1
|
Fei L, Zhang ZY, Tan Y, Ye T, Dong D, Yin Y, Li T, Wang C. Efficient and Robust Molecular Solar Thermal Fabric for Personal Thermal Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209768. [PMID: 36738144 DOI: 10.1002/adma.202209768] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Molecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy-storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole-containing microcapsules with a deep-UV-filter shell is reported. The MOST fabric, which can co-harvest solar and thermal energy, achieves efficient photocharging and photo-discharging (>90% photoconversion), a high energy density of 2.5 kJ m-2 , and long-term storage sustainability at month scale. Moreover, it can undergo multiple cycles of washing, rubbing, and recharging without significant loss of energy-storage capacity. This MOST microcapsule strategy is easily used for the scalable production of a MOST fabric for solar thermal moxibustion. This achievement offers a promising route for the application of wearable MOST materials with high energy-storage performance and robustness in PTM.
Collapse
Affiliation(s)
- Liang Fei
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongsong Tan
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Ting Ye
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunjie Yin
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| |
Collapse
|
2
|
Luu K, Park SY. Shape-Persistent Liquid Crystal Elastomers with Cis-Stable Crosslinkers Containing Ortho-Methyl-Substituted Azobenzene. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Khuong Luu
- School of Applied Chemical Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Young Park
- School of Applied Chemical Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Sadilov I, Petukhov D, Brotsman V, Chumakova A, Eliseev A, Eliseev A. Light Response and Switching Behavior of Graphene Oxide Membranes Modified with Azobenzene Compounds. MEMBRANES 2022; 12:1131. [PMID: 36422123 PMCID: PMC9699301 DOI: 10.3390/membranes12111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Here, we report on the fabrication of light-switchable and light-responsive membranes based on graphene oxide (GO) modified with azobenzene compounds. Azobenzene and para-aminoazobenzene were grafted onto graphene oxide layers by covalent attachment/condensation reaction prior to the membranes' assembly. The modification of GO was proven by the UV-vis, IR, Raman and photoelectron spectroscopy. The membrane's light-responsive properties were investigated in relation to the permeation of permanent gases and water vapors under UV and IR irradiation. Light irradiation does not influence the permeance of permanent gases, while it strongly affected that of water vapors. Both switching and irradiation-induced water permeance variation is described, and they were attributed to over 20% of the initial permeance. According to in situ diffraction studies, the effect is ascribed to the change to the interlayer distance between the graphene oxide nanoflakes, which increases under UV irradiation to ~1.5 nm while it decreases under IR irradiation to ~0.9 nm at 100% RH. The last part occurs due to the isomerization of grafted azobenzene under UV irradiation, pushing apart the GO layers, as confirmed by semi-empirical modelling.
Collapse
Affiliation(s)
- Ilia Sadilov
- Department of Materials Science, Lomonosov Moscow State University, 1-73 Leninskiye Gory, 119991 Moscow, Russia
| | - Dmitrii Petukhov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Victor Brotsman
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexandra Chumakova
- European Synchrotron Radiation Facility, 71 Av. des Martyrs, F-38042 Grenoble, France
| | - Artem Eliseev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Andrei Eliseev
- Department of Materials Science, Lomonosov Moscow State University, 1-73 Leninskiye Gory, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
4
|
Shin J, Eo JS, Jeon T, Lee T, Wang G. Advances of Various Heterogeneous Structure Types in Molecular Junction Systems and Their Charge Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202399. [PMID: 35975456 PMCID: PMC9596861 DOI: 10.1002/advs.202202399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Indexed: 05/31/2023]
Abstract
Molecular electronics that can produce functional electronic circuits using a single molecule or molecular ensemble remains an attractive research field because it not only represents an essential step toward realizing ultimate electronic device scaling but may also expand our understanding of the intrinsic quantum transports at the molecular level. Recently, in order to overcome the difficulties inherent in the conventional approach to studying molecular electronics and developing functional device applications, this field has attempted to diversify the electrical characteristics and device architectures using various types of heterogeneous structures in molecular junctions. This review summarizes recent efforts devoted to functional devices with molecular heterostructures. Diverse molecules and materials can be combined and incorporated in such two- and three-terminal heterojunction structures, to achieve desirable electronic functionalities. The heterojunction structures, charge transport mechanisms, and possible strategies for implementing electronic functions using various hetero unit materials are presented sequentially. In addition, the applicability and merits of molecular heterojunction structures, as well as the anticipated challenges associated with their implementation in device applications are discussed and summarized. This review will contribute to a deeper understanding of charge transport through molecular heterojunction, and it may pave the way toward desirable electronic functionalities in molecular electronics applications.
Collapse
Affiliation(s)
- Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of ChemistryRice University6100 Main StreetHoustonTexas77005United States
| | - Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takhee Lee
- Department of Physics and AstronomyInstitute of Applied PhysicsSeoul National UniversitySeoul08826Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of Integrative Energy EngineeringKorea UniversitySeoul02841Korea
- Center for Neuromorphic EngineeringKorea Institute of Science and TechnologySeoul02792Korea
| |
Collapse
|
5
|
Zhou L, Pusey-Nazzaro L, Ren G, Chen L, Liu L, Zhang W, Yang L, Zhou J, Han J. Photoactive Control of Surface-Enhanced Raman Scattering with Reduced Graphene Oxide in Gas Atmosphere. ACS NANO 2022; 16:577-587. [PMID: 34927434 DOI: 10.1021/acsnano.1c07695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an ultrahigh sensitive detection technique for a variety of research fields. Both electromagnetic and chemical enhancement mechanisms are generally considered to contribute simultaneously to SERS signals. However, it is difficult to actively control the enhancement of SERS signals after the substrate is fabricated, since tuning one or both of the aforementioned enhancement mechanisms remains an experimental challenge. Here, we propose a method for actively implementing the photoinduced modulation of SERS signals, which is that under UV irradiation, the Fermi level of graphene can be dynamically modulated due to the adsorption and desorption of gas molecules. The method is validated in gas atmospheres of O2, CO2, N2, and air and also demonstrate its generality by different analytes. In addition, the method was successfully applied to the trace detection of pesticides on fruit peels in air environment, which show its practical implications in sensing.
Collapse
Affiliation(s)
- Lu Zhou
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Lauren Pusey-Nazzaro
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Guanhua Ren
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ligang Chen
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Liyuan Liu
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wentao Zhang
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Li Yang
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jiaguang Han
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Cho EH, Luu K, Park SY. Mechano-Actuated Light-Responsive Main-Chain Liquid Crystal Elastomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eun-hye Cho
- School of Applied Chemical Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Khuong Luu
- School of Applied Chemical Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-young Park
- School of Applied Chemical Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Mravec B, Marini A, Tommasini M, Filo J, Cigáň M, Mantero M, Tosi S, Canepa M, Bianco A. Structural and Spectroscopic Properties of Benzoylpyridine‐Based Hydrazones. Chemphyschem 2021; 22:533-541. [DOI: 10.1002/cphc.202000941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/24/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Bernard Mravec
- Institute of Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, 842 15 Bratislava Slovakia
| | - Anna Marini
- Dipartimento di Fisica Università di Genova Via Dodecaneso 33 Genova 16146 Italy
| | - Matteo Tommasini
- Dipartimento di Chimica Materiali e Ingegneria Chimica Politecnico di Milano P.zza Leonardo da Vinci 32 20133 Milano Italy
| | - Juraj Filo
- Institute of Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, 842 15 Bratislava Slovakia
| | - Marek Cigáň
- Institute of Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, 842 15 Bratislava Slovakia
| | | | - Silvano Tosi
- Dipartimento di Fisica Università di Genova Via Dodecaneso 33 Genova 16146 Italy
- INFN Sezione di Genova Via Dodecaneso 33 Genova 16146 Italy
| | - Maurizio Canepa
- OPTMATLAB Dipartimento di Fisica Università di Genova Via Dodecaneso 33 Genova 16146 Italy
| | - Andrea Bianco
- INAF – Osservatorio Astronomico di Brera via Bianchi 46 23807 Merate Italy
| |
Collapse
|
8
|
Riaz S, Friedrichs G. Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Self-assembled monolayers (SAMs) of azobenzene (AB) functionalized alkyl thiols on gold diluted with simple alkyl thiols provide a straightforward way to photochromic surfaces with high and tunable photoswitching efficiency. Trans-cis isomerization of the AB molecule changes the physical properties of the surface, including the nonlinear optical (NLO) response. Vibrational sum-frequency generation (VSFG) spectroscopy as a nonlinear type of laser spectroscopy offers surface- and orientation-sensitive insight into the molecular structure of mixed SAMs. In this study, VSFG as well as ultraviolet-visible (UV/Vis) spectroscopy has been employed to investigate the morphology, molecular structure, and NLO response of mixed SAMs with systematically varied surface composition. Methylazobenzene (MeAB) has been used as the molecular switch with the methyl substituent serving as orientational VSFG marker. Both short-chain and long-chain alkyl thiol co-ligands have been used to gain insight into the interplay between SAM structure and sterical constraints that are known to limit the free switching volume. Underlining the dominating role of sterical effects for controlling photochromic properties, a strong inhibition of the photoswitching efficiency and NLO response has been observed for the SAMs with an alkyl thiol co-ligand long enough to spatially extend into the layer of the MeAB chromophore. Overall, with <12% signal change, the relative NLO switching contrasts remained low in all cases. VSFG spectral trends clearly revealed that the presumably higher photoswitching efficiency upon dilution with the co-ligand is counteracted by a loss of structural order of the chromophore.
Collapse
Affiliation(s)
- Saira Riaz
- Islamabad College for Girls , F-6/2 , Islamabad, 44000 , Pakistan
| | - Gernot Friedrichs
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Str. 1, 24118 , Kiel , Germany
| |
Collapse
|
9
|
Zhang L, Zhang X, Feng P, Han Q, Liu W, Lu Y, Song C, Li F. Photodriven Regeneration of G-Quadruplex Aptasensor for Sensitively Detecting Thrombin. Anal Chem 2020; 92:7419-7424. [PMID: 32268723 DOI: 10.1021/acs.analchem.0c00380] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aptamers have been widely used as recognition elements in electrochemical sensors. However, as the most expensive consumable, the aptasensors regeneration is still a critical challenge for sustainable feasibility and attracting great interest from researchers, due to the high affinity between the aptamers and their targets (the dissociation constant Kd is low to subnanomolar or nanomolar). In this work, we propose a photochromic five-azobenzene-inserted thrombin-aptamer based aptasensor to improve the regenerativity. With ultraviolet light exposure, the trans-structure of azobenzene changes to cis-structure, and open the folded aptamer to realize the aptasensor regeneration. The limit of detection can be sensitive to 3 pM (S/N = 3). The thrombin concentrations were detected to be 2.48 ± 0.02 and 20.26 ± 0.98 nM (n = 3) in duck whole blood and blood serum, respectively. Utilizing surface plasmon resonance, we demonstrated that the certain azobenzene moieties can exactly increase Kd of aptamer-thrombin bounding. The photodriven conversion of thrombin-aptamer from G-quadruplex to loosen structure approaches a convenient regeneration for aptasensor, which will promote its popularization and sustainable feasibility.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Zhang
- College of Chemistry and Materials Science Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- College of Chemistry and Materials Science Jinan University, Guangzhou 510632, China
| | - Qi Han
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Wei Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453000, China
| | - Ying Lu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Chunxia Song
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Fengyu Li
- College of Chemistry and Materials Science Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Zhao C, Xu X, Ferhan AR, Chiang N, Jackman JA, Yang Q, Liu W, Andrews AM, Cho NJ, Weiss PS. Scalable Fabrication of Quasi-One-Dimensional Gold Nanoribbons for Plasmonic Sensing. NANO LETTERS 2020; 20:1747-1754. [PMID: 32027140 PMCID: PMC7067626 DOI: 10.1021/acs.nanolett.9b04963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plasmonic nanostructures have a wide range of applications, including chemical and biological sensing. However, the development of techniques to fabricate submicrometer-sized plasmonic structures over large scales remains challenging. We demonstrate a high-throughput, cost-effective approach to fabricate Au nanoribbons via chemical lift-off lithography (CLL). Commercial HD-DVDs were used as large-area templates for CLL. Transparent glass slides were coated with Au/Ti films and functionalized with self-assembled alkanethiolate monolayers. Monolayers were patterned with lines via CLL. The lifted-off, exposed regions of underlying Au were selectively etched into large-area grating-like patterns (200 nm line width; 400 nm pitch; 60 nm height). After removal of the remaining monolayers, a thin In2O3 layer was deposited and the resulting gratings were used as plasmonic sensors. Distinct features in the extinction spectra varied in their responses to refractive index changes in the solution environment with a maximum bulk sensitivity of ∼510 nm/refractive index unit. Sensitivity to local refractive index changes in the near-field was also achieved, as evidenced by real-time tracking of lipid vesicle or protein adsorption. These findings show how CLL provides a simple and economical means to pattern large-area plasmonic nanostructures for applications in optoelectronics and sensing.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, & Institute for Advanced Study, Tongji University, Shanghai 201804, China
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Naihao Chiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Joshua A. Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qing Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Zheng LQ, Yang S, Lan J, Gyr L, Goubert G, Qian H, Aprahamian I, Zenobi R. Solution Phase and Surface Photoisomerization of a Hydrazone Switch with a Long Thermal Half-Life. J Am Chem Soc 2019; 141:17637-17645. [DOI: 10.1021/jacs.9b07057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li-Qing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Sirun Yang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Luzia Gyr
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Hai Qian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, 505 S Mathews Avenue, Urbana, Illinois, 61801, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| |
Collapse
|
12
|
Begum N, Kaur S, Mohiuddin G, Nandi R, Gupta SP, Rao NVS, Pal SK. Structural Understanding, Photoswitchability, and Supergelation of a New Class of Four Ring-Based Bent-Shaped Liquid Crystal. J Phys Chem B 2019; 123:4443-4451. [PMID: 31042387 DOI: 10.1021/acs.jpcb.9b01456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a new type of azobenzene-based unsymmetrical bent-core molecules exhibiting photoswitchability in the liquid crystalline state, solid state, and solution state and in mixture upon UV irradiation and intense visible light. The compounds exhibited solid-state photochromism upon exposure to UV light, whereas in liquid crystalline state, reversible phase transitions were observed via both UV irradiation and intense visible light exposure. Crystal structure analysis reveals the basic structural understanding such as nonplanar bent molecular shape, antiparallel arrangement of the polar bent molecules, intra- and intermolecular hydrogen bonding, and different π-π interactions and interdigitation of long alkyl chains. The compounds are also found to act as supergelator toward various organic solvents. Hence, this is an excellent example of such potential bent-shaped liquid crystals that promise an immense perspective for device applications such as optical storage, molecular switches, etc.
Collapse
Affiliation(s)
- Nazma Begum
- Department of Chemistry , Assam University , Silchar 788011 , Assam , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector-81 , Knowledge City, Manauli 140306 , India
| | - Supreet Kaur
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector-81 , Knowledge City, Manauli 140306 , India
| | - Golam Mohiuddin
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector-81 , Knowledge City, Manauli 140306 , India
| | - Rajib Nandi
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector-81 , Knowledge City, Manauli 140306 , India
| | | | - Nandiraju V S Rao
- Department of Chemistry , Assam University , Silchar 788011 , Assam , India
| | - Santanu Kumar Pal
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector-81 , Knowledge City, Manauli 140306 , India
| |
Collapse
|
13
|
Pang W, Xue J, Pang H. A High Energy Density Azobenzene/Graphene Oxide Hybrid with Weak Nonbonding Interactions for Solar Thermal Storage. Sci Rep 2019; 9:5224. [PMID: 30914751 PMCID: PMC6435660 DOI: 10.1038/s41598-019-41563-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Incorporating photochromic chromophores into polymer composites provides the possibility of a reversible photoswitch of the intrinsic properties of these materials. In this paper we report a route to attach azobenzene (AZO) moiety covalently to graphene oxide (GO) to create chromophore/graphene oxide (AZO-GO) hybrid, in which GO is both part of the chromophore and the template. Due to the high grafting density of AZO moiety and the low mass of the novel structure, the hybrid is a potential solar thermal storage material with high energy density of about 240 Wh·kg-1. It is found that C-H···π interaction between the cis-AZO chromophores and the aromatic rings of the substrate induces collective electronic modifications of GO at critical percentage of cis-isomers and reduce the thermal barrier of π-π* transition of the chromophores directly, which results in two sections of first-order reactions during the photoisomerization of trans- to cis-hybrid and also thermally stabilizes the cis-hybrid. Our findings demonstrate that high-performance AZO-GO hybrid can be manipulated by optimizing intermolecular nonbonding interactions.
Collapse
Affiliation(s)
- Wenhui Pang
- National Joint Engineering Laboratory of optical conversion materials and technology, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jijun Xue
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Hua Pang
- National Joint Engineering Laboratory of optical conversion materials and technology, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Zhang X, Zhang X, Luo C, Liu Z, Chen Y, Dong S, Jiang C, Yang S, Wang F, Xiao X. Volume-Enhanced Raman Scattering Detection of Viruses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805516. [PMID: 30706645 DOI: 10.1002/smll.201805516] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/16/2019] [Indexed: 05/18/2023]
Abstract
Virus detection and analysis are of critical importance in biological fields and medicine. Surface-enhanced Raman scattering (SERS) has shown great promise in small molecule and even single molecule detection, and can provide fingerprint signals of molecules. Despite the powerful detection capabilities of SERS, the size discrepancy between the SERS "hot spots" (generally, <10 nm) and viruses (usually, sub-100 nm) yields poor detection reliability of viruses. Inspired by the concept of molecular imprinting, a volume-enhanced Raman scattering (VERS) substrate composed of hollow nanocones at the bottom of microbowls (HNCMB) is developed. The hollow nanocones of the resulting VERS substrates serve a twofold purpose: 1) extending the region of Raman signal enhancement from the nanocone surface (e.g., surface "hot spots") to the hollow area within the cone (e.g., volume "hot spots")-a novel method of Raman signal enhancement, and 2) directing analyte such as viruses of a wide range of sizes to those VERS "hot spots" while simultaneously increasing the surface area contributing to SERS. Using HNCMB VERS substrates, greatly improved Raman signals of single viruses are demonstrated, an achievement with important implications in disease diagnostics and monitoring, biomedical fields, as well as in clinical treatment.
Collapse
Affiliation(s)
- Xingang Zhang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Xiaolei Zhang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Changliang Luo
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhengqi Liu
- Institute of Optoelectronic Materials and Technology, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang, 330022, China
| | - Yiyun Chen
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Shilian Dong
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Changzhong Jiang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fubing Wang
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiangheng Xiao
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
15
|
Schuster S, Füser M, Asyuda A, Cyganik P, Terfort A, Zharnikov M. Photoisomerization of azobenzene-substituted alkanethiolates on Au(111) substrates in the context of work function variation: the effect of structure and packing density. Phys Chem Chem Phys 2019; 21:9098-9105. [PMID: 31017144 DOI: 10.1039/c9cp00255c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoisomerization of a series of custom-designed, azobenzene-substituted alkanethiolate (AT) self-assembled monolayers (SAMs) on Au(111) substrates was studied in the context of work function variation, using Kelvin probe measurements as a transduction technique. These SAMs featured variable packing density (by ∼14%; due to the odd-even effects) and, as an option, were additionally decorated with the electron donating/withdrawing -CH3 and -CF3 tail group, respectively, which induce additional dipole moments. The efficiency of photoisomerization and the respective extent of work function variation (ΔΦ) were found to be quite low and independent of the packing density in the SAMs, within the given odd-even packing density variation. They could only be increased, up to ca. 40 meV for ΔΦ, by mixing the azobenzene-substituted ATs with shorter "matrix" molecules, which were introduced for a partial release of the sterical constraints. The ΔΦ values for the SAMs decorated with the -CH3 and -CF3 tail groups were found to be lower than those for the monolayers without such a decoration, which correlated well with the theoretical estimates for the change of the dipole moment of the relevant molecules upon the photoisomerization.
Collapse
Affiliation(s)
- Swen Schuster
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Yu Y, Liu Y, Yang S. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates. ACS Sens 2018; 3:2343-2350. [PMID: 30350595 DOI: 10.1021/acssensors.8b00711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanoparticle clusters have important applications in plasmonics and optical sensing fields. Various methods have been used to construct nanoparticle clusters, represented by assembling preprepared nanoparticles using DNA. However, preparation of nanoparticle clusters using a one-step method is still challenging. Herein, by using prepatterned microscale bowls as individual reaction containers, clusters of Au nanoparticles with a homogeneous structure are electrodeposited at the bottom of each bowl. The structure of the nanoparticle clusters can be simply manipulated by varying electrodeposition parameters. After coating these Au nanoparticle cluster-in-bowl arrays with a thin layer of Ag film, they can be used as surface enhanced Raman spectroscopy (SERS) substrates with an SERS enhancement factor of ∼108. Importantly, the concave bowl structures can facilitate delivery of the analytes into the crevices between the bowls and the nanoparticle clusters where SERS "hot spots" (or sensitive sites) are located. The crevices with a gradually changed gap distance between the concave bowl structure and the nanoparticle clusters are excellent traps for catching and SERS sensing of biospecies with varied sizes (e.g., viruses and proteins). We demonstrated sensitive SERS detection of viruses and proteins using the nanoparticle-cluster-in-bowl SERS substrates. This technique has the ability to control the resulting structure at specific locations with electrodeposited materials, which enables new opportunities for assembling complex surface patterns with diverse applications in optical and plasmonic fields.
Collapse
Affiliation(s)
- Yanling Wang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yangchun Yu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Wang Y, Kang Y, Wang WY, Ding Q, Zhou J, Yang S. Circumventing silver oxidation induced performance degradation of silver surface-enhanced Raman scattering substrates. NANOTECHNOLOGY 2018; 29:414001. [PMID: 30052528 DOI: 10.1088/1361-6528/aad678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been recognized as a promising sensing technique in biomedical/biosensing applications and analytical chemistry. Silver (Ag) nanostructures have the strongest SERS enhancement, but suffer from severe enhancement degradation induced by oxidation. Here, we introduce electrochemical reduction of silver oxide to produce Ag SERS substrates on request to partially circumvent the SERS enhancement degradation problem of Ag SERS substrates. Silver oxide nanostructures were first prepared in pure silver citrate aqueous solutions with controllable morphologies depending on the electrodeposition parameters. The transition process from silver oxide to Ag was investigated by density functional theory calculations. Based on the understanding of the transition mechanism, heating treatment, applying reducing agent, and electrochemical reduction were adopted to transform silver oxide to Ag. Notably, no organic agents were introduced neither in the electrodeposition of silver oxide nor electrochemical transformation of silver oxide to Ag. The electrochemical reduction strategy could produce Ag SERS substrates with a 'clean' surface with outstanding SERS performance in a simple as well as cost and time effective manner. Ag SERS substrates can be used in biomedical/biosensing fields. The approach through electrochemical reduction of silver oxide to generate Ag SERS substrate may push forward practical application process of Ag SERS substrates.
Collapse
Affiliation(s)
- Yanling Wang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Xie Z, Duan S, Tian G, Wang CK, Luo Y. Theoretical modeling of tip-enhanced resonance Raman images of switchable azobenzene molecules on Au(111). NANOSCALE 2018; 10:11850-11860. [PMID: 29897090 DOI: 10.1039/c8nr01988f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With a highly localized plasmonic field, tip-enhanced Raman spectroscopy (TERS) images have reached atomic-scale resolution, providing an optical means to explore the structure of a single molecule. We have applied the recently developed theoretical method to simulate the TERS images of trans and cis azobenzene as well as its derivatives on Au(111). Our theoretical results reveal that when the first excited state is resonantly excited, TERS images from a highly confined plasmonic field can effectively distinguish the isomer configurations of the adsorbates. The decay of the plasmonic field along the surface normal can be further used to distinguish different nonplanar cis configurations. Moreover, subtle characteristics of different molecular configurations can also be identified from the TERS images of other resonant excited states with a super-high confined plasmonic field. These findings serve as good references for future TERS experiments on molecular isomers.
Collapse
Affiliation(s)
- Zhen Xie
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | | | | | | | | |
Collapse
|
19
|
Wang X, Ma G, Li A, Yu J, Yang Z, Lin J, Li A, Han X, Guo L. Composition-adjustable Ag-Au substitutional alloy microcages enabling tunable plasmon resonance for ultrasensitive SERS. Chem Sci 2018; 9:4009-4015. [PMID: 29862005 PMCID: PMC5944819 DOI: 10.1039/c8sc00915e] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
Engineering the surface plasmon resonance (SPR) properties is a critical issue for improving device performance in the fields of plasmonics, nanophotonics, optoelectronics, and electrochemistry. Here, we demonstrated a programmable manipulation of the surface plasmon resonance (SPR) effect using composition-adjustable Ag-Au substitutional alloy microcages (SAMCs) through a facile NaBH4-cooperative galvanic replacement reaction. The SPR frequency of the Ag-Au SAMCs can be continuously and exquisitely manipulated without resonance damping or broadening via accurate adjustment of the elemental composition distribution at the perfect homogeneity on the atomic-level. Significantly, both the tunable SPR frequency and excellent chemical stability synergistically endow the hollow Ag-Au SAMCs with excellent SERS sensitivity and reproducibility, which lays a foundation for the realization of trace detection of thiram at an ultralow concentration of 1 × 10-12 M. This strategy is a promising candidate for efficient promotion of the SERS activity for metal-based substrates.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Chemistry , Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology , Ministry of Education , Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing , P. R. China .
| | - Guanshui Ma
- School of Chemistry , Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology , Ministry of Education , Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing , P. R. China .
| | - Anran Li
- School of Chemistry , Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology , Ministry of Education , Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing , P. R. China .
| | - Jian Yu
- School of Chemistry , Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology , Ministry of Education , Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing , P. R. China .
| | - Zhao Yang
- School of Chemistry , Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology , Ministry of Education , Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing , P. R. China .
| | - Jie Lin
- School of Chemistry , Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology , Ministry of Education , Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing , P. R. China .
| | - Ang Li
- Beijing Key Lab of Microstructure and Property of Advanced Materials , Beijing University of Technology , Beijing 100024 , P. R. China
| | - Xiaodong Han
- Beijing Key Lab of Microstructure and Property of Advanced Materials , Beijing University of Technology , Beijing 100024 , P. R. China
| | - Lin Guo
- School of Chemistry , Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology , Ministry of Education , Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing , P. R. China .
| |
Collapse
|
20
|
Walke P, Fujita Y, Peeters W, Toyouchi S, Frederickx W, De Feyter S, Uji-I H. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe. NANOSCALE 2018; 10:7556-7565. [PMID: 29637970 PMCID: PMC5985653 DOI: 10.1039/c8nr02225a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 06/01/2023]
Abstract
Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.
Collapse
Affiliation(s)
- Peter Walke
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium.
| | - Yasuhiko Fujita
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium. and Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga 520-8567, Japan
| | - Wannes Peeters
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium.
| | - Shuichi Toyouchi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium.
| | - Wout Frederickx
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium.
| | - Steven De Feyter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium.
| | - Hiroshi Uji-I
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium. and RIES, Hokkaido University, N20 W10, Kita-Ward Sapporo 001-0020, Japan
| |
Collapse
|
21
|
Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
A 1064 nm Dispersive Raman Spectral Imaging System for Food Safety and Quality Evaluation. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Tavadze P, Avendaño Franco G, Ren P, Wen X, Li Y, Lewis JP. A Machine-Driven Hunt for Global Reaction Coordinates of Azobenzene Photoisomerization. J Am Chem Soc 2017; 140:285-290. [PMID: 29235856 DOI: 10.1021/jacs.7b10030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedram Tavadze
- Department
of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, United States
| | - Guillermo Avendaño Franco
- Department
of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, United States
| | - Pengju Ren
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Synfuels China Co.
Ltd., Huairou, Beijing 101407, China
| | - Xiaodong Wen
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Synfuels China Co.
Ltd., Huairou, Beijing 101407, China
| | - Yongwang Li
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Synfuels China Co.
Ltd., Huairou, Beijing 101407, China
| | - James P. Lewis
- Department
of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, United States
| |
Collapse
|
24
|
Zheng LQ, Wang X, Shao F, Hegner M, Zenobi R. Nanoscale Chemical Imaging of Reversible Photoisomerization of an Azobenzene-Thiol Self-Assembled Monolayer by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2017; 57:1025-1029. [DOI: 10.1002/anie.201710443] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Li-Qing Zheng
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| | - Xing Wang
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| | - Feng Shao
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| | - Martin Hegner
- Center for Research on Adaptive Nanostructures and Nanodevices; School of Physics; Trinity College Dublin; Dublin 2 Ireland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| |
Collapse
|
25
|
Zheng LQ, Wang X, Shao F, Hegner M, Zenobi R. Nanoscale Chemical Imaging of Reversible Photoisomerization of an Azobenzene-Thiol Self-Assembled Monolayer by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li-Qing Zheng
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| | - Xing Wang
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| | - Feng Shao
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| | - Martin Hegner
- Center for Research on Adaptive Nanostructures and Nanodevices; School of Physics; Trinity College Dublin; Dublin 2 Ireland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology; ETH Zurich; 8093 Zurich Switzerland
| |
Collapse
|
26
|
Xu X, Yang Q, Wattanatorn N, Zhao C, Chiang N, Jonas SJ, Weiss PS. Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures. ACS NANO 2017; 11:10384-10391. [PMID: 28956898 DOI: 10.1021/acsnano.7b05472] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While three-dimensional (3D) configurable hierarchical nanostructures have wide ranging applications in electronics, biology, and optics, finding scalable approaches remains a challenge. We report a robust and general strategy called multiple-patterning nanosphere lithography (MP-NSL) for the fabrication of periodic 3D hierarchical nanostructures in a highly scalable and tunable manner. This nanofabrication technique exploits the selected and repeated etching of polymer nanospheres that serve as resists and that can be shaped in parallel for each processing step. The application of MP-NSL enables the fabrication of periodic, vertically aligned Si nanotubes at the wafer scale with nanometer-scale control in three dimensions including outer/inner diameters, heights/hole-depths, and pitches. The MP-NSL method was utilized to construct 3D periodic hierarchical hybrid nanostructures such as multilevel solid/hollow nanotowers where the height and diameter of each level of each structure can be configured precisely as well as 3D concentric plasmonic nanodisk/nanorings with tunable optical properties on a variety of substrates.
Collapse
Affiliation(s)
- Xiaobin Xu
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Pediatrics, David Geffen School of Medicine, ∥Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⊥Children's Discovery and Innovation Institute, and #Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Qing Yang
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Pediatrics, David Geffen School of Medicine, ∥Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⊥Children's Discovery and Innovation Institute, and #Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Natcha Wattanatorn
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Pediatrics, David Geffen School of Medicine, ∥Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⊥Children's Discovery and Innovation Institute, and #Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Pediatrics, David Geffen School of Medicine, ∥Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⊥Children's Discovery and Innovation Institute, and #Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Naihao Chiang
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Pediatrics, David Geffen School of Medicine, ∥Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⊥Children's Discovery and Innovation Institute, and #Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Steven J Jonas
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Pediatrics, David Geffen School of Medicine, ∥Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⊥Children's Discovery and Innovation Institute, and #Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Pediatrics, David Geffen School of Medicine, ∥Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⊥Children's Discovery and Innovation Institute, and #Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Ma Y, Promthaveepong K, Li N. Gold Superparticles Functionalized with Azobenzene Derivatives: SERS Nanotags with Strong Signals. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10530-10536. [PMID: 28263056 DOI: 10.1021/acsami.7b01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The surface-enhanced Raman spectroscopy (SERS) nanotag was proposed as a substitute for fluorescent dye for imaging and biosensors several decades ago. However, its weak signal and poor reproducibility has hindered its application. Here, we report a new strategy to form Au superparticles (AuSPs) with high SERS enhancement via one-pot formation and self-assembly of Au nanoparticles (NPs). An azobenzene-carrying Raman reporter was synthesized to exhibit a large Raman cross-section and multiple bands. The self-assembly of the Raman reporter on AuSPs generated SERS nanotags with intense signals. A Raman reporter carrying boronic acid and azobenzene groups displayed six distinctive bands. Its corresponding SERS nanotag demonstrated a high sensing ability toward glycoprotein through aggregation-induced SERS enhancement or as a substitute for labeled antibodies in an immunoassay of the glycoprotein.
Collapse
Affiliation(s)
- Ying Ma
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Engineering Block 4, Singapore 117583, Singapore
| | - Kittithat Promthaveepong
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Engineering Block 4, Singapore 117583, Singapore
| | - Nan Li
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
28
|
Abstract
We report a new chemical sensing platform on a single surface-enhanced Raman scattering (SERS) particle. A cabbage-like Au microparticle (CLMP) with high SERS enhancement was applied as an ultrasensitive SERS substrate. A new Raman reporter bis[4,4'-[dithiodiphenyl azo-phenol] (DTDPAP) was synthesized to display multiple fingerprints and high reactivity toward sodium dithionite. The reaction of DTDPAP with sodium dithionite was in situ monitored by SERS on a single CLMP. The DTDPAP fingerprint change is dependent on the sodium dithionite concentration, providing a simple and sensitive method for sodium dithionite profiling.
Collapse
Affiliation(s)
- Ying Ma
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Kittithat Promthaveepong
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Nan Li
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
29
|
Johny M, Vijayalakshmi K, Das A, Roy P, Mishra A, Dasgupta J. Modulating the Phe–Phe dipeptide aggregation landscape via covalent attachment of an azobenzene photoswitch. Chem Commun (Camb) 2017; 53:9348-9351. [DOI: 10.1039/c7cc04106c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A covalently modified trans-H-(l)AzoPhe–Phe–OH dipeptide shows reversible photo-switching between its native fibril and vesicle aggregate morphology.
Collapse
Affiliation(s)
- Melby Johny
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai
- India
| | | | - Ankita Das
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai
- India
| | - Palas Roy
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai
- India
| | - Aseem Mishra
- KIIT-Technology Business Incubator & KIIT-School of Biotechnology
- KIIT University
- Bhubaneswar
- India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai
- India
| |
Collapse
|
30
|
Caddy JS, Faust TB, Walton IM, Cox JM, Benedict JB, Solomon MB, Southon PD, Kepert CJ, D'Alessandro DM. Photoactive and Physical Properties of an Azobenzene-Containing Coordination Framework. Aust J Chem 2017. [DOI: 10.1071/ch17215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new three-dimensional coordination framework, [Zn4(tbazip)3(bpe)2(OH)2]·bpe·{solvent} (where bpe = 1,2-di(4-pyridyl)ethene) containing the novel photoactive ligand tbazip (tbazip = 5-((4-tert-butyl)phenylazo)isophthalic acid) has been synthesised and crystallographically characterised. The photoactivity of discrete tbazip was investigated and compared with its photoactivity while incorporated within the framework. The effect of isomerisation of the incorporated azobenzene on the chemical and physical properties of the framework were investigated using UV-vis and Raman spectroscopies. The framework is porous only to hydrogen gas at 77 K, but displayed an appreciable uptake for CO2 at 195 K.
Collapse
|
31
|
Guttentag AI, Barr KK, Song TB, Bui KV, Fauman JN, Torres LF, Kes DD, Ciomaga A, Gilles J, Sullivan NF, Yang Y, Allara DL, Zharnikov M, Weiss PS. Hexagons to Ribbons: Flipping Cyanide on Au{111}. J Am Chem Soc 2016; 138:15580-15586. [DOI: 10.1021/jacs.6b06046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew I. Guttentag
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kristopher K. Barr
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Tze-Bin Song
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Material Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kevin V. Bui
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacob N. Fauman
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| | - Leticia F. Torres
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mathematics, University of San Francisco, San Francisco, California 94117, United States
| | - David D. Kes
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mathematics and Natural Sciences, California State University, Long Beach, California 90840, United States
| | - Adina Ciomaga
- Department
of Mathematics, Laboratoire Jacques Louis Lions, Université Paris Diderot, 5 Rue Thomas Mann, Paris 75013, France
| | - Jérôme Gilles
- Department
of Mathematics and Statistics, San Diego State University, San Diego, California 92182, United States
| | - Nichole F. Sullivan
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yang Yang
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Material Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - David L. Allara
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael Zharnikov
- Applied
Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Material Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
32
|
Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1224.ch002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
33
|
Andrews AM, Liao WS, Weiss PS. Double-Sided Opportunities Using Chemical Lift-Off Lithography. Acc Chem Res 2016; 49:1449-57. [PMID: 27064348 DOI: 10.1021/acs.accounts.6b00034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We discuss the origins, motivation, invention, development, applications, and future of chemical lift-off lithography, in which a specified pattern of a self-assembled monolayer is removed, i.e., lifted off, using a reactive, patterned stamp that is brought into contact with the monolayer. For Au substrates, this process produces a supported, patterned monolayer of Au on the stamp in addition to the negative pattern in the original molecular monolayer. Both the patterned molecular monolayer on the original substrate and the patterned supported metal monolayer on the stamp are useful as materials and for further applications in sensing and other areas. Chemical lift-off lithography effectively lowers the barriers to and costs of high-resolution, large-area nanopatterning. On the patterned monolayer side, features in the single-nanometer range can be produced across large (square millimeter or larger) areas. Patterns smaller than the original stamp feature sizes can be produced by controlling the degree of contact between the stamp and the lifted-off monolayer. We note that this process is different than conventional lift-off processes in lithography in that chemical lift-off lithography removes material, whereas conventional lift-off is a positive-tone patterning method. Chemical lift-off lithography is in some ways similar to microtransfer printing. Chemical lift-off lithography has critical advantages in the preparation of biocapture surfaces because the molecules left behind are exploited to space and to orient functional(ized) molecules. On the supported metal monolayer side, a new two-dimensional material has been produced. The useful important chemical properties of Au (vis-à-vis functionalization with thiols) are retained, but the electronic and optical properties of bulk Au or even Au nanoparticles are not. These metal monolayers do not quench excitation and may be useful in optical measurements, particularly in combination with selective binding due to attached molecular recognition elements. In contrast to materials such as graphene that have bonding confined to two dimensions, these metal monolayers can be straightforwardly patterned-by patterning the stamp, the initial monolayer, or the initial substrate. Well-developed thiol-Au and related chemistries can be used on the supported monolayers. As there is little quenching and photoabsorption, spectroscopic imaging methods can be used on these functionalized materials. We anticipate that the properties of the metal monolayers can be tuned by varying the chemical, physical, and electronic connections made by and to the supporting molecular layers. That is, the amount of charge in the layer can be determined by controlling the density of S-Au (or other) connections and the molecular backbone and functionality, which determine the strength with which the chemical contact withdraws charge from the metal. This process should work for other coinage-metal substrates and additional systems where the binding of the outermost layers to the substrate is weaker than the molecule-substrate attachment.
Collapse
Affiliation(s)
- Anne M. Andrews
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Psychiatry, Hatos Center for Neuropharmacology, and Semel Institute
for Neuroscience and Human Behavior, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Wei-Ssu Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
34
|
Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy. Foods 2016; 5:foods5020036. [PMID: 28231130 PMCID: PMC5302347 DOI: 10.3390/foods5020036] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/17/2022] Open
Abstract
Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w). FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm-1 and FT-IR 1140 cm-1 with correlation coefficients of 0.93 and 0.95, respectively.
Collapse
|
35
|
Hansen AS, Mackeprang K, Broman SL, Hansen MH, Gertsen AS, Kildgaard JV, Nielsen OF, Mikkelsen KV, Nielsen MB, Kjaergaard HG. Characterisation of dihydroazulene and vinylheptafulvene derivatives using Raman spectroscopy: The CN-stretching region. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 161:70-76. [PMID: 26956529 DOI: 10.1016/j.saa.2016.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
The effect of adding electron donating and withdrawing groups on the dihydroazulene (DHA)/vinylheptafulvene (VHF) photochromic system has been investigated using Raman spectroscopy in CS2 solutions. The photoswitching between DHA and VHF is often characterised with UV-Vis spectroscopy. However, Raman spectroscopy can also be used for this purpose and give structural insight, as the light induced ring-opening from DHA to VHF causes changes in the CN-stretching frequencies. The CN-stretching frequencies in DHA and VHF are isolated and optimal for the identification of DHA and VHF. The DHA system is also investigated in the solid state.
Collapse
Affiliation(s)
- Anne S Hansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kasper Mackeprang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Søren L Broman
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Mia Harring Hansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Anders S Gertsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Jens V Kildgaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Ole Faurskov Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
36
|
Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites. Nat Commun 2016; 7:11090. [PMID: 27052205 PMCID: PMC4829665 DOI: 10.1038/ncomms11090] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene-azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors.
Collapse
|
37
|
Wu Z, Song N, Menz R, Pingali B, Yang YW, Zheng Y. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare. Nanomedicine (Lond) 2016; 10:1493-514. [PMID: 25996121 DOI: 10.2217/nnm.15.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.
Collapse
Affiliation(s)
| | - Nan Song
- 2State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | | | | | - Ying-Wei Yang
- 2State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | | |
Collapse
|
38
|
Song H, Jing C, Ma W, Xie T, Long YT. Reversible photoisomerization of azobenzene molecules on a single gold nanoparticle surface. Chem Commun (Camb) 2016; 52:2984-7. [DOI: 10.1039/c5cc10468h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PRRS spectra of single gold nanoparticles show a reversible shift towards the photoswitchable reaction, which could be verified by DDA simulations.
Collapse
Affiliation(s)
- Heng Song
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Chao Jing
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Wei Ma
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Tao Xie
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
39
|
Rajeeva BB, Hernandez DS, Wang M, Perillo E, Lin L, Scarabelli L, Pingali B, Liz-Marzán LM, Dunn AK, Shear JB, Zheng Y. Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500232. [PMID: 27668148 PMCID: PMC5019259 DOI: 10.1002/advs.201500232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/14/2015] [Indexed: 05/04/2023]
Abstract
Selective localization of biomolecules at the hot spots of a plasmonic nanoparticle is an attractive strategy to exploit the light-matter interaction due to the high field concentration. Current approaches for hot spot targeting are time-consuming and involve prior knowledge of the hot spots. Multiphoton plasmonic lithography is employed to rapidly immobilize bovine serum albumin (BSA) hydrogel at the hot spot tips of a single gold nanotriangle (AuNT). Regioselectivity and quantity control by manipulating the polarization and intensity of the incident laser are also established. Single AuNTs are tracked using dark-field scattering spectroscopy and scanning electron microscopy to characterize the regioselective process. Fluorescence lifetime measurements further confirm BSA immobilization on the AuNTs. Here, the AuNT-BSA hydrogel complexes, in conjunction with single-particle optical monitoring, can act as a framework for understanding light-molecule interactions at the subnanoparticle level and has potential applications in biophotonics, nanomedicine, and life sciences.
Collapse
Affiliation(s)
- Bharath Bangalore Rajeeva
- Department of Mechanical Engineering Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - Derek S Hernandez
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| | - Mingsong Wang
- Department of Mechanical Engineering Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - Evan Perillo
- Department of Biomedical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Linhan Lin
- Department of Mechanical Engineering Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - Leonardo Scarabelli
- Bionanoplasmonics Laboratory CIC biomaGUNE Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
| | - Bharadwaj Pingali
- Department of Mechanical Engineering Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory CIC biomaGUNE Paseo de Miramón 182 20009 Donostia-San Sebastián Spain; Ikerbasque Basque Foundation for Science 48013 Bilbao Spain
| | - Andrew K Dunn
- Department of Biomedical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Jason B Shear
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| | - Yuebing Zheng
- Department of Mechanical Engineering Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
40
|
Tallarida N, Rios L, Apkarian VA, Lee J. Isomerization of One Molecule Observed through Tip-Enhanced Raman Spectroscopy. NANO LETTERS 2015; 15:6386-6394. [PMID: 26348440 DOI: 10.1021/acs.nanolett.5b01543] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
While exploring photoisomerization of azobenzyl thiols (ABT) adsorbed on Au(111), through joint scanning tunneling microscopy (STM) and tip-enhanced Raman scattering (TERS) studies, the reversible photoisomerization of one molecule is captured in TERS trajectories. The unique signature of single molecule isomerization is observed in the form of anticorrelated flip-flops between two distinct spectra with two discrete, on- and off-levels. The apparently heterogeneously photocatalyzed reaction is assigned to cis-trans isomerization of an outlier, which is chemisorbed on the silver tip of the STM. Otherwise, the ensemble of ABT molecules that lie flat on Au(111) remain strongly coupled to the surface, excluding the possibility of photoisomerization or detection through TERS.
Collapse
Affiliation(s)
- Nicholas Tallarida
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| | - Laura Rios
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| | - Vartkess A Apkarian
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| | - Joonhee Lee
- Department of Chemistry, University of California, Irvine , Irvine, California 92617-2025, United States
| |
Collapse
|
41
|
Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci Rep 2015; 5:14788. [PMID: 26423015 PMCID: PMC4589761 DOI: 10.1038/srep14788] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022] Open
Abstract
Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field enhancement. To overcome this limit, we are developing a general strategy towards exploiting the coordinated effects of multiple coupling. Using Au bowtie nanoantenna arrays with metal-insulator-metal configuration as examples, we numerically demonstrate that coordinated design and implementation of various optical coupling effects leads to both the increased tunability in the spectral response and the significantly enhanced electromagnetic field. Furthermore, we design and analyze a refractive index sensor with an ultra-high figure-of-merit (254), a high signal-to-noise ratio and a wide working range of refractive indices, and a narrow-band near-infrared plasmonic absorber with 100% absorption efficiency, high quality factor of up to 114 and a wide range of tunable wavelength from 800 nm to 1,500 nm. The plasmonic nanoantennas that exploit coordinated multiple coupling will benefit a broad range of applications, including label-free bio-chemical detection, reflective filter, optical trapping, hot-electron generation, and heat-assisted magnetic recording.
Collapse
|
42
|
Wang M, Zhao C, Miao X, Zhao Y, Rufo J, Liu YJ, Huang TJ, Zheng Y. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4423-44. [PMID: 26140612 PMCID: PMC4856436 DOI: 10.1002/smll.201500970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/07/2015] [Indexed: 05/14/2023]
Abstract
Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics.
Collapse
Affiliation(s)
- Mingsong Wang
- Department of Mechanical Engineering, Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin, Austin, Texas 78712, USA
| | - Chenglong Zhao
- Department of Physics Electro-Optics, Graduate Program University of Dayton, Dayton, Ohio 45469, USA
| | - Xiaoyu Miao
- Google, Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joseph Rufo
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yan Jun Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) 3 Research Link, Singapore 117602, Singapore
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
43
|
Abendroth JM, Bushuyev OS, Weiss PS, Barrett CJ. Controlling Motion at the Nanoscale: Rise of the Molecular Machines. ACS NANO 2015; 9:7746-68. [PMID: 26172380 DOI: 10.1021/acsnano.5b03367] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.
Collapse
Affiliation(s)
- John M Abendroth
- California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California , Los Angeles, Los Angeles, California 90095, United States
| | | | - Paul S Weiss
- California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California , Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science & Engineering, University of California , Los Angeles, Los Angeles, California 90095, United States
| | - Christopher J Barrett
- California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California , Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, McGill University , Montreal, QC, Canada
| |
Collapse
|
44
|
Margapoti E, Li J, Ceylan Ö, Seifert M, Nisic F, Anh TL, Meggendorfer F, Dragonetti C, Palma CA, Barth JV, Finley JJ. A 2D semiconductor-self-assembled monolayer photoswitchable diode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1426-1431. [PMID: 25641369 DOI: 10.1002/adma.201405110] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/15/2014] [Indexed: 06/04/2023]
Abstract
A switchable diode in a 2D semiconductor-molecular junction heterostructure is reported. MoS2 is exfoliated on top of a monolayer of azobenzene-substituted thiols on gold. Photoisomerization of the azobenzenes results in switching between a rectifier with rectifying ratios of 10(4) and a conductive state, as revealed by conducting atomic force microscopy.
Collapse
Affiliation(s)
- Emanuela Margapoti
- Walter Schottky Institute, Physik-Department and NIM, Technische Universität München, Am Coulombwall 4, Garching, D-85748, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moldt T, Brete D, Przyrembel D, Das S, Goldman JR, Kundu PK, Gahl C, Klajn R, Weinelt M. Tailoring the properties of surface-immobilized azobenzenes by monolayer dilution and surface curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1048-57. [PMID: 25544061 DOI: 10.1021/la504291n] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photoswitching in densely packed azobenzene self-assembled monolayers (SAMs) is strongly affected by steric constraints and excitonic coupling between neighboring chromophores. Therefore, control of the chromophore density is essential for enhancing and manipulating the photoisomerization yield. We systematically compare two methods to achieve this goal: First, we assemble monocomponent azobenzene-alkanethiolate SAMs on gold nanoparticles of varying size. Second, we form mixed SAMs of azobenzene-alkanethiolates and "dummy" alkanethiolates on planar substrates. Both methods lead to a gradual decrease of the chromophore density and enable efficient photoswitching with low-power light sources. X-ray spectroscopy reveals that coadsorption from solution yields mixtures with tunable composition. The orientation of the chromophores with respect to the surface normal changes from a tilted to an upright position with increasing azobenzene density. For both systems, optical spectroscopy reveals a pronounced excitonic shift that increases with the chromophore density. In spite of exciting the optical transition of the monomer, the main spectral change in mixed SAMs occurs in the excitonic band. In addition, the photoisomerization yield decreases only slightly by increasing the azobenzene-alkanethiolate density, and we observed photoswitching even with minor dilutions. Unlike in solution, azobenzene in the planar SAM can be switched back almost completely by optical excitation from the cis to the original trans state within a short time scale. These observations indicate cooperativity in the photoswitching process of mixed SAMs.
Collapse
Affiliation(s)
- Thomas Moldt
- Fachbereich Physik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gao Y, Li Y, Wang Y, Chen Y, Gu J, Zhao W, Ding J, Shi J. Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:77-83. [PMID: 25223387 DOI: 10.1002/smll.201402149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 07/23/2014] [Indexed: 06/03/2023]
Abstract
It can be streamlined: A facile and controllable approach for the fabrication of core/shell-structured multilayer gold nanoshells with uniform nanosize, monodispersity, and tunable plasmonic properties has been successfully developed by utilizing an organosilica layer as the dielectric spacer layer.
Collapse
Affiliation(s)
- Yongping Gao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu R, Chen R, Qin C, Gao Y, Qiao Z, Zhang G, Xiao L, Jia S. An electric field induced reversible single-molecule fluorescence switch. Chem Commun (Camb) 2015; 51:7368-71. [DOI: 10.1039/c5cc00850f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on the intramolecular electron transfer within a single molecule, we have achieved fluorescence switch induced by the electric field.
Collapse
Affiliation(s)
- Ruixiang Wu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Zhixing Qiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
48
|
Chen XJ, Cabello G, Wu DY, Tian ZQ. Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2014. [DOI: 10.1016/j.jphotochemrev.2014.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
van Schrojenstein Lantman EM, Gijzeman OLJ, Mank AJG, Weckhuysen BM. Investigation of the Kinetics of a Surface Photocatalytic Reaction in Two Dimensions with Surface-enhanced Raman Scattering. ChemCatChem 2014; 6:3342-3346. [PMID: 27158273 PMCID: PMC4834625 DOI: 10.1002/cctc.201402647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Indexed: 12/03/2022]
Abstract
Heterogeneous catalysis is a surface phenomenon. Yet, though the catalysis itself takes place on surfaces, the reactants and products rapidly take the form of another physical state, as either a liquid or a gas. Catalytic reactions within a self‐assembled monolayer are confined within two dimensions, as the molecules involved do not leave the surface. Surface‐enhanced Raman spectroscopy is an ideal technique to probe these self‐assembled monolayers as it gives molecular information in a measured volume limited to the surface. We show how surface‐enhanced Raman spectroscopy can be used to determine the reaction kinetics of a two‐dimensional reaction. As a proof of principle, we study the photocatalytic reduction of p‐nitrothiophenol. A study of the reaction rate and dilution effects leads to the conclusion that a dimerization must take place as one of the reaction steps.
Collapse
Affiliation(s)
- Evelien M van Schrojenstein Lantman
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
| | - Onno L J Gijzeman
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht (The Netherlands)
| | - Arjan J G Mank
- Materials Analysis-MiPlaza, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (The Netherlands)
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
| |
Collapse
|
50
|
Yang S, Slotcavage D, Mai JD, Guo F, Li S, Zhao Y, Lei Y, Cameron CE, Huang TJ. Electrochemically Created Highly Surface Roughened Ag Nanoplate Arrays for SERS Biosensing Applications. JOURNAL OF MATERIALS CHEMISTRY. C 2014; 2:8350-8356. [PMID: 25383191 PMCID: PMC4217216 DOI: 10.1039/c4tc01276c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Highly surface-roughened Ag nanoplate arrays are fabricated using a simple electrodeposition and in situ electrocorrosion method with inorganic borate ions as capping agent. The electrocorrosion process is induced by a change in the local pH value during the electrochemical growth, which is used to intentionally carve the electrodeposited structures. The three dimensionally arranged Ag nanoplates are integrated with substantial surface-enhanced Raman scattering (SERS) hot spots and are free of organic contaminations widely used as shaping agents in previous works, making them excellent candidate substrates for SERS biosensing applications. The SERS enhancement factor of the rough Ag nanoplates is estimated to be > 109. These Ag nanoplate arrays are used for SERS-based analysis of DNA hybridization monitoring, protein detection, and virus differentiation without any additional surface modifications or labelling. They all exhibit an extremely high detection sensitivity, reliability, and reproducibility.
Collapse
Affiliation(s)
- Shikuan Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - Daniel Slotcavage
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - John D. Mai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - Yong Lei
- Center for Innovation Competence & Institute for Physics, Technical University of Ilmenau, 98693 Ilmenau, Germany
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| |
Collapse
|