1
|
Liu X, Huang B, Li J, Li B, Lou Z. Full-spectrum plasmonic semiconductors for photocatalysis. MATERIALS HORIZONS 2024; 11:5470-5498. [PMID: 39139133 DOI: 10.1039/d4mh00515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Localized surface plasmon resonance (LSPR) of noble metal nanoparticles can focus surrounding light onto the particle surface to boost photochemical reactions and solar energy utilization. However, the rarity and high cost of noble metals limit their applications in plasmonic photocatalysis, forcing researchers to seek low-cost alternatives. Recently, some heavily doped semiconductors with high free carrier density have garnered attention due to their metal-like LSPR properties. However, plasmonic semiconductors have complex surface structures characterized by the presence of a depletion layer, which poses challenges for active site exposure and hot carrier transfer, resulting in low photocatalytic activity. In this review, we introduce the essential characteristics and types, synthesis methods, and characterization techniques of full-spectrum plasmonic semiconductors, elucidate the mechanism of full-spectrum nonmetallic plasmonic photocatalysis, including the local electromagnetic field, hot carrier generation and transfer, the photothermal effect, and the solutions for the surface depletion layer, and summarize the applications of plasmonic semiconductors in photocatalytic environmental remediation, CO2 reduction, H2 generation, and organic transformations. Finally, we provide a perspective on full-spectrum plasmonic photocatalysis, aiming to guide the design and development of plasmonic photocatalysts.
Collapse
Affiliation(s)
- Xiaolei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
2
|
Mi G, Yao Y, Xia L, Zhao H, Yang Q, Wang ZM, Tong X. Reinforcing Photogenerated Carrier Extraction of Environment-Friendly InP/ZnSeS Quantum Dots for High-Performing Photoelectrochemical Photodetection and Solar Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405275. [PMID: 39523748 DOI: 10.1002/smll.202405275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Colloidal InP/ZnSeS-based quantum dots (QDs) are considered promising building blocks for light-emitting devices due to their environmental friendliness, high quantum yield (QY), and narrow emission. However, the intrinsic type-I band structure severely hinders potential photoelectrochemical (PEC) applications requiring efficient photoexcited carrier separation and transfer. In this study, the optoelectronic properties of InP/ZnSeS QDs are tailored by introducing Al dopants in the ZnSeS layer, which concurrently passivate the surface defects and act as shallow donor states for suppressed non-radiative recombination and improved charge extraction efficiency. Consequently, as-fabricated InP/ZnSeS:Al QDs-based PEC-type photodetector exhibited a high detectivity up to 1011 Jones and a remarkable responsivity of 0.66 A W-1 at 600 nm even under self-powered condition (0V bias). In addition, as-prepared InP/ZnSeS:Al QDs-based photoanode can be alternatively used for PEC hydrogen generation, showing an H2 production rate of 73.7 µmol cm-2 h-1 under 1 sun illumination (AM 1.5G, 100 mW cm-2). The results offer a prospective strategy for optimizing eco-friendly QDs for high-performance multifunctional light detection/conversion devices.
Collapse
Affiliation(s)
- Guohua Mi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yisen Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Li Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- School of Electrical and Information Engineering, Panzhihua University, Panzhihua, 617000, P. R. China
| | - Hongyang Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qian Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
3
|
Singh M, Scotognella F, Paternò GM. Degenerately doped metal oxide nanocrystals for infrared light harvesting: insight into their plasmonic properties and future perspectives. MATERIALS ADVANCES 2024; 5:6796-6812. [PMID: 39130726 PMCID: PMC11307255 DOI: 10.1039/d4ma00426d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The tuneability of the localized surface plasmon resonance (LSPR) of degenerately doped metal oxide (MOX) nanocrystals (NCs) over a wide range of the infrared (IR) region by controlling NC size and doping content offers a unique opportunity to develop a future generation of optoelectronic and photonic devices like IR photodetectors and sensors. The central aim of this review article is to highlight the distinctive and remarkable plasmonic properties of degenerately or heavily doped MOX nanocrystals by reviewing the comprehensive literature reported so far. In particular, the literature of each MOX NC, i.e. ZnO, CdO, In2O3, and WO3 doped with different dopants, is discussed separately. In addition to discussion of the most commonly used colloidal synthesis approaches, the ultrafast dynamics of charge carriers in NCs and the extraction of LSPR-assisted hot-carriers are also discussed in detail. Finally, future prospective applications of MOX NCs in IR photodetectors and photovoltaic (PV) self-powered chemical sensors are also presented.
Collapse
Affiliation(s)
- Mandeep Singh
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
| | - Francesco Scotognella
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
| | | |
Collapse
|
4
|
Zhou L, Huang Q, Xia Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem Rev 2024; 124:8597-8619. [PMID: 38829921 PMCID: PMC11273350 DOI: 10.1021/acs.chemrev.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Plasmon refers to the coherent oscillation of all conduction-band electrons in a nanostructure made of a metal or a heavily doped semiconductor. Upon excitation, the plasmon can decay through different channels, including nonradiative Landau damping for the generation of plasmon-induced energetic carriers, the so-called hot electrons and holes. The energetic carriers can be collected by transferring to a functional material situated next to the plasmonic component in a hybrid configuration to facilitate a range of photochemical processes for energy or chemical conversion. This article centers on the recent advancement in generating and utilizing plasmon-induced hot electrons in a rich variety of hybrid nanostructures. After a brief introduction to the fundamentals of hot-electron generation and decay in plasmonic nanocrystals, we extensively discuss how to collect the hot electrons with various types of functional materials. With a focus on plasmonic nanocrystals made of metals, we also briefly examine those based upon heavily doped semiconductors. Finally, we illustrate how site-selected growth can be leveraged for the rational fabrication of different types of hybrid nanostructures, with an emphasis on the parameters that can be experimentally controlled to tailor the properties for various applications.
Collapse
Affiliation(s)
- Li Zhou
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Qijia Huang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Jimenez-Chavez A, Pedroza-Herrera G, Betancourt-Reyes I, De Vizcaya Ruiz A, Masuoka-Ito D, Zapien JA, Medina-Ramirez IE. Aluminum enhances the oxidative damage of ZnO NMs in the human neuroblastoma SH-SY5Y cell line. DISCOVER NANO 2024; 19:36. [PMID: 38407768 PMCID: PMC10897122 DOI: 10.1186/s11671-024-03973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Bare and doped zinc oxide nanomaterials (ZnO NMs) are of great interest as multifunctional platforms for biomedical applications. In this study, we systematically investigate the physicochemical properties of Aluminum doped ZnO (AZO) and its bio-interactions with neuroblastoma (SH-SY5Y) and red blood (RBCs) cells. We provide a comprehensive chemical and structural characterization of the NMs. We also evaluated the biocompatibility of AZO NMs using traditional toxicity assays and advanced microscopy techniques. The toxicity of AZO NMs towards SH-SY5Y cells, decreases as a function of Al doping but is higher than the toxicity of ZnO NMs. Our results show that N-acetyl cysteine protects SH-SY5Y cells against reactive oxygen species toxicity induced by AZO NMs. ZnO and AZO NMs do not exert hemolysis in human RBCs at the doses that cause toxicity (IC50) in neuroblastoma cells. The Atomic force microscopy qualitative analysis of the interaction of SH-SY5Y cells with AZO NMs shows evidence that the affinity of the materials with the cells results in morphology changes and diminished interactions between neighboring cells. The holotomographic microscopy analysis demonstrates NMs' internalization in SH-SY5Y cells, changes in their chemical composition, and the role of lipid droplets in the clearance of toxicants.
Collapse
Affiliation(s)
- Arturo Jimenez-Chavez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Gladis Pedroza-Herrera
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Israel Betancourt-Reyes
- Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de México, Mexico, México
| | - Andrea De Vizcaya Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV-IPN), Ciudad de Mexico, México
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| |
Collapse
|
6
|
Rachkov AG, Chalek K, Yin H, Xu M, Holland GP, Schimpf AM. Redox Chemistries for Vacancy Modulation in Plasmonic Copper Phosphide Nanocrystals. ACS NANO 2024. [PMID: 38324804 PMCID: PMC10883034 DOI: 10.1021/acsnano.3c08962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Copper phosphide (Cu3-xP) nanocrystals are promising materials for nanoplasmonics due to their substoichiometric composition, enabling the generation and stabilization of excess delocalized holes and leading to localized surface plasmon resonance (LSPR) absorption in the near-IR. We present three Cu-coupled redox chemistries that allow postsynthetic modulation of the delocalized hole concentrations and corresponding LSPR absorption in colloidal Cu3-xP nanocrystals. Changes in the structural, optical, and compositional properties are evaluated by powder X-ray diffraction, electronic absorption spectroscopy, 31P magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, and elemental analysis. The redox chemistries presented herein can be used to access nanocrystals with LSPR energies of 660-890 meV, a larger range than has been possible through synthetic tuning alone. In addition to utilizing previously reported redox chemistries used for copper chalcogenide nanocrystals, we show that the largest structural and LSPR modulation is achieved using a divalent metal halide and trioctylphosphine. Specifically, nanocrystals treated with zinc iodide and trioctylphosphine have the smallest unit-cell volume (295.2 Å3) reported for P63cm Cu3-xP, indicating more Cu vacancies than have been previously observed. Overall, these redox chemistries present valuable insight into controlling the optical and structural properties of Cu3-xP.
Collapse
Affiliation(s)
- Alexander G Rachkov
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kevin Chalek
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Hang Yin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Mingjie Xu
- Irvine Materials Research Institute (IMRI) University of California, Irvine, California 92697, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Alina M Schimpf
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Segui Barragan V, Roman BJ, Shubert-Zuleta SA, Berry MW, Celio H, Milliron DJ. Dipolar Ligands Tune Plasmonic Properties of Tin-Doped Indium Oxide Nanocrystals. NANO LETTERS 2023; 23:7983-7989. [PMID: 37624580 DOI: 10.1021/acs.nanolett.3c01943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Surface functionalization with dipolar molecules is known to tune the electronic band alignment in semiconductor films and colloidal quantum dots. Yet, the influence of surface modification on plasmonic nanocrystals and their properties remains little explored. Here, we functionalize tin-doped indium oxide nanocrystals (ITO NCs) via ligand exchange with a series of cinnamic acids with different electron-withdrawing and -donating dipolar characters. Consistent with previous reports on semiconductors, we find that withdrawing (donating) ligands increase (decrease) the work function caused by an electrostatic potential shift across the molecular layer. Quantitative analyses of the plasmonic extinction spectra reveal that varying the ligand molecular dipole affects the near-surface depletion layer, with an anticorrelated trend between the electron concentration and electronic volume fraction, factors that are positively correlated in as-synthesized NCs. Electronic structure engineering through surface modification provides access to distinctive combinations of plasmonic properties that could enable optoelectronic applications, sensing, and hot electron-driven processes.
Collapse
Affiliation(s)
- Victor Segui Barragan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sofia A Shubert-Zuleta
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Marina W Berry
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hugo Celio
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Delia J Milliron
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Singh M, Scotognella F. Recent Progress in Solution Processed Aluminum and co-Doped ZnO for Transparent Conductive Oxide Applications. MICROMACHINES 2023; 14:536. [PMID: 36984942 PMCID: PMC10058034 DOI: 10.3390/mi14030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
With the continuous growth in the optoelectronic industry, the demand for novel and highly efficient materials is also growing. Specifically, the demand for the key component of several optoelectronic devices, i.e., transparent conducting oxides (TCOs), is receiving significant attention. The major reason behind this is the dependence of the current technology on only one material-indium tin oxide (ITO). Even though ITO still remains a highly efficient material, its high cost and the worldwide scarcity of indium creates an urgency for finding an alternative. In this regard, doped zinc oxide (ZnO), in particular, solution-processed aluminum doped ZnO (AZO), is emerging as a leading candidate to replace ITO due to its high abundant and exceptional physical/chemical properties. In this mini review, recent progress in the development of solution-processed AZO is presented. Beside the systematic review of the literature, the solution processable approaches used to synthesize AZO and the effect of aluminum doping content on the functional properties of AZO are also discussed. Moreover, the co-doping strategy (doping of aluminum with other elements) used to further improve the properties of AZO is also discussed and reviewed in this article.
Collapse
|
9
|
van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev 2023; 123:271-326. [PMID: 36563316 DOI: 10.1021/acs.chemrev.2c00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Collapse
Affiliation(s)
- Joel van Embden
- School of Science, RMIT University, MelbourneVictoria, 3001, Australia
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131Padova, Italy.,Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstrasse 20, 76131Karlsruhe, Germany
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | | |
Collapse
|
10
|
Xu Y, Yu S, Tong F, Wang Z, Wang P, Liu Y, Cheng H, Fan Y, Wei W, Dai Y, Zheng Z, Huang B. Dual-plasmon-enhanced nitrophenol hydrogenation over W 18O 49–Au heterostructures studied at the single-particle level. Catal Sci Technol 2023. [DOI: 10.1039/d2cy02071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The dual-plasmonic W18O49–Au heterostructure exhibited enhanced catalytic performance in nitrophenol hydrogenation. The HEI process and coupling effect were demonstrated by single-particle spectroscopy and FDTD simulation.
Collapse
Affiliation(s)
- Yayang Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shiqiang Yu
- School of Physics, Shandong University, Jinan 250100, China
| | - Fengxia Tong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Photocatalytic Performance of Undoped and Al-Doped ZnO Nanoparticles in the Degradation of Rhodamine B under UV-Visible Light:The Role of Defects and Morphology. Int J Mol Sci 2022; 23:ijms232415459. [PMID: 36555102 PMCID: PMC9779551 DOI: 10.3390/ijms232415459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Quasi-spherical undoped ZnO and Al-doped ZnO nanoparticles with different aluminum content, ranging from 0.5 to 5 at% of Al with respect to Zn, were synthesized. These nanoparticles were evaluated as photocatalysts in the photodegradation of the Rhodamine B (RhB) dye aqueous solution under UV-visible light irradiation. The undoped ZnO nanopowder annealed at 400 °C resulted in the highest degradation efficiency of ca. 81% after 4 h under green light irradiation (525 nm), in the presence of 5 mg of catalyst. The samples were characterized using ICP-OES, PXRD, TEM, FT-IR, 27Al-MAS NMR, UV-Vis and steady-state PL. The effect of Al-doping on the phase structure, shape and particle size was also investigated. Additional information arose from the annealed nanomaterials under dynamic N2 at different temperatures (400 and 550 °C). The position of aluminum in the ZnO lattice was identified by means of 27Al-MAS NMR. FT-IR gave further information about the type of tetrahedral sites occupied by aluminum. Photoluminescence showed that the insertion of dopant increases the oxygen vacancies reducing the peroxide-like species responsible for photocatalysis. The annealing temperature helps increase the number of red-emitting centers up to 400 °C, while at 550 °C, the photocatalytic performance drops due to the aggregation tendency.
Collapse
|
12
|
In Situ Synthesis of AZO-Np in Guar Gum/PVOH Composite Fiber Mats for Potential Bactericidal Release. Polymers (Basel) 2022; 14:polym14224983. [PMID: 36433110 PMCID: PMC9698413 DOI: 10.3390/polym14224983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Since the number of antibiotic-resistant bacterial infections is growing and cases are getting worse every year, the search for new alternative bactericidal wound dressing treatments is becoming crucial. Within this context, the use of polysaccharides from plants and seeds in innovative biopolymer technologies is of key importance. In this work, bio-nano-composite guar gum/polyvinyl alcohol (PVOH) membranes loaded with aluminum-doped zinc oxide nanoparticles were produced via electrospinning. Citric acid was added to the mixture to increase spinnability. However, depending on the pH, zinc oxide nanoparticles are partially dissociated, decreasing their bactericidal efficiency. Thus, a second successful alkaline thermo-chemical regrowth step was added to the process to treat the obtained fibers. This alkaline thermo-chemical treatment reconstituted both the nanoparticles and their bactericidal properties. The Staphylococcus aureus antibacterial assay results show that the membranes obtained after the alkaline thermo-chemical treatment presented a 57% increase in growth inhibition.
Collapse
|
13
|
Thangudu S, Chiang CS, Chu Hwang K. 1550 nm Light Activatable Photothermal Therapy on Multifunctional CuBi2O4 Bimetallic Particles for Treating Drug Resistance Bacteria-Infected Skin in the NIR-III Biological Window. J Colloid Interface Sci 2022; 631:1-16. [DOI: 10.1016/j.jcis.2022.10.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
|
14
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
15
|
First principle study of electronic properties of ZnO nanoclusters with native point defects during gas adsorption. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Yang J, Gurung S, Bej S, Ni P, Howard Lee HW. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:036101. [PMID: 35244609 DOI: 10.1088/1361-6633/ac2aaf] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Optical metasurfaces with subwavelength thickness hold considerable promise for future advances in fundamental optics and novel optical applications due to their unprecedented ability to control the phase, amplitude, and polarization of transmitted, reflected, and diffracted light. Introducing active functionalities to optical metasurfaces is an essential step to the development of next-generation flat optical components and devices. During the last few years, many attempts have been made to develop tunable optical metasurfaces with dynamic control of optical properties (e.g., amplitude, phase, polarization, spatial/spectral/temporal responses) and early-stage device functions (e.g., beam steering, tunable focusing, tunable color filters/absorber, dynamic hologram, etc) based on a variety of novel active materials and tunable mechanisms. These recently-developed active metasurfaces show significant promise for practical applications, but significant challenges still remain. In this review, a comprehensive overview of recently-reported tunable metasurfaces is provided which focuses on the ten major tunable metasurface mechanisms. For each type of mechanism, the performance metrics on the reported tunable metasurface are outlined, and the capabilities/limitations of each mechanism and its potential for various photonic applications are compared and summarized. This review concludes with discussion of several prospective applications, emerging technologies, and research directions based on the use of tunable optical metasurfaces. We anticipate significant new advances when the tunable mechanisms are further developed in the coming years.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Sudip Gurung
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Subhajit Bej
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Peinan Ni
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Ho Wai Howard Lee
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| |
Collapse
|
17
|
Zhang C, Tu Q, Francis LF, Kortshagen UR. Band Gap Tuning of Films of Undoped ZnO Nanocrystals by Removal of Surface Groups. NANOMATERIALS 2022; 12:nano12030565. [PMID: 35159909 PMCID: PMC8838492 DOI: 10.3390/nano12030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Transparent conductive oxides (TCOs) are widely used in optoelectronic devices such as flat-panel displays and solar cells. A significant optical property of TCOs is their band gap, which determines the spectral range of the transparency of the material. In this study, a tunable band gap range from 3.35 eV to 3.53 eV is achieved for zinc oxide (ZnO) nanocrystals (NCs) films synthesized by nonthermal plasmas through the removal of surface groups using atomic layer deposition (ALD) coating of Al2O3 and intense pulsed light (IPL) photo-doping. The Al2O3 coating is found to be necessary for band gap tuning, as it protects ZnO NCs from interactions with the ambient and prevents the formation of electron traps. With respect to the solar spectrum, the 0.18 eV band gap shift would allow ~4.1% more photons to pass through the transparent layer, for instance, into a CH3NH3PbX3 solar cell beneath. The mechanism of band gap tuning via photo-doping appears to be related to a combination of the Burstein–Moss (BM) and band gap renormalization (BGN) effects due to the significant number of electrons released from trap states after the removal of hydroxyl groups. The BM effect shifts the conduction band edge and enlarges the band gap, while the BGN effect narrows the band gap.
Collapse
Affiliation(s)
- Chengjian Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55414, USA; (C.Z.); (Q.T.)
| | - Qiaomiao Tu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55414, USA; (C.Z.); (Q.T.)
| | - Lorraine F. Francis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55414, USA; (C.Z.); (Q.T.)
- Correspondence: (L.F.F.); (U.R.K.)
| | - Uwe R. Kortshagen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55414, USA
- Correspondence: (L.F.F.); (U.R.K.)
| |
Collapse
|
18
|
Nguyen K, Radovanovic PV. Defects and impurities in colloidal Ga2O3 nanocrystals: new opportunities for photonics and lighting. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defects, both native and extrinsic, critically determine functional properties of metal oxides. Gallium oxide has recently gained significant attention for its promise in microelectronics, owing to the unique combination of conductivity and high breakdown voltage, and solid-state lighting, owing to the strong photoluminescence in the visible spectral region. These properties are associated with the presence of native defects that can form both donor and acceptor states in Ga2O3. Recently, Ga2O3 nanocrystal synthesis in solution and optical glasses has been developed, allowing for a range of new applications in photonics, lighting, and photocatalysis. This review focuses on the structure and properties of Ga2O3 nanocrystals with a particular emphasis on the electronic structure and interaction of defects in reduced dimensions and their role in the observed photoluminescence properties. In addition to native defects, the effect of selected external impurities, including lanthanide and aliovalent dopants, and alloying on the emission properties of Ga2O3 nanocrystals are also discussed.
Collapse
Affiliation(s)
- Khue Nguyen
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Pavle V. Radovanovic
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
19
|
Pallavicini P, Chirico G, Taglietti A. Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chemistry 2021; 27:15361-15374. [PMID: 34406677 PMCID: PMC8597085 DOI: 10.1002/chem.202102123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/17/2022]
Abstract
The photothermal properties of nanoparticles (NPs), that is, their ability to convert absorbed light into heat, have been studied since the end of the last century, mainly on gold NPs. In the new millennium, these studies have developed into a burst of research dedicated to the photothermal ablation of tumors. However, beside this strictly medical theme, research has also flourished in the connected areas of photothermal antibacterial surface coatings, gels and polymers, of photothermal surfaces for cell stimulation, as well as in purely technological areas that do not involve medical biotechnology. These include the direct conversion of solar light into heat, a more efficient sun-powered generation of steam and the use of inkjet-printed patterns of photothermal NPs for anticounterfeit printing based on temperature reading, to cite but a few. After an analysis of the photothermal effect (PTE) and its mechanism, this minireview briefly considers the antitumor-therapy theme and takes an in-depth look at all the other technological and biomedical applications of the PTE, paying particular attention to photothermal materials whose NPs have joined those based on Au.
Collapse
Affiliation(s)
| | - Giuseppe Chirico
- Department of Physics “G. Occhialini”Università Milano Bicoccap.zza della Scienza 3XX100MilanoItaly
| | - Angelo Taglietti
- Department of ChemistryUniversità degli Studi di Paviav. Taramelli 1227100PaviaItaly
| |
Collapse
|
20
|
Han B, Chen L, Jin S, Guo S, Park J, Yoo HS, Park JH, Zhao B, Jung YM. Modulating Mechanism of the LSPR and SERS in Ag/ITO Film: Carrier Density Effect. J Phys Chem Lett 2021; 12:7612-7618. [PMID: 34351168 DOI: 10.1021/acs.jpclett.1c01727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we fabricated a uniform and dispersible Ag/indium tin oxide (ITO) cosputtered film on a two-dimensional ordered polystyrene template and observed distinct localized surface plasmon resonance (LSPR) properties that can be tuned by changing the doping level. The increase in the optical band gap is due to the variation in the metallic Ag content, which can effectively change the accumulation of free electrons in the conduction band, in addition to the near-IR absorbance. Surface-enhanced Raman scattering (SERS) was used to monitor the variations in the band gap and transfer of electrons, which causes variations in the SERS intensity. The presented research provides new insights into the relationships between the carrier density and maximum absorption wavelength, band gap distribution, and charge transfer process. This is the first study on the influence of the carrier density on the properties of Ag/ITO cosputtered films and suggests practical applications of these films.
Collapse
Affiliation(s)
- Bingbing Han
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P.R. China
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P.R. China
| | - Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Jongmin Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Hyuk Sang Yoo
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130012, P.R. China
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
21
|
Liu Y, Liu S, Peng H, Wang X, Zhang L, Zhu L, Zhang D, Guo J. Structural design and synthesis of new MOO3-x interlayer bi-functional nanomaterials for enhanced up-conversion luminescence properties. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
S. S. dos Santos P, M. M. M. de Almeida J, Pastoriza-Santos I, C. C. Coelho L. Advances in Plasmonic Sensing at the NIR-A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:2111. [PMID: 33802958 PMCID: PMC8002678 DOI: 10.3390/s21062111] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022]
Abstract
Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field.
Collapse
Affiliation(s)
- Paulo S. S. dos Santos
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José M. M. M. de Almeida
- Department of Physics, School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain;
- SERGAS-UVIGO, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain
| | - Luís C. C. Coelho
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| |
Collapse
|
23
|
Agarwal RG, Kim HJ, Mayer JM. Nanoparticle O-H Bond Dissociation Free Energies from Equilibrium Measurements of Cerium Oxide Colloids. J Am Chem Soc 2021; 143:2896-2907. [PMID: 33565871 DOI: 10.1021/jacs.0c12799] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel equilibrium strategy for measuring the hydrogen atom affinity of colloidal metal oxide nanoparticles is presented. Reactions between oleate-capped cerium oxide nanoparticle colloids (nanoceria) and organic proton-coupled electron transfer (PCET) reagents are used as a model system. Nanoceria redox changes, or hydrogen loadings, and overall reaction stoichiometries were followed by both 1H NMR and X-ray absorption near-edge spectroscopies. These investigations revealed that, in many cases, reactions between nanoceria and PCET reagents reach equilibrium states with good mass balance. Each equilibrium state is a direct measure of the bond strength, or bond dissociation free energy (BDFE), between nanoceria and hydrogen. Further studies, including those with larger nanoceria, indicated that the relevant bond is a surface O-H. Thus, we have measured surface O-H BDFEs for nanoceria-the first experimental BDFEs for any nanoscale metal oxide. Remarkably, the measured CeO-H BDFEs span 13 kcal mol-1 (0.56 eV) with changes in the average redox state of the nanoceria colloid. Possible chemical models for this strong dependence are discussed. We propose that the tunability of ceria BDFEs may be important in explaining its effectiveness in catalysis. More generally, metal oxide BDFEs have been used as predictors of catalyst efficacy that, traditionally, have only been accessible by computational methods. These results provide important experimental benchmarks for metal oxide BDFEs and demonstrate that the concepts of molecular bond strength thermochemistry can be applied to nanoscale materials.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Hyun-Jo Kim
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
24
|
Yan Y, Li Q, Wang Q, Mao H. A one-step hydrothermal route to fabricate a ZnO nanorod/3D graphene aerogel-sensitized structure with enhanced photoelectrochemistry performance and self-powered photoelectrochemical biosensing of parathion-methyl. RSC Adv 2021; 11:35644-35652. [PMID: 35493183 PMCID: PMC9043228 DOI: 10.1039/d1ra06339a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/15/2021] [Indexed: 01/26/2023] Open
Abstract
A facile one-pot hydrothermal method for fabricating ZnO/GAs was developed. And a novel self-powered PEC biosensor was constructed based on the ZnO/GAs with the amplification of thiocholine for the detection of parathion-methyl.
Collapse
Affiliation(s)
- Yuting Yan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Qirui Wang
- School of Aeronautical and Mechanical Engineering, Changzhou Institute of Technology, Changzhou, 213022, People's Republic of China
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
25
|
Marin R, Jaque D. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev 2020; 121:1425-1462. [DOI: 10.1021/acs.chemrev.0c00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| |
Collapse
|
26
|
Chen L, Hu H, Chen Y, Li Y, Gao J, Li G. Sulfur Precursor Reactivity Affecting the Crystal Phase and Morphology of Cu
2−
x
S Nanoparticles. Chemistry 2020; 27:1057-1065. [DOI: 10.1002/chem.202003760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lihui Chen
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Haifeng Hu
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Yuzhou Chen
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Yuan Li
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Jing Gao
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Guohua Li
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
- State Key Breeding Base of Green Chemistry Synthesis Technology Zhejiang University of Technology 18, Chaowang Road Hangzhou 310032 P.R. China
| |
Collapse
|
27
|
Olafsson A, Busche JA, Araujo JJ, Maiti A, Idrobo JC, Gamelin DR, Masiello DJ, Camden JP. Electron Beam Infrared Nano-Ellipsometry of Individual Indium Tin Oxide Nanocrystals. NANO LETTERS 2020; 20:7987-7994. [PMID: 32870693 DOI: 10.1021/acs.nanolett.0c02772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Leveraging recent advances in electron energy monochromation and aberration correction, we record the spatially resolved infrared plasmon spectrum of individual tin-doped indium oxide nanocrystals using electron energy-loss spectroscopy (EELS). Both surface and bulk plasmon responses are measured as a function of tin doping concentration from 1-10 atomic percent. These results are compared to theoretical models, which elucidate the spectral detuning of the same surface plasmon resonance feature when measured from aloof and penetrating probe geometries. We additionally demonstrate a unique approach to retrieving the fundamental dielectric parameters of individual semiconductor nanocrystals via EELS. This method, devoid from ensemble averaging, illustrates the potential for electron-beam ellipsometry measurements on materials that cannot be prepared in bulk form or as thin films.
Collapse
Affiliation(s)
- Agust Olafsson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jacob A Busche
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jose J Araujo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Arpan Maiti
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
28
|
Berquist ZJ, Turaczy KK, Lenert A. Plasmon-Enhanced Greenhouse Selectivity for High-Temperature Solar Thermal Energy Conversion. ACS NANO 2020; 14:12605-12613. [PMID: 32856897 DOI: 10.1021/acsnano.0c04982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The greenhouse effect arises when thermal radiation is forced to undergo absorption and re-emission many times before escaping, while sunlight transmits largely unimpeded. Although this effect is responsible for global warming, it is generally weak in solid-state materials because radiation can be easily overpowered by other modes of heat transfer. Here, we report on the use of infrared plasmonic nanoparticles to enhance the greenhouse effect in transparent mesoporous materials. Local surface plasmon resonances in transparent conducting oxide nanoparticles (TCO NPs) selectively shorten the mean free path of thermal photons while maintaining high solar transmittance. The addition of a small amount of TCO NPs (<0.1% by volume) nearly halves the heat losses at 700 °C. This leads to an experimentally demonstrated effective thermal emittance of ∼0.17 at 700 °C, which is the lowest reported value to date, among all selective surfaces and transparent insulating materials measured at 650 °C or above. Our results show that plasmon-enhanced greenhouse selectivity (PEGS) is a promising mechanism for spectral control of radiative heat transfer, and more specifically, for conversion of minimally concentrated sunlight into high-temperature heat.
Collapse
Affiliation(s)
- Zachary J Berquist
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, Michigan 48109, United States
| | - Kevin K Turaczy
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, Michigan 48109, United States
| | - Andrej Lenert
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Kuranaga Y, Matsui H, Ikehata A, Shimoda Y, Noiri M, Ho YL, Delaunay JJ, Teramura Y, Tabata H. Enhancing Detection Sensitivity of ZnO-Based Infrared Plasmonic Sensors Using Capped Dielectric Ga 2O 3 Layers for Real-Time Monitoring of Biological Interactions. ACS APPLIED BIO MATERIALS 2020; 3:6331-6342. [PMID: 35021763 DOI: 10.1021/acsabm.0c00792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon resonances on Ga-doped ZnO (ZnO/Ga) layer surfaces (ZnO-SPRs) have attracted substantial attention as alternative plasmonic materials in the infrared range. We present further enhancement of the detection limits of ZnO-SPRs to monitor biological interactions by introducing thin dielectric layers into ZnO-SPRs, which remarkably modify the electric fields and the corresponding decay lengths on the sensing surfaces. The presence of a high-permittivity dielectric layer of Ga2O3 provides high wavelength sensitivities of the ZnO-SPRs due to the strongly confined electric fields. The superior sensing capabilities of the proposed samples were verified by real-time monitoring of the biological interactions between biotin and streptavidin molecules. Introduction of the high-permittivity dielectric layer into ZnO-SPRs effectively enhances the detection sensitivity and therefore allowed for the observation of biological interactions. This paper provides useful information for the development of optical detection techniques for use in biological fields based on ZnO from the viewpoints of plasmonic applications.
Collapse
Affiliation(s)
- Yasuhiro Kuranaga
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Electrical Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akifumi Ikehata
- Food Research Institute, National Agriculture and Food Research Organization, 1-1-3 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Yuta Shimoda
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Noiri
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Materials Engineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ya-Lun Ho
- Department of Mechanical Engineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Materials Engineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, Uppsala SE-751 85, Sweden
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Electrical Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Integrated Photodetectors Based on Group IV and Colloidal Semiconductors: Current State of Affairs. MICROMACHINES 2020; 11:mi11090842. [PMID: 32911711 PMCID: PMC7569792 DOI: 10.3390/mi11090842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022]
Abstract
With the aim to take advantage from the existing technologies in microelectronics, photodetectors should be realized with materials compatible with them ensuring, at the same time, good performance. Although great efforts are made to search for new materials that can enhance performance, photodetector (PD) based on them results often expensive and difficult to integrate with standard technologies for microelectronics. For this reason, the group IV semiconductors, which are currently the main materials for electronic and optoelectronic devices fabrication, are here reviewed for their applications in light sensing. Moreover, as new materials compatible with existing manufacturing technologies, PD based on colloidal semiconductor are revised. This work is particularly focused on developments in this area over the past 5-10 years, thus drawing a line for future research.
Collapse
|
31
|
Wang Y, Zhong F, Wang H, Huang H, Li Q, Ye J, Peng M, He T, Chen Y, Wang Y, Zhang L, Zhu H, Wang X. Photogating-controlled ZnO photodetector response for visible to near-infrared light. NANOTECHNOLOGY 2020; 31:335204. [PMID: 32348965 DOI: 10.1088/1361-6528/ab8e75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, as a direct wide band gap semiconductor, zinc oxide (ZnO) nanomaterial has attracted a lot of attention. However, the widely investigated ZnO materials are strongly limited in fast-response and broadband photodetectors due to their inherent weaknesses, so an effective structure or mechanism of ZnO nanostructure photodetector is greatly needed. In this work, a photogating-controlled photodetector based on a ZnO nanosheet-HfO2-lightly doped Si architecture is demonstrated. Its performance was significantly improved by the photogating-controlled local field at the Si and HfO2 interfaces compared to the findings in other published works on ZnO. Consequently, the photodetector not only effectively balances the responsivity (as high as 5.6 A W-1) and response time (400 µs), but also broadens the wavelength response of the ZnO-based photodetectors from visible to near-infrared light range (~1200 nm). Additionally, the photogating-controlled ZnO photodetector enables high-resolution imaging both in the visible and near-infrared bands. Our photogating-controlled ZnO photodetectors not only exemplify the controllability of the gate electrode in high mobility materials but also provide a basis for the development of fast speed and high responsivity detection of high mobility materials.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093 People's Republic of China. State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 People's Republic of China. Key Laboratory of Space Active Opto-Electronics Technology and State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kendall O, Wainer P, Barrow S, van Embden J, Della Gaspera E. Fluorine-Doped Tin Oxide Colloidal Nanocrystals. NANOMATERIALS 2020; 10:nano10050863. [PMID: 32365771 PMCID: PMC7712819 DOI: 10.3390/nano10050863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Fluorine-doped tin oxide (FTO) is one of the most studied and established materials for transparent electrode applications. However, the syntheses for FTO nanocrystals are currently very limited, especially for stable and well-dispersed colloids. Here, we present the synthesis and detailed characterization of FTO nanocrystals using a colloidal heat-up reaction. High-quality SnO2 quantum dots are synthesized with a tuneable fluorine amount up to ~10% atomic, and their structural, morphological and optical properties are fully characterized. These colloids show composition-dependent optical properties, including the rise of a dopant-induced surface plasmon resonance in the near infrared.
Collapse
|
33
|
Cao D, Shu X, Zhu D, Liang S, Hasan M, Gong S. Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. NANO CONVERGENCE 2020; 7:14. [PMID: 32328852 PMCID: PMC7181468 DOI: 10.1186/s40580-020-00224-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
ZnO nanoparticles are widely used in biological, chemical, and medical fields, but their toxicity impedes their wide application. In this study, pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm) and lipid-coated ZnO NPs (~ 13 nm; ~ 22 nm; ~ 52 nm) with different morphologies were prepared by chemical method and characterized by TEM, XRD, HRTEM, FTIR, and DLS. Our results showed that the lipid-coated ZnO NPs (~ 13 nm; ~ 22 nm; ~ 52 nm) groups improved the colloidal stability, prevented the aggregation and dissolution of nanocrystal particles in the solution, inhibited the dissolution of ZnO NPs into Zn2+ cations, and reduced cytotoxicity more efficiently than the pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm). Compared to the lipid-coated ZnO NPs, pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm) could dose-dependently destroy the cells at low concentrations. At the same concentration, ZnO NPs (~ 7 nm) exhibited the highest cytotoxicity. These results could provide a basis for the toxicological study of the nanoparticles and direct future investigations for preventing strong aggregation, reducing the toxic effects of lipid-bilayer and promoting the uptake of nanoparticles by HeLa cells efficiently.
Collapse
Affiliation(s)
- Dingding Cao
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Shengli Liang
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Sheng Gong
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| |
Collapse
|
34
|
Tian X, Wei R, Yang D, Qiu J. Paradoxical combination of saturable absorption and reverse-saturable absorption in plasmon semiconductor nanocrystals. NANOSCALE ADVANCES 2020; 2:1676-1684. [PMID: 36132321 PMCID: PMC9417615 DOI: 10.1039/c9na00694j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/24/2020] [Indexed: 06/15/2023]
Abstract
In heavily doped semiconductor nanocrystal systems, high-order nonlinearities including third-order nonlinearity and fifth-order nonlinearity can be tailored to manipulate light on the nanoscale due to the semiconductor intrinsic absorption and localized surface plasmon resonances. Here, by exploiting the nonlinear optical properties of broadly infrared plasmons in solution-processed aluminum-doped ZnO nanocrystals (AZO NCs) with a wide band-gap, we demonstrate that the competition between plasma ground-state bleaching (third-order nonlinearity) and three-photon absorption (fifth-order nonlinearity) is responsible for the transition between saturable absorption and reverse saturable absorption. Upon increasing the pump intensity, the third-order nonlinear coefficient decreases from -5.85 × 102 cm GW-1 to -7.89 × 10-10 cm GW-1, while the fifth-order nonlinear coefficient increases from 3.08 × 10-9 cm3 GW-2 to 15.8 cm3 GW-2. With aluminum-doped ZnO nanocrystals as a Q-switch, a pulsed fiber laser operating at the C band (optical communication band) was constructed. Furthermore, the relatively small temperature fluctuations (7.13 K) of the Q-switch indicate its application prospects in all-optical systems. Investigations on the intrinsic mechanism between high-order nonlinearity and the nonlinear absorption can promote the further development and applications of heavily doped oxide semiconductors in advanced nanophotonics.
Collapse
Affiliation(s)
- Xiangling Tian
- State Key Laboratory of Luminescent Materials and Devices, Institute of Optical Communication Materials, School of Materials Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou 510641 PR China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Rongfei Wei
- Department of Physics, Zhejiang Normal University Jinhua Zhejiang 321004 PR China
| | - Dandan Yang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Optical Communication Materials, School of Materials Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou 510641 PR China
| | - Jianrong Qiu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Optical Communication Materials, School of Materials Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou 510641 PR China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
| |
Collapse
|
35
|
Liu Z, Zhong Y, Shafei I, Jeong S, Wang L, Nguyen HT, Sun CJ, Li T, Chen J, Chen L, Losovyj Y, Gao X, Ma W, Ye X. Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry. NANO LETTERS 2020; 20:2821-2828. [PMID: 32105491 DOI: 10.1021/acs.nanolett.0c00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A central theme of nanocrystal (NC) research involves synthesis of dimension-controlled NCs and studyof size-dependent scaling laws governing their optical, electrical, magnetic, and thermodynamic properties. Here, we describe the synthesis of monodisperse CdO NCs that exhibit high quality-factor (up to 5.5) mid-infrared (MIR) localized surface plasmon resonances (LSPR) and elucidate the inverse scaling relationship between carrier concentration and NC size. The LSPR wavelength is readily tunable between 2.4 and ∼6.0 μm by controlling the size of CdO NCs. Structural and spectroscopic characterization provide strong evidence that free electrons primarily originate from self-doping due to NC surface-induced nonstoichiometry. The ability to probe and to control NC stoichiometry and intrinsic defects will pave the way toward predictive synthesis of doped NCs with desirable LSPR characteristics.
Collapse
Affiliation(s)
- Zeke Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu China
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Ibrahim Shafei
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Soojin Jeong
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Liguang Wang
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, Illinois 60115, United States
| | - Hoai T Nguyen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, Illinois 60115, United States
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, Illinois 60115, United States
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Jun Chen
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lei Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu China
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xinfeng Gao
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Wanli Ma
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu China
| | - Xingchen Ye
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
36
|
Jiang X, Liu G, Tang L, Wang A, Tian Y, Wang A, Du Z. Quantum dot light-emitting diodes with an Al-doped ZnO anode. NANOTECHNOLOGY 2020; 31:255203. [PMID: 32135523 DOI: 10.1088/1361-6528/ab7ceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A study of hybrid ZnCdSeS/ZnS quantum dot light-emitting diodes (QLEDs) device fabricated with indium tin oxide-free transparent electrodes is presented. Al-doped zinc oxide (AZO) prepared by magnetron sputtering is adopted in anode transparent electrodes for green QLEDs with different sputtering pressures. A Kelvin probe force microscopy measurement showed that AZO has a work function of approximately 5.0 eV. The AZO/poly(ethylene-dioxythiophene)/polystyrenesulfonate (PEDOT:PSS) interface can be adjusted by the sputtering pressures, which was confirmed by hole-only devices. AZO films with low surface roughness can form a good AZO/PEDOT:PSS interface, which can increase the holes' injection, and result in an improved charge balance. The maximum current efficiency, luminance, and external quantum efficiency of the optimized QLED devices under a sputtering pressure of 1 mTorr can achieve values of 50.75 cd A-1, 102 500 cd m-2, and 12.94%, respectively.
Collapse
Affiliation(s)
- Xiaohong Jiang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Song D, Wan D, Wu HH, Xue D, Ning S, Wu M, Venkatesan T, Pennycook SJ. Electronic and plasmonic phenomena at nonstoichiometric grain boundaries in metallic SrNbO 3. NANOSCALE 2020; 12:6844-6851. [PMID: 32186322 DOI: 10.1039/c9nr10221c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grain boundaries could exhibit exceptional electronic structure and exotic properties, which are determined by a local atomic configuration and stoichiometry that differs from the bulk. However, optical and plasmonic properties at the grain boundaries in metallic oxides have rarely been discussed before. Here, we show that non-stoichiometric grain boundaries in the newly discovered metallic SrNbO3 photocatalyst show exotic electronic, optical and plasmonic phenomena in comparison to bulk. Aberration-corrected scanning transmission electron microscopy and first-principles calculations reveal that a Nb-rich grain boundary exhibits an increased carrier concentration with quasi-1D metallic conductivity, and newly induced electronic states contributing to the broad energy range of optical absorption. More importantly, dielectric function calculations reveal extended and enhanced plasmonic excitations compared with bulk SrNbO3. Our results show that non-stoichiometric grain boundaries might be utilized to control the electronic and plasmonic properties in oxide photocatalysis.
Collapse
Affiliation(s)
- Dongsheng Song
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bo R, Zhang F, Bu S, Nasiri N, Di Bernardo I, Tran-Phu T, Shrestha A, Chen H, Taheri M, Qi S, Zhang Y, Mulmudi HK, Lipton-Duffin J, Gaspera ED, Tricoli A. One-Step Synthesis of Porous Transparent Conductive Oxides by Hierarchical Self-Assembly of Aluminum-Doped ZnO Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9589-9599. [PMID: 32019296 DOI: 10.1021/acsami.9b19423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transparent conductive oxides (TCOs) are highly desirable for numerous applications ranging from photovoltaics to light-emitting diodes and photoelectrochemical devices. Despite progress, it remains challenging to fabricate porous TCOs (pTCOs) that may provide, for instance, a hierarchical nanostructured morphology for the separation of photoexcited hole/electron couples. Here, we present a facile process for the fabrication of porous architectures of aluminum-doped zinc oxide (AZO), a low-cost and earth-abundant transparent conductive oxide. Three-dimensional nanostructured films of AZO with tunable porosities from 10 to 98% were rapidly self-assembled from flame-made nanoparticle aerosols. Successful Al doping was confirmed by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, elemental mapping, X-ray diffraction, and Fourier transform infrared spectroscopy. An optimal Al-doping level of 1% was found to induce the highest material conductivity, while a higher amount led to partial segregation and formation of aluminum oxide domains. A controllable semiconducting to conducting behavior with a resistivity change of more than 4 orders of magnitudes from about 3 × 102 to 9.4 × 106 Ω cm was observed by increasing the AZO film porosity from 10 to 98%. While the denser AZO morphologies may find immediate application as transparent electrodes, we demonstrate that the ultraporous semiconducting layers have potential as a light-driven gas sensor, showing a high response of 1.92-1 ppm of ethanol at room temperature. We believe that these tunable porous transparent conductive oxides and their scalable fabrication method may provide a highly performing material for future optoelectronic devices.
Collapse
Affiliation(s)
- Renheng Bo
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Fan Zhang
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
- Department of Applied Chemistry , Northwestern Polytechnical University , Xi'an 710072 , China
- College of Energy Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Shulin Bu
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Noushin Nasiri
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
- School of engineering , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Iolanda Di Bernardo
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Thanh Tran-Phu
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Aabhash Shrestha
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Hongjun Chen
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Mahdiar Taheri
- Labotatory of Advanced Nanomaterials for Sustainability, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Shuhua Qi
- Department of Applied Chemistry , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Yi Zhang
- College of Energy Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Hemant Kumar Mulmudi
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Josh Lipton-Duffin
- Institute for Future Environments (IFE) and Central Analytical Research Facility (CARF) , Queensland University of Technology (QUT) , Level 6, P Block, Gardens Point campus, 2 George St. Brisbane , Queensland 4000 , Australia
| | | | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| |
Collapse
|
39
|
Yuan L, Hu W, Zhang H, Chen L, Wang J, Wang Q. Cu 5FeS 4 Nanoparticles With Tunable Plasmon Resonances for Efficient Photothermal Therapy of Cancers. Front Bioeng Biotechnol 2020; 8:21. [PMID: 32133347 PMCID: PMC7039924 DOI: 10.3389/fbioe.2020.00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/10/2020] [Indexed: 12/03/2022] Open
Abstract
Localized surface plasmon resonances (LSPRs) in heavily doped copper chalcogenides are unique because LSPR energy can be adjusted by adjusting doping or stoichiometry. However, there are few investigations on the LSPRs of bimetal copper-based chalcogenides. Herein, bimetal Cu5FeS4 (CFS) nanoparticles were synthesized by a facile hot injection of a molecular precursor. The tunable plasmon resonance absorption of CFS nanoparticles is achieved by the decrease of the ratio of copper to iron and the treatment of n-dodecylphosphoric acid (DDPA). After surface modification with polyethylene glycol (PEG), the CFS nanoparticles with a plasmon resonance absorption peak at 764 nm can serve as promising photothermal agents, showing good biocompatibility and excellent photothermal performance with a photothermal conversion efficiency of up to 50.5%, and are thus used for photothermal therapy of cancers under the irradiation of an 808-nm laser. Our work provides insight into bimetal copper-based chalcogenides to achieve tunable LSPRs, which opens up the possibility of rationally designing plasmonic bimetal copper-based chalcogenides.
Collapse
Affiliation(s)
- Lei Yuan
- Xuzhou Cancer Hospital, Xuzhou, China
| | - Weiwei Hu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhang
- Xuzhou Cancer Hospital, Xuzhou, China
| | - Long Chen
- Xuzhou Cancer Hospital, Xuzhou, China
| | | | | |
Collapse
|
40
|
Cho SH, Roccapriore KM, Dass CK, Ghosh S, Choi J, Noh J, Reimnitz LC, Heo S, Kim K, Xie K, Korgel BA, Li X, Hendrickson JR, Hachtel JA, Milliron DJ. Spectrally tunable infrared plasmonic F,Sn:In 2O 3 nanocrystal cubes. J Chem Phys 2020; 152:014709. [PMID: 31914766 DOI: 10.1063/1.5139050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A synthetic challenge in faceted metal oxide nanocrystals (NCs) is realizing tunable localized surface plasmon resonance (LSPR) near-field response in the infrared (IR). Cube-shaped nanoparticles of noble metals exhibit LSPR spectral tunability limited to visible spectral range. Here, we describe the colloidal synthesis of fluorine, tin codoped indium oxide (F,Sn:In2O3) NC cubes with tunable IR range LSPR for around 10 nm particle sizes. Free carrier concentration is tuned through controlled Sn dopant incorporation, where Sn is an aliovalent n-type dopant in the In2O3 lattice. F shapes the NC morphology into cubes by functioning as a surfactant on the {100} crystallographic facets. Cube shaped F,Sn:In2O3 NCs exhibit narrow, shape-dependent multimodal LSPR due to corner, edge, and face centered modes. Monolayer NC arrays are fabricated through a liquid-air interface assembly, further demonstrating tunable LSPR response as NC film nanocavities that can heighten near-field enhancement (NFE). The tunable F,Sn:In2O3 NC near-field is coupled with PbS quantum dots, via the Purcell effect. The detuning frequency between the nanocavity and exciton is varied, resulting in IR near-field dependent enhanced exciton lifetime decay. LSPR near-field tunability is directly visualized through IR range scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). STEM-EELS mapping of the spatially confined near-field in the F,Sn:In2O3 NC array interparticle gap demonstrates elevated NFE tunability in the arrays.
Collapse
Affiliation(s)
- Shin Hum Cho
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kevin M Roccapriore
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Chandriker Kavir Dass
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, USA
| | - Sandeep Ghosh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Junho Choi
- Department of Physics, Center for Complex Quantum Systems, The University of Texas, Austin, Texas 78712, USA
| | - Jungchul Noh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lauren C Reimnitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sungyeon Heo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kihoon Kim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Karen Xie
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoqin Li
- Department of Physics, Center for Complex Quantum Systems, The University of Texas, Austin, Texas 78712, USA
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, USA
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
41
|
Yin H, Kuwahara Y, Mori K, Louis C, Yamashita H. Properties, fabrication and applications of plasmonic semiconductor nanocrystals. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02511a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We highlight three widely explored oxide-based plasmonic materials, including HxMoO3−y, HxWO3−y, and MoxW1−xO3−y, and their applications in catalysis.
Collapse
Affiliation(s)
- Haibo Yin
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - Catherine Louis
- Sorbonne Universités
- UPMC Univ Paris 06, UMR CNRS 7197
- Laboratoire de Réactivité de Surface
- F-75252 Paris
- France
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| |
Collapse
|
42
|
Nanoantenna Structure with Mid-Infrared Plasmonic Niobium-Doped Titanium Oxide. MICROMACHINES 2019; 11:mi11010023. [PMID: 31878232 PMCID: PMC7019534 DOI: 10.3390/mi11010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/02/2022]
Abstract
Among conductive oxide materials, niobium doped titanium dioxide has recently emerged as a stimulating and promising contestant for numerous applications. With carrier concentration tunability, high thermal stability, mechanical and environmental robustness, this is a material-of-choice for infrared plasmonics, which can substitute indium tin oxide (ITO). In this report, to illustrate great advantages of this material, we describe successful fabrication and characterization of niobium doped titanium oxide nanoantenna arrays aiming at surface-enhanced infrared absorption spectroscopy. The niobium doped titanium oxide film was deposited with co-sputtering method. Then the nanopatterned arrays were prepared by electron beam lithography combined with plasma etching and oxygen plasma ashing processes. The relative transmittance of the nanostrip and nanodisk antenna arrays was evaluated with Fourier transform infrared spectroscopy. Polarization dependence of surface plasmon resonances on incident light was examined confirming good agreements with calculations. Simulated spectra also present red-shift as length, width or diameter of the nanostructures increase, as predicted by classical antenna theory.
Collapse
|
43
|
Rettenmaier K, Zickler GA, Redhammer GJ, Anta JA, Berger T. Particle Consolidation and Electron Transport in Anatase TiO 2 Nanocrystal Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39859-39874. [PMID: 31585043 PMCID: PMC7116033 DOI: 10.1021/acsami.9b12693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A sequence of chemical vapor synthesis and thermal annealing in defined gas atmospheres was used to prepare phase-pure anatase TiO2 nanocrystal powders featuring clean surfaces and a narrow particle size distribution with a median particle diameter of 14.5 ± 0.5 nm. Random networks of these nanocrystals were immobilized from aqueous dispersions onto conducting substrates and are introduced as model systems for electronic conductivity studies. Thermal annealing of the immobilized films at 100 °C < T < 450 °C in air was performed to generate particle-particle contacts upon virtual preservation of the structural properties of the nanoparticle films. The distribution of electrochemically active electronic states as well as the dependence of the electronic conductivity on the Fermi level position in the semiconductor films was studied in aqueous electrolytes in situ using electrochemical methods. An exponential distribution of surface states is observed to remain unchanged upon sintering. However, capacitive peaks corresponding to deep electron traps in the nanoparticle films shift positive on the potential scale evidencing an increase of the trapping energy upon progressive thermal annealing. These peaks are attributed to trap states at particle-particle interfaces in the random nanocrystal network (i.e., at grain boundaries). In the potential region, where the capacitive peaks are detected, we observe an exponential conductivity variation by up to 5 orders of magnitude. The potential range featuring the exponential conductivity variation shifts positive by up to 0.15 V when increasing the sintering temperature from 100 to 450 °C. Importantly, all films approach a potential- and sintering-temperature-independent maximum conductivity of ∼10-4 Ω-1·cm-1 at more negative potentials. On the basis of these results we introduce a qualitative model, which highlights the detrimental impact of electron traps located on particle-particle interfaces on the electronic conductivity in random semiconductor nanoparticle networks.
Collapse
Affiliation(s)
- Karin Rettenmaier
- Department of Chemistry and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg, Austria
| | - Gregor Alexander Zickler
- Department of Chemistry and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg, Austria
| | - Günther Josef Redhammer
- Department of Chemistry and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg, Austria
| | - Juan Antonio Anta
- Área de Química Física, Universidad Pablo de
Olavide, E-41013 Sevilla, Spain
| | - Thomas Berger
- Department of Chemistry and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg, Austria
- E-mail:
| |
Collapse
|
44
|
Liang H, Xi H, Liu S, Zhang X, Liu H. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. NANOSCALE 2019; 11:18183-18190. [PMID: 31556902 DOI: 10.1039/c9nr06222j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxygen vacancy (OV) tuning was introduced into oxygen-deficient WO3 nanosheets to optimize the chemical and electronic properties. Enhanced electronic conduction, extended light absorption, enhanced HER reaction kinetics and benign photothermal performance were verified by density functional theory (DFT) calculations and experimental studies. Vis-NIR light-enhanced electrocatalytic HER was accomplished with a small overpotential of 52 mV (at 10 mA cm-2) and a low Tafel slope of 37 mV dec-1 and performed much more efficiently than that in darkness, comparable to the noble-metal catalysts (Pt, Pt/C). Moreover, the resultant WO3-OVs possess good photothermal conversion efficiency. The promising potential of the WO3-OVs for anticancer photothermal therapy has been demonstrated with a high photothermal conversion efficiency (∼41.6%) upon single wavelength near-infrared irradiation and an efficient tumor inhibition rate (∼96.8%). This design of photoelectronic/thermal materials paves an exciting new avenue for the conversion of well-developed metal oxides to be high-performance and multifunctional materials for energy and oncology applications.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of basic Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shangdong 271000, P. R. China.
| | | | | | | | | |
Collapse
|
45
|
Buz E, Zhou D, Kittilstved KR. Air-stable n-type Fe-doped ZnO colloidal nanocrystals. J Chem Phys 2019; 151:134702. [DOI: 10.1063/1.5124947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Enes Buz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Dongming Zhou
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kevin R. Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
46
|
Gibbs SL, Staller CM, Milliron DJ. Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals. Acc Chem Res 2019; 52:2516-2524. [PMID: 31424914 DOI: 10.1021/acs.accounts.9b00287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Strong infrared (IR) light-matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction.
Collapse
Affiliation(s)
- Stephen L. Gibbs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Corey M. Staller
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Delia J. Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1589, United States
| |
Collapse
|
47
|
Synthesis and Deposition of Ag Nanoparticles by Combining Laser Ablation and Electrophoretic Deposition Techniques. COATINGS 2019. [DOI: 10.3390/coatings9090571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silver nanostructured thin films have been fabricated on silicon substrate by combining simultaneously pulsed laser ablation in liquid (PLAL) and electrophoretic deposition (ED) techniques. The composition, topography, crystalline structure, surface topography, and optical properties of the obtained films have been studied by energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-visible spectrophotometry. The coatings were composed of Ag nanoparticles ranging from a few to hundred nm. The films exhibited homogenous morphology, uniform appearance, and a clear localized surface plasmon resonance (LSPR) around 400 nm.
Collapse
|
48
|
Tian X, Luo H, Wei R, Liu M, Yang Z, Luo Z, Zhu H, Li J, Qiu J. Ultrafast and broadband optical nonlinearity in aluminum doped zinc oxide colloidal nanocrystals. NANOSCALE 2019; 11:13988-13995. [PMID: 31309966 DOI: 10.1039/c9nr04337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavily doped oxide semiconductors can be tailored for widespread application in near-infrared (NIR) and mid-infrared (mid-IR) wavelength ranges because of both functional and fabrication advantages. Here, the ultrafast and broadband nonlinear saturable absorption of Al-doped zinc oxide nanocrystals (AZO NCs) is investigated by using the Z-scan technique and the pump-probe technique. The nonlinear absorption coefficient is as high as -1.90 × 103 cm GW-1 in the wide infrared (IR) wavelength range (from 800 to 3000 nm). Furthermore, a maximum optically induced refractive index of -1.85 × 10-1 cm2 GW-1 in the dielectric region and 2.09 × 10-1 cm2 GW-1 in the metallic region leads to an ultrafast nonlinear optical response (less than 350 femtoseconds). Mode-locked fiber lasers at 1064 nm and 1550 nm as well as Q-switched fiber lasers near 2000 nm and 3000 nm prove the use of employing AZO NCs as a broadband and ultrafast nonlinear optical device, which provides a valuable strategy and intuition for the development of nanomaterial-based photonic and optoelectronic devices in the NIR and mid-IR wavelength ranges.
Collapse
Affiliation(s)
- Xiangling Tian
- State Key Laboratory of Luminescent Materials and Devices and School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, PR China.
| | - Hongyu Luo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Rongfei Wei
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China.
| | - Meng Liu
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Zhaoliang Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Zhichao Luo
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Haiming Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Jianfeng Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianrong Qiu
- State Key Laboratory of Luminescent Materials and Devices and School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, PR China. and State Key Laboratory of Modern Optical Instrumentation, College of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| |
Collapse
|
49
|
Moon H, Lee C, Lee W, Kim J, Chae H. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804294. [PMID: 30650209 DOI: 10.1002/adma.201804294] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/10/2018] [Indexed: 05/06/2023]
Abstract
Quantum dots (QDs) are being highlighted in display applications for their excellent optical properties, including tunable bandgaps, narrow emission bandwidth, and high efficiency. However, issues with their stability must be overcome to achieve the next level of development. QDs are utilized in display applications for their photoluminescence (PL) and electroluminescence. The PL characteristics of QDs are applied to display or lighting applications in the form of color-conversion QD films, and the electroluminescence of QDs is utilized in quantum dot light-emitting diodes (QLEDs). Studies on the stability of QDs and QD devices in display applications are reviewed herein. QDs can be degraded by oxygen, water, thermal heating, and UV exposure. Various approaches have been developed to protect QDs from degradation by controlling the composition of their shells and ligands. Phosphorescent QDs have been protected by bulky ligands, physical incorporation in polymer matrices, and covalent bonding with polymer matrices. The stability of electroluminescent QLEDs can be enhanced by using inorganic charge transport layers and by improving charge balance. As understanding of the degradation mechanisms of QDs increases and more stable QDs and display devices are developed, QDs are expected to play critical roles in advanced display applications.
Collapse
Affiliation(s)
- Hyungsuk Moon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Seoburo 2066, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Changmin Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Seoburo 2066, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woosuk Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Seoburo 2066, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jungwoo Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Seoburo 2066, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Seoburo 2066, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seoburo 2066, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
50
|
Sun H, Jiang H, Kong R, Ren D, Wang D, Tan J, Wu D, Zhu W, Shen B. Tuning n-Alkane Adsorption on Mixed-Linker Zeolitic Imidazolate Framework-8-90 via Controllable Ligand Hybridization: Insight into the Confinement from an Energetics Perspective. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Sun
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Jiang
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Ruiqi Kong
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Danni Ren
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Wang
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Jialun Tan
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Di Wu
- Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99163, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
- Materials Science and Engineering, Washington State University, Pullman, Washington 99163, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Weinan Zhu
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Benxian Shen
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|