1
|
Sun J, Shi Z, Liu X, Ma Y, Li R, Chen S, Xin S, Wang N, Jia S, Wu K. Theoretical Investigation on the Metamaterials Based on the Magnetic Template-Assisted Self-Assembly of Magnetic-Plasmonic Nanoparticles for Adjustable Photonic Responses. J Phys Chem B 2023; 127:8681-8689. [PMID: 37782892 DOI: 10.1021/acs.jpcb.3c04917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The assembly of artificial nano- or microstructured materials with tunable functionalities and structures, mimicking nature's complexity, holds great potential for numerous novel applications. Despite remarkable progress in synthesizing colloidal molecules with diverse functionalities, most current methods, such as the capillarity-assisted particle assembly method, the ionic assembly method based on ionic interactions, or the field-directed assembly strategy based on dipole-dipole interactions, are confined to focusing on achieving symmetrical molecules. But there have been few examples of fabricating asymmetrical colloidal molecules that could exhibit unprecedented optical properties. Here, we introduce a microfluidic and magnetic template-assisted self-assembly protocol that relies mainly on the magnetic dipole-dipole interactions between magnetized magnetic-plasmonic nanoparticles and the mechanical constraints resulting from the specially designed traps. This novel strategy not only requires no specific chemistry but also enables magnetophoretic control of magnetic-plasmonic nanoparticles during the assembly process. Moreover, the assembled asymmetrical colloidal molecules also exhibit interesting hybridized plasmon modes and produce exotic optical properties due to the strong coupling of the individual nanoparticle. The ability to fabricate asymmetrical colloidal molecules based on the bottom-up method opens up a new direction for the fabrication of novel microscale structures for biosensing, patterning, and delivery applications.
Collapse
Affiliation(s)
- Jiajia Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Zongqian Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Xiaofeng Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Yuxin Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Ruohan Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Shuang Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Shumin Xin
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Nan Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Shenli Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
2
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Xing X, Zhou Y, Wei Y, Zhang Y, Man Z, Zhang W, Lu Z. Patterning of Molecules/Ions via Reverse Micelle Vessels by Nanoxerography. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37296516 DOI: 10.1021/acsami.3c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise patterning of molecules/ions in the nanometer scale is a crucial but challenging technique for the fabrication of advanced functional nanodevices. We developed a robust method to print molecules/ions into arbitrarily defined patterns with sub-20 nm precision assisted by reverse micelles. The reverse micelle, serving as a nano-sized vessel, can load molecules/ions and then be patterned onto the predefined positions by electrostatic attraction. The number of molecules/ions on each spot, the spot spacing, and pattern shapes can be flexibly adjusted, reaching 10 nm position accuracy, 30 nm spot size, and 100 nm spot spacing (>250,000 DPI). Then, water-soluble dye molecules, protein molecules, and chloroaurate ions were loaded in the micelles and successfully patterned into nanoarrays, which provides an important platform for the convenient, flexible, and robust fabrication of functional molecule/ion-based nanodevices, such as biochips, for high-throughput and ultrasensitive analysis.
Collapse
Affiliation(s)
- Xing Xing
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yao Zhou
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Yelu Wei
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Barelli M, Vidal C, Fiorito S, Myslovska A, Cielecki D, Aglieri V, Moreels I, Sapienza R, Di Stasio F. Single-Photon Emitting Arrays by Capillary Assembly of Colloidal Semiconductor CdSe/CdS/SiO 2 Nanocrystals. ACS PHOTONICS 2023; 10:1662-1670. [PMID: 37215316 PMCID: PMC10197167 DOI: 10.1021/acsphotonics.3c00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 05/24/2023]
Abstract
The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as single-photon-emitting light-emitting diodes based on colloidal semiconductor NCs.
Collapse
Affiliation(s)
- Matteo Barelli
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Cynthia Vidal
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Sergio Fiorito
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Alina Myslovska
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Dimitrie Cielecki
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Vincenzo Aglieri
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Iwan Moreels
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Riccardo Sapienza
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Francesco Di Stasio
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
5
|
Charconnet M, Korsa MT, Petersen S, Plou J, Hanske C, Adam J, Seifert A. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices. SMALL METHODS 2023; 7:e2201546. [PMID: 36807876 DOI: 10.1002/smtd.202201546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Periodic superlattices of noble metal nanoparticles have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near-field coupling and constructive far-field interference. Here, a chemically driven, templated self-assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far-field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano-cluster near-field behavior, predicting the experimental findings provided by surface-enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface-enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well-defined strong hotspots.
Collapse
Affiliation(s)
- Mathias Charconnet
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Matiyas Tsegay Korsa
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Søren Petersen
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Javier Plou
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
- CIBER-BBN, ISCIII, San Sebastián, 20014, Spain
| | - Christoph Hanske
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Jost Adam
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Andreas Seifert
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
6
|
Nguyen TM, Cho Y, Huh JH, Ahn H, Kim N, Rho KH, Lee J, Kwon M, Park SH, Kim C, Kim K, Kim YS, Lee S. Ultralow-Loss Substrate for Nanophotonic Dark-Field Microscopy. NANO LETTERS 2023; 23:1546-1554. [PMID: 36757958 DOI: 10.1021/acs.nanolett.2c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For the colloidal nanophotonic structures, a transmission electron microscope (TEM) grid has been widely used as a substrate of dark-field microscopy because a nanometer-scale feature can be effectively determined by TEM imaging following dark-field microscopic studies. However, an optically lossy carbon layer has been implemented in conventional TEM grids. A broadband scattering from the edges of the TEM grid further restricted an accessible signal-to-noise ratio. Herein, we demonstrate that the freely suspended, ultrathin, and wide-scale transparent nanomembrane can address such challenges. We developed a 1 mm by 600 μm scale and 20 nm thick poly(vinyl formal) nanomembrane, whose area is around 180 times wider than a conventional TEM grid, so that the possible broadband scattering at the edges of the grid was effectively excluded. Also, such nanomembranes can be formed without the assistance of carbon support; allowing us to achieve the highest signal-to-background ratio of scattering among other substrates.
Collapse
Affiliation(s)
- Thang Minh Nguyen
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hayun Ahn
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - NaYeoun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Hun Rho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jaewon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Min Kwon
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Hun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - ChaeEon Kim
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kwangjin Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Young-Seok Kim
- Display Research Center, Korea Electronic Technology Institute (KETI), Gyeonggi-do 13509, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering (College of Engineering) and KU Photonics Center, Korea University, Seoul 02841, Republic of Korea
- Center for Optoelectronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
8
|
Pillanagrovi J, Dutta-Gupta S. Controlled assembly of gold nanoparticles in resonant gold nanoapertures for SERS applications. NANOTECHNOLOGY 2022; 33:485301. [PMID: 36001942 DOI: 10.1088/1361-6528/ac8c49] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The controlled assembly of plasmonic nanoparticles is vital for realizing low-cost, high efficiency plasmonic substrates with tunable resonances. Here, we present a strategy to assemble gold nanoparticles (AuNPs) in resonant gold nanoapertures (NAs) to enable coupling-mediated near-field enhancement. The NAs templates are fabricated using shadow sphere lithography on polyelectrolyte (PE) coated substrates. Subsequently, AuNPs are assembled in the resonant NA templates via a simple immersion step. The PE layer, AuNP concentration, NaCl concentration, incubation time, and template thickness are used to control the particle number per aperture and the interparticle distance of the AuNP assemblies. The fabricated AuNP-NA substrates are evaluated for their SERS potential using 4-Mercaptobenzoic acid (MBA) as a Raman reporter molecule. The SERS intensity of the AuNP-NA templates can be enhanced by ten times by controlling the AuNP and NA template parameters as compared to the bare NA templates. Numerical simulations show that the coupling between the various plasmonic modes is crucial for this SERS enhancement. The proposed strategy can be used to fabricate hybrid AuNP-NA based SERS substrates with improved sensitivity.
Collapse
Affiliation(s)
- Jayakumar Pillanagrovi
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Shourya Dutta-Gupta
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
9
|
Lermusiaux L, Roach L, Baron A, Treguer-Delapierre M. Bottom-up synthesis of meta-atoms as building blocks in self-assembled metamaterials : Recent advances and perspectives. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Meta-atoms interact with light in interesting ways and offer a large range of exciting properties. They exhibit optical properties inaccessible by natural atoms but their fabrication is notoriously difficult because of the precision required. In this perspective, we present the current research landscape in making meta-atoms, with a focus on the most promising self-assembly approaches and main challenges to overcome, for the development of materials with novel properties at optical frequencies.
Collapse
|
10
|
Roach L, Hereu A, Lalanne P, Duguet E, Tréguer-Delapierre M, Vynck K, Drisko GL. Controlling disorder in self-assembled colloidal monolayers via evaporative processes. NANOSCALE 2022; 14:3324-3345. [PMID: 35174843 PMCID: PMC8900142 DOI: 10.1039/d1nr07814c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Monolayers of assembled nano-objects with a controlled degree of disorder hold interest in many optical applications, including photovoltaics, light emission, sensing, and structural coloration. Controlled disorder can be achieved through either top-down or bottom-up approaches, but the latter is more suited to large-scale, low-cost fabrication. Disordered colloidal monolayers can be assembled through evaporatively driven convective assembly, a bottom-up process with a wide range of parameters impacting particle placement. Motivated by the photonic applications of such monolayers, in this review we discuss the quantification of monolayer disorder, and the assembly methods that have been used to produce them. We review the impact of particle and solvent properties, as well as the use of substrate patterning, to create the desired spatial distributions of particles.
Collapse
Affiliation(s)
- Lucien Roach
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Adrian Hereu
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Philippe Lalanne
- IOGS, Univ. Bordeaux, CNRS, LP2N, UMR 5298, F-33400 Talence, France
| | - Etienne Duguet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | | | - Kevin Vynck
- Univ. Claude Bernard Lyon 1, CNRS, iLM, UMR 5306, F-69622 Villeurbanne, France.
| | - Glenna L Drisko
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| |
Collapse
|
11
|
Xiong Y, Li N, Che C, Wang W, Barya P, Liu W, Liu L, Wang X, Wu S, Hu H, Cunningham BT. Microscopies Enabled by Photonic Metamaterials. SENSORS (BASEL, SWITZERLAND) 2022; 22:1086. [PMID: 35161831 PMCID: PMC8840465 DOI: 10.3390/s22031086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the biosensor research community has made rapid progress in the development of nanostructured materials capable of amplifying the interaction between light and biological matter. A common objective is to concentrate the electromagnetic energy associated with light into nanometer-scale volumes that, in many cases, can extend below the conventional Abbé diffraction limit. Dating back to the first application of surface plasmon resonance (SPR) for label-free detection of biomolecular interactions, resonant optical structures, including waveguides, ring resonators, and photonic crystals, have proven to be effective conduits for a wide range of optical enhancement effects that include enhanced excitation of photon emitters (such as quantum dots, organic dyes, and fluorescent proteins), enhanced extraction from photon emitters, enhanced optical absorption, and enhanced optical scattering (such as from Raman-scatterers and nanoparticles). The application of photonic metamaterials as a means for enhancing contrast in microscopy is a recent technological development. Through their ability to generate surface-localized and resonantly enhanced electromagnetic fields, photonic metamaterials are an effective surface for magnifying absorption, photon emission, and scattering associated with biological materials while an imaging system records spatial and temporal patterns. By replacing the conventional glass microscope slide with a photonic metamaterial, new forms of contrast and enhanced signal-to-noise are obtained for applications that include cancer diagnostics, infectious disease diagnostics, cell membrane imaging, biomolecular interaction analysis, and drug discovery. This paper will review the current state of the art in which photonic metamaterial surfaces are utilized in the context of microscopy.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
| | - Weijing Wang
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
| | - Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Weinan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Leyang Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Xiaojing Wang
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Shaoxiong Wu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, International Campus, Zhejiang University, Haining 314400, China; (S.W.); (H.H.)
| | - Huan Hu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, International Campus, Zhejiang University, Haining 314400, China; (S.W.); (H.H.)
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Charconnet M, Kuttner C, Plou J, García-Pomar JL, Mihi A, Liz-Marzán LM, Seifert A. Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy. SMALL METHODS 2021; 5:e2100453. [PMID: 34927949 DOI: 10.1002/smtd.202100453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 05/27/2023]
Abstract
Lattice plasmons, i.e., diffractively coupled localized surface plasmon resonances, occur in long-range ordered plasmonic nanostructures such as 1D and 2D periodic lattices. Such far-field coupled resonances can be employed for ultrasensitive surface-enhanced Raman spectroscopy (SERS), provided they are spectrally matched to the excitation wavelength. The spectral positions of lattice plasmon modes critically depend on the lattice period and uniformity, owing to their pronounced sensitivity to structural disorder. We report the fabrication of superlattices by templated self-assembly of gold nanoparticles on a flexible support, with tunable lattice-plasmon resonances by means of macroscopic strain. We demonstrate that the highest SERS performance is achieved by matching the lattice plasmon mode to the excitation wavelength, by post-assembly fine-tuning of long-range structural parameters. Both asymmetric and symmetric lattice deformations can be used to adapt a single lattice structure to both red-shifted and blue-shifted excitation lines, as exemplified by lattice expansion and contraction, respectively. This proof-of-principle study represents a basis for alternative designs of adaptive functional nanostructures with mechanically tunable lattice resonances using strain as a macroscopic control parameter.
Collapse
Affiliation(s)
- Mathias Charconnet
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Christian Kuttner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Javier Plou
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Centro de Investigación en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
| | | | - Agustín Mihi
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Centro de Investigación en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, 48009, Spain
- Department of Applied Chemistry, University of the Basque Country (EHU-UPV), Donostia-San Sebastián, 20018, Spain
| | - Andreas Seifert
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
13
|
Ostrovsky N, Le Saux G, Argaman U, Chen IT, Chen T, Chang CH, Makov G, Schvartzman M. Templated Assembly of Nanoparticles into Continuous Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9098-9110. [PMID: 34293867 DOI: 10.1021/acs.langmuir.1c01188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The templated assembly of nanoparticles has been limited so far to yield only discontinuous nanoparticle clusters confined within lithographically patterned cavities. Here, we explored the templated assembly of nanoparticles into continuous 2D structures, using lithographically patterned templates with topographical features sized as the assembled nanoparticles. We found that these features act as nucleation centers, whose exact arrangement determines four possible assembly regimes (i) rotated, (ii) disordered, (iii) closely packed, and (iv) unpacked. These regimes produce structures strikingly different from their geometry, orientation, long-range and short-range orders, and packing density. Interestingly, for templates with relatively distant nucleation centers, these four regimes are replaced with three new ones, which produce large monocrystalline domains that are either (i) uniformly rotated, (ii) uniformly aligned, or (iii) nonuniformly rotated relative to the nucleation lattice. We rationalized our experimental data using a mathematical model, which examines all the alignment possibilities between the nucleation centers and the ideal hexagonal assembly. Our finding provides a new approach for the à la carte obtainment of various nanoscale structures unachievable by natural self-assembly and opens a route for the fabrication of numerous functional nanodevices and nanosystems that could not be realized so far by the standard bottom-up approach.
Collapse
Affiliation(s)
| | | | | | - I Te Chen
- Walker Department of Mechanical Engineering, The University of Texas, Austin 78712-1139, Texas, United States
| | - Timothy Chen
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Chih-Hao Chang
- Walker Department of Mechanical Engineering, The University of Texas, Austin 78712-1139, Texas, United States
| | | | | |
Collapse
|
14
|
Xu Y, Meng Y, Zhou S, Zhang W. Interferometric scattering of a single plasmonic nanoparticle cluster assembled in a nanostructured template. OPTICS EXPRESS 2021; 29:12976-12983. [PMID: 33985043 DOI: 10.1364/oe.420801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, we investigate the light scattering of a single Au nanoparticle cluster assembled in a nanostructured substrate and study how the substrate geometry influences the scattering spectrum. An explicit model was built with the help of the Green's tensor theory, showing that there are two distinct types of substrate effects, namely, the interferometric scattering caused by the local corrugation and the spectral modulation caused by the global features (i.e., the layered substrate in this work). The result predicted by the model agrees with the experimental results well, providing a simple yet quantitative tool for the spectral interpretation of plasmonic nanostructures with complex substrates.
Collapse
|
15
|
Pioli R, Fernandez-Rodriguez MA, Grillo F, Alvarez L, Stocker R, Isa L, Secchi E. Sequential capillarity-assisted particle assembly in a microfluidic channel. LAB ON A CHIP 2021; 21:888-895. [PMID: 33427254 DOI: 10.1039/d0lc00962h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal patterning enables the placement of a wide range of materials into prescribed spatial arrangements, as required in a variety of applications, including micro- and nano-electronics, sensing, and plasmonics. Directed colloidal assembly methods, which exploit external forces to place particles with high yield and great accuracy, are particularly powerful. However, currently available techniques require specialized equipment, which limits their applicability. Here, we present a microfluidic platform to produce versatile colloidal patterns within a microchannel, based on sequential capillarity-assisted particle assembly (sCAPA). This new microfluidic technology exploits the capillary forces resulting from the controlled motion of an evaporating droplet inside a microfluidic channel to deposit individual particles in an array of traps microfabricated onto a substrate. Sequential depositions allow the generation of a desired spatial layout of colloidal particles of single or multiple types, dictated solely by the geometry of the traps and the filling sequence. We show that the platform can be used to create a variety of patterns and that the microfluidic channel easily allows surface functionalization of trapped particles. By enabling colloidal patterning to be carried out in a controlled environment, exploiting equipment routinely used in microfluidics, we demonstrate an easy-to-build platform that can be implemented in microfluidics labs.
Collapse
Affiliation(s)
- Roberto Pioli
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Tanjeem N, Chomette C, Schade NB, Ravaine S, Duguet E, Tréguer-Delapierre M, Manoharan VN. Polyhedral plasmonic nanoclusters through multi-step colloidal chemistry. MATERIALS HORIZONS 2021; 8:565-570. [PMID: 34821272 DOI: 10.1039/d0mh01311k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wu XX, Jiang WY, Wang XF, Zhao LY, Shi J, Zhang S, Sui X, Chen ZX, Du WN, Shi JW, Liu Q, Zhang Q, Zhang Y, Liu XF. Inch-Scale Ball-in-Bowl Plasmonic Nanostructure Arrays for Polarization-Independent Second-Harmonic Generation. ACS NANO 2021; 15:1291-1300. [PMID: 33373181 DOI: 10.1021/acsnano.0c08498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Second-harmonic generation (SHG) in plasmonic nanostructures has been investigated for decades due to their wide applications in photonic circuit, quantum optics and biosensing. Development of large-scale, uniform, and efficient plasmonic nanostructure system with tunable modes is desirable for their feasible utilizations. Herein, we design an efficient inch-scale SHG source by a solution-processed method instead of traditional high-cost processes. By assembling the gold nanoparticles with the porous anodic alumina templates, multiresonance in both visible and near-infrared regions can be achieved in hexagonal plasmonic nanostructure arrays, which provide strong electric field enhancement at the gap region. Polarization-independence SHG radiation has been realized owing to the in-plane isotropic characteristic of assembled unit. The tilt-angle dependent and angle-resolved measurement showed that wide-angle nonlinear response is achieved in our device because of the gap geometry of ball-in-bowl nanostructure with nonlinear emission electric dipoles distributed on the concave surface, which makes it competitive in practical applications. Our progress not only makes it possible to produce uniform inch-scale nonlinear arrays through low-cost solution process; and also advances the understanding of the SHG radiation in plasmonic nanostructures.
Collapse
Affiliation(s)
- Xian-Xin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wen-Yu Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiao-Feng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li-Yun Zhao
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
- Research Center for Wide Band Semiconductor, Peking University, Beijing 100871, P.R. China
| | - Jia Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shuai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinyu Sui
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhe-Xue Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wen-Na Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P.R. China
| | - Jian-Wei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Qian Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
- Research Center for Wide Band Semiconductor, Peking University, Beijing 100871, P.R. China
| | - Yong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin-Feng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
18
|
Lee JB, Walker H, Li Y, Nam TW, Rakovich A, Sapienza R, Jung YS, Nam YS, Maier SA, Cortés E. Template Dissolution Interfacial Patterning of Single Colloids for Nanoelectrochemistry and Nanosensing. ACS NANO 2020; 14:17693-17703. [PMID: 33270433 DOI: 10.1021/acsnano.0c09319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deterministic positioning and assembly of colloidal nanoparticles (NPs) onto substrates is a core requirement and a promising alternative to top-down lithography to create functional nanostructures and nanodevices with intriguing optical, electrical, and catalytic features. Capillary-assisted particle assembly (CAPA) has emerged as an attractive technique to this end, as it allows controlled and selective assembly of a wide variety of NPs onto predefined topographical templates using capillary forces. One critical issue with CAPA, however, lies in its final printing step, where high printing yields are possible only with the use of an adhesive polymer film. To address this problem, we have developed a template dissolution interfacial patterning (TDIP) technique to assemble and print single colloidal AuNP arrays onto various dielectric and conductive substrates in the absence of any adhesion layer, with printing yields higher than 98%. The TDIP approach grants direct access to the interface between the AuNP and the target surface, enabling the use of colloidal AuNPs as building blocks for practical applications. The versatile applicability of TDIP is demonstrated by the creation of direct electrical junctions for electro- and photoelectrochemistry and nanoparticle-on-mirror geometries for single-particle molecular sensing.
Collapse
Affiliation(s)
- Joong Bum Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Harriet Walker
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Emiliano Cortés
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| |
Collapse
|
19
|
Park S, Hwang H, Kim M, Moon JH, Kim SH. Colloidal assembly in droplets: structures and optical properties. NANOSCALE 2020; 12:18576-18594. [PMID: 32909568 DOI: 10.1039/d0nr04608f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Colloidal assembly in emulsion drops provides fundamental tools for studying optimum particle arrangement under spherical confinement and practical means for producing photonic microparticles. Recent progress has revealed that energetically favored cluster configurations are different from conventional supraballs, which could enhance optical performance. This paper reviews state-of-the-art emulsion-templated colloidal clusters, and particularly focuses on recently reported novel structures such as icosahedral, decahedral, and single-crystalline face-centered cubic (fcc) clusters. We classify the clusters according to the number of component particles as small (N < O(102)), medium (O(102) ≤N≤O(104)), and large (N≥O(105)). For each size of clusters, we discuss the detailed structures, mechanisms of cluster formation, and optical properties and potential applications. Finally, we outline current challenges and questions that require further investigation.
Collapse
Affiliation(s)
- Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|
20
|
Zhang H, Kinnear C, Mulvaney P. Fabrication of Single-Nanocrystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904551. [PMID: 31576618 DOI: 10.1002/adma.201904551] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 05/17/2023]
Abstract
To realize the full potential of nanocrystals in nanotechnology, it is necessary to integrate single nanocrystals into addressable structures; for example, arrays and periodic lattices. The current methods for achieving this are reviewed. It is shown that a combination of top-down lithography techniques with directed assembly offers a platform for attaining this goal. The most promising of these directed assembly methods are reviewed: capillary force assembly, electrostatic assembly, optical printing, DNA-based assembly, and electrophoretic deposition. The last of these appears to offer a generic approach to fabrication of single-nanocrystal arrays.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Calum Kinnear
- CSIRO Manufacturing, Ian Wark Laboratories, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
21
|
Jiang W, Ma Y, Zhao J, Li L, Xu Y, Guo H, Song L, Chen Z, Zhang Y. Robust Assembly of Colloidal Nanoparticles for Controlled-Reflectance Surface Construction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23773-23779. [PMID: 31187616 DOI: 10.1021/acsami.9b06577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlled placement of nanoscale particles with nanometer precision on substrates/surfaces is highly desired toward functional nanodevices. Herein, we report the robust assembly of colloidal nanoparticles onto nanostructured aluminum surfaces. The surfaces are configured by porous anodic alumina (PAA) membranes on top of textured aluminum substrates. Capillary force and geometry confinement enable rapid and precise transfer of colloidal nanoparticles from solutions into PAA templates. Such top-down control of bottom-up assembly demonstrates large-area (>1 × 1 cm2) integration of nanoscale particles with exceedingly high yield (>95%) and exceptionally high density (>1010 particles/cm2). The plasmonic coupling between gold nanoparticles and aluminum surfaces, as well as between adjacent nanoparticles, is responsible for the unique reflectance from the assembled surfaces. The reflectance minimum (resonant absorption) can be readily shifted from visible to near-infrared by simple structural variation. The apparent surface colors are thus broadly manipulated. Our work offers a straightforward platform toward construction of surfaces with controlled reflectance.
Collapse
Affiliation(s)
- Wenyu Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yanhong Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Yuanqing Xu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Hongbo Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Luting Song
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Zhexue Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Yong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
22
|
Greybush NJ, Pacheco-Peña V, Engheta N, Murray CB, Kagan CR. Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. ACS NANO 2019; 13:1617-1624. [PMID: 30629426 DOI: 10.1021/acsnano.8b07619] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Assembling metamolecules from anisotropic, shape-engineered nanocrystals provides the opportunity to orchestrate distinct optical responses one nanocrystal at a time. The Au nanorod has long been a structural archetype in plasmonics, but nanorod assemblies have largely been limited to end-to-end or side-to-side arrangements, accessing only a subset of potential metamolecule structures. Here, we employ triangular templates to direct the assembly of Au nanorods along the edges of an equilateral triangle. Using spatially resolved, dark-field scattering spectroscopy in concert with numerical simulation of individual metamolecules, we map the evolution in surface plasmon resonances as we add one, two, and three nanorods to construct triangular nanorod assemblies. The assemblies exhibit rotation- and polarization-dependent hybridized plasmon modes, which are sensitive to variations in nanorod size, position, and orientation that lead to geometrical symmetry breaking. The triangular arrangement of nanorods supports magnetic plasmon modes where electric fields are directed along the perimeter of the triangle, and the magnetic field intensity within the triangle's open interior is enhanced. Circumferential displacements of the nanorods within the templates impart either a left- or right-handed sense of rotation to the structure, which generates a chiroptical response under unidirectional oblique illumination. Our results represent an important step in realizing and characterizing metamaterial assemblies with "open" structures utilizing anisotropic plasmonic building blocks, with implications for optical magnetic field enhancement and chiral plasmonics.
Collapse
|
23
|
Jin CM, Lee W, Kim D, Kang T, Choi I. Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803055. [PMID: 30294867 DOI: 10.1002/smll.201803055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Controlled assembly of colloidal nanoparticles onto solid substrates generally needs to overcome their thermal diffusion in water. For this purpose, several techniques that are based on chemical bonding, capillary interactions with substrate patterning, optical force, and optofluidic heating of light-absorbing substrates are proposed. However, the direct assembly of colloidal nanoparticles on generic substrates without chemical linkers and substrate patterning still remains challenging. Here, photothermal convection lithography is proposed, which allows the rapid placement of colloidal nanoparticles onto the surface of diverse solid substrates. It is based on local photothermal heating of colloidal nanoparticles by resonant light focusing without substrate heating, which induces convective flow. The convective flow, then, forces the colloidal nanoparticles to assemble at the illumination point of light. The size of the assembly is increased by either increasing the light intensity or illumination time. It is shown that three types of colloidal gold nanoparticles with different shapes (rod, star, and sphere) can be uniformly assembled by the proposed method. Each assembly with a diameter of tens of micrometers can be completed within a minute and its patterned arrays can also be achieved rapidly.
Collapse
Affiliation(s)
- Chang Min Jin
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| | - Wooju Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| |
Collapse
|
24
|
Rouet PE, Chomette C, Duguet E, Ravaine S. Colloidal Molecules from Valence-Endowed Nanoparticles by Covalent Chemistry. Angew Chem Int Ed Engl 2018; 57:15754-15757. [DOI: 10.1002/anie.201809895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Pierre-Etienne Rouet
- CNRS; Univ. Bordeaux; CRPP, UMR 5031; 33600 Pessac France
- CNRS; Univ. Bordeaux; ICMCB, UMR 5026; 33600 Pessac France
| | - Cyril Chomette
- CNRS; Univ. Bordeaux; ICMCB, UMR 5026; 33600 Pessac France
| | - Etienne Duguet
- CNRS; Univ. Bordeaux; ICMCB, UMR 5026; 33600 Pessac France
| | - Serge Ravaine
- CNRS; Univ. Bordeaux; CRPP, UMR 5031; 33600 Pessac France
| |
Collapse
|
25
|
Rouet PE, Chomette C, Duguet E, Ravaine S. Colloidal Molecules from Valence-Endowed Nanoparticles by Covalent Chemistry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pierre-Etienne Rouet
- CNRS; Univ. Bordeaux; CRPP, UMR 5031; 33600 Pessac France
- CNRS; Univ. Bordeaux; ICMCB, UMR 5026; 33600 Pessac France
| | - Cyril Chomette
- CNRS; Univ. Bordeaux; ICMCB, UMR 5026; 33600 Pessac France
| | - Etienne Duguet
- CNRS; Univ. Bordeaux; ICMCB, UMR 5026; 33600 Pessac France
| | - Serge Ravaine
- CNRS; Univ. Bordeaux; CRPP, UMR 5031; 33600 Pessac France
| |
Collapse
|
26
|
Tatkiewicz WI, Seras-Franzoso J, Garcia-Fruitós E, Vazquez E, Kyvik AR, Guasch J, Villaverde A, Veciana J, Ratera I. Surface-Bound Gradient Deposition of Protein Nanoparticles for Cell Motility Studies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25779-25786. [PMID: 29989793 DOI: 10.1021/acsami.8b06821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A versatile evaporation-assisted methodology based on the coffee-drop effect is described to deposit nanoparticles on surfaces, obtaining for the first time patterned gradients of protein nanoparticles (pNPs) by using a simple custom-made device. Fully controllable patterns with specific periodicities consisting of stripes with different widths and distinct nanoparticle concentration as well as gradients can be produced over large areas (∼10 cm2) in a fast (up to 10 mm2/min), reproducible, and cost-effective manner using an operational protocol optimized by an evolutionary algorithm. The developed method opens the possibility to decorate surfaces "a-la-carte" with pNPs enabling different categories of high-throughput studies on cell motility.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Elena Garcia-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - A R Kyvik
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
- Dynamic Biomaterials for Cancer Immunotherapy , Max Planck Partner Group, ICMAB-CSIC , Campus UAB , 08193 Bellaterra , Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| |
Collapse
|
27
|
Haran G, Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem Rev 2018; 118:5539-5580. [DOI: 10.1021/acs.chemrev.7b00647] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gilad Haran
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
28
|
Ni S, Isa L, Wolf H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. SOFT MATTER 2018; 14:2978-2995. [PMID: 29611588 DOI: 10.1039/c7sm02496g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way. In this review, the working principles of capillary assembly and its fundamental process parameters are first presented and discussed. We then examine the latest developments in template design and tool optimization to perform capillary assembly in more robust and efficient ways. This is followed by a focus on the broad range of functional materials that have been realized using capillary assembly, from single components to large-scale heterogeneous multi-component assemblies. We then review current applications of capillary assembly, especially in optics, electronics, and in biomaterials. We conclude with a short summary and an outlook for future developments.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
29
|
Ni S, Wolf H, Isa L. Programmable Assembly of Hybrid Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2481-2488. [PMID: 29364683 DOI: 10.1021/acs.langmuir.7b03944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hybrid nanoparticle clusters (often metallic) are interesting plasmonic materials with tunable resonances and a near-field electromagnetic enhancement at interparticle junctions. Therefore, in recent years, we have witnessed a surge in both the interest in these materials and the efforts to obtain them. However, a versatile fabrication of hybrid nanoclusters, that is, combining more than one material, still remains an open challenge. Current lithographical or self-assembly methods are limited to the preparation of hybrid clusters with up to two different materials and typically to the fabrication of hybrid dimers. Here, we provide a novel strategy to deposit and align not only hybrid dimers but also hybrid nanoclusters possessing more complex shapes and compositions. Our strategy is based on the downscaling of sequential capillarity-assisted particle assembly over topographical templates. As a proof of concept, we demonstrate dimers, linear trimers, and 2D nanoclusters with programmable compositions from a range of metallic nanoparticles. Our process does not rely on any specific chemistry and can be extended to a large variety of particles and shapes. The template also simultaneously aligns the hybrid (often anisotropic) nanoclusters, which could facilitate device integration, for example, for optical readout after transfer to other substrates by a printing step. We envisage that this new fabrication route will enable the assembly and positioning of complex hybrid nanoclusters of different functional nanoparticles to study coupling effects not only locally but also at larger scales for new nanoscale optical devices.
Collapse
Affiliation(s)
- Songbo Ni
- Laboratory for Interfaces, Soft Matter, and Assembly, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- IBM Research Zurich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Heiko Wolf
- IBM Research Zurich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Lucio Isa
- Laboratory for Interfaces, Soft Matter, and Assembly, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
30
|
Hughes RA, Menumerov E, Neretina S. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. NANOTECHNOLOGY 2017; 28:282002. [PMID: 28590253 DOI: 10.1088/1361-6528/aa77ce] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.
Collapse
Affiliation(s)
- Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | | | | |
Collapse
|
31
|
Schnepf MJ, Mayer M, Kuttner C, Tebbe M, Wolf D, Dulle M, Altantzis T, Formanek P, Förster S, Bals S, König TAF, Fery A. Nanorattles with tailored electric field enhancement. NANOSCALE 2017; 9:9376-9385. [PMID: 28656183 DOI: 10.1039/c7nr02952g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanorattles are metallic core-shell particles with core and shell separated by a dielectric spacer. These nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions and commensurate variations in enhancement factor. We present a novel synthetic approach for the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy (STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic applications where a defined and robust unit cell is crucial.
Collapse
Affiliation(s)
- Max J Schnepf
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany.
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany. and Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Kuttner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany. and Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Moritz Tebbe
- Physical Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Daniel Wolf
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Dulle
- Physical Chemistry I, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Thomas Altantzis
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany.
| | - Stephan Förster
- Physical Chemistry I, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany. and Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany. and Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany and Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
32
|
Greybush NJ, Liberal I, Malassis L, Kikkawa JM, Engheta N, Murray CB, Kagan CR. Plasmon Resonances in Self-Assembled Two-Dimensional Au Nanocrystal Metamolecules. ACS NANO 2017; 11:2917-2927. [PMID: 28190335 DOI: 10.1021/acsnano.6b08189] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We explore the evolution of plasmonic modes in two-dimensional nanocrystal oligomer "metamolecules" as the number of nanocrystals is systematically varied. Precise, hexagonally ordered Au nanocrystal oligomers with 1-31 members are assembled via capillary forces into polygonal topographic templates defined using electron-beam lithography. The visible and near-infrared scattering response of individual oligomers is measured by spatially resolved, polarized darkfield scattering spectroscopy. The response is highly sensitive to in-plane versus out-of-plane incident polarization, and we observe an exponentially saturating red shift in plasmon resonance wavelength as the number of nanocrystals per oligomer increases, in agreement with theoretical predictions. Simulations further elucidate the modes supported by the oligomers, including electric dipole and magnetic dipole resonances and their Fano interference. The single-oligomer sensitivity of our measurements also reveals the role of positional disorder in determining the wavelength and character of the plasmonic response. The progression of oligomer metamolecule structures studied here advances our understanding of fundamental plasmonic interactions in the transition regime between few-member plasmonic clusters and extended two-dimensional arrays.
Collapse
Affiliation(s)
| | | | - Ludivine Malassis
- Complex Assemblies of Soft Matter Laboratory (COMPASS), UMI 3254, CNRS-Solvay-UPenn , Bristol, Pennsylvania 19007, United States
| | | | | | | | | |
Collapse
|
33
|
Paik T, Yun H, Fleury B, Hong SH, Jo PS, Wu Y, Oh SJ, Cargnello M, Yang H, Murray CB, Kagan CR. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices. NANO LETTERS 2017; 17:1387-1394. [PMID: 28146634 DOI: 10.1021/acs.nanolett.6b04279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid-interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir-Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidence small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.
Collapse
Affiliation(s)
- Taejong Paik
- School of Integrative Engineering, Chung-Ang University , Seoul, 06974, South Korea
| | | | | | - Sung-Hoon Hong
- Electronics and Telecommunications Research Institute , Daejeon, 34129, South Korea
| | - Pil Sung Jo
- Complex Assemblies of Soft Matter, CNRS-SOLVAY-PENN UMI 3254 , Bristol, Pennsylvania 19007, United States
| | | | - Soong-Ju Oh
- Department of Materials Science and Engineering, Korea University , Seoul 02841, South Korea
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
34
|
Lin L, Wang M, Wei X, Peng X, Xie C, Zheng Y. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes. NANO LETTERS 2016; 16:7655-7663. [PMID: 27960522 DOI: 10.1021/acs.nanolett.6b03702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.
Collapse
Affiliation(s)
- Linhan Lin
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Mingsong Wang
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Xiaoling Wei
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Yuebing Zheng
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
35
|
Hu X, Zheng P, Meng G, Huang Q, Zhu C, Han F, Huang Z, Li Z, Wang Z, Wu N. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide. NANOTECHNOLOGY 2016; 27:384001. [PMID: 27528554 DOI: 10.1088/0957-4484/27/38/384001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.
Collapse
Affiliation(s)
- Xiaoye Hu
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1067] [Impact Index Per Article: 133.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
37
|
Seo S, Zhou X, Liu GL. Sensitivity Tuning through Additive Heterogeneous Plasmon Coupling between 3D Assembled Plasmonic Nanoparticle and Nanocup Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3453-62. [PMID: 27206214 DOI: 10.1002/smll.201600451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/29/2016] [Indexed: 05/14/2023]
Abstract
Plasmonic substrates have fixed sensitivity once the geometry of the structure is defined. In order to improve the sensitivity, significant research effort has been focused on designing new plasmonic structures, which involves high fabrication costs; however, a method is reported for improving sensitivity not by redesigning the structure but by simply assembling plasmonic nanoparticles (NPs) near the evanescent field of the underlying 3D plasmonic nanostructure. Here, a nanoscale Lycurgus cup array (nanoLCA) is employed as a base colorimetric plasmonic substrate and an assembly template. Compared to the nanoLCA, the NP assembled nanoLCA (NP-nanoLCA) exhibits much higher sensitivity for both bulk refractive index sensing and biotin-streptavidin binding detection. The limit of detection of the NP-nanoLCA is at least ten times smaller when detecting biotin-streptavidin conjugation. The numerical calculations confirm the importance of the additive plasmon coupling between the NPs and the nanoLCA for a denser and stronger electric field in the same 3D volumetric space. Tunable sensitivity is accomplished by controlling the number of NPs in each nanocup, or the number density of the hot spots. This simple yet scalable and cost-effective method of using additive heterogeneous plasmon coupling effects will benefit various chemical, medical, and environmental plasmon-based sensors.
Collapse
Affiliation(s)
- Sujin Seo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiangfei Zhou
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gang Logan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
38
|
Dewald I, Gensel J, Betthausen E, Borisov OV, Müller AHE, Schacher FH, Fery A. Splitting of Surface-Immobilized Multicompartment Micelles into Clusters upon Charge Inversion. ACS NANO 2016; 10:5180-5188. [PMID: 27101441 DOI: 10.1021/acsnano.6b00670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate a morphological transition of surface-immobilized triblock terpolymer micelles: the splitting into well-defined clusters of satellite micelles upon pH changes. The multicompartment micelles are formed in aqueous solution of ABC triblock terpolymers consisting of a hydrophobic polybutadiene block, a weak polyanionic poly(methacrylic acid) block, and a weak polycationic poly(2-(dimethylamino)ethyl methacrylate) block. They are subsequently immobilized on silicon wafer surfaces by dip-coating. The splitting process is triggered by a pH change to strongly basic pH, which goes along with a charge reversal of the micelles. We find that the aggregation number of the submicelles is well-defined and that larger micelles have a tendency to split into a larger number of submicelles. Furthermore, there is a clear preference for clusters consisting of doublets and triplets of submicelles. The morphology of surface-immobilized clusters can be "quenched" by returning to the original pH. Thus, such well-defined micellar clusters can be stabilized and are available as colloidal building blocks for the formation of hierarchical surface structures. We discuss the underlying physicochemical principles of the splitting process considering changes in charge and total free energy of the micelles upon pH change.
Collapse
Affiliation(s)
- Inna Dewald
- Department of Physical Chemistry II, University of Bayreuth , Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Julia Gensel
- Department of Physical Chemistry II, University of Bayreuth , Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Eva Betthausen
- Department of Macromolecular Chemistry II, University of Bayreuth , Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Oleg V Borisov
- Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS/UPPA , 2 av. P. Angot, 64053 Pau, France
- Saint-Petersburg State Polytechnic University , 195251 St. Petersburg, Russia
| | - Axel H E Müller
- Department of Macromolecular Chemistry II, University of Bayreuth , Universitätsstrasse 30, 95440 Bayreuth, Germany
- Institut für Organische Chemie, Johannes Gutenberg Universität Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Felix H Schacher
- Institut für Organische Chemie und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena , Lessingstrasse 8, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena , Philosophenweg 7, 07743 Jena, Germany
| | - Andreas Fery
- Department of Physical Chemistry II, University of Bayreuth , Universitätsstrasse 30, 95440 Bayreuth, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
| |
Collapse
|
39
|
Raja W, Bozzola A, Zilio P, Miele E, Panaro S, Wang H, Toma A, Alabastri A, De Angelis F, Zaccaria RP. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells. Sci Rep 2016; 6:24539. [PMID: 27080420 PMCID: PMC4832235 DOI: 10.1038/srep24539] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022] Open
Abstract
With the objective to conceive a plasmonic solar cell with enhanced photocurrent, we investigate the role of plasmonic nanoshells, embedded within a ultrathin microcrystalline silicon solar cell, in enhancing broadband light trapping capability of the cell and, at the same time, to reduce the parasitic loss. The thickness of the considered microcrystalline silicon (μc-Si) layer is only ~1/6 of conventional μc-Si based solar cells while the plasmonic nanoshells are formed by a combination of silica and gold, respectively core and shell. We analyze the cell optical response by varying both the geometrical and optical parameters of the overall device. In particular, the nanoshells core radius and metal thickness, the periodicity, the incident angle of the solar radiation and its wavelength are varied in the widest meaningful ranges. We further explain the reason for the absorption enhancement by calculating the electric field distribution associated to resonances of the device. We argue that both Fabry-Pérot-like and localized plasmon modes play an important role in this regard.
Collapse
Affiliation(s)
- Waseem Raja
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.,Università degli Studi di Genova, Via Balbi 5, 16126 Genova, Italy
| | - Angelo Bozzola
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Ermanno Miele
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Simone Panaro
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Hai Wang
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Toma
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Alessandro Alabastri
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.,Rice University, Physics and Astronomy Department, Brockman Hall6100, Main MS-61, Houston, TX77005, USA.,Rice University, Laboratory for Nanophotonics, Smalley-Curl Institute, Houston, TX 77005, USA
| | | | - Remo Proietti Zaccaria
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.,Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|
40
|
Zhang CY, Jian XL, Lu W. Ring formation in the quasi-two-dimensional system of the patchy magnetic spheres. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:145101. [PMID: 26965459 DOI: 10.1088/0953-8984/28/14/145101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fabricating new functional materials has always been at the center of colloidal science, and how to form circular rings is a meaningful challenge due to their special electronic, magnetic and optical properties. Magnetic colloidal spheres can self-assemble into rings, but these rings have an uncontrollable length and shape and also have to coexist with chains and defected clusters. To make the most of magnetic spheres being able to self-assemble into rings, a patch is added to the surface of the sphere to form a chiral link between particles. The structural transition in the system of patchy magnetic spheres is studied using the Monte Carlo simulation. When the patch angle is in the interval 60° to 75°, rings become the dominant structure if the strength of patchy interaction exceeds a particular threshold and the shape of these rings is close to the circle. With an increase in the patch angle, the threshold of patchy interaction decreases and the average length of the circular ring increases approximately from 5 to 8.5.
Collapse
Affiliation(s)
- Cheng-yu Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, People's Republic of China
| | | | | |
Collapse
|
41
|
Ni S, Leemann J, Buttinoni I, Isa L, Wolf H. Programmable colloidal molecules from sequential capillarity-assisted particle assembly. SCIENCE ADVANCES 2016; 2:e1501779. [PMID: 27051882 PMCID: PMC4820371 DOI: 10.1126/sciadv.1501779] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/13/2016] [Indexed: 05/19/2023]
Abstract
The assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature's complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing "patchy" particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single "molecule" and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task. We use sequential capillarity-assisted particle assembly which uniquely fulfills the demands described above. This is a new method based on simple, yet essential, adaptations to the well-known capillary assembly of particles over topographical templates. Tuning the depth of the assembly sites (traps) and the surface tension of moving droplets of colloidal suspensions enables controlled stepwise filling of traps to "synthesize" colloidal molecules. After deposition and mechanical linkage, the colloidal molecules can be dispersed in a solvent. The template's shape solely controls the molecule's geometry, whereas the filling sequence independently determines its composition. No specific surface chemistry is required, and multifunctional molecules with organic and inorganic moieties can be fabricated. We demonstrate the "synthesis" of a library of structures, ranging from dumbbells and triangles to units resembling bar codes, block copolymers, surfactants, and three-dimensional chiral objects. The full programmability of our approach opens up new directions not only for assembling and studying complex materials with single-particle-level control but also for fabricating new microscale devices for sensing, patterning, and delivery applications.
Collapse
Affiliation(s)
- Songbo Ni
- Laboratory for Interfaces, Soft Matter, and Assembly, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- IBM Research–Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Jessica Leemann
- Laboratory for Interfaces, Soft Matter, and Assembly, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- IBM Research–Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Ivo Buttinoni
- Laboratory for Interfaces, Soft Matter, and Assembly, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Lucio Isa
- Laboratory for Interfaces, Soft Matter, and Assembly, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- Corresponding author. E-mail: (L.I.); (H.W.)
| | - Heiko Wolf
- IBM Research–Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
- Corresponding author. E-mail: (L.I.); (H.W.)
| |
Collapse
|
42
|
Teich EG, van Anders G, Klotsa D, Dshemuchadse J, Glotzer SC. Clusters of polyhedra in spherical confinement. Proc Natl Acad Sci U S A 2016; 113:E669-78. [PMID: 26811458 PMCID: PMC4760782 DOI: 10.1073/pnas.1524875113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to [Formula: see text] constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem.
Collapse
Affiliation(s)
- Erin G Teich
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109
| | - Greg van Anders
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Daphne Klotsa
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Julia Dshemuchadse
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Sharon C Glotzer
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
43
|
Asbahi M, Mehraeen S, Wang F, Yakovlev N, Chong KSL, Cao J, Tan MC, Yang JKW. Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution. NANO LETTERS 2015; 15:6066-6070. [PMID: 26274574 DOI: 10.1021/acs.nanolett.5b02291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Directed self-assembly of nanoparticles (DSA-n) holds great potential for device miniaturization in providing patterning resolution and throughput that exceed existing lithographic capabilities. Although nanoparticles excel at assembling into regular close-packed arrays, actual devices on the other hand are often laid out in sparse and complex configurations. Hence, the deterministic positioning of single or few particles at specific positions with low defect density is imperative. Here, we report an approach of DSA-n that satisfies these requirements with less than 1% defect density over micrometer-scale areas and at technologically relevant sub-10 nm dimensions. This technique involves a simple and robust process where a solvent film containing sub-10 nm gold nanoparticles climbs against gravity to coat a prepatterned template. Particles are placed individually into nanoscale cavities, or between nanoposts arranged in varying degrees of geometric complexity. Brownian dynamics simulations suggest a mechanism in which the particles are pushed into the template by a nanomeniscus at the drying front. This process enables particle-based self-assembly to access the sub-10 nm dimension, and for device fabrication to benefit from the wealth of chemically synthesized nanoparticles with unique material properties.
Collapse
Affiliation(s)
- Mohamed Asbahi
- Institute of Materials Research and Engineering , A*STAR, 3 Research Link, Singapore 117602
| | - Shafigh Mehraeen
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Fuke Wang
- Institute of Materials Research and Engineering , A*STAR, 3 Research Link, Singapore 117602
| | - Nikolai Yakovlev
- Institute of Materials Research and Engineering , A*STAR, 3 Research Link, Singapore 117602
| | - Karen S L Chong
- Institute of Materials Research and Engineering , A*STAR, 3 Research Link, Singapore 117602
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Mei Chee Tan
- Pillar of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Road, Singapore 487372
| | - Joel K W Yang
- Institute of Materials Research and Engineering , A*STAR, 3 Research Link, Singapore 117602
- Pillar of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Road, Singapore 487372
| |
Collapse
|
44
|
Mehraeen S, Asbahi M, Fuke W, Yang JKW, Cao J, Tan MC. Directed Self-Assembly of sub-10 nm Particles: Role of Driving Forces and Template Geometry in Packing and Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8548-8557. [PMID: 26147183 DOI: 10.1021/acs.langmuir.5b01696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
By comparing the magnitude of forces, a directed self-assembly mechanism has been suggested previously in which immersion capillary is the only driving force responsible for packing and ordering of nanoparticles, which occur only after the meniscus recedes. However, this mechanism is insufficient to explain vacancies formed by directed self-assembly at low particle concentrations. Utilizing experiments, and Monte Carlo and Brownian dynamics simulations, we developed a theoretical model based on a new proposed mechanism. In our proposed mechanism, the competing driving forces controlling the packing and ordering of sub-10 nm particles are (1) the repulsive component of the pair potential and (2) the attractive capillary forces, both of which apply at the contact line. The repulsive force arises from the high particle concentration, and the attractive force is caused by the surface tension at the contact line. Our theoretical model also indicates that the major part of packing and ordering of nanoparticles occurs before the meniscus recedes. Furthermore, utilizing our model, we are able to predict the various self-assembly configurations of particles as their size increases. These results lay out the interplay between driving forces during directed self-assembly, motivating a better template design now that we know the importance and the dominating driving forces in each regime of particle size.
Collapse
Affiliation(s)
- Shafigh Mehraeen
- †Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 4873372
- ‡Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohamed Asbahi
- §Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 117602
| | - Wang Fuke
- §Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 117602
| | - Joel K W Yang
- †Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 4873372
- §Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 117602
| | - Jianshu Cao
- ‡Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mei Chee Tan
- †Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 4873372
| |
Collapse
|
45
|
Baladi E, Pollock JG, Iyer AK. New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners. OPTICS EXPRESS 2015; 23:20356-20365. [PMID: 26367891 DOI: 10.1364/oe.23.020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Extraordinary transmission (ET) through a periodic array of subwavelength apertures on a perfect metallic screen has been studied extensively in recent years, and has largely been attributed to diffraction effects, for which the periodicity of the apertures, rather than their dimensions, dominates the response. The transmission properties of the apertures at resonance, on the other hand, are not typically considered 'extraordinary' because they may be explained using more conventional aperture-theoretical mechanisms. This work describes a novel approach for achieving ET in which subwavelength apertures are made to resonate by lining them using thin, epsilon-negative and near-zero (ENNZ) metamaterials. The use of ENNZ metamaterials has recently proven successful in miniaturizing circular waveguides by strongly reducing their natural cutoff frequencies, and the theory is adapted here for the design of subwavelength apertures in a metallic screen. We present simulations and proof-of-concept measurements at microwave frequencies that demonstrate ET for apertures measuring one-quarter of a wavelength in diameter and suggest the potential for even more dramatic miniaturization simply by engineering the ENNZ metamaterial dispersion. The results exhibit a fano-like profile whose frequency varies with the properties of the metamaterial liner, but is independent of period. It is suggested that similar behaviour can be obtained at optical frequencies, where ENNZ metamaterials may be realized using appropriately arranged chains of plasmonic nanoparticles.
Collapse
|
46
|
Tian Y, Wang T, Liu W, Xin HL, Li H, Ke Y, Shih WM, Gang O. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. NATURE NANOTECHNOLOGY 2015; 10:637-44. [PMID: 26005999 PMCID: PMC5282466 DOI: 10.1038/nnano.2015.105] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 04/20/2015] [Indexed: 05/17/2023]
Abstract
Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled with designed particle arrangements.
Collapse
Affiliation(s)
- Ye Tian
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Tong Wang
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Wenyan Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Huilin Li
- 1] Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA [2] Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5213, USA
| | - Yonggang Ke
- 1] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [3] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - William M Shih
- 1] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [3] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
47
|
Zhang Y, Liu Q, Mundoor H, Yuan Y, Smalyukh II. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS NANO 2015; 9:3097-108. [PMID: 25712232 DOI: 10.1021/nn5074644] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Viewing angle characteristics of displays and performance of electro-optic devices are often compromised by the quality of dichroic thin-film polarizers, while dichroic optical filters usually lack tunability and cannot work beyond the visible part of optical spectrum. We demonstrate that molecular-colloidal organic-inorganic composites formed by liquid crystals and relatively dilute dispersions of orientationally ordered anisotropic gold nanoparticles, such as rods and platelets, can be used in engineering of switchable plasmonic polarizers and color filters. The use of metal nanoparticles instead of dichroic dyes allows for obtaining desired polarizing or scattering and absorption properties not only within the visible but also in the infrared parts of an optical spectrum. We explore spontaneous surface-anchoring-mediated alignment of surface-functionalized anisotropic gold nanoparticles and its control by low-voltage electric fields, elastic colloidal interactions and self-assembly, as well as the uses of these effects in defining tunable properties of the ensuing organic-inorganic nanostructured composites. Electrically tunable interaction of the composites may allow for engineering of practical electro-optic devices, such as a new breed of color filters and plasmonic polarizers.
Collapse
Affiliation(s)
- Yuan Zhang
- †Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- ‡Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qingkun Liu
- †Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Haridas Mundoor
- †Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Ye Yuan
- †Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Ivan I Smalyukh
- †Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- §Department of Electrical, Computer, and Energy Engineering, Liquid Crystal Materials Research Center, and Materials Science Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- ⊥Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
48
|
Ni S, Leemann J, Wolf H, Isa L. Insights into mechanisms of capillary assembly. Faraday Discuss 2015; 181:225-42. [DOI: 10.1039/c4fd00250d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capillary assembly in a topographical template is a powerful and flexible method for fabricating complex and programmable particle assemblies. To date, very little attention has been paid to the effects that the trap geometry – in particular the trap depth – has on the outcome of the assembly process. In this paper, we provide insights into the mechanisms behind this directed assembly method by systematically studying the impact of the trap depth and the surface tension of the suspension. Using confocal microscopy, we investigate the assembly process at the single-particle level and use these observations to formulate a simple mechanical model that offers guidelines for the successful assembly of single or multiple particles in a trap. In particular, single particles are assembled for shallow traps and moderate surface tensions, opening up the possibility to fabricate multifunctional particle dimers in two consecutive assembly steps.
Collapse
Affiliation(s)
- Songbo Ni
- Laboratory for Interfaces
- Soft Matter and Assembly
- Department of Materials
- ETH Zurich
- 8093 Zurich
| | - Jessica Leemann
- Laboratory for Interfaces
- Soft Matter and Assembly
- Department of Materials
- ETH Zurich
- 8093 Zurich
| | | | - Lucio Isa
- Laboratory for Interfaces
- Soft Matter and Assembly
- Department of Materials
- ETH Zurich
- 8093 Zurich
| |
Collapse
|
49
|
Hanske C, Tebbe M, Kuttner C, Bieber V, Tsukruk VV, Chanana M, König TAF, Fery A. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. NANO LETTERS 2014; 14:6863-71. [PMID: 25347293 PMCID: PMC4344371 DOI: 10.1021/nl502776s] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/22/2014] [Indexed: 04/14/2023]
Abstract
We present ensembles of surface-ordered nanoparticle arrangements, which are formed by template-assisted self-assembly of monodisperse, protein-coated gold nanoparticles in wrinkle templates. Centimeter-squared areas of highly regular, linear assemblies with tunable line width are fabricated and their extinction cross sections can be characterized by conventional UV/vis/NIR spectroscopy. Modeling based on electrodynamic simulations shows a clear signature of strong plasmonic coupling with an interparticle spacing of 1-2 nm. We find evidence for well-defined plasmonic modes of quasi-infinite chains, such as resonance splitting and multiple radiant modes. Beyond elementary simulations on the individual chain level, we introduce an advanced model, which considers the chain length distribution as well as disorder. The step toward macroscopic sample areas not only opens perspectives for a range of applications in sensing, plasmonic light harvesting, surface enhanced spectroscopy, and information technology but also eases the investigation of hybridization and metamaterial effects fundamentally.
Collapse
Affiliation(s)
- Christoph Hanske
- Physical
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Moritz Tebbe
- Physical
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Christian Kuttner
- Physical
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Vera Bieber
- Physical
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Munish Chanana
- Physical
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Institute
of Building Materials (IfB), ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich, Switzerland
| | - Tobias A. F. König
- Physical
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Andreas Fery
- Physical
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
50
|
Zohar N, Chuntonov L, Haran G. The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2014. [DOI: 10.1016/j.jphotochemrev.2014.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|