1
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
2
|
Sampad MJN, Saiduzzaman SM, Walker ZJ, Wells TN, Wayment JX, Ong EM, Mdaki SD, Tamhankar MA, Yuzvinsky TD, Patterson JL, Hawkins AR, Schmidt H. Label-free and amplification-free viral RNA quantification from primate biofluids using a trapping-assisted optofluidic nanopore platform. Proc Natl Acad Sci U S A 2024; 121:e2400203121. [PMID: 38598338 PMCID: PMC11032468 DOI: 10.1073/pnas.2400203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.
Collapse
Affiliation(s)
| | - S. M. Saiduzzaman
- School of Engineering, University of California, Santa Cruz, CA95064
| | - Zach J. Walker
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Tanner N. Wells
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Jesse X. Wayment
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Ephraim M. Ong
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | | | | | | | | | - Aaron R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Holger Schmidt
- School of Engineering, University of California, Santa Cruz, CA95064
| |
Collapse
|
3
|
Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem 2024; 16:314-334. [PMID: 38448507 DOI: 10.1038/s41557-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/14/2023] [Indexed: 03/08/2024]
Abstract
Sequencing of nucleic acids with nanopores has emerged as a powerful tool offering rapid readout, high accuracy, low cost and portability. This label-free method for sequencing at the single-molecule level is an achievement on its own. However, nanopores also show promise for the technologically even more challenging sequencing of polypeptides, something that could considerably benefit biological discovery, clinical diagnostics and homeland security, as current techniques lack portability and speed. Here we survey the biochemical innovations underpinning commercial and academic nanopore DNA/RNA sequencing techniques, and explore how these advances can fuel developments in future protein sequencing with nanopores.
Collapse
Affiliation(s)
- Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
4
|
Yu YS, Ren Q, Tan RR, Ding HM. Exploring the non-monotonic DNA capture behavior in a charged graphene nanopore. Phys Chem Chem Phys 2023; 25:28034-28042. [PMID: 37846110 DOI: 10.1039/d3cp03767c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nanopore-based biomolecule detection has emerged as a promising and sought-after innovation, offering high throughput, rapidity, label-free analysis, and cost-effectiveness, with potential applications in personalized medicine. However, achieving efficient and tunable biomolecule capture into the nanopore remains a significant challenge. In this study, we employ all-atom molecular dynamics simulations to investigate the capture of double-stranded DNA (dsDNA) molecules into graphene nanopores with varying positive charges. We discover a non-monotonic relationship between the DNA capture rate and the charge of the graphene nanopore. Specifically, the capture rate initially decreases and then increases with an increase in nanopore charge. This behavior is primarily attributed to differences in the electrophoretic force, rather than the influence of electroosmosis or counterions. Furthermore, we also observe this non-monotonic trend in various ionic solutions, but not in ionless solutions. Our findings shed light on the design of novel DNA sequencing devices, offering valuable insights into enhancing biomolecule capture rates in nanopore-based sensing platforms.
Collapse
Affiliation(s)
- You-Sheng Yu
- School of Science, East China University of Technology, Nanchang 330013, China
- National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiang Ren
- School of Science, East China University of Technology, Nanchang 330013, China
| | - Rong-Ri Tan
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
5
|
Minamimoto H, Oyamada N, Murakoshi K. Toward room-temperature optical manipulation of small molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2023. [DOI: 10.1016/j.jphotochemrev.2023.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Mayer DB, Franosch T, Mast C, Braun D. Thermophoresis beyond Local Thermodynamic Equilibrium. PHYSICAL REVIEW LETTERS 2023; 130:168202. [PMID: 37154655 DOI: 10.1103/physrevlett.130.168202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
We measure the thermophoresis of polysterene beads over a wide range of temperature gradients and find a pronounced nonlinear phoretic characteristic. The transition to the nonlinear behavior is marked by a drastic slowing down of thermophoretic motion and is characterized by a Péclet number of order unity as corroborated for different particle sizes and salt concentrations. The data follow a single master curve covering the entire nonlinear regime for all system parameters upon proper rescaling of the temperature gradients with the Péclet number. For low thermal gradients, the thermal drift velocity follows a theoretical linear model relying on the local-equilibrium assumption, while linear theoretical approaches based on hydrodynamic stresses, ignoring fluctuations, predict significantly slower thermophoretic motion for steeper thermal gradients. Our findings suggest that thermophoresis is fluctuation dominated for small gradients and crosses over to a drift-dominated regime for larger Péclet numbers in striking contrast to electrophoresis.
Collapse
Affiliation(s)
- Daniel B Mayer
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Christof Mast
- Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, D-80799 München, Germany
| | - Dieter Braun
- Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, D-80799 München, Germany
| |
Collapse
|
7
|
Li W, Zhou J, Lan Q, Ding XL, Pan XT, Ahmed SA, Ji LN, Wang K, Xia XH. Single-Molecule Electrical and Spectroscopic Profiling Protein Allostery Using a Gold Plasmonic Nanopore. NANO LETTERS 2023; 23:2586-2592. [PMID: 36942994 DOI: 10.1021/acs.nanolett.2c04848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct structural and dynamic characterization of protein conformers in solution is highly desirable but currently impractical. Herein, we developed a single molecule gold plasmonic nanopore system for observation of protein allostery, enabling us to monitor translocation dynamics and conformation transition of proteins by ion current detection and SERS spectrum measurement, respectively. Allosteric transition of calmodulin (CaM) was elaborately probed by the nanopore system. Two conformers of CaM were well-resolved at a single-molecule level using both the ion current blockage signal and the SERS spectra. The collected SERS spectra provided structural evidence to confirm the interaction between CaM and the gold plasmonic nanopore, which was responsible for the different translocation behaviors of the two conformers. SERS spectra revealed the amino acid residues involved in the conformational change of CaM upon calcium binding. The results demonstrated that the excellent spectral characterization furnishes a single-molecule nanopore technique with an advanced capability of direct structure analysis.
Collapse
Affiliation(s)
- Wang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Juan Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Lan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Püntener S, Rivera-Fuentes P. Single-Molecule Peptide Identification Using Fluorescence Blinking Fingerprints. J Am Chem Soc 2023; 145:1441-1447. [PMID: 36603184 PMCID: PMC9853850 DOI: 10.1021/jacs.2c12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to identify peptides with single-molecule sensitivity would lead to next-generation proteomics methods for basic research and clinical applications. Existing single-molecule peptide sequencing methods can read some amino acid sequences, but they are limited in their ability to distinguish between similar amino acids or post-translational modifications. Here, we demonstrate that the fluorescence intermittency of a peptide labeled with a spontaneously blinking fluorophore contains information about the structure of the peptide. Using a deep learning algorithm, this single-molecule blinking pattern can be used to identify the peptide. This method can distinguish between peptides with different sequences, peptides with the same sequence but different phosphorylation patterns, and even peptides that differ only by the presence of epimerized residues. This study builds the foundation for a targeted proteomics method with single-molecule sensitivity.
Collapse
Affiliation(s)
- Salome Püntener
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédéral de Lausanne, CH-1015 Lausanne, Switzerland,Department
of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Pablo Rivera-Fuentes
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédéral de Lausanne, CH-1015 Lausanne, Switzerland,Department
of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland,
| |
Collapse
|
9
|
Tsuji T, Doi K, Kawano S. Optical trapping in micro- and nanoconfinement systems: Role of thermo-fluid dynamics and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Liu HL, Zhan K, Wang K, Xia XH. Nanopore-based surface-enhanced Raman scattering technologies. Sci Bull (Beijing) 2022; 67:1539-1541. [PMID: 36546279 DOI: 10.1016/j.scib.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hai-Ling Liu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kan Zhan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
12
|
Wu Y, Gooding JJ. The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 2022; 51:3862-3885. [PMID: 35506519 DOI: 10.1039/d1cs00988e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanopore-based sensors typically work by monitoring transient pulses in conductance via current-time traces as molecules translocate through the nanopore. The unique property of being able to monitor single molecules gives nanopore sensors the potential as quantitative sensors based on the counting of single molecules. This review provides an overview of the concepts and fabrication of nanopore sensors as well as nanopore sensing with a view toward using nanopore sensors for quantitative analysis. We first introduce the classification of nanopores and highlight their applications in molecular identification with some pioneering studies. The review then shifts focus to recent strategies to extend nanopore sensors to devices that can rapidly and accurately quantify the amount of an analyte of interest. Finally, future prospects are provided and briefly discussed. The aim of this review is to aid in understanding recent advances, challenges, and prospects for nanopore sensors for quantitative analysis.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
13
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
14
|
Zhao Y, Iarossi M, De Fazio AF, Huang JA, De Angelis F. Label-Free Optical Analysis of Biomolecules in Solid-State Nanopores: Toward Single-Molecule Protein Sequencing. ACS PHOTONICS 2022; 9:730-742. [PMID: 35308409 PMCID: PMC8931763 DOI: 10.1021/acsphotonics.1c01825] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Sequence identification of peptides and proteins is central to proteomics. Protein sequencing is mainly conducted by insensitive mass spectroscopy because proteins cannot be amplified, which hampers applications such as single-cell proteomics and precision medicine. The commercial success of portable nanopore sequencers for single DNA molecules has inspired extensive research and development of single-molecule techniques for protein sequencing. Among them, three challenges remain: (1) discrimination of the 20 amino acids as building blocks of proteins; (2) unfolding proteins; and (3) controlling the motion of proteins with nonuniformly charged sequences. In this context, the emergence of label-free optical analysis techniques for single amino acids and peptides by solid-state nanopores shows promise for addressing the first challenge. In this Perspective, we first discuss the current challenges of single-molecule fluorescence detection and nanopore resistive pulse sensing in a protein sequencing. Then, label-free optical methods are described to show how they address the single-amino-acid identification within single peptides. They include localized surface plasmon resonance detection and surface-enhanced Raman spectroscopy on plasmonic nanopores. Notably, we report new data to show the ability of plasmon-enhanced Raman scattering to record and discriminate the 20 amino acids at a single-molecule level. In addition, we discuss briefly the manipulation of molecule translocation and liquid flow in plasmonic nanopores for controlling molecule movement to allow high-resolution reading of protein sequences. We envision that a combination of Raman spectroscopy with plasmonic nanopores can succeed in single-molecule protein sequencing in a label-free way.
Collapse
Affiliation(s)
- Yingqi Zhao
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marzia Iarossi
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Jian-An Huang
- Faculty
of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | | |
Collapse
|
15
|
Li W, Zhou J, Maccaferri N, Krahne R, Wang K, Garoli D. Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects. Anal Chem 2022; 94:503-514. [PMID: 34974704 PMCID: PMC8771637 DOI: 10.1021/acs.analchem.1c04459] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wang Li
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Juan Zhou
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Nicolò Maccaferri
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg, Luxembourg
- Department
of Physics, Umeå University, Linnaeus väg 20, SE-90736 Umeå, Sweden
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Optoelectronics
Research Line, Morego
30, I-16163 Genova, Italy
| | - Kang Wang
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, Optoelectronics
Research Line, Morego
30, I-16163 Genova, Italy
| |
Collapse
|
16
|
Peri SSS, Raza MU, Sabnani MK, Ghaffari S, Gimlin S, Wawro DD, Lee JS, Kim MJ, Weidanz J, Alexandrakis G. Self-Induced Back-Action Actuated Nanopore Electrophoresis (SANE) Sensor for Label-Free Detection of Cancer Immunotherapy-Relevant Antibody-Ligand Interactions. Methods Mol Biol 2022; 2394:343-376. [PMID: 35094337 PMCID: PMC9207820 DOI: 10.1007/978-1-0716-1811-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We fabricated a novel single molecule nanosensor by integrating a solid-state nanopore and a double nanohole nanoaperture. The nanosensor employs Self-Induced Back-Action (SIBA) for optical trapping and enables SIBA-Actuated Nanopore Electrophoresis (SANE) for concurrent acquisition of bimodal optical and electrical signatures of molecular interactions. This work describes how to fabricate and use the SANE sensor to quantify antibody-ligand interactions. We describe how to analyze the bimodal optical-electrical data to improve upon the discrimination of antibody and ligand versus bound complex compared to electrical measurements alone. Example results for specific interaction detection are described for T-cell receptor-like antibodies (TCRmAbs) engineered to target peptide-presenting Major Histocompatibility Complex (pMHC) ligands, representing a model of target ligands presented on the surface of cancer cells. We also describe how to analyze the bimodal optical-electrical data to discriminate between specific and non-specific interactions between antibodies and ligands. Example results for non-specific interactions are shown for cancer-irrelevant TCRmAbs targeting the same pMHCs, as a control. These example results demonstrate the utility of the SANE sensor as a potential screening tool for ligand targets in cancer immunotherapy, though we believe that its potential uses are much broader.
Collapse
Affiliation(s)
| | - Muhammad Usman Raza
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA
| | - Manoj K Sabnani
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Soroush Ghaffari
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | | | - Debra D Wawro
- Resonant Sensors Incorporated (RSI), Arlington, TX, USA
| | - Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Jon Weidanz
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
17
|
Iizuka R, Yamazaki H, Uemura S. Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies. Biophys Physicobiol 2022; 19:e190032. [DOI: 10.2142/biophysico.bppb-v19.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Hirohito Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
18
|
Qiu H, Zhou W, Guo W. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing. ACS NANO 2021; 15:18848-18864. [PMID: 34841865 DOI: 10.1021/acsnano.1c07960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore techniques offer a low-cost, label-free, and high-throughput platform that could be used in single-molecule biosensing and in particular DNA sequencing. Since 2010, graphene and other two-dimensional (2D) materials have attracted considerable attention as membranes for producing nanopore devices, owing to their subnanometer thickness that can in theory provide the highest possible spatial resolution of detection. Moreover, 2D materials can be electrically conductive, which potentially enables alternative measurement schemes relying on the transverse current across the membrane material itself and thereby extends the technical capability of traditional ionic current-based nanopore devices. In this review, we discuss key advances in experimental and computational research into DNA sensing with nanopores built from 2D materials, focusing on both the ionic current and transverse current measurement schemes. Challenges associated with the development of 2D material nanopores toward DNA sequencing are further analyzed, concentrating on lowering the noise levels, slowing down DNA translocation, and inhibiting DNA fluctuations inside the pores. Finally, we overview future directions of research that may expedite the emergence of proof-of-concept DNA sequencing with 2D material nanopores.
Collapse
Affiliation(s)
- Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
19
|
Shen Q, Zhou PL, Huang BT, Zhou J, Liu HL, Ahmed SA, Ding XL, Li J, Zhai YM, Wang K. Mass transport through a sub-10 nm single gold nanopore: SERS and ionic current measurement. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Cai J, Ma W, Hao C, Sun M, Guo J, Xu L, Xu C, Kuang H. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Tang Z, Dong M, He X, Guan W. On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13383-13391. [PMID: 33705089 DOI: 10.1021/acsami.0c23106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The controlled dielectric breakdown emerged as a promising alternative toward accessible solid-state nanopore fabrication. Several prior studies have shown that laser-assisted dielectric breakdown could help control the nanopore position and reduce the possibility of forming multiple pores. Here, we developed a physical model to estimate the probability of forming a single nanopore under different combinations of the laser power and the electric field. This model relies on the material- and experiment-specific parameters: the Weibull statistical parameters and the laser-induced photothermal etching rate. Both the model and our experimental data suggest that a combination of a high laser power and a low electric field is statistically favorable for forming a single nanopore at a programmed location. While this model relies on experiment-specific parameters, we anticipate it could provide the experimental insights for nanopore fabrication by the laser-assisted dielectric breakdown method, enabling broader access to solid-state nanopores and their sensing applications.
Collapse
Affiliation(s)
- Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaodong He
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
24
|
Morita A, Sumitomo T, Uesugi A, Sugano K, Isono Y. Dynamic electrical measurement of biomolecule behavior via plasmonically-excited nanogap fabricated by electromigration. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abe9c0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
The dynamic motion of DNA oligomers at the nanoscale gap between nanoelectrodes is measured under plasmonic excitation using laser irradiation. The use of a nanogap enables highly sensitive detection of individual molecules using an electrical readout or an optical readout such as Raman spectroscopy. However, the target molecule must reach the nanogap in order to be detected. This study focuses on the use of plasmonic excitation to trap molecules at the nanogap surface. The nanogap electrode is fabricated by electromigration and is, therefore, a much smaller nanogap than the top-down fabrication in the conventional plasmonic trapping studies. To demonstrate the individual molecule detection and to investigate the molecular behavior, the molecules are monitored using an electrical readout under a bias voltage instead of an optical readout used in the conventional studies. The conductance change due to DNA oligomer penetration to the nanogap is observed with the irradiated light intensity of over 1.23 mW. The single-molecule detection is confirmed irradiating the laser to the nanogap. The results suggest that DNA oligomers are spontaneously attracted and concentrated to the nanogap corresponding to the detection point, resulting in high detection probability and sensitivity.
Collapse
|
25
|
Kim Y, Gonzales J, Zheng Y. Sensitivity-Enhancing Strategies in Optical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004988. [PMID: 33369864 PMCID: PMC7884068 DOI: 10.1002/smll.202004988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Indexed: 05/07/2023]
Abstract
High-sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity-improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity-improving strategies are introduced, which can be developed into "plug-and-play" modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion-limit-breaking systems for enhancing sensor-analyte contact and subsequent analyte recognition by fluid-mixing and analyte-concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Gonzales
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
26
|
Kim Y, Ding H, Zheng Y. Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. NANO LETTERS 2020; 20:7020-7027. [PMID: 32667815 PMCID: PMC7572762 DOI: 10.1021/acs.nanolett.0c01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Molecular binding in surface-based biosensing is inherently governed by diffusional transport of molecules in solution to surface-immobilized counterparts. Optothermally generated surface microbubbles can quickly accumulate solutes at the bubble-liquid-substrate interface due to high-velocity fluid flows. Despite its potential as a concentrator, however, the incorporation of bubbles into protein-based sensing is limited by high temperatures. Here, we report a biphasic liquid system, capable of generating microbubbles at a low optical power/temperature by formulating PFP as a volatile, water-immiscible component in the aqueous host. We further exploited zwitterionic surface modification to prevent unwanted printing during bubble generation. In a single protein-protein interaction model, surface binding of dispersed proteins to capture proteins was enhanced by 1 order of magnitude within 1 min by bubbles, compared to that from static incubation for 30 min. Our proof-of-concept study exploiting fluid formulation and optothermal add-on paves an effective way toward improving the performances of sensors and spectroscopies.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
27
|
Maier FC, Fyta M. Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves. Chemphyschem 2020; 21:2068-2074. [PMID: 32721095 PMCID: PMC7540481 DOI: 10.1002/cphc.202000391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Indexed: 11/23/2022]
Abstract
Functionalized nanogaps embedded in nanopores show a strong potential for enhancing the detection of biomolecules, their length, type, and sequence. This detection is strongly dependent on the features of the target biomolecules, as well as the characteristics of the sensing device. In this work, through quantum-mechanical calculations, we elaborate on representative such aspects for the specific case of DNA detection and read-out. These aspects include the influence of single DNA nucleotide rotation within the nanogap and the current-voltage (I-V) characteristics of the nanogap. The results unveil a distinct variation in the electronic current across the functionalized device for the four natural DNA nucleotides with the applied voltage. These also underline the asymmetric response of the rotating nucleotides on this applied voltage and the respective variation in the rectification ratio of the device. The electronic tunneling current across the nanogap can be further enhanced through the proper choice of an applied bias voltage. We were able to correlate the enhancement of this current to the nucleotide rotation dynamics and a shift of the electronic transmission peaks towards the Fermi level. This nucleotide specific shift further reveals the sensitivity of the device in reading-out the identity of the DNA nucleotides for all different configurations in the nanogap. We underline the important information that can be obtained from both the I-V curves and the rectification characteristics of the nanogap device in view of accurately reading-out the DNA information. We show that tuning the applied bias can enhance this detection and discuss the implications in view of novel functionalized nanopore sequencers.
Collapse
Affiliation(s)
- Frank C. Maier
- Institute for Computational PhysicsUniversität StuttgartAllmandring 370569StuttgartGermany
| | - Maria Fyta
- Institute for Computational PhysicsUniversität StuttgartAllmandring 370569StuttgartGermany
| |
Collapse
|
28
|
Spitzberg JD, van Kooten XF, Bercovici M, Meller A. Microfluidic device for coupling isotachophoretic sample focusing with nanopore single-molecule sensing. NANOSCALE 2020; 12:17805-17811. [PMID: 32820758 DOI: 10.1039/d0nr05000h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Solid-state nanopores (NPs) are label-free single-molecule sensors, capable of performing highly sensitive assays from a small number of biomolecule translocation events. However, single-molecule sensing is challenging at extremely low analyte concentrations due to the limited flux of analytes to the sensing volume. This leads to a low event rate and increases the overall assay time. In this work, we present a method to enhance the event rate at low analyte concentrations by using isotachophoresis (ITP) to focus and deliver analytes to a nanopore sensor. Central to this method is a device capable of performing ITP focusing directly on a solid-state NP chip, while preventing the focusing electric field from damaging the nanopore membrane. We discuss considerations and trade-offs related to the design of the focusing channel, the ITP electrolyte system and electrical decoupling between the focusing and sensing modes. Finally, we demonstrate an integrated device wherein the concentration enhancement due to ITP focusing leads to an increase in event rate of >300-fold in the ITP-NP device as compared to the NP-only case.
Collapse
Affiliation(s)
- Joshua D Spitzberg
- Department of Biomedical Engineering, The Technion - Israel Institute of Technology, Haifa, 32000 Israel.
| | | | | | | |
Collapse
|
29
|
Hu R, Tong X, Zhao Q. Four Aspects about Solid-State Nanopores for Protein Sensing: Fabrication, Sensitivity, Selectivity, and Durability. Adv Healthc Mater 2020; 9:e2000933. [PMID: 32734703 DOI: 10.1002/adhm.202000933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/11/2020] [Indexed: 12/27/2022]
Abstract
Solid-state nanopores are a mimic of innate biological nanopores embedded on lipid membranes. They are fabricated on thin suspended layers of synthetic materials that provide superior thermal, mechanical, chemical stability, and geometry flexibility. As their counterpart biological nanopores reach the goal of DNA sequencing and become commercial, solid-state nanopores thrive in aspects of protein sensing and have become an important research component for clinical diagnostic technologies. This review focuses on resistive pulse sensing modes, which are versatile for low-cost, portable sensing devices and summarizes four main aspects toward commercially available resistive pulse-based protein sensing techniques using solid-state nanopores. In each aspect of fabrication, sensitivity, selectivity, and durability, brief fundamentals are introduced and the challenges and improvements are discussed. The rapid advance of a practical technique requires greater multidisciplinary cooperation. The review aims at clarifying existing obstacles in solid-state nanopore based protein sensing, intriguing readers with existing solutions and finally encouraging multidisciplinary researchers to advance the development of this promising protein sensing methodology.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
| | - Xin Tong
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
- Peking University Yangtze Delta Institute of Optoelectronics Nantong Jiangsu 226010 China
- Collaborative Innovation Center of Quantum Matter Beijing 100084 China
| |
Collapse
|
30
|
Chou YC, Masih Das P, Monos DS, Drndić M. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements. ACS NANO 2020; 14:6715-6728. [PMID: 32275381 PMCID: PMC9547353 DOI: 10.1021/acsnano.9b09964] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanopores are promising for many applications including DNA sequencing and molecular filtration. Solid-state nanopores are preferable over their biological counterparts for applications requiring durability and operation under a wider range of external parameters, yet few studies have focused on optimizing their robustness. We report the lifetime and durability of pores and porous arrays in 10 to 100 nm-thick, low-stress silicon nitride (SiNx) membranes. Pores are fabricated using a transmission electron microscope (TEM) and/or electron beam lithography (EBL) and reactive ion etching (RIE), with diameters from 2 to 80 nm. We store them in various electrolyte solutions (KCl, LiCl, MgCl2) and record open pore conductance over months to quantify pore stability. Pore diameters increase with time, and diameter etch rate increases with electrolyte concentration from Δd/Δt ∼ 0.2 to ∼ 3 nm/day for 0.01 to 3 M KCl, respectively. TEM confirms the range of diameter etch rates from ionic measurements. Using electron energy loss spectroscopy (EELS), we observe a N-deficient region around the edges of TEM-drilled pores. Pore expansion is caused by etching of the Si/SiO2 pore walls, which resembles the dissolution of silicon found in minerals such as silica (SiO2) in salty ocean water. The etching process occurs where the membrane was exposed to the electron beam and can result in pore formation. However, coating pores with a conformal 1 nm-thick hafnium oxide layer prevents expansion in 1 M KCl, in stark contrast to bare SiNx pores (∼ 1.7 nm/day). EELS data reveal the atomic composition of bare and HfO2-coated pores.
Collapse
Affiliation(s)
- Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul Masih Das
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
31
|
Kotsifaki DG, Truong VG, Chormaic SN. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping. NANO LETTERS 2020; 20:3388-3395. [PMID: 32275440 DOI: 10.1021/acs.nanolett.0c00300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanostructures overcome Abbe's diffraction limit to create strong gradient electric fields, enabling efficient optical trapping of nanoparticles. However, it remains challenging to achieve stable trapping with low incident laser intensity. Here, we demonstrate Fano resonance-assisted plasmonic optical tweezers for single nanoparticle trapping in an array of asymmetrical split nanoapertures on a 50 nm gold thin film. A large normalized trap stiffness of 8.65 fN/nm/mW for 20 nm polystyrene particles at a near-resonance trapping wavelength of 930 nm was achieved. The trap stiffness on-resonance is enhanced by a factor of 63 compared to that of off-resonance due to the ultrasmall mode volume, enabling large near-field strengths and a cavity effect contribution. These results facilitate trapping with low incident laser intensity, thereby providing new options for studying transition paths of single molecules such as proteins.
Collapse
Affiliation(s)
- Domna G Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Viet Giang Truong
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
32
|
Jiang Q, Rogez B, Claude JB, Moreau A, Lumeau J, Baffou G, Wenger J. Adhesion layer influence on controlling the local temperature in plasmonic gold nanoholes. NANOSCALE 2020; 12:2524-2531. [PMID: 31930256 DOI: 10.1039/c9nr08113e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gold films do not adhere well on glass substrates, so plasmonics experiments typically use a thin adhesion layer of titanium or chromium to ensure a proper adhesion between the gold film and the glass substrate. While the absorption of light into gold structures is largely used to generate heat and control the temperature at the nanoscale, the influence of the adhesion layer on this process is largely overlooked. Here, we quantify the role of the adhesion layer in determining the local temperature increase around a single nanohole illuminated by a focused infrared laser. Despite their nanometer thickness, adhesion layers can absorb a greater fraction of the incoming infrared light than the 100 nm thick gold layer leading to a significant increase of the local temperature. Different experimental designs are explored, offering new ways to promote or avoid the temperature increase inside nanoapertures. This knowledge further expands the plasmonic toolbox for temperature-controlled experiments including single molecule sensing, nanopore translocation, polymerization, or nano-optical trapping.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Benoît Rogez
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Antonin Moreau
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Julien Lumeau
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Guillaume Baffou
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| |
Collapse
|
33
|
St-Denis T, Yazda K, Capaldi X, Bustamante J, Safari M, Miyahara Y, Zhang Y, Grutter P, Reisner W. An apparatus based on an atomic force microscope for implementing tip-controlled local breakdown. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123703. [PMID: 31893796 DOI: 10.1063/1.5129665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Solid-state nanopores are powerful tools for sensing of single biomolecules in solution. Fabrication of solid-state nanopores is still challenging, however; in particular, new methods are needed to facilitate the integration of pores with larger nanofluidic and electronic device architectures. We have developed the tip-controlled local breakdown (TCLB) approach, in which an atomic force microscope (AFM) tip is brought into contact with a silicon nitride membrane that is placed onto an electrolyte reservoir. The application of a voltage bias at the AFM tip induces a dielectric breakdown that leads to the formation of a nanopore at the tip position. In this work, we report on the details of the apparatus used to fabricate nanopores using the TCLB method, and we demonstrate the formation of nanopores with smaller, more controlled diameters using a current limiting circuit that zeroes the voltage upon pore formation. Additionally, we demonstrate the capability of TCLB to fabricate pores aligned to embedded topographical features on the membranes.
Collapse
Affiliation(s)
- T St-Denis
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| | - K Yazda
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| | - X Capaldi
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| | - J Bustamante
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| | - M Safari
- Norcada, 4548-99 Street NW, Edmonton, Alberta T6E 5H5, Canada
| | - Y Miyahara
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| | - Y Zhang
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| | - P Grutter
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| | - W Reisner
- Physics Department, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
34
|
Nouri R, Tang Z, Guan W. Quantitative Analysis of Factors Affecting the Event Rate in Glass Nanopore Sensors. ACS Sens 2019; 4:3007-3013. [PMID: 31612705 DOI: 10.1021/acssensors.9b01540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While the solid-state nanopore sensors have shown exceptional promise with their single-molecule sensitivity and label-free operations, one of the most significant challenges in the nanopore sensor is the limited analyte translocation event rate that leads to prolonged sensor response time. This issue is more pronounced when the analyte concentration is below the nanomolar (nM) range, owing to the diffusion-limited mass transport. In this work, we systematically studied the experimental factors beyond the intrinsic analyte concentration and electrophoretic mobility that affect the event rate in glass nanopore sensors. We developed a quantitative model to capture the impact of nanopore surface charge density, ionic strength, nanopore geometry, and translocation direction on the event rate. The synergistic effects of these factors on the event rates were investigated with the aim to find the optimized experimental conditions for operating the glass nanopore sensor from the response time standpoint. The findings in the study would provide useful and practical insight to enhance the device response time and achieve a lower detection limit for various glass nanopore-sensing experiments.
Collapse
|
35
|
Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. NANOSCALE 2019; 11:19636-19657. [PMID: 31603455 DOI: 10.1039/c9nr05367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since their introduction in 2001, solid-state nanopores have been increasingly exploited for the detection and characterization of biomolecules ranging from single DNA strands to protein complexes. A major factor that enables the application of nanopores to the analysis and characterization of a broad range of macromolecules is the preparation of coatings on the pore wall to either prevent non-specific adhesion of molecules or to facilitate specific interactions of molecules of interest within the pore. Surface coatings can therefore be useful to minimize clogging of nanopores or to increase the residence time of target analytes in the pore. This review article describes various coatings and their utility for changing pore diameters, increasing the stability of nanopores, reducing non-specific interactions, manipulating surface charges, enabling interactions with specific target molecules, and reducing the noise of current recordings through nanopores. We compare the coating methods with respect to the ease of preparing the coating, the stability of the coating and the requirement for specialized equipment to prepare the coating.
Collapse
Affiliation(s)
- Olivia M Eggenberger
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Cuifeng Ying
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mayer
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
36
|
Garoli D, Yamazaki H, Maccaferri N, Wanunu M. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. NANO LETTERS 2019; 19:7553-7562. [PMID: 31587559 DOI: 10.1021/acs.nanolett.9b02759] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Solid-state nanopore-based sensors are promising platforms for next-generation sequencing technologies, featuring label-free single-molecule sensitivity, rapid detection, and low-cost manufacturing. In recent years, solid-state nanopores have been explored due to their miscellaneous fabrication methods and their use in a wide range of sensing applications. Here, we highlight a novel family of solid-state nanopores which have recently appeared, namely plasmonic nanopores. The use of plasmonic nanopores to engineer electromagnetic fields around a nanopore sensor allows for enhanced optical spectroscopies, local control over temperature, thermophoresis of molecules and ions to/from the sensor, and trapping of entities. This Mini Review offers a comprehensive understanding of the current state-of-the-art plasmonic nanopores for single-molecule detection and biomolecular sequencing applications and discusses the latest advances and future perspectives on plasmonic nanopore-based technologies.
Collapse
Affiliation(s)
- Denis Garoli
- Istituto Italiano di Tecnologia , via Morego 30 , I-16163 , Genova , Italy
| | - Hirohito Yamazaki
- Department of Physics , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Nicolò Maccaferri
- Physics and Materials Science Research Unit , University of Luxembourg , 162a avenue de la Faïencerie , L-1511 Luxembourg , Luxembourg
| | - Meni Wanunu
- Department of Physics , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
37
|
Peri SSS, Sabnani MK, Raza MU, Ghaffari S, Gimlin S, Wawro DD, Lee JS, Kim MJ, Weidanz J, Alexandrakis G. Detection of specific antibody-ligand interactions with a self-induced back-action actuated nanopore electrophoresis sensor. NANOTECHNOLOGY 2019; 31:085502. [PMID: 31675752 DOI: 10.1088/1361-6528/ab53a7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in plasmonic nanopore technologies have enabled the use of concurrently acquired bimodal optical-electrical data for improved quantification of molecular interactions. This work presents the use of a new plasmonic nanosensor employing self-induced back-action (SIBA) for optical trapping to enable SIBA-actuated nanopore electrophoresis (SANE) for quantifying antibody-ligand interactions. T-cell receptor-like antibodies (TCRmAbs) engineered to target peptide-presenting major histocompatibility complex (pMHC) ligands, representing a model of target ligands presented on the surface of cancer cells, were used to test the SANE sensor's ability to identify specific antibody-ligand binding. Cancer-irrelevant TCRmAbs targeting the same pMHCs were also tested as a control. It was found that the sensor could provide bimodal molecular signatures that could differentiate between antibody, ligand and the complexes that they formed, as well as distinguish between specific and non-specific interactions. Furthermore, the results suggested an interesting phenomenon of increased antibody-ligand complex bound fraction detected by the SANE sensor compared to that expected for corresponding bulk solution concentrations. A possible physical mechanism and potential advantages for the sensor's ability to augment complex formation near its active sensing volume at concentrations lower than the free solution equilibrium binding constant (K D ) are discussed.
Collapse
Affiliation(s)
- Sai Santosh Sasank Peri
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Luo MB, Wu F, Zhang S, Sun LZ. Effect of temperature on the escape of charged polymer chain from a repulsive nanopore. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1629435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Meng-Bo Luo
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fan Wu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shuang Zhang
- College of Science, Beibu Gulf University, Qinzhou, People’s Republic of China
| | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| |
Collapse
|
39
|
Gao R, Lin Y, Ying YL, Long YT. Nanopore-based sensing interface for single molecule electrochemistry. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9509-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Bagra B, Zhang W, Zeng Z, Mabe T, Wei J. Plasmon-Enhanced Fluorescence of Carbon Nanodots in Gold Nanoslit Cavities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8903-8909. [PMID: 31246484 DOI: 10.1021/acs.langmuir.9b00448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanodots (CNDs) are featured with a wide range of light absorption and excitation-dependent fluorescence. The emission enhancement of CNDs is of great interest for the development of nanophotonics. Although the phenomenon of plasmon-enhanced fluorescence for quantum dots and molecular dyes has been well investigated, rarely has it been reported for CNDs. In this work, a series of plasmonic nanoslit designs were fabricated and utilized for immobilization of CNDs in nanoslits and examination of the best match for plasmonic fluorescence enhancement of CNDs. In concert, to better understand the plasmonic effect on the enhancement, the surface optical field is measured with or without CND immobilization using a hyperspectral imaging system as a comparison, and a semianalytical model is conducted for a quantitative analysis of surface plasmon generation under the plane-wave illumination. Both the fluorescence and surface reflection light intensity enhancement are demonstrated as a function of nanoslit width and are maximized at the 100 nm nanoslit width. The analysis of surface plasmon-exciton coupling of CNDs in the nanoslit area suggests that the enhancement is primarily due to plasmonic light trapping for increased electromagnetic field and plasmon-induced resonance energy transfer. This study suggests that incorporating CNDs in the plasmonic nanoslits may provide a largely enhanced CND-based photoemission system for optical applications.
Collapse
Affiliation(s)
- Bhawna Bagra
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Taylor Mabe
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| |
Collapse
|
41
|
Spitzberg JD, Zrehen A, van Kooten XF, Meller A. Plasmonic-Nanopore Biosensors for Superior Single-Molecule Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900422. [PMID: 30941823 DOI: 10.1002/adma.201900422] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/19/2019] [Indexed: 05/26/2023]
Abstract
Plasmonic and nanopore sensors have separately received much attention for achieving single-molecule precision. A plasmonic "hotspot" confines and enhances optical excitation at the nanometer length scale sufficient to optically detect surface-analyte interactions. A nanopore biosensor actively funnels and threads analytes through a molecular-scale aperture, wherein they are interrogated by electrical or optical means. Recently, solid-state plasmonic and nanopore structures have been integrated within monolithic devices that address fundamental challenges in each of the individual sensing methods and offer complimentary improvements in overall single-molecule sensitivity, detection rates, dwell time and scalability. Here, the physical phenomena and sensing principles of plasmonic and nanopore sensing are summarized to highlight the novel complementarity in dovetailing these techniques for vastly improved single-molecule sensing. A literature review of recent plasmonic nanopore devices is then presented to delineate methods for solid-state fabrication of a range of hybrid device formats, evaluate the progress and challenges in the detection of unlabeled and labeled analyte, and assess the impact and utility of localized plasmonic heating. Finally, future directions and applications inspired by the present state of the art are discussed.
Collapse
Affiliation(s)
- Joshua D Spitzberg
- Department of Biomedical Engineering, Technion-IIT, Haifa, 32000, Israel
| | - Adam Zrehen
- Department of Biomedical Engineering, Technion-IIT, Haifa, 32000, Israel
| | | | - Amit Meller
- Department of Biomedical Engineering, Technion-IIT, Haifa, 32000, Israel
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
42
|
Kim HJ, Park KB, Kang JH, Lee K, Kim HM, Kim KB. Detection of metal corrosion characteristics in chlorine solution using solid state nanopore. NANOTECHNOLOGY 2019; 30:225501. [PMID: 30731431 DOI: 10.1088/1361-6528/ab0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanopore structures were originally proposed for detection of biomolecule translocation through nanometer-scale pores that perforate membranes by transient changes in ionic current. In this study, these changes are utilized to detect corrosion of different metals in aqueous chlorine media. The corrosion behaviors of Cu, Al, Ti, and Cr were analyzed by monitoring the changes in ion current resulting from ion concentration variations in solutions due to corrosion of the metals. We observed that the Cu layer passivated by CuO x was severely corroded when a drastic change of ion current was induced, from 10 to 30 nS to the level of 104 nS, as soon as the bias voltage was applied. In the case of Al passivated by thin AlO x , the conductance increased from 10-30 to 166 ± 52 nS and became saturated. Highly localized pitting corrosion was observed on the periphery of the nanopore, where the electrical field was most concentrated. Finally, we observed that Ti and Cr passivated by oxide showed long-term stability without corrosion in 1 M KCl in the pH range of 4-11.
Collapse
Affiliation(s)
- Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Verschueren D, Pud S, Shi X, De Angelis L, Kuipers L, Dekker C. Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores. ACS NANO 2019; 13:61-70. [PMID: 30512931 PMCID: PMC6344913 DOI: 10.1021/acsnano.8b06758] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/04/2018] [Indexed: 05/23/2023]
Abstract
Solid-state nanopores are single-molecule sensors that hold great potential for rapid protein and nucleic-acid analysis. Despite their many opportunities, the conventional ionic current detection scheme that is at the heart of the sensor suffers inherent limitations. This scheme intrinsically couples signal strength to the driving voltage, requires the use of high-concentration electrolytes, suffers from capacitive noise, and impairs high-density sensor integration. Here, we propose a fundamentally different detection scheme based on the enhanced light transmission through a plasmonic nanopore. We demonstrate that translocations of single DNA molecules can be optically detected, without the need of any labeling, in the transmitted light intensity through an inverted-bowtie plasmonic nanopore. Characterization and the cross-correlation of the optical signals with their electrical counterparts verify the plasmonic basis of the optical signal. We demonstrate DNA translocation event detection in a regime of driving voltages and buffer conditions where traditional ionic current sensing fails. This label-free optical detection scheme offers opportunities to probe native DNA-protein interactions at physiological conditions.
Collapse
Affiliation(s)
- Daniel
V. Verschueren
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sergii Pud
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Xin Shi
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Key
Laboratory for Advanced Materials & School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, Shanghai 200237, P. R. China
| | - Lorenzo De Angelis
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - L. Kuipers
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
44
|
Bello J, Mowla M, Troise N, Soyring J, Borgesi J, Shim J. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients. Electrophoresis 2019; 40:1082-1090. [DOI: 10.1002/elps.201800426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Julian Bello
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Maksudul Mowla
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Nicholas Troise
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Joanna Soyring
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Julia Borgesi
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Jiwook Shim
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| |
Collapse
|
45
|
Taniguchi M, Ohshiro T. Nanopore Device for Single-Molecule Sensing Method and Its Application. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Yamazaki H, Hu R, Zhao Q, Wanunu M. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. ACS NANO 2018; 12:12472-12481. [PMID: 30457833 DOI: 10.1021/acsnano.8b06805] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sculpting solid-state materials at the nanoscale is an important step in the manufacturing of numerous types of sensor devices, in particular solid-state nanopore sensors. Here we present mechanistic insight into laser-induced thinning of low-stress silicon nitride (SiN x) membranes and films. In a recent study, we observed that focusing a visible wavelength laser beam on a SiN x membrane results in efficient localized heating, and we used this effect to control temperature at a solid-state nanopore sensor. A side-effect of the observed heating was that the pores expand/degrade under prolonged high-power illumination, prompting us to study the mechanism of this etching process. We find that SiN x can be etched under exposure to light of ∼107 W/cm2 average intensity, with etch rates that are influenced by the supporting electrolyte. Combining this controlled etching with dielectric breakdown, an electrokinetic process for making pores, nanopores of arbitrary dimensions as small as 1-2 nm in diameter and thickness can easily be fabricated. Evidence gathered from biomolecule-pore interactions suggests that the pore geometries obtained using this method are more funnel-like, rather than hourglass-shaped. Refined control over pore dimensions can expand the range of applications of solid-state nanopores, for example, biopolymer sequencing and detection of specific biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Rui Hu
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , People's Republic of China
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , People's Republic of China
| | - Meni Wanunu
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
47
|
Shi X, Verschueren DV, Dekker C. Active Delivery of Single DNA Molecules into a Plasmonic Nanopore for Label-Free Optical Sensing. NANO LETTERS 2018; 18:8003-8010. [PMID: 30460853 PMCID: PMC6295923 DOI: 10.1021/acs.nanolett.8b04146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/16/2018] [Indexed: 05/23/2023]
Abstract
Plasmon resonance biosensors provide ultimate sensitivity at the single-molecule level. This sensitivity is, however, associated with a nanometer-sized confined hotspot, and molecular transport toward the sensor relies on inefficient diffusion. Here, we combine a plasmonic nanoantenna with a solid-state nanopore and demonstrate that single DNA molecules can be efficiently delivered to the plasmonic hotspots and detected in a label-free manner at submillisecond acquisition rates by monitoring the backscattered light intensity from the plasmonic nanoantennas. Our method realizes a better than 200 μs temporal resolution together with a down to subsecond waiting time, which is orders of magnitude better than traditional single-molecule plasmonic resonance sensing methods. Furthermore, the electric field applied to the nanopore can actively drive biomolecules away from the hotspot, preventing molecules to permanently bind to the gold sensor surface and allowing efficient reuse of the sensor. Our plasmonic nanopore sensor thus significantly outperforms conventional plasmon resonance sensors and provides great opportunities for high-throughput optical single-molecule-sensing assays.
Collapse
Affiliation(s)
- Xin Shi
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- Key
Laboratory for Advanced Materials & School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, Shanghai 200237, People’s Republic
of China
| | - Daniel V. Verschueren
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- E-mail:
| |
Collapse
|
48
|
Kang L, Guo Y, Miao P, Sun M, Song B, Xu P, Liu X. Study of Surface Plasmon Assisted Reactions to Understand the Light‐Induced Decarboxylation of N719 Sensitizer. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leilei Kang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
- Dalian Institute of Chemical Physics 116023 Dalian China
| | - Yan Guo
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Peng Miao
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Mengtao Sun
- School of Mathematics and Physics University of Science and Technology Beijing 100083 Beijing China
| | - Bo Song
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Ping Xu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Xiaoyan Liu
- Dalian Institute of Chemical Physics 116023 Dalian China
| |
Collapse
|
49
|
Raza MU, Peri SSS, Ma LC, Iqbal SM, Alexandrakis G. Self-induced back action actuated nanopore electrophoresis (SANE). NANOTECHNOLOGY 2018; 29:435501. [PMID: 30073973 DOI: 10.1088/1361-6528/aad7d1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present a novel method to trap nanoparticles in double nanohole (DNH) nanoapertures integrated on top of solid-state nanopores (ssNP). The nanoparticles were propelled by an electrophoretic force from the cis towards the trans side of the nanopore but were trapped in the process when they reached the vicinity of the DNH-ssNP interface. The self-induced back action (SIBA) plasmonic force existing between the tips of the DNH opposed the electrophoretic force and enabled simultaneous optical and electrical sensing of a single nanoparticle for seconds. The novel SIBA actuated nanopore electrophoresis (SANE) sensor was fabricated using two-beam GFIS FIB. Firstly, Ne FIB milling was used to create the DNH features and was combined with end pointing to stop milling at the metal-dielectric interface. Subsequently, He FIB was used to drill a 25 nm nanopore through the center of the DNH. Proof of principle experiments to demonstrate the potential utility of the SANE sensor were performed with 20 nm silica and Au nanoparticles. The addition of optical trapping to electrical sensing extended translocation times by four orders of magnitude. The extended electrical measurement times revealed newly observed high frequency charge transients that were attributed to bobbing of the nanoparticle driven by the competing optical and electrical forces. Frequency analysis of this bobbing behavior hinted at the possibility of distinguishing single from multi-particle trapping events. We also discuss how SANE sensor measurement characteristics differ between silica and Au nanoparticles due to differences in their physical properties and how to estimate the charge around a nanoparticle. These measurements show promise for the SANE sensor as an enabling tool for selective detection of biomolecules and quantification of their interactions.
Collapse
Affiliation(s)
- Muhammad Usman Raza
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | | | | | | | | |
Collapse
|
50
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|