1
|
Li M, Wang H, Li W, Xu XG, Yu Y. Macrophage activation on "phagocytic synapse" arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. SCIENCE ADVANCES 2020; 6:eabc8482. [PMID: 33268354 PMCID: PMC7821875 DOI: 10.1126/sciadv.abc8482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/19/2020] [Indexed: 05/02/2023]
Abstract
The activation of Toll-like receptor heterodimer 1/2 (TLR1/2) by microbial components plays a critical role in host immune responses against pathogens. TLR1/2 signaling is sensitive to the chemical structure of ligands, but its dependence on the spatial distribution of ligands on microbial surfaces remains unexplored. Here, we reveal the quantitative relationship between TLR1/2-triggered immune responses and the spacing of ligand clusters by designing an artificial "phagocytic synapse" nanoarray platform to mimic the cell-microbe interface. The ligand spacing dictates the proximity of receptor clusters on the cell surface and consequently the pro-inflammatory responses of macrophages. However, cell responses reach their maximum at small ligand spacings when the receptor nanoclusters become adjacent to one another. Our study demonstrates the feasibility of using spatially patterned ligands to modulate innate immunity. It shows that the receptor clusters of TLR1/2 act as a driver in integrating the spatial cues of ligands into cell-level activation events.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Lin JJ, O'Donoghue GP, Wilhelm KB, Coyle MP, Low-Nam ST, Fay NC, Alfieri KN, Groves JT. Membrane Association Transforms an Inert Anti-TCRβ Fab' Ligand into a Potent T Cell Receptor Agonist. Biophys J 2020; 118:2879-2893. [PMID: 32407684 DOI: 10.1016/j.bpj.2020.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
The natural peptide-major histocompatibility complex (pMHC) ligand for T cell receptors (TCRs) is inactive from solution yet capable of activating T cells at single-molecule levels when membrane-associated. This distinctive feature stems from the mechanism of TCR activation, which is thought to involve steric phosphatase exclusion as well as direct mechanical forces. It is possible to defeat this mechanism and activate T cells with solution ligands by cross-linking pMHC or using multivalent antibodies to TCR. However, these widely used strategies activate TCRs through a nonphysiological mechanism and can produce different activation profiles than natural, monovalent, membrane-associated pMHC. Here, we introduce a strictly monovalent anti-TCRβ H57 Fab' ligand that, when coupled to a supported lipid bilayer via DNA complementation, triggers TCRs and activates nuclear translocation of the transcription factor nuclear factor of activated T cells (NFAT) with a similar potency to pMHC in primary murine T cells. Importantly, like monovalent pMHC and unlike bivalent antibodies, monovalent Fab'-DNA triggers TCRs only when physically coupled to the membrane, and only around 100 individual Fab':TCR interactions are necessary to stimulate early T cell activation.
Collapse
Affiliation(s)
- Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Geoff P O'Donoghue
- Department of Chemistry, University of California, Berkeley, Berkeley, California.
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Michael P Coyle
- Department of Chemistry, University of California, Berkeley, Berkeley, California.
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Nicole C Fay
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California
| | - Katherine N Alfieri
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
3
|
Urban P, Pritzl SD, Ober MF, Dirscherl CF, Pernpeintner C, Konrad DB, Frank JA, Trauner D, Nickel B, Lohmueller T. A Lipid Photoswitch Controls Fluidity in Supported Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2629-2634. [PMID: 32069411 DOI: 10.1021/acs.langmuir.9b02942] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supported lipid bilayer (SLB) membranes are key elements to mimic membrane interfaces on a planar surface. Here, we demonstrate that azobenzene photolipids (azo-PC) form fluid, homogeneous SLBs. Diffusion properties of azo-PC within SLBs were probed by fluorescence microscopy and fluorescence recovery after photobleaching. At ambient conditions, we find that the trans-to-cis isomerization causes an increase of the diffusion constant by a factor of two. Simultaneous excitation with two wavelengths and variable intensities furthermore allows to adjust the diffusion constant D continuously. X-ray reflectometry and small-angle scattering measurements reveal that membrane photoisomerization results in a bilayer thickness reduction of ∼0.4 nm (or 10%). While thermally induced back-switching is not observed, we find that the trans bilayer fluidity is increasing with higher temperatures. This change in diffusion constant is accompanied by a red-shift in the absorption spectra. Based on these results, we suggest that the reduced diffusivity of trans-azo-PC is controlled by intermolecular interactions that also give rise to H-aggregate formation in bilayer membranes.
Collapse
Affiliation(s)
- Patrick Urban
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 Munich, Germany
| | - Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 Munich, Germany
| | - Martina F Ober
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Christina F Dirscherl
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Carla Pernpeintner
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 Munich, Germany
| | - David B Konrad
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - James A Frank
- Vollum Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, Silver Center, 100 Washington Square East, Room 712, New York, New York 10003, United States
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Bert Nickel
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 Munich, Germany
| |
Collapse
|
4
|
Kim S, Seo J, Park HH, Kim N, Oh JW, Nam JM. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes. Acc Chem Res 2019; 52:2793-2805. [PMID: 31553568 DOI: 10.1021/acs.accounts.9b00327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmonic nanoparticles are widely exploited in diverse bioapplications ranging from therapeutics to biosensing and biocomputing because of their strong and tunable light-matter interactions, facile and versatile chemical/biological ligand modifications, and biocompatibility. With the rapid growth of nanobiotechnology, understanding dynamic interactions between nanoparticles and biological systems at the molecular or single-particle level is becoming increasingly important for interrogating biological systems with functional nanostructures and for developing nanoparticle-based biosensors and therapeutic agents. Therefore, significant efforts have been devoted to precisely design and create nano-bio interfaces by manipulating the nanoparticles' size, shape, and surface ligand interactions with complex biological systems to maximize their performance and avoid unwanted responses, such as their agglomeration and cytotoxicity. However, investigating physicochemical interactions at the nano-bio interfaces in a quantitative and controllable manner remains challenging, as the interfaces involve highly complex networks between nanoparticles, biomolecules, and cells across multiple scales, each with a myriad of different chemical and biological interactions. A lipid bilayer is a membrane made of two layers of lipid molecules that forms a barrier around cells and plays structural and functional roles in diverse biological processes because they incorporate and present functional molecules (such as membrane proteins) with lateral fluidity. Plasmonic nanoparticles conjugated on lipid membranes provide reliable analytical labels and functional moieties that allow for studying and manipulating interactions between nanoparticles and molecules with single-particle resolution; they also serve as efficient tools for applying optical, mechanical, and thermal stimuli to biological systems, which stem from plasmonic properties. Recently, new opportunities have emerged by interfacing nanoparticle-modified lipid bilayers (NLBs) with complex systems such as molecular circuits and living systems. In this Account, we briefly review how plasmonic properties can be beneficially harnessed on lipid bilayer membranes to investigate the structures and functions of cellular membranes and to develop new platforms for biomedical applications. In particular, we discuss the versatility of supported lipid bilayers (SLBs), which are planar lipid bilayers on hydrophilic substrates, as dynamic biomaterials that provide lateral fluidity and cell membrane-like environments. We then summarize our efforts to create a quantitative analytical platform utilizing nanoparticles as active building blocks and SLBs as integrative substrates. Through this bottom-up approach, various functionalized nanoparticles have been introduced onto lipid bilayers to render nanoparticle-nanoparticle, nanoparticle-lipid bilayer, and biomolecule-lipid bilayer interfaces programmable. Our system provides a new class of tools for studying thermodynamics and kinetics in complex networks of nanostructures and for realizing unique applications in biosensing and biocomputing.
Collapse
Affiliation(s)
- Sungi Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinyoung Seo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ha H. Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Namjun Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jeong-Wook Oh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
5
|
Abstract
A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.
Collapse
Affiliation(s)
- Kabir H. Biswas
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore 637553
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Lin JJY, Low-Nam ST, Alfieri KN, McAffee DB, Fay NC, Groves JT. Mapping the stochastic sequence of individual ligand-receptor binding events to cellular activation: T cells act on the rare events. Sci Signal 2019; 12:12/564/eaat8715. [PMID: 30647147 DOI: 10.1126/scisignal.aat8715] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell receptor (TCR) binding to agonist peptide major histocompatibility complex (pMHC) triggers signaling events that initiate T cell responses. This system is remarkably sensitive, requiring only a few binding events to successfully activate a cellular response. On average, activating pMHC ligands exhibit mean dwell times of at least a few seconds when bound to the TCR. However, a T cell accumulates pMHC-TCR interactions as a stochastic series of discrete, single-molecule binding events whose individual dwell times are broadly distributed. With activation occurring in response to only a handful of such binding events, individual cells are unlikely to experience the average binding time. Here, we mapped the ensemble of pMHC-TCR binding events in space and time while simultaneously monitoring cellular activation. Our findings revealed that T cell activation hinges on rare, long-dwell time binding events that are an order of magnitude longer than the average agonist pMHC-TCR dwell time. Furthermore, we observed that short pMHC-TCR binding events that were spatially correlated and temporally sequential led to cellular activation. These observations indicate that T cell antigen discrimination likely occurs by sensing the tail end of the pMHC-TCR binding dwell time distribution rather than its average properties.
Collapse
Affiliation(s)
- Jenny J Y Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine N Alfieri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicole C Fay
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Sustained α-catenin Activation at E-cadherin Junctions in the Absence of Mechanical Force. Biophys J 2017; 111:1044-52. [PMID: 27602732 DOI: 10.1016/j.bpj.2016.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/08/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Mechanotransduction at E-cadherin junctions has been postulated to be mediated in part by a force-dependent conformational activation of α-catenin. Activation of α-catenin allows it to interact with vinculin in addition to F-actin, resulting in a strengthening of junctions. Here, using E-cadherin adhesions reconstituted on synthetic, nanopatterned membranes, we show that activation of α-catenin is dependent on E-cadherin clustering, and is sustained in the absence of mechanical force or association with F-actin or vinculin. Adhesions were formed by filopodia-mediated nucleation and micron-scale assembly of E-cadherin clusters, which could be distinguished as either peripheral or central assemblies depending on their relative location at the cell-bilayer adhesion. Whereas F-actin, vinculin, and phosphorylated myosin light chain associated only with the peripheral assemblies, activated α-catenin was present in both peripheral and central assemblies, and persisted in the central assemblies in the absence of actomyosin tension. Impeding filopodia-mediated nucleation and micron-scale assembly of E-cadherin adhesion complexes by confining the movement of bilayer-bound E-cadherin on nanopatterned substrates reduced the levels of activated α-catenin. Taken together, these results indicate that although the initial activation of α-catenin requires micron-scale clustering that may allow the development of mechanical forces, sustained force is not required for maintaining α-catenin in the active state.
Collapse
|
8
|
Dillard P, Pi F, Lellouch AC, Limozin L, Sengupta K. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization. Integr Biol (Camb) 2016; 8:287-301. [PMID: 26887857 DOI: 10.1039/c5ib00293a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.
Collapse
Affiliation(s)
- Pierre Dillard
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France. and Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Fuwei Pi
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France.
| | - Annemarie C Lellouch
- Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Laurent Limozin
- Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France.
| |
Collapse
|
9
|
Li W, Chung JK, Lee YK, Groves JT. Graphene-Templated Supported Lipid Bilayer Nanochannels. NANO LETTERS 2016; 16:5022-6. [PMID: 27362914 DOI: 10.1021/acs.nanolett.6b01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of patterned substrates to impose geometrical restriction on the lateral mobility of molecules in supported lipid membranes has found widespread utility in studies of cell membranes. Here, we template-pattern supported lipid membranes with nanopatterned graphene. We utilize focused ion beam milling to pattern graphene on its growth substrate, then transfer the patterned graphene to fresh glass substrates for subsequent supported membrane formation. We observe that graphene functions as an excellent lateral diffusion barrier for supported lipid bilayers. Additionally, the observed diffusion dynamics of lipids in nanoscale graphene channels reveal extremely low boundary effects, a common problem with other materials. We suggest this is attributable to the ultimate thinness of graphene.
Collapse
Affiliation(s)
- Wan Li
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Jean K Chung
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Young Kwang Lee
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Jay T Groves
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
10
|
Ma VPY, Liu Y, Blanchfield L, Su H, Evavold BD, Salaita K. Ratiometric Tension Probes for Mapping Receptor Forces and Clustering at Intermembrane Junctions. NANO LETTERS 2016; 16:4552-9. [PMID: 27192323 PMCID: PMC6061938 DOI: 10.1021/acs.nanolett.6b01817] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Short-range communication between cells is required for the survival of multicellular organisms. One mechanism of chemical signaling between adjacent cells employs surface displayed ligands and receptors that only bind when two cells make physical contact. Ligand-receptor complexes that form at the cell-cell junction and physically bridge two cells likely experience mechanical forces. A fundamental challenge in this area pertains to mapping the mechanical forces experienced by ligand-receptor complexes within such a fluid intermembrane junction. Herein, we describe the development of ratiometric tension probes for direct imaging of receptor tension, clustering, and lateral transport within a model cell-cell junction. These probes employ two fluorescent reporters that quantify both the ligand density and the ligand tension and thus generate a tension signal independent of clustering. As a proof-of-concept, we applied the ratiometric tension probes to map the forces experienced by the T-cell receptor (TCR) during activation and showed the first direct evidence that the TCR-ligand complex experiences sustained pN forces within a fluid membrane junction. We envision that the ratiometric tension probes will be broadly useful for investigating mechanotransduction in juxtacrine signaling pathways.
Collapse
Affiliation(s)
- Victor Pui-Yan Ma
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Yang Liu
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, United States
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
11
|
Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. Proc Natl Acad Sci U S A 2016; 113:8218-23. [PMID: 27370798 DOI: 10.1073/pnas.1602602113] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.
Collapse
|
12
|
Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 2016; 11:021003. [DOI: 10.1116/1.4945306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Chu Z, Li L, Liu G, Jin W. A novel membrane with heterogeneously functionalized nanocrystal layers performing blood separation and sensing synchronously. Chem Commun (Camb) 2016; 52:12706-12709. [DOI: 10.1039/c6cc05334c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel membrane can synchronously perform blood separation and sensing for serum extraction and analysis of various physiological indexes.
Collapse
Affiliation(s)
- Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| | - Linlin Li
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| |
Collapse
|
14
|
Abstract
The local structure and composition of the outer membrane of an animal cell are important factors in the control of many membrane processes and mechanisms. These include signaling, sorting, and exo- and endocytic processes that are occurring all the time in a living cell. Paradoxically, not only are the local structure and composition of the membrane matters of much debate and discussion, the mechanisms that govern its genesis remain highly controversial. Here, we discuss a swathe of new technological advances that may be applied to understand the local structure and composition of the membrane of a living cell from the molecular scale to the scale of the whole membrane.
Collapse
Affiliation(s)
- Thomas S van Zanten
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| |
Collapse
|
15
|
Kundrat F, Baffou G, Polleux J. Shaping and patterning gold nanoparticles via micelle templated photochemistry. NANOSCALE 2015; 7:15814-21. [PMID: 26355960 DOI: 10.1039/c5nr04751j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Shaping and positioning noble metal nanostructures are essential processes that still require laborious and sophisticated techniques to fabricate functional plasmonic interfaces. The present study reports a simple photochemical approach compatible with micellar nanolithography and photolithography that enables the growth, arrangement and shaping of gold nanoparticles with tuneable plasmonic resonances on glass substrates. Ultraviolet illumination of surfaces coated with gold-loaded micelles leads to the formation of gold nanoparticles with micro/nanometric spatial resolution without requiring any photosensitizers or photoresists. Depending on the extra-micellar chemical environment and the illumination wavelength, block copolymer micelles act as reactive and light-responsive templates, which enable to grow gold deformed nanoparticles (potatoids) and nanorings. Optical characterization reveals that arrays of individual potatoids and rings feature a localized plasmon resonance around 600 and 800 nm, respectively, enhanced photothermal properties and high temperature sustainability, making them ideal platforms for future developments in nanochemistry and biomolecular manipulation controlled by near-infrared-induced heat.
Collapse
Affiliation(s)
- F Kundrat
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
16
|
Artificial biomembrane based on DPPC — Investigation into phase transition and thermal behavior through ellipsometric techniques. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2295-307. [DOI: 10.1016/j.bbamem.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022]
|
17
|
E-cadherin junction formation involves an active kinetic nucleation process. Proc Natl Acad Sci U S A 2015; 112:10932-7. [PMID: 26290581 DOI: 10.1073/pnas.1513775112] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial (E)-cadherin-mediated cell-cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.
Collapse
|
18
|
González-Henríquez CM, Sarabia-Vallejos MA. Electrospinning deposition of hydrogel fibers used as scaffold for biomembranes. Thermal stability of DPPC corroborated by ellipsometry. Chem Phys Lipids 2015. [PMID: 26206414 DOI: 10.1016/j.chemphyslip.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DPPC bilayers were deposited over thin hydrogel scaffolds using the Langmuir-Blodgett technique (with DPPC thickness ∼ 6.2 nm). Wrinkled hydrogels films were used to maintain a moist environment in order to enhance DPPC bilayer stability. Polymer mixtures were prepared using HEMA (as a base monomer) and DEGDMA, PEGDA575, PEGDA700 or AAm (as crosslinking agents); a thermal initiator was added to obtain a final pre-hydrogel (oligomer) with an adequate viscosity for thin film formation. This mixture was deposited as wrinkled film/fibers over hydrophilic silicon wafers using an electrospinning technique. Later, these samples were exposed to UV light to trigger photopolymerization, generating crosslinking bonds between hydrogel chains; this process also generated remnant surface stresses in the films that favored wrinkle formation. In the cases where DEGDMA and AAm were used as crosslinking agents, HEMA was added in higher amounts. The resultant polymer film surface showed homogenous layering with some small isolated clusters. If PEGDA575/700 was used as the crosslinking agent, we observed the formation of polymer wrinkled thin films, composed by main and secondary chains (with different dimensions). Moreover, water absorption and release was found to be mediated through surface morphology, ordering and film thickness. The thermal behavior of biomembranes was examined using ellipsometry techniques under controlled heating cycles, allowing phases and phase transitions to be detected through slight thickness variations with respect to temperature. Atomic force microscopy was used to determinate surface roughness changes according to temperature variation, temperature was varied sufficiently for the detection and recording of DPPC phase limits. Contact angle measurements corroborated and quantified system wettability, supporting the theory that wrinkled hydrogel films act to enhance DPPC bilayer stability during thermal cycles.
Collapse
Affiliation(s)
- C M González-Henríquez
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras #3360, Santiago, Chile.
| | - M A Sarabia-Vallejos
- Instituto de Física, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna #4860, Santiago, Chile
| |
Collapse
|