1
|
Wang L, Zhang Y, Mao C, Li X. Enhancing Exosomal Delivery to Abdominal Aortic Aneurysms using Magnetically Responsive Chemotactic Nanomotors for Elastic Matrix Regenerative Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405085. [PMID: 39429209 DOI: 10.1002/advs.202405085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/13/2024] [Indexed: 10/22/2024]
Abstract
Abdominal aortic aneurysms (AAAs) involve localized dilation of the abdominal aorta, with the reversal of this condition being significantly limited by the inherently poor and abnormal regenerative repair of the aortic elastic matrix. Mesenchymal stem cell exosomes (MSCEs) are promising regenerative tools; however, achieving precise targeting of AAA with MSCEs is challenging owing to the high blood flow in the arterial system. In this study, an engineered exosomal nanomotor is developed for magnetic and chemical propulsion. The results demonstrate that this nanomotor effectively enhances the delivery of MSCEs to the AAA through magnetic field navigation and catalase-induced chemotaxis. The nanomotor significantly enhances the elastic matrix repair, reduces oxidative stress, and activates the PI3K/Akt pathway, leading to aneurysm shrinkage and reversal. In addition, the nanomotor possesses magnetic resonance imaging capabilities. The use of this nanomotor offers a novel, targeted drug delivery system in a rat model of AAA and holds promise as a potential therapeutic option for this condition.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yao Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Chun Mao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
2
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
3
|
You Q, Shao X, Wang J, Chen X. Progress on Physical Field-Regulated Micro/Nanomotors for Cardiovascular and Cerebrovascular Disease Treatment. SMALL METHODS 2023; 7:e2300426. [PMID: 37391275 DOI: 10.1002/smtd.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) are two major vasculature-related diseases that seriously affect public health worldwide, which can cause serious death and disability. Lack of targeting effect of the traditional CCVD treatment drugs may damage other tissues and organs, thus more specific methods are needed to solve this dilemma. Micro/nanomotors are new materials that can convert external energy into driving force for autonomous movement, which can not only enhance the penetration depth and retention rates, but also increase the contact areas with the lesion sites (such as thrombus and inflammation sites of blood vessels). Physical field-regulated micro/nanomotors using the physical energy sources with deep tissue penetration and controllable performance, such as magnetic field, light, and ultrasound, etc. are considered as the emerging patient-friendly and effective therapeutic tools to overcome the limitations of conventional CCVD treatments. Recent efforts have suggested that physical field-regulated micro/nanomotors on CCVD treatments could simultaneously provide efficient therapeutic effect and intelligent control. In this review, various physical field-driven micro/nanomotors are mainly introduced and their latest advances for CCVDs are highlighted. Last, the remaining challenges and future perspectives regarding the physical field-regulated micro/nanomotors for CCVD treatments are discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| |
Collapse
|
4
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
5
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
6
|
Patil G, Ghosh A. Analysing the motion of scallop-like swimmers in a noisy environment. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2023; 232:927-933. [PMID: 37309448 PMCID: PMC7614634 DOI: 10.1140/epjs/s11734-022-00728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 06/14/2023]
Abstract
A scallop-like swimmer going back-and-forth (reciprocal motion) does not produce any net motility. We discuss a similar artificial microswimmer that is powered by magnetic fields. In the presence of thermal noise, the helical swimmer exhibits enhanced diffusivity during reciprocal actuation. The external magnetic drive can be further modified to break the reciprocity. Equipped with only the information on swimmer trajectories and orientations, we discuss quantitative methods to estimate the degree of reciprocity and non-reciprocity in such scenarios. The paper proposes a quantitative measure and validates the same with numerical simulations, further supported by experiments.
Collapse
Affiliation(s)
- Gouri Patil
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Ambarish Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Jancik-Prochazkova A, Michalkova H, Heger Z, Pumera M. Hydrogen Bonding Nanoarchitectonics of Organic Pigment-Based Janus Microrobots with Entering Capability into Cancer Cells. ACS NANO 2023; 17:146-156. [PMID: 36538781 DOI: 10.1021/acsnano.2c05585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Autonomous microrobots are at the forefront of biomedical research as they are expected to be applied for specific tasks at the intracellular level such as cargo delivery, sensing, molecular manipulation, among others. Here, we report on a preparation of microrobots based on quinacridone and indigo, which are members of the organic hydrogen-bonded pigment family. The microrobots were fabricated by asymmetric platinum deposition on corresponding quinacridone and indigo microparticles that possessed a homogeneous size and shape distribution. The microrobots exhibited autonomous locomotion in the presence of hydrogen peroxide, which was further supported by UV irradiation. The organic pigment-based microrobots were studied in the presence of mouse colorectal carcinoma cells, and it was observed that they were internalized into the cells. Internalization was visualized using confocal laser scanning microscopy. This study reveals the possibility of fabricating hydrogen-bonded organic pigment-based microrobots for biomedical applications by employing the principles of nanoarchitectonics.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1/1665, Brno 613 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1/1665, Brno 613 00, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
8
|
Patil G, Mandal P, Ghosh A. Using the Thermal Ratchet Mechanism to Achieve Net Motility in Magnetic Microswimmers. PHYSICAL REVIEW LETTERS 2022; 129:198002. [PMID: 36399724 DOI: 10.1103/physrevlett.129.198002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Thermal ratchets can extract useful work from random fluctuations. This is common in the molecular scale, such as motor proteins, and has also been used to achieve directional transport in microfluidic devices. In this Letter, we use the ratchet principle to induce net motility in an externally powered magnetic colloid, which otherwise shows reciprocal (back and forth) motion. The experimental system is based on ferromagnetic micro helices driven by oscillating magnetic fields, where the reciprocal symmetry is broken through asymmetric actuation timescales. The swimmers show net motility with an enhanced diffusivity, in agreement with the numerical calculations. This new class of microscale, magnetically powered, active colloids can provide a promising experimental platform to simulate diverse active matter phenomena in the natural world.
Collapse
Affiliation(s)
- Gouri Patil
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Pranay Mandal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Ramachandran RV, Barman A, Modak P, Bhat R, Ghosh A, Saini DK. How safe are magnetic nanomotors: From cells to animals. BIOMATERIALS ADVANCES 2022; 140:213048. [PMID: 35939957 PMCID: PMC7614616 DOI: 10.1016/j.bioadv.2022.213048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/06/2023]
Abstract
Helical magnetic nanomotors can be actuated using an external magnetic field and have potential applications in drug delivery, colloidal manipulation, and bio-microrheology. Recently, they have been maneuvered in biological environments such as vitreous humour, dentinal tubules, peritoneal fluid, stromal matrix, and blood, which are promising developments for clinical applications. However, their biocompatibility and biodistribution are vital parameters that must be assessed before further use. An extensive quantitative evaluation has been performed for these parameters for the first time through in vitro and in vivo experiments. Investigations of cell death, proliferation, and DNA damage ascertain that the motors are non-toxic. Also, an unbiased transcriptomic analysis affirms that the motors are not genotoxic till 20 motors/ cell. Toxicity studies in mice reveal that the motors show no signs of toxicity up to a dose of 55 mg/ kg body weight. Further, the biodistribution studies show that they remain in the blood circulation after injection and at later stages possibly adhere to the walls of the blood vessel because of adsorption. However, perfusion with physiological saline decreases this adsorption/adhesion. Overall, we demonstrate the biocompatibility of nanomotors in live cellular and organismal systems, and a systemic biodistribution analysis reveals organ-specific retention of motors.
Collapse
Affiliation(s)
| | - Anaxee Barman
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Paramita Modak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ramray Bhat
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Dasgupta D, Peddi S, Saini DK, Ghosh A. Mobile Nanobots for Prevention of Root Canal Treatment Failure. Adv Healthc Mater 2022; 11:e2200232. [PMID: 35481942 PMCID: PMC7613116 DOI: 10.1002/adhm.202200232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/12/2022] [Indexed: 12/19/2022]
Abstract
Millions of root canal treatments fail worldwide due to remnant bacteria deep in the dentinal tubules located within the dentine tissue of human teeth. The complex and narrow geometry of the tubules renders current techniques relying on passive diffusion of antibacterial agents ineffective. Here, the potential of actively maneuvered nanobots is investigated to disinfect dentinal tubules, which can be incorporated during a standard root canal procedure. It is demonstrated that magnetically driven nanobots can reach the depths of the tubules not possible with current clinical practices. Subtle alterations of the magnetic drive allow both deep implantations of the nanobots isotopically distributed throughout the dentine and spatially controlled recovery from selected regions, further supported by numerical simulations. Finally, the integration of bactericidal therapeutic modality with the nanobots is demonstrated, thereby validating the tremendous potential of nanobots in dentistry and nanomedicine in general.
Collapse
Affiliation(s)
- Debayan Dasgupta
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
- Theranautilus Pvt. Ltd., Bangalore, 560012, India
| | - Shanmukh Peddi
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
- Theranautilus Pvt. Ltd., Bangalore, 560012, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
- Centre for Biosystems Science and Engineering, IISc, Bangalore, 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
- Theranautilus Pvt. Ltd., Bangalore, 560012, India
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
11
|
Pal M, Fouxon I, Leshansky AM, Ghosh A. Fluid flow induced by helical microswimmers in bulk and near walls. PHYSICAL REVIEW RESEARCH 2022; 4:033069. [PMID: 37275181 PMCID: PMC7614617 DOI: 10.1103/physrevresearch.4.033069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Magnetic nano- and microswimmers provide a powerful platform to study driven colloidal systems in fluidic media and are relevant to futuristic medical technologies requiring precise yet minimally invasive motion control at small scales. Upon the action of a rotating magnetic field, the helical microswimmers rotate and translate, generating flow in the surrounding fluid. In this paper, we study the fluid flow induced by the rotating helices using a combination of experiments, numerical simulations, and theory. The microhelices are actuated either in a fluid bulk or in proximity to the bottom wall using typical microfluidic device setup. We conclude that the mean hydrodynamic flow due to the helix actuation can be closely approximated by a system of rotlets line distributed along the helical axis (i.e., representing the flow due to rotating cylinder) which gets modified close to a wall through appropriate contributions from image multipoles. As the mean flow can be obtained in closed form, this study can be further applied towards modeling of the dynamics in a swarm of driven microswimmers interacting hydrodynamically near a bounding surface.
Collapse
Affiliation(s)
- Malay Pal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Itzhak Fouxon
- Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, 32000 Israel
| | - Alexander M. Leshansky
- Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, 32000 Israel
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Meisami AH, Abbasi M, Mosleh-Shirazi S, Azari A, Amani AM, Vaez A, Golchin A. Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 2022; 926:175011. [PMID: 35568064 DOI: 10.1016/j.ejphar.2022.175011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Cancer overlooks are globally one of the most dangerous and life-threatening tribulations. While significant advances have been made in the targeted delivery of anti-cancer medications over the last few years, several challenges, such as low efficacy and strong toxic effects, remain to be addressed. Micro/nanomotors have been thoroughly studied for both effective cancer detection and treatment, as demonstrated by significant advancements in the architecture of smart and functional micro/nanomotor biomedical systems. Able to self-propelled within fluid media, micro/nanomotors have attractive vehicles to maximize the efficacy of tumor delivery. Here, we present the current developments in the delivery, detection, and imaging-guided treatment of micro/nanomotors in the clinical field, including cancer-related specific targeted drug delivery, and then discuss the barriers and difficulties encountered by micro/nanomotors throughout the medical process. Furthermore, this paper addresses the potential growth of micro/nanomotors for medical applications, and sets out the current drawbacks and future research directions for more advancement.
Collapse
Affiliation(s)
- Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Arezo Azari
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
13
|
Falahati M, Sharifi M, Hagen TLMT. Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges. J Nanobiotechnology 2022; 20:153. [PMID: 35331244 PMCID: PMC8943504 DOI: 10.1186/s12951-022-01375-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nowadays, nano-/micro-motors are considered as powerful tools in different areas ranging from cleaning all types of contaminants, to development of Targeted drug delivery systems and diagnostic activities. Therefore, the development and application of nano-/micro-motors based on metal-organic frameworks with nanozyme activity (abbreviated as: MOF-NZs) in biomedical activities have received much interest recently. Therefore, after investigating the catalytic properties and applications of MOF-NZs in the treatment of cancer, this study intends to point out their key role in the production of biocompatible nano-/micro-motors. Since reducing the toxicity of MOF-NZ nano-/micro-motors can pave the way for medical activities, this article examines the methods of making biocompatible nanomotors to address the benefits and drawbacks of the required propellants. In the following, an analysis of the amplified directional motion of MOF-NZ nano-/micro-motors under physiological conditions is presented, which can improve the motor behaviors in the propulsion function, conductivity, targeting, drug release, and possible elimination. Meanwhile, by explaining the use of MOF-NZ nano-/micro-motors in the treatment of cancer through the possible synergy of nanomotors with different therapies, it was revealed that MOF-NZ nano-/micro-motors can be effective in the treatment of cancer. Ultimately, by analyzing the potential challenges of MOF-NZ nano-/micro-motors in the treatment of cancers, we hope to encourage researchers to develop MOF-NZs-based nanomotors, in addition to opening up new ideas to address ongoing problems.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Xu Y, Bian Q, Wang R, Gao J. Micro/nanorobots for precise drug delivery via targeted transport and triggered release: a review. Int J Pharm 2022; 616:121551. [PMID: 35131352 DOI: 10.1016/j.ijpharm.2022.121551] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 01/17/2023]
Abstract
Micro/nanorobots that can effectively convert diverse energy sources into movement can revolutionize the field of pharmaceutical, particularly targeted drug delivery. By targeted transport and triggered release, drug can be delivered to targeted tissues or body sites. Targeted transport is discussed with different actuation energy sources including self-propelled (H2O2 and enzymes), external field-propelled (light, electrical, acoustics and magnetic field) and motile microorganism-propelled (bacterium, sperm, and contractile and immune cells) types. Triggered release systems including physiological environment, external fields and other mechanisms categories are also discussed here for the first time. With different transport and triggered release systems, micro/nanorobots achieved the goal of precise delivery of therapeutics. This review may provide a different perspective or referable guidance for the future development of more flexible targeted delivery systems.
Collapse
Affiliation(s)
- Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
De Dios Andres P, Ramos-Docampo MA, Qian X, Stingaciu M, Städler B. Locomotion of micromotors in paper chips. NANOSCALE 2021; 13:17900-17911. [PMID: 34679159 DOI: 10.1039/d1nr06221b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Locomotion of nano/micromotors in non-aqueous environments remains a challenging task. We assembled magnetic micromotors with different surface coatings and explored their locomotion in paper chips. Poly(L-lysine) deposition resulted in positively charged micromotors. Immobilized cellulase was used to increase the micromotors' paper penetration depth while a polyethylene glycol (PEG) coating was employed to limit the interaction between the micromotors and the cellulose fibers. All micromotors were able to move in the top layers of the paper chips with velocities dependent on the magnetic forces used to induce their locomotion, their sizes and the types of employed paper chips. Maximum speeds of up to ∼25 μm s-1 were observed for PEGylated micromotors in the fibrous cellulose environment. This type of micromotors has the potential to be considered in the area of paper microfluidics to facilitate distribution, or collection of moieties for biosensing or cell culture.
Collapse
Affiliation(s)
- Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Miguel A Ramos-Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Marian Stingaciu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|
16
|
Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021; 279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Self-propelling micro- and nano-motors (MNMs) are emerging as a multifunctional platform for smart healthcare applications such as biosensing, bioimaging, and targeted drug delivery with high tissue penetration, stirring effect, and rapid drug transport. MNMs can be propelled and/or guided by chemical substances or external stimuli including ultrasound, magnetic field, and light. In addition, enzymatically powered MNMs and biohybrid micromotors have been developed using the biological components in the body. In this review, we describe emerging MNMs focusing on their smart propulsion systems, and diagnostic and therapeutic applications. Finally, we highlight several MNMs for in vivo applications and discuss the future perspectives of MNMs on their current limitations and possibilities toward further clinical applications.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
17
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Functional coatings enable navigation of light-propelled micromotors in blood for effective biodetoxification. NANOSCALE 2021; 13:17106-17115. [PMID: 34633018 DOI: 10.1039/d1nr04842b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein we report the coating of visible light-driven polycaprolactone (PCL) based micromotors with an anti-biofouling poly lactic-co-glycolic acid (PLGA) layer for effective navigation and detoxification in blood samples. The micromotors encapsulate CdSe@ZnS quantum dots as photoresponsive materials and a Fe3O4 nanoparticle patch to promote electron transfer and reaction with glucose present in the media for diffusiophoretic propulsion in diluted blood. The coating of the micromotor with the PLGA layer prevents red blood cell adhesion and protein adsorption due to the creation of a highly efficient hydration layer. This results in an enhanced speed and efficient operation for enhanced toxin removal as compared with the bare PCL micromotors. Hemolysis and MTT assays along with no platelets aggregation revealed the high biocompatibility of the micromotors with living cells. Effective adsorptive removal of two relevant toxins, sepsis associated Escherichia coli O111:B4 toxin and snake venom α-bungarotoxin from blood is achieved with the PLGA micromotors. The new developments illustrated here represent one step forward in the use of light-driven micromotors for biomedical applications.
Collapse
Affiliation(s)
- Marta Pacheco
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain.
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain.
- Chemical Research Institute "Andrés M. del Rio" University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain.
- Chemical Research Institute "Andrés M. del Rio" University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| |
Collapse
|
18
|
Vasantha Ramachandran R, Bhat R, Kumar Saini D, Ghosh A. Theragnostic nanomotors: Successes and upcoming challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1736. [PMID: 34173342 DOI: 10.1002/wnan.1736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
The idea of "fantastic voyagers" carrying out medical tasks within the human body has existed as part of popular culture for many decades. The concept revolved around a miniaturized robot that can travel inside the human body and perform complicated functions such as surgery, navigation of otherwise inaccessible biological environments, and delivery of therapeutics. Since the last decade, significant developments have occurred in this arena that are yet to enter mainstream biomedical practises. Here, we define the challenges to make this fiction into reality. We begin by chalking the journey from pills, nanoparticles, and then to micro-nanomotors. The review describes the principles, physicochemical contexts, and advantages that micro-nanomotors provide. The article then describes micro-nanomotors' obstacles such as maneuverability, in vivo imaging, toxicity, and biodistribution. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.,Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021; 60:13158-13176. [PMID: 33145879 DOI: 10.1002/anie.202013689] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Due to their unique ability to actively move, micro/nanomotors offer the possibility of breaking through the limitations of traditional passive drug delivery systems for the treatment of many diseases, and have attracted the increasing attention of researchers. However, at present, the realization of many advantages of micro/nanomotors in disease treatment in vivo is still in its infancy, because of the complexity and particularity of diseases in different parts of human body. In this Minireview, we first focus on the biosafety and functionality of micro/nanomotors as a biomedical treatment system. Then, we address the treatment difficulties of various diseases in vivo (such as ophthalmic disease, orthopedic disease, gastrointestinal disease, cardiovascular disease, and cancer), and then review the research progress of biomedical micro/nanomotors in the past 20 years, Finally, we propose the challenges in this field and possible future development directions.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
20
|
Ghosh A, Ghosh A. Mapping Viscoelastic Properties Using Helical Magnetic Nanopropellers. TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING : AN INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY 2021; 6:429-438. [PMID: 35966905 PMCID: PMC7613280 DOI: 10.1007/s41403-021-00212-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/13/2021] [Indexed: 06/01/2023]
Abstract
Artificial micro/nanomachines have been envisioned and demonstrated as potential candidates for targeted drug or gene delivery, cell manipulation, environmental and biological sensing and in lab on chip applications. Here, we have used helical nanomachines to measure the local rheological properties of a viscoelastic media. The position of the helical nanomachine/ nanopropeller was controlled precisely using magnetic fields with simultaneous measurements of the mechanical properties of a complex and heterogeneous fluidic environment. We demonstrated that the motion of the helical nanopropeller is extremely sensitive to fluid elasticity and the speed of propulsion of the nanopropeller can be used as a measure of the local elastic relaxation time. Taken together, we report a promising new technique of mapping the rheological properties by helical nanopropellers with very high spatial and temporal resolutions, with performance superior to existing techniques of passive or active microrheology.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
| | - Ambarish Ghosh
- Department of Physics, Indian Institute of Science, Bangalore, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021; 82:100901. [PMID: 32891866 PMCID: PMC8317199 DOI: 10.1016/j.preteyeres.2020.100901] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Although once daily anti-glaucoma drug therapy is a current clinical reality, most therapies require multiple dosing and there is an unmet need to develop convenient, safe, and effective sustained release drug delivery systems for long-term treatment to improve patient adherence and outcomes. One of the first sustained release drug delivery systems was approved for the reduction of intraocular pressure in glaucoma patients. It is a polymeric reservoir-type insert delivery system, Ocusert™, placed under the eyelid and on the ocular surface for zero-order drug release over one week. The insert, marketed in two strengths, released pilocarpine on the eye surface. While many clinicians appreciated this drug product, it was eventually discontinued. No similar sustained release non-invasive drug delivery system has made it to the market to date for treating glaucoma. Drug delivery systems under development include punctal plugs, ring-type systems, contact lenses, implants, microspheres, nanospheres, gels, and other depot systems placed in the extraocular, periocular, or intraocular regions including intracameral, supraciliary, and intravitreal spaces. This article discusses the advantages and disadvantages of the various routes of administration and delivery systems for sustained glaucoma therapy. It also provides the reader with some examples and discussion of drug delivery systems that could potentially be applied for glaucoma treatment. Interestingly, one intracamerally injected implant, Durysta™, was approved recently for sustained intraocular pressure reduction. However, long-term acceptance of such devices has yet to be established. The ultimate success of the delivery system will depend on efficacy relative to eye drop dosing, safety, reimbursement options, and patient acceptance. Cautious development efforts are warranted considering prior failed approaches for sustained glaucoma drug delivery. Neuroprotective approaches for glaucoma therapy including cell, gene, protein, and drug-combination therapies, mostly administered intravitreally, are also rapidly progressing towards assessment in humans.
Collapse
Affiliation(s)
- Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Rachel R Hartman
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
22
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
23
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
24
|
Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart Materials for Microrobots. Chem Rev 2021; 122:5365-5403. [DOI: 10.1021/acs.chemrev.0c00999] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando Soto
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Emil Karshalev
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Berta Esteban Fernandez de Avila
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Amir Nourhani
- Department of Mechanical Engineering, Department of Mathematics, Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, United States
| | - Joseph Wang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
25
|
Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000512. [PMID: 32578282 DOI: 10.1002/adma.202000512] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/20/2020] [Indexed: 05/20/2023]
Abstract
Self-propelled micro- and nanomotors (MNMs) have shown great potential for applications in the biomedical field, such as active targeted delivery, detoxification, minimally invasive diagnostics, and nanosurgery, owing to their tiny size, autonomous motion, and navigation capacities. To enter the clinic, biomedical MNMs request the biodegradability of their manufacturing materials, the biocompatibility of chemical fuels or externally physical fields, the capability of overcoming various biological barriers (e.g., biofouling, blood flow, blood-brain barrier, cell membrane), and the in vivo visual positioning for autonomous navigation. Herein, the recent advances of synthetic MNMs in overcoming biological barriers and in vivo motion-tracking imaging techniques are highlighted. The challenges and future research priorities are also addressed. With continued attention and innovation, it is believed that, in the future, biomedical MNMs will pave the way to improve the targeted drug delivery efficiency.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Yong Wang
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zihan Ye
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| |
Collapse
|
26
|
Zhang J, Chen Z, Kankala RK, Wang SB, Chen AZ. Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery. Int J Pharm 2021; 596:120275. [PMID: 33508344 DOI: 10.1016/j.ijpharm.2021.120275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
In recent times, numerous efforts have been put forward to fabricating the self-propelling micro-/nano-motors (MNMs) for various applications, such as drug delivery, environmental remediation, biosensing, and precision surgery at the micro-/nanoscale, among others. Owing to their potential advantages, the application of such innovative architectures has been increasingly recognized towards addressing various challenges in the related fields. Specifically, these MNMs offer enormous potential in nanomedicine in overcoming the significant challenge of low permeation of the biological barriers. Herein, we emphasize the powered mechanism of MNMs, including artificial and natural-based MNMs, and discuss the characteristics, as well as the challenges being faced by MNMs in drug delivery. Further, the research progress of MNMs as drug carriers in different environments (gastrointestinal tract, saliva, urinary bladder, blood, and extracellular matrix, ECM) of the body in recent years is summarized, highlighting the representative works on MNMs towards in vivo applications. Together, we firmly believe that these innovative MNMs-based designs may play a crucial role in the clinical practice in the future.
Collapse
Affiliation(s)
- Jianting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China
| | - Zhoujiang Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China.
| |
Collapse
|
27
|
Venugopalan PL, Ghosh A. Investigating the Dynamics of the Magnetic Micromotors in Human Blood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:289-296. [PMID: 33351633 DOI: 10.1021/acs.langmuir.0c02881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field of micromotors has been growing exponentially with increased emphasis on biomedical applications, with various in vivo demonstrations of targeted drug delivery, biosensing, and gene delivery, among others. In parallel, these micromotors have been recently used for probing the rheological properties of both intra- and extracellular environments. Here, we demonstrate the application of magnetic micromotors for investigation of rheological properties of human blood. While there are several techniques to sense mechanical properties of blood, such as deformability of the red blood cells, this is the first experimental observation of using micromotors for these biophysical investigations. We hope that this will lead to a better understanding of the nature of interactions of micromotors with biological systems and expand the scope of micromotors for probing other related systems, such as interstitial fluids and other complex biological fluids.
Collapse
Affiliation(s)
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
28
|
Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, Xu T, Tang T, Bian L, Wang YXJ, Kostarelos K, Zhang L. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2021; 2:2/12/eaaq1155. [PMID: 33157904 DOI: 10.1126/scirobotics.aaq1155] [Citation(s) in RCA: 363] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/04/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022]
Abstract
Magnetic microrobots and nanorobots can be remotely controlled to propel in complex biological fluids with high precision by using magnetic fields. Their potential for controlled navigation in hard-to-reach cavities of the human body makes them promising miniaturized robotic tools to diagnose and treat diseases in a minimally invasive manner. However, critical issues, such as motion tracking, biocompatibility, biodegradation, and diagnostic/therapeutic effects, need to be resolved to allow preclinical in vivo development and clinical trials. We report biohybrid magnetic robots endowed with multifunctional capabilities by integrating desired structural and functional attributes from a biological matrix and an engineered coating. Helical microswimmers were fabricated from Spirulina microalgae via a facile dip-coating process in magnetite (Fe3O4) suspensions, superparamagnetic, and equipped with robust navigation capability in various biofluids. The innate properties of the microalgae allowed in vivo fluorescence imaging and remote diagnostic sensing without the need for any surface modification. Furthermore, in vivo magnetic resonance imaging tracked a swarm of microswimmers inside rodent stomachs, a deep organ where fluorescence-based imaging ceased to work because of its penetration limitation. Meanwhile, the microswimmers were able to degrade and exhibited selective cytotoxicity to cancer cell lines, subject to the thickness of the Fe3O4 coating, which could be tailored via the dip-coating process. The biohybrid microrobots reported herein represent a microrobotic platform that could be further developed for in vivo imaging-guided therapy and a proof of concept for the engineering of multifunctional microrobotic and nanorobotic devices.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Qi Zhou
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - Melissa Vincent
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester M13 9PT, UK
| | - Yan Deng
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jiangfan Yu
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jianbin Xu
- Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tiantian Xu
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tao Tang
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Liming Bian
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester M13 9PT, UK
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
29
|
Lin R, Yu W, Chen X, Gao H. Self-Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy. Adv Healthc Mater 2021; 10:e2001212. [PMID: 32975892 DOI: 10.1002/adhm.202001212] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Cancer is still one of the most serious diseases with threats to health and life. Although some advances have been made in targeting delivery of antitumor drugs over the past number of years, there are still many problems needing to be solved, such as poor efficacy and high systemic toxicity. Micro/nanomotors capable of self-propulsion in fluid provide promising platforms for improving the efficiency of tumor delivery. Herein, the recent progress in micro/nanomotors for tumor targeting delivery and therapy is reviewed, with special focus on the contributions of micro/nanomotors to the different stages of tumor targeting delivery as well as the combination therapy by micro/nanomotors. The present limitations and future directions are also put forward for further development.
Collapse
Affiliation(s)
- Ruyi Lin
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Wenqi Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Xianchun Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
30
|
Dasgupta D, Pally D, Saini DK, Bhat R, Ghosh A. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments*. Angew Chem Int Ed Engl 2020; 59:23690-23696. [PMID: 32918839 PMCID: PMC7756332 DOI: 10.1002/anie.202008681] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
The invasion of cancer is brought about by continuous interaction of malignant cells with their surrounding tissue microenvironment. Investigating the remodeling of local extracellular matrix (ECM) by invading cells can thus provide fundamental insights into the dynamics of cancer progression. In this paper, we use an active untethered nanomechanical tool, realized as magnetically driven nanomotors, to locally probe a 3D tissue culture environment. We observed that nanomotors preferentially adhere to the cancer-proximal ECM and magnitude of the adhesive force increased with cell lines of higher metastatic ability. We experimentally confirmed that sialic acid linkage specific to cancer-secreted ECM makes it differently charged, which causes this adhesion. In an assay consisting of both cancerous and non-cancerous epithelia, that mimics the in vivo histopathological milieu of a malignant breast tumor, we find that nanomotors preferentially decorate the region around the cancer cells.
Collapse
Affiliation(s)
- Debayan Dasgupta
- Centre for Nano Science and EngineeringIndian Institute of ScienceBangalore560012India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangalore560012India
| | - Deepak K. Saini
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangalore560012India
- Centre for Biosystems Science and Engineering, IIScBangalore560012India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangalore560012India
| | - Ambarish Ghosh
- Centre for Nano Science and EngineeringIndian Institute of ScienceBangalore560012India
- Department of PhysicsIndian Institute of ScienceBangalore560012India
| |
Collapse
|
31
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
32
|
Dasgupta D, Pally D, Saini DK, Bhat R, Ghosh A. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Debayan Dasgupta
- Centre for Nano Science and Engineering Indian Institute of Science Bangalore 560012 India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 India
| | - Deepak K. Saini
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 India
- Centre for Biosystems Science and Engineering, IISc Bangalore 560012 India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering Indian Institute of Science Bangalore 560012 India
- Department of Physics Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
33
|
Venugopalan PL, Esteban-Fernández de Ávila B, Pal M, Ghosh A, Wang J. Fantastic Voyage of Nanomotors into the Cell. ACS NANO 2020; 14:9423-9439. [PMID: 32701260 DOI: 10.1021/acsnano.0c05217] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Richard Feynman's 1959 vision of controlling devices at small scales and swallowing the surgeon has inspired the science-fiction Fantastic Voyage film and has played a crucial role in the rapid development of the microrobotics field. Sixty years later, we are currently witnessing a dramatic progress in this field, with artificial micro- and nanoscale robots moving within confined spaces, down to the cellular level, and performing a wide range of biomedical applications within the cellular interior while addressing the limitations of common passive nanosystems. In this review article, we discuss key recent advances in the field of micro/nanomotors toward important cellular applications. Specifically, we outline the distinct capabilities of nanoscale motors for such cellular applications and illustrate how the active movement of nanomotors leads to distinct advantages of rapid cell penetration, accelerated intracellular sensing, and effective intracellular delivery toward enhanced therapeutic efficiencies. We finalize by discussing the future prospects and key challenges that such micromotor technology face toward implementing practical intracellular applications. By increasing our knowledge of nanomotors' cell entry and of their behavior within the intracellular space, and by successfully addressing key challenges, we expect that next-generation nanomotors will lead to exciting advances toward cell-based diagnostics and therapy.
Collapse
Affiliation(s)
- Pooyath Lekshmy Venugopalan
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Malay Pal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
34
|
Xu H, Medina‐Sánchez M, Schmidt OG. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angew Chem Int Ed Engl 2020; 59:15029-15037. [PMID: 32392393 PMCID: PMC7496921 DOI: 10.1002/anie.202005657] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 11/24/2022]
Abstract
An integrated system combining a magnetically-driven micromotor and a synthetized protein-based hyaluronic acid (HA) microflake is presented for the in situ selection and transport of multiple motile sperm cells (ca. 50). The system appeals for targeted sperm delivery in the reproductive system to assist fertilization or to deliver drugs. The binding mechanism between the HA microflake and sperm relies on the interactions between HA and the corresponding sperm HA receptors. Once sperm are captured within the HA microflake, the assembly is trapped and transported by a magnetically-driven helical microcarrier. The trapping of the sperm-microflake occurs by a local vortex induced by the microcarrier during rotation-translation under a rotating magnetic field. After transport, the microflake is enzymatically hydrolyzed by local proteases, allowing sperm to escape and finally reach the target location. This cargo-delivery system represents a new concept to transport not only multiple motile sperm but also other actively moving biological cargoes.
Collapse
Affiliation(s)
- Haifeng Xu
- Institute for Integrative NanosciencesLeibniz IFW DresdenHelmholtzstraße 2001069DresdenGermany
| | - Mariana Medina‐Sánchez
- Institute for Integrative NanosciencesLeibniz IFW DresdenHelmholtzstraße 2001069DresdenGermany
| | - Oliver G. Schmidt
- Institute for Integrative NanosciencesLeibniz IFW DresdenHelmholtzstraße 2001069DresdenGermany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN)TU ChemnitzRosenbergstraße 609126ChemnitzGermany
- School of ScienceTU Dresden01062DresdenGermany
| |
Collapse
|
35
|
Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2020; 29:29-45. [PMID: 32672079 DOI: 10.1080/1061186x.2020.1797052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic micro/nanomotors (MNMs) are novel, self-propelled nano or microscale devices that are widely used in drug transport, cell stimulation and isolation, bio-imaging, diagnostic and monitoring, sensing, photocatalysis and environmental remediation. Various preparation methods and propulsion mechanisms make MNMs "tailormade" nanosystems for the intended purpose or use. As the one of the newest members of nano carriers, MNMs open a new perspective especially for rapid drug transport and gene delivery. Although there exists limited number of in-vivo studies for drug delivery purposes, existence of in-vitro supportive data strongly encourages researchers to move on in this field and benefit from the manoeuvre capability of these novel systems. In this article, we reviewed the preparation and propulsion mechanisms of nanomotors in various fields with special attention to drug delivery systems.
Collapse
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
36
|
Morozov KI, Leshansky AM. Towards focusing of a swarm of magnetic micro/nanomotors. Phys Chem Chem Phys 2020; 22:16407-16420. [PMID: 32657316 DOI: 10.1039/d0cp01514h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic micro- and nanoparticles propelled by a rotating magnetic field provide a new technology for targeted drug delivery. The therapeutic effect of the technology is achievable with the collective action of large groups (swarms) of the motors. Narrowing of the swarm width before it reaches the target or, vice versa, its expansion prior to deposition on the channel walls are of high importance. Here we show how such swarm tuning can be achieved using a combination of the in-plane rotating and static magnetic field acting in the same plane. Although for this asymmetric actuating field the steady synchronous solutions of the problem do not materialize, the developed approach admits an analytical consideration for the average motor orientation and propulsion. The unique property of an average motion in the actuation by an asymmetric magnetic field is the emergence of propeller's net drift in plane of the field rotation. The drift velocity can be comparable in magnitude to the propulsion velocity along the axis of the field rotation. The field-induced drift is studied in detail for achiral V-shaped and chiral helical propellers, depending on their magnetization. Finally, we suggest spatial configuration of the constant magnetic field capable of focusing/defocusing swarms of magnetic motors.
Collapse
Affiliation(s)
| | - Alexander M Leshansky
- Department of Chemical Engineering, Technion-IIT, Haifa 32000, Israel. and Russel Berrie Nanotechnology Institute (RBNI), Technion-IIT, Haifa 32000, Israel
| |
Collapse
|
37
|
Ou J, Liu K, Jiang J, Wilson DA, Liu L, Wang F, Wang S, Tu Y, Peng F. Micro-/Nanomotors toward Biomedical Applications: The Recent Progress in Biocompatibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906184. [PMID: 32130759 DOI: 10.1002/smll.201906184] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Inspired by the highly versatile natural motors, artificial micro-/nanomotors that can convert surrounding energies into mechanical motion and accomplish multiple tasks are devised. In the past few years, micro-/nanomotors have demonstrated significant potential in biomedicine. However, the practical biomedical applications of these small-scale devices are still at an infant stage. For successful bench-to-bed translation, biocompatibility of micro-/nanomotor systems is the central issue to be considered. Herein, the recent progress in micro-/nanomotors in biocompatibility is reviewed, with a special focus on their biomedical applications. Through close collaboration between researches in the nanoengineering, material chemistry, and biomedical fields, it is expected that a promising real-world application platform based on micro-/nanomotors will emerge in the near future.
Collapse
Affiliation(s)
- Juanfeng Ou
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Kun Liu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Jiamiao Jiang
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Lu Liu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Fei Wang
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
38
|
Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020; 49:8088-8112. [PMID: 32596700 DOI: 10.1039/d0cs00309c] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of "swallowing a surgeon".
Collapse
Affiliation(s)
- Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | | | | | | | | |
Collapse
|
39
|
Xu H, Medina‐Sánchez M, Schmidt OG. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haifeng Xu
- Institute for Integrative Nanosciences Leibniz IFW Dresden Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina‐Sánchez
- Institute for Integrative Nanosciences Leibniz IFW Dresden Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences Leibniz IFW Dresden Helmholtzstraße 20 01069 Dresden Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN) TU Chemnitz Rosenbergstraße 6 09126 Chemnitz Germany
- School of Science TU Dresden 01062 Dresden Germany
| |
Collapse
|
40
|
Striggow F, Medina-Sánchez M, Auernhammer GK, Magdanz V, Friedrich BM, Schmidt OG. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000213. [PMID: 32431083 DOI: 10.1002/smll.202000213] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on-off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids.
Collapse
Affiliation(s)
- Friedrich Striggow
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Günter K Auernhammer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Veronika Magdanz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
- Applied Zoology, Faculty of Biology, TU Dresden, Zellescher Weg 20 b, Dresden, 01069, Germany
| | | | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
- School of Science, TU Dresden, Dresden, 01062, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN) Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
| |
Collapse
|
41
|
Kadiri VM, Bussi C, Holle AW, Son K, Kwon H, Schütz G, Gutierrez MG, Fischer P. Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001114. [PMID: 32378269 DOI: 10.1002/adma.202001114] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 05/22/2023]
Abstract
The application of nanoparticles for drug or gene delivery promises benefits in the form of single-cell-specific therapeutic and diagnostic capabilities. Many methods of cell transfection rely on unspecific means to increase the transport of genetic material into cells. Targeted transport is in principle possible with magnetically propelled micromotors, which allow responsive nanoscale actuation and delivery. However, many commonly used magnetic materials (e.g., Ni and Co) are not biocompatible, possess weak magnetic remanence (Fe3 O4 ), or cannot be implemented in nanofabrication schemes (NdFeB). Here, it is demonstrated that co-depositing iron (Fe) and platinum (Pt) followed by one single annealing step, without the need for solution processing, yields ferromagnetic FePt nanomotors that are noncytotoxic, biocompatible, and possess a remanence and magnetization that rival those of permanent NdFeB micromagnets. Active cell targeting and magnetic transfection of lung carcinoma cells are demonstrated using gradient-free rotating millitesla fields to drive the FePt nanopropellers. The carcinoma cells express enhanced green fluorescent protein after internalization and cell viability is unaffected by the presence of the FePt nanopropellers. The results establish FePt, prepared in the L10 phase, as a promising magnetic material for biomedical applications with superior magnetic performance, especially for micro- and nanodevices.
Collapse
Affiliation(s)
- Vincent Mauricio Kadiri
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| | - Claudio Bussi
- Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Andrew W Holle
- Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Kwanghyo Son
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Hyunah Kwon
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Gisela Schütz
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | | | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| |
Collapse
|
42
|
Pal M, Dasgupta D, Somalwar N, Vr R, Tiwari M, Teja D, Narayana SM, Katke A, Rs J, Bhat R, Saini DK, Ghosh A. Helical nanobots as mechanical probes of intra- and extracellular environments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:224001. [PMID: 31978922 DOI: 10.1088/1361-648x/ab6f89] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rheological probe that can measure mechanical properties of biological milieu at well-defined locations with high spatial resolution, on a time scale faster than most biological processes, can further improve our understanding of how living systems operate and behave. Here, we demonstrate nanorobots actively driven in realistic ex vivo biological systems for fast mechanical measurements with high spatial accuracy. In the various demonstrations of magnetic nanobots as mechanical probes, we report the first direct observation of the internalization of probes by a living cell, the accurate measurement of the 'fluid phase' cytoplasmic viscosity of ~200 cP for a HeLa cell, demonstration of intracellular measurements in cells derived from human patients; all of which establish the strength of this novel technique for measurements in both intra- and extracellular environments.
Collapse
Affiliation(s)
- Malay Pal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang Y, Bevan MA, Li B. Micro/Nano Motor Navigation and Localization via Deep Reinforcement Learning. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuguang Yang
- Institute of Biomechanics and Medical EngineeringApplied Mechanics LaboratoryDepartment of Engineering MechanicsTsinghua University Beijing 100084 China
- Chemical & Biomolecular EngineeringJohns Hopkins University Baltimore MD 21218 USA
| | - Michael A. Bevan
- Chemical & Biomolecular EngineeringJohns Hopkins University Baltimore MD 21218 USA
| | - Bo Li
- Institute of Biomechanics and Medical EngineeringApplied Mechanics LaboratoryDepartment of Engineering MechanicsTsinghua University Beijing 100084 China
| |
Collapse
|
44
|
Abstract
Nanotherapies based on micelles, liposomes, polymersomes, nanocapsules, magnetic nanoparticles, and noble metal nanoparticles have been at the forefront of drug delivery in the past few decades. Some of these nanopharmaceuticals have been commercially applied to treat a wide range of diseases, from dry eye syndrome to cancer. However, the majority involve particles that are passive, meaning that they do not change shape, and they lack motility; the static features can limit their therapeutic efficacy. In this review, we take a critical look at an emerging field that seeks to utilize active matter for therapeutics. In this context, active matter can be broadly referred to as micro or nanosized constructs that energetically react with their environment or external fields and translate, rotate, vibrate or change shape. Essentially, the recent literature suggests that such particles could significantly augment present-day drug delivery, by enhancing transport and increasing permeability across anatomical barriers by transporting drugs within solid tumor microenvironments or disrupting cardiovascular plaque. We discuss examples of such particles and link the transport and permeability properties of active matter to potential therapeutic applications in the context of two major diseases, namely cancer and heart disease. We also discuss potential challenges, opportunities, and translational hurdles.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Weinan Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Neha Gupta
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
45
|
Xie L, Pang X, Yan X, Dai Q, Lin H, Ye J, Cheng Y, Zhao Q, Ma X, Zhang X, Liu G, Chen X. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS NANO 2020; 14:2880-2893. [PMID: 32125820 DOI: 10.1021/acsnano.9b06731] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Micro/nanorobots have been extensively explored as a tetherless small-scale robotic biodevice to perform minimally invasive interventions in hard-to-reach regions. Despite the emergence of versatile micro/nanorobots in recent years, matched in vivo development remains challenging, limited by unsatisfactory integration of core functions. Herein, we report a polydopamine (PDA)-coated magnetic microswimmer consisting of a magnetized Spirulina (MSP) matrix and PDA surface. Apart from the properties of the existing MSP (e.g., robust propulsion, natural fluorescence, tailored biodegradation, and selective cytotoxicity), the introduced PDA coating enhances the photoacoustic (PA) signal and photothermal effect of the MSP, thus making PA image tracking and photothermal therapy possible. Meanwhile, the PDA's innate fluorescence quenching and diverse surface reactivity allows an off-on fluorescence diagnosis with fluorescence probes (e.g., coumarin 7). As a proof of concept, real-time image tracking (by PA imaging) and desired theranostic capabilities of PDA-MSP microswimmer swarms are demonstrated for the treatment of pathogenic bacterial infection. Our study suggests a feasible antibacterial microrobot for in vivo development and a facile yet versatile functionalization strategy of micro/nanorobots.
Collapse
Affiliation(s)
- Lisi Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Jing Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
46
|
Xu H, Medina-Sánchez M, Maitz MF, Werner C, Schmidt OG. Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS NANO 2020; 14:2982-2993. [PMID: 32096976 DOI: 10.1021/acsnano.9b07851] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.
Collapse
Affiliation(s)
- Haifeng Xu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
47
|
Tertis M, Cernat A, Mirel S, Cristea C. Nanodevices for Pharmaceutical and Biomedical Applications. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1728292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Cernat
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
48
|
Soto F, Kupor D, Lopez‐Ramirez MA, Wei F, Karshalev E, Tang S, Tehrani F, Wang J. Onion‐like Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angew Chem Int Ed Engl 2020; 59:3480-3485. [DOI: 10.1002/anie.201913872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando Soto
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Daniel Kupor
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | | | - Fanan Wei
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Emil Karshalev
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Songsong Tang
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Farshad Tehrani
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Joseph Wang
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
49
|
Soto F, Kupor D, Lopez‐Ramirez MA, Wei F, Karshalev E, Tang S, Tehrani F, Wang J. Onion‐like Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fernando Soto
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Daniel Kupor
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | | | - Fanan Wei
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Emil Karshalev
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Songsong Tang
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Farshad Tehrani
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Joseph Wang
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
50
|
Design considerations for effective thermal management in mobile nanotweezers. JOURNAL OF MICRO-BIO ROBOTICS 2020. [DOI: 10.1007/s12213-020-00123-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|