1
|
Gothe PK, Martinez A, Koh SJ. Effect of Ionic Strength, Nanoparticle Surface Charge Density, and Template Diameter on Self-Limiting Single-Particle Placement: A Numerical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11961-11977. [PMID: 34610743 DOI: 10.1021/acs.langmuir.1c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the bottom-up approach where functional materials are constructed out of nanoscale building blocks (e.g., nanoparticles), it is essential to have methods that are capable of placing the individual nanoscale building blocks onto exact substrate positions on a large scale and on a large area. One of the promising placement methods is the self-limiting single-particle placement (SPP), in which a single nanoparticle in a colloidal solution is electrostatically guided by electrostatic templates and exactly one single nanoparticle is placed on each target position in a self-limiting way. This paper presents a numerical study on SPP, where the effects of three key parameters, (1) ionic strength (IS), (2) nanoparticle surface charge density (σNP), and (3) circular template diameter (d), on SPP are investigated. For 40 different parameter sets of (IS, σNP, d), a 30 nm nanoparticle positioned at R⃗ above the substrate was modeled in two configurations (i) without and (ii) with the presence of a 30 nm nanoparticle at the center of a circular template. For each parameter set and each configuration, the electrostatic potentials were calculated by numerically solving the Poisson-Boltzmann equation, from which interaction forces and interaction free energies were subsequently calculated. These have identified realms of parameter sets that enable a successful SPP. A few exemplary parameter sets include (IS, σNP, d) = (0.5 mM, -1.5 μC/cm2, 100 nm), (0.05 mM, -0.5 μC/cm2, 100 nm), (0.5 mM, -1.5 μC/cm2, 150 nm), and (0.05 mM, -0.8 μC/cm2, 150 nm). This study provides clear guidance toward experimental realizations of large-scale and large-area SPPs, which could lead to bottom-up fabrications of novel electronic, photonic, plasmonic, and spintronic devices and sensors.
Collapse
Affiliation(s)
- Pushkar K Gothe
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anthony Martinez
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Seong Jin Koh
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Tanaka YY, Albella P, Rahmani M, Giannini V, Maier SA, Shimura T. Plasmonic linear nanomotor using lateral optical forces. SCIENCE ADVANCES 2020; 6:6/45/eabc3726. [PMID: 33148646 PMCID: PMC7673677 DOI: 10.1126/sciadv.abc3726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 05/22/2023]
Abstract
Optical force is a powerful tool to actuate micromachines. Conventional approaches often require focusing and steering an incident laser beam, resulting in a bottleneck for the integration of the optically actuated machines. Here, we propose a linear nanomotor based on a plasmonic particle that generates, even when illuminated with a plane wave, a lateral optical force due to its directional side scattering. This force direction is determined by the orientation of the nanoparticle rather than a field gradient or propagation direction of the incident light. We demonstrate the arrangements of the particles allow controlling the lateral force distributions with the resolution beyond the diffraction limit, which can produce movements, as designed, of microobjects in which they are embedded without shaping and steering the laser beam. Our nanomotor to engineer the experienced force can open the door to a new class of micro/nanomechanical devices that can be entirely operated by light.
Collapse
Affiliation(s)
- Yoshito Y Tanaka
- Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Pablo Albella
- Department of Applied Physics, University of Cantabria, Santander, Spain
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Vincenzo Giannini
- Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas(CSIC), Serrano 121, 28006 Madrid, Spain
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539 München, Germany
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Tsutomu Shimura
- Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Xu R, Li J, Liu L, Liu X, Fan D, Cao W, Ma H, Wei Q. Original signal amplification assay for N-Terminal pro-brain natriuretic peptide detection based on Bi2MoO6 photosensitive matrix. Anal Chim Acta 2020; 1101:58-64. [DOI: 10.1016/j.aca.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 01/12/2023]
|
4
|
Zhao C, Shah PJ, Bissell LJ. Laser additive nano-manufacturing under ambient conditions. NANOSCALE 2019; 11:16187-16199. [PMID: 31461093 DOI: 10.1039/c9nr05350f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Additive manufacturing at the macroscale has become a hot topic of research in recent years. It has been used by engineers for rapid prototyping and low-volume production. The development of such technologies at the nanoscale, or additive nanomanufacturing, will provide a future path for new nanotechnology applications. In this review article, we introduce several available toolboxes that can be potentially used for additive nanomanufacturing. We especially focus on laser-based additive nanomanufacturing under ambient conditions.
Collapse
Affiliation(s)
- Chenglong Zhao
- Department of Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469-2314, USA. and Department of Electro-Optics and Photonics, University of Dayton, 300 College Park, Dayton, Ohio 45469-2314, USA
| | - Piyush J Shah
- Department of Electro-Optics and Photonics, University of Dayton, 300 College Park, Dayton, Ohio 45469-2314, USA and Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th St, Wright-Patterson AFB, Ohio 45433-7718, USA.
| | - Luke J Bissell
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th St, Wright-Patterson AFB, Ohio 45433-7718, USA.
| |
Collapse
|
5
|
Li J, Hill EH, Lin L, Zheng Y. Optical Nanoprinting of Colloidal Particles and Functional Structures. ACS NANO 2019; 13:3783-3795. [PMID: 30875190 PMCID: PMC6482071 DOI: 10.1021/acsnano.9b01034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in chemical sciences have enabled the tailorable synthesis of colloidal particles with variable composition, size, shape, and properties. Building superstructures with colloidal particles as building blocks is appealing for the fabrication of functional metamaterials and nanodevices. Optical nanoprinting provides a versatile platform to print various particles into arbitrary configurations with nanometric precision. In this review, we summarize recent progress in optical nanoprinting of colloidal particles and its related applications. Diverse techniques based on different physical mechanisms, including optical forces, light-controlled electric fields, optothermal effects, laser-directed thermocapillary flows, and photochemical reactions, are discussed in detail. With its flexible and versatile capabilities, optical nanoprinting will find promising applications in numerous fields such as nanophotonics, energy, microelectronics, and nanomedicine.
Collapse
Affiliation(s)
- Jingang Li
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric H. Hill
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Linhan Lin
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
P. S. L, G. S. S, R. A. R, M. A, R. TM, H. BM, G. MV, E. C, J. A, E. L. Laser and electron beam-induced formation of Ag/Cr structures on Ag2CrO4. Phys Chem Chem Phys 2019; 21:6101-6111. [DOI: 10.1039/c8cp07263a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The interactions of silver chromate with a femtosecond laser and electron beam irradiations were investigated.
Collapse
Affiliation(s)
- Lemos P. S.
- INCTMN-CDMF, Universidade Federal de São Carlos
- 13565-905 São Carlos
- Brazil
| | - Silva G. S.
- INCTMN-CDMF, Universidade Federal de São Carlos
- 13565-905 São Carlos
- Brazil
| | - Roca R. A.
- INCTMN-CDMF, Universidade Federal de São Carlos
- 13565-905 São Carlos
- Brazil
| | - Assis M.
- INCTMN-CDMF, Universidade Federal de São Carlos
- 13565-905 São Carlos
- Brazil
| | - Torres-Mendieta R.
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec
- 461 17 Liberec
- Czech Republic
| | - Beltrán-Mir H.
- Department of Inorganic and Organic Chemistry, University Jaume I (UJI)
- Castelló 12071
- Spain
| | - Mínguez-Vega G.
- GROC UJI, Institut de Noves Tecnologies de la Imatge (INIT), University Jaume I (UJI)
- Castelló 12071
- Spain
| | - Cordoncillo E.
- Department of Inorganic and Organic Chemistry, University Jaume I (UJI)
- Castelló 12071
- Spain
| | - Andrés J.
- Department of Analytical and Physical Chemistry, University Jaume I (UJI)
- Castelló 12071
- Spain
| | - Longo E.
- INCTMN-UNESP, Universidade Estadual Paulista
- 14801-907 Araraquara
- Brazil
| |
Collapse
|
7
|
Alam MS, Zhao C. Nondestructive Approach for Additive Nanomanufacturing of Metallic Nanostructures in the Air. ACS OMEGA 2018; 3:1213-1219. [PMID: 31457963 PMCID: PMC6641426 DOI: 10.1021/acsomega.7b01907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 05/21/2023]
Abstract
In this article, a mechanism for quick release and transfer of gold nanoparticles (GNPs) from a soft substrate to another substrate under laser illumination is investigated. The heating of GNPs on a soft substrate with a continuous-wave laser causes a rapid thermal expansion of the substrate, which can be used to selectively release and place GNPs onto another surface. In-plane and out-of-plane nanostructures are successfully fabricated using this method. This rapid release-and-place process can be used for additive nonmanufacturing of metallic nanostructures under ambient conditions, which paves a way for affordable nanomanufacturing and enables a wide variety of applications in nanophotonics, ultrasensitive sensing, and nonlinear plasmonics.
Collapse
Affiliation(s)
- Md Shah Alam
- Department of Electro-Optics
and Photonics and Department of Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United
States
| | - Chenglong Zhao
- Department of Electro-Optics
and Photonics and Department of Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United
States
| |
Collapse
|
8
|
Assis M, Cordoncillo E, Torres-Mendieta R, Beltrán-Mir H, Mínguez-Vega G, Gouveia AF, Leite E, Andrés J, Longo E. Laser-induced formation of bismuth nanoparticles. Phys Chem Chem Phys 2018; 20:13693-13696. [DOI: 10.1039/c8cp01225c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current communication, the synthesis of metallic Bi nanoparticles with coexisting crystallographic structures (rhombohedral, monoclinic, and cubic) obtained via direct femtosecond laser irradiation of NaBiO3 is demonstrated for the first time.
Collapse
Affiliation(s)
- Marcelo Assis
- CDMF-UFSCar-Universidade Federal de São Carlos
- 13565-905 São Carlos
- Brazil
| | - Eloísa Cordoncillo
- Department of Inorganic and Organic Chemistry
- University Jaume I (UJI)
- Castelló 12071
- Spain
| | - Rafael Torres-Mendieta
- Institute for Nanomaterials
- Advanced Technologies and Innovation Technical University of Liberec
- 46117 Liberec
- Czech Republic
| | - Héctor Beltrán-Mir
- Department of Inorganic and Organic Chemistry
- University Jaume I (UJI)
- Castelló 12071
- Spain
| | - Gladys Mínguez-Vega
- GROC UJI
- Institut de Noves Tecnologies de la Imatge (INIT), University Jaume I (UJI)
- Castelló 12071
- Spain
| | | | - Edson Leite
- CDMF-UFSCar-Universidade Federal de São Carlos
- 13565-905 São Carlos
- Brazil
- Brazilian Nanotechnology National Laboratory (LNNano)
- Brazilian Center for Research in Energy and Materials (CNPEM)
| | - Juan Andrés
- Department of Analytical and Physical Chemistry
- University Jaume I (UJI)
- Castelló 12071
- Spain
| | - Elson Longo
- CDMF-UFSCar-Universidade Federal de São Carlos
- 13565-905 São Carlos
- Brazil
| |
Collapse
|
9
|
Saikia H, Borah BJ, Bharali P. Room Temperature Reduction of Nitroaromatics Using Pd Nanoparticles Stabilized on Nano-CeO 2. ChemistrySelect 2017. [DOI: 10.1002/slct.201702082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Himadri Saikia
- Department of Chemical Sciences; Tezpur University; Napaam 784 028 India, Tel.: +91 3712 275064, Fax: +91 3712 267005
| | - Biraj Jyoti Borah
- Department of Chemical Sciences; Tezpur University; Napaam 784 028 India, Tel.: +91 3712 275064, Fax: +91 3712 267005
| | - Pankaj Bharali
- Department of Chemical Sciences; Tezpur University; Napaam 784 028 India, Tel.: +91 3712 275064, Fax: +91 3712 267005
| |
Collapse
|
10
|
Gargiulo J, Violi IL, Cerrota S, Chvátal L, Cortés E, Perassi EM, Diaz F, Zemánek P, Stefani FD. Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles. ACS NANO 2017; 11:9678-9688. [PMID: 28853862 DOI: 10.1021/acsnano.7b04136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Optical printing is a powerful all-optical method that allows the incorporation of colloidal nanoparticles (NPs) onto substrates with nanometric precision. Here, we present a systematic study of the accuracy of optical printing of Au and Ag NPs, using different laser powers and wavelengths. When using light of wavelength tuned to the localized surface plasmon resonance (LSPR) of the NPs, the accuracy improves as the laser power is reduced, whereas for wavelengths off the LSPR, the accuracy is independent of the laser power. Complementary studies of the printing times of the NPs reveal the roles of Brownian and deterministic motion. Calculated trajectories of the NPs, taking into account the interplay between optical forces, electrostatic forces, and Brownian motion, allowed us to rationalize the experimental results and gain a detailed insight into the mechanism of the printing process. A clear framework is laid out for future optimizations of optical printing and optical manipulation of NPs near substrates.
Collapse
Affiliation(s)
- Julián Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Santiago Cerrota
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Lukáš Chvátal
- Institute of Scientific Instruments of the Czech Academy of Sciences , Královopolská 147, 612 64 Brno, Czech Republic
| | - Emiliano Cortés
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Eduardo M Perassi
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| | - Fernando Diaz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences , Královopolská 147, 612 64 Brno, Czech Republic
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| |
Collapse
|
11
|
Gargiulo J, Brick T, Violi IL, Herrera FC, Shibanuma T, Albella P, Requejo FG, Cortés E, Maier SA, Stefani FD. Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. NANO LETTERS 2017; 17:5747-5755. [PMID: 28806511 DOI: 10.1021/acs.nanolett.7b02713] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Optical printing holds great potential to enable the use of the vast variety of colloidal nanoparticles (NPs) in nano- and microdevices and circuits. By means of optical forces, it enables the direct assembly of NPs, one by one, onto specific positions of solid surfaces with great flexibility of pattern design and no need of previous surface patterning. However, for unclear causes it was not possible to print identical NPs closer to each other than 300 nm. Here, we show that the repulsion restricting the optical printing of close by NPs arises from light absorption by the printed NPs and subsequent local heating. By optimizing heat dissipation, it is possible to reduce the minimum separation between NPs. Using a reduced graphene oxide layer on a sapphire substrate, we demonstrate for the first time the optical printing of Au-Au NP dimers. Modeling the experiments considering optical, thermophoretic, and thermo-osmotic forces we obtain a detailed understanding and a clear pathway for the optical printing fabrication of complex nano structures and circuits based on connected colloidal NPs.
Collapse
Affiliation(s)
- Julian Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Thomas Brick
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Facundo C Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Toshihiko Shibanuma
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Pablo Albella
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
- University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI), University of Las Palmas de Gran Canaria , 35017, Las Palmas de Gran Canaria, Spain
| | - Félix G Requejo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| |
Collapse
|
12
|
Babynina A, Fedoruk M, Kühler P, Meledin A, Döblinger M, Lohmüller T. Bending Gold Nanorods with Light. NANO LETTERS 2016; 16:6485-6490. [PMID: 27598653 DOI: 10.1021/acs.nanolett.6b03029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bent, one-by-one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.
Collapse
Affiliation(s)
- Anastasia Babynina
- Photonics and Optoelectronics Group, Department of Physics and Center for NanoScience (CeNS), LMU München , Amalienstraße 54, Munich 80799, Germany
| | - Michael Fedoruk
- Photonics and Optoelectronics Group, Department of Physics and Center for NanoScience (CeNS), LMU München , Amalienstraße 54, Munich 80799, Germany
| | - Paul Kühler
- Photonics and Optoelectronics Group, Department of Physics and Center for NanoScience (CeNS), LMU München , Amalienstraße 54, Munich 80799, Germany
| | - Alexander Meledin
- EMAT, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Markus Döblinger
- Department of Chemistry, LMU München , Butenandtstraße 5-13 (E), 81377 Munich, Germany
| | - Theobald Lohmüller
- Photonics and Optoelectronics Group, Department of Physics and Center for NanoScience (CeNS), LMU München , Amalienstraße 54, Munich 80799, Germany
- Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80539 Munich, Germany
| |
Collapse
|
13
|
Gargiulo J, Cerrota S, Cortés E, Violi IL, Stefani FD. Connecting Metallic Nanoparticles by Optical Printing. NANO LETTERS 2016; 16:1224-1229. [PMID: 26745330 DOI: 10.1021/acs.nanolett.5b04542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Optical printing is a simple and flexible method to bring colloidal nanoparticles from suspension to specific locations of a substrate. However, its application has been limited to the fabrication of arrays of isolated nanoparticles because, until now, it was never possible to bring nanoparticles closer together than approximately 300 nm. Here, we propose this limitation is due to thermophoretic repulsive forces generated by plasmonic heating of the NPs. We show how to overcome this obstacle and demonstrate the optical printing of connected nanoparticles with well-defined orientation. These experiments constitute a key step toward the fabrication by optical printing of functional nanostructures and microcircuits based on colloidal nanoparticles.
Collapse
Affiliation(s)
- Julián Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Santiago Cerrota
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Emiliano Cortés
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| |
Collapse
|
14
|
Shi Q, Si KJ, Sikdar D, Yap LW, Premaratne M, Cheng W. Two-Dimensional Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct Orientational Packing Orders. ACS NANO 2016; 10:967-976. [PMID: 26731313 DOI: 10.1021/acsnano.5b06206] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Anisotropic plasmonic nanoparticles have been successfully used as constituent elements for growing ordered nanoparticle arrays. However, orientational control over their spatial ordering remains challenging. Here, we report on a self-assembled two-dimensional (2D) nanoparticle liquid crystalline superstructure (NLCS) from bipyramid gold nanoparticles (BNPs), which showed four distinct orientational packing orders, corresponding to horizontal alignment (H-NLCS), circular arrangement (C-NLCS), slanted alignment (S-NLCS), and vertical alignment (V-NLCS) of constituent particle building elements. These packing orders are characteristic of the unique shape of BNPs because all four packing modes were observed for particles with various sizes. Nevertheless, only H-NLCS and V-NLCS packing orders were observed for the free-standing ordered array nanosheets formed from a drying-mediated self-assembly at the air/water interface of a sessile droplet. This is due to strong surface tension and the absence of particle-substrate interaction. In addition, we found the collective plasmonic coupling properties mainly depend on the packing type, and characteristic coupling peak locations depend on particle sizes. Interestingly, surface-enhanced Raman scattering (SERS) enhancements were heavily dependent on the orientational packing ordering. In particular, V-NLCS showed the highest Raman enhancement factor, which was about 77-fold greater than the H-NLCS and about 19-fold greater than C-NLCS. The results presented here reveal the nature and significance of orientational ordering in controlling plasmonic coupling and SERS enhancements of ordered plasmonic nanoparticle arrays.
Collapse
Affiliation(s)
- Qianqian Shi
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| | - Kae Jye Si
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| | | | - Lim Wei Yap
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| | | | - Wenlong Cheng
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
15
|
Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L, Käll M. Laser trapping of colloidal metal nanoparticles. ACS NANO 2015; 9:3453-3469. [PMID: 25808609 DOI: 10.1021/acsnano.5b00286] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Optical trapping using focused laser beams (laser tweezers) has been proven to be extremely useful for contactless manipulation of a variety of small objects, including biological cells, organelles within cells, and a wide range of other dielectric micro- and nano-objects. Colloidal metal nanoparticles have drawn increasing attention in the field of optical trapping because of their unique interactions with electromagnetic radiation, caused by surface plasmon resonance effects, enabling a large number of nano-optical applications of high current interest. Here we try to give a comprehensive overview of the field of laser trapping and manipulation of metal nanoparticles based on results reported in the recent literature. We also discuss and describe the fundamentals of optical forces in the context of plasmonic nanoparticles, including effects of polarization, optical angular momentum, and laser heating effects, as well as the various techniques that have been used to trap and manipulate metal nanoparticles. We conclude by suggesting possible directions for future research.
Collapse
Affiliation(s)
- Anni Lehmuskero
- †Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Peter Johansson
- †Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- ‡School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Halina Rubinsztein-Dunlop
- §Quantum Science Laboratory, School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Lianming Tong
- ∥Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- ⊥Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mikael Käll
- †Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
16
|
Urban AS, Carretero-Palacios S, Lutich AA, Lohmüller T, Feldmann J, Jäckel F. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. NANOSCALE 2014; 6:4458-4474. [PMID: 24664273 DOI: 10.1039/c3nr06617g] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This feature article discusses the optical trapping and manipulation of plasmonic nanoparticles, an area of current interest with potential applications in nanofabrication, sensing, analytics, biology and medicine. We give an overview over the basic theoretical concepts relating to optical forces, plasmon resonances and plasmonic heating. We discuss fundamental studies of plasmonic particles in optical traps and the temperature profiles around them. We place a particular emphasis on our own work employing optically trapped plasmonic nanoparticles towards nanofabrication, manipulation of biomimetic objects and sensing.
Collapse
Affiliation(s)
- Alexander S Urban
- Photonics and Optoelectronics Group, Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Burgin J, Si S, Delville MH, Delville JP. Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles. OPTICS EXPRESS 2014; 22:10139-10150. [PMID: 24921718 DOI: 10.1364/oe.22.010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report experimentally and theoretically on the significant exaltation of optical forces on microparticles when they are partially coated by metallic nanodots and shined with laser light within the surface plasmon resonance. Optical forces on both pure silica particles and silica-gold raspberries are characterized using an optical chromatography setup to measure the variations of the Stokes drag versus laser beam power. Results are compared to the Mie theory prediction for both pure dielectric particles and core-shell ones with a shell described as a continuous dielectric-metal composite of dielectric constant determined from the Maxwell-Garnett approach. The observed quantitative agreement demonstrates that radiation pressure forces are directly related to the metal concentration on the microparticle surface and that metallic nanodots increase the magnitude of optical forces compared to pure dielectric particles of the same overall size, even at very low metal concentration. Behaving as "micro-sized nanoparticles", the benefit of microparticles coated with metallic nanodots is thus twofold: it significantly enhances optofluidic manipulation and motion at the microscale, and brings nanometric optical, chemical or biological capabilities to the microscale.
Collapse
|
18
|
Co-catalytic and electro-kinetic properties of Au nanostructures dispersed in solvents of varying dipole moments. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.08.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Dacosta Fernandes B, Spuch-Calvar M, Baida H, Tréguer-Delapierre M, Oberlé J, Langot P, Burgin J. Acoustic vibrations of Au nano-bipyramids and their modification under Ag deposition: a perspective for the development of nanobalances. ACS NANO 2013; 7:7630-7639. [PMID: 23987911 DOI: 10.1021/nn402076m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We investigated the acoustic vibrations of gold nanobipyramids and bimetallic gold-silver core-shell bipyramids, synthesized by wet chemistry techniques, using a high-sensitivity pump-probe femtosecond setup. Three modes were observed and characterized in the gold core particles for lengths varying from 49 to 170 nm and diameters varying from 20 to 40 nm. The two strongest modes have been associated with the fundamental extensional and its first harmonic, and a weak mode has been associated with the fundamental radial mode, in very good agreement with numerical simulations. We then derived linear laws linking the periods to the dimensions both experimentally and numerically. To go further, we investigated the evolution of these modes under silver deposition on gold core bipyramids. We studied the evolution of the periods of the extensional modes, which were found to be in good qualitative agreement with numerical simulations. Moreover, we observed a strong enhancement of the radial mode amplitude when silver is deposited: we are typically sensitive to the deposition of 40 attograms of silver per gold core particle. This opens up possible applications in the field of mass sensing, where metallic nanobalances have an important role to play, taking advantage of their robustness and versatility.
Collapse
|
20
|
Shin YJ, Ringe E, Personick ML, Cardinal MF, Mirkin CA, Marks LD, Van Duyne RP, Hersam MC. Centrifugal shape sorting and optical response of polyhedral gold nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4023-4027. [PMID: 23788292 DOI: 10.1002/adma.201301278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/18/2013] [Indexed: 06/02/2023]
Abstract
A centrifugal route for separating small {110}-faceted gold nanostructures, namely rhombic dodecahedra (RD) and triangular bipyramids (BPs), which form simultaneously during synthesis and cannot be separated by means of conventional filtration methods, is presented. The centrifuged solution shows two distinct bands: i) RD and ii) BPs, as verified in the corresponding scanning electron microscopy images. The sorted BPs show a refractive index dependence 2.5 times that of the as-synthesized, unsorted mixture.
Collapse
Affiliation(s)
- Yu Jin Shin
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yan Z, Shah RA, Chado G, Gray SK, Pelton M, Scherer NF. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS NANO 2013; 7:1790-802. [PMID: 23363451 DOI: 10.1021/nn3059407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate assembly of spheroidal Ag nanoparticle clusters, chains and arrays induced by optical binding. Particles with diameters of 40 nm formed ordered clusters and chains in aqueous solution when illuminated by shaped optical fields with a wavelength of 800 nm; specifically, close-packed clusters were formed in cylindrically symmetric optical traps, and linear chains were formed in line traps. We developed a coupled-dipole model to calculate the optical forces between an arbitrary number of particles and successfully predicted the experimentally observed particle separations and arrangements as well as their dependence on the polarization of the incident light. This demonstrates that the interaction between these small Ag particles and light is well described by approximating the particles as point dipoles, showing that these experiments extend optical binding into the Rayleigh regime. For larger Ag nanoparticles, with diameters of approximately 100 nm, the optical-binding forces become comparable to the largest gradient forces in the optical trap, and the particles can arrange themselves into regular arrays or synthetic photonic lattices. Finally, we discuss the differences between our experimental observations and the point dipole theory and suggest factors that prevent the Ag nanoparticles from aggregating as expected from the theory.
Collapse
Affiliation(s)
- Zijie Yan
- Department of Chemistry and The James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yan Z, Jureller JE, Sweet J, Guffey MJ, Pelton M, Scherer NF. Three-dimensional optical trapping and manipulation of single silver nanowires. NANO LETTERS 2012; 12:5155-5161. [PMID: 22931238 DOI: 10.1021/nl302100n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the first experimental realization of all-optical trapping and manipulation of plasmonic nanowires in three dimensions. The optical beam used for trapping is the Fourier transform of a linearly polarized Bessel beam (termed FT-Bessel). The extended depth of focus of this beam enables the use of a retroreflection geometry to cancel radiation pressure in the beam propagation direction, making it possible to trap highly scattering and absorbing silver nanowires. Individual silver nanowires with lengths of several micrometers can be positioned by the trapping beam with a precision better than 100 nm and are oriented by the polarization of the trapping light with a precision of approximately 1°. Multiple nanowires can be trapped simultaneously in spatially separated maxima of the trapping field. Since trapping in the interferometric FT-Bessel potential is robust in bulk solution and near surfaces, it will enable the controlled assembly of metal nanowires into plasmonic nanostructures.
Collapse
Affiliation(s)
- Zijie Yan
- The James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yan Z, Sweet J, Jureller JE, Guffey MJ, Pelton M, Scherer NF. Controlling the position and orientation of single silver nanowires on a surface using structured optical fields. ACS NANO 2012; 6:8144-8155. [PMID: 22900883 DOI: 10.1021/nn302795j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate controlled trapping and manipulation of single silver (Ag) nanowires in two dimensions at a surface using structured light fields generated with a spatial light modulator. The Ag nanowires are attracted toward the regions of maximal optical intensity along the surface when the trapping laser light is linearly polarized and are repelled toward the minima of optical intensity when the light is circularly polarized. For linearly polarized light, stably trapped nanowires are oriented perpendicular to the polarization direction due to a torque induced by an asymmetrical response of the nanowire to the electric field. The attractive interactions with linearly polarized trapping laser light, which is at 800 nm for all measurements, enable stable trapping and translation of Ag nanowires in the antinodes of optical gratings and in zero-order Bessel beams. Trapped nanowires can be positioned and oriented on a transparent dielectric substrate, making possible the nonmechanical assembly of plasmonic nanostructures for particular functions.
Collapse
Affiliation(s)
- Zijie Yan
- The James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | | | | | | | |
Collapse
|
24
|
Lin PT, Lee PT. Efficient transportation of nano-sized particles along slotted photonic crystal waveguide. OPTICS EXPRESS 2012; 20:3192-3199. [PMID: 22330556 DOI: 10.1364/oe.20.003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We design a slotted photonic crystal waveguide (S-PhCW) and numerically propose that it can efficiently transport polystyrene particle with diameter as small as 50 nm in a 100 nm slot. Excellent optical confinement and slow light effect provided by the photonic crystal structure greatly enhance the optical force exerted on the particle. The S-PhCW can thus transport the particle with optical propulsion force as strong as 5.3 pN/W, which is over 10 times stronger than that generated by the slotted strip waveguide (S-SW). In addition, the vertical optical attraction force induced in the S-PhCW is over 2 times stronger than that of the S-SW. Therefore, the S-PhCW transports particles not only efficiently but also stably. We anticipate this waveguide structure will be beneficial for the future lab-on-chip development.
Collapse
Affiliation(s)
- Pin-Tso Lin
- Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Rm. 413 CPT Building, 1001 University Road, Hsinchu 300, Taiwan
| | | |
Collapse
|