 34614734 DOI: 10.1364/oe.434061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Discrete dipole approximation (DDA) is a computational method broadly used to solve light scattering problems. In this work, we propose an extension of DDA that we call Chiral-DDA (CDDA), to study light-chiral matter interactions with the capability of describing the underlying physics behind. Here, CDDA is used to solve and analyze the interaction of a nanoantenna (either metallic or dielectric) with a chiral molecule located in its near field at different positions. Our method allowed to relate near field interactions with far field spectral response of the system, elucidating the role that the nanoantenna electric and magnetic polarizabilities play in the coupling with a chiral molecule. In general, this is not straightforward with other methods. We believe that CDDA has the potential to help researchers revealing some of the still unclear mechanisms responsible for the chiral signal enhancements induced by nanoantennas.
Collapse
|
48
|
Xu JX, Fitzkee NC. Solution NMR of Nanoparticles in Serum: Protein Competition Influences Binding Thermodynamics and Kinetics. Front Physiol 2021; 12:715419. [PMID: 34483968 PMCID: PMC8415878 DOI: 10.3389/fphys.2021.715419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The spontaneous formation of a protein corona on a nanoparticle surface influences the physiological success or failure of the synthetic nanoparticle as a drug carrier or imaging agent used in vivo. A quantitative understanding of protein-nanoparticle interactions is therefore critical for the development of nanoparticle-based therapeutics. In this perspective, we briefly discuss the challenges and limitations of current approaches used for studying protein-nanoparticle binding in a realistic biological medium. Subsequently, we demonstrate that solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to monitor protein competitive binding in a complex serum medium in situ. Importantly, when many serum proteins are competing for a gold nanoparticle (AuNP) surface, solution NMR is able to detect differences in binding thermodynamics, and kinetics of a tagged protein. Combined with other experimental approaches, solution NMR is an invaluable tool to understand protein behavior in the nanoparticle corona.
Collapse
Affiliation(s)
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
49
|
Wang W, Wu F, Zhang Y, Wei W, Niu W, Xu G. Boosting chiral amplification in plasmon-coupled circular dichroism using discrete silver nanorods as amplifiers. Chem Commun (Camb) 2021; 57:7390-7393. [PMID: 34223840 DOI: 10.1039/d1cc01891d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Remarkable chiral amplification in plasmon-coupled circular dichroism spectroscopy (CD) is demonstrated by using discrete Ag nanorods as amplifiers. An unprecedented CD enhancement factor of over 3000 times is achieved without resonant or near-resonant exciton-plasmon couplings.
Collapse
Affiliation(s)
- Wenhe Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanqun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wenli Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
50
|
Zhu J, Wu F, Han Z, Shang Y, Liu F, Yu H, Yu L, Li N, Ding B. Strong Light-Matter Interactions in Chiral Plasmonic-Excitonic Systems Assembled on DNA Origami. NANO LETTERS 2021; 21:3573-3580. [PMID: 33830773 DOI: 10.1021/acs.nanolett.1c00596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The exploitation of strong light-matter interactions in chiral plasmonic nanocavities may enable exceptional physical phenomena and lead to potential applications in nanophotonics, information communication, etc. Therefore, a deep understanding of strong light-matter interactions in chiral plasmonic-excitonic (plexcitonic) systems constructed by a chiral plasmonic nanocavity and molecular excitons is urgently needed. Herein, we systematically studied the strong light-matter interactions in gold nanorod-based chiral plexcitonic systems assembled on DNA origami. Rabi splitting and anticrossing behavior were observed in circular dichroism spectra, manifesting chiroptical characteristic hybridization. The bisignate line shape of the circular dichroism (CD) signal allows the accurate discrimination of hybrid modes. A large Rabi splitting of ∼205/∼199 meV for left-handed/right-handed plexcitonic nanosystems meets the criterion of strong coupling. Our work deepens the understanding of light-matter interactions in chiral plexcitonic nanosystems and will facilitate the development of chiral quantum optics and chiroptical devices.
Collapse
Affiliation(s)
- Jinjin Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fan Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 10 Xitucheng Road, Beijing 100876, China
| | - Zihong Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyin Yu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 10 Xitucheng Road, Beijing 100876, China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|