1
|
Moustafa S, Almarashi JQM, Zayed MK, Almokhtar M, Rashad M, Fares H. Plasmon resonances of GZO core-Ag shell nanospheres, nanorods, and nanodisks for biosensing and biomedical applications in near-infrared biological windows I and II. Phys Chem Chem Phys 2024; 26:17817-17829. [PMID: 38884203 DOI: 10.1039/d4cp00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
There is currently a great deal of interest in realizing localized surface plasmon resonances (LSPRs) in two distinct windows in the near-infrared (NIR) spectrum for in vivo biosensing and medical applications, the biological window (BW) I and II (BW I, 700-900 nm; BW II, 1000-1700 nm). This study aims to demonstrate that LSPRs of Ga-doped ZnO (GZO) core-silver (Ag) shell structures exhibit promising features for biological applications in the NIR BW I and II. Here, we study three different shapes for nanoshells: the core-shell nanosphere, nanorod, and nanodisk. In the calculation of the optical response of these nanoshells, an effective medium approach is first used to reduce the dielectric function of a nanoshell to that of an equivalent homogenous NP with an effective dielectric function. Then, the LSPR spectra of nanoshells are calculated using the modified long-wavelength approximation (MLWA), which corrects the polarizability of the equivalent NP as obtained by Gans theory. Through numerical investigations, we examine the impacts of the core and shell sizes of the proposed nanoshells as well as the medium refractive index on the position and line width of the plasmon resonance peaks. It is shown that the plasmon resonances of the three proposed nanoshells exhibit astonishing resonance tunability in the NIR region by varying their geometrical parameters. Specifically, the improved spectrum characteristics and tunability of its plasmon resonances make the GZO-Ag nanosphere a more viable platform for NIR applications than the spherical metal colloid. Furthermore, we demonstrate that the sensitivity and figure of merit (FOM) of the plasmon resonances may be significantly increased by using GZO-Ag nanorods and nanodisks in place of GZO-Ag nanospheres. It is found that the optical properties of the transverse plasmon resonance of the GZO-Ag nanodisk are superior to all plasmon resonances produced by the GZO-Ag nanorods and GZO-Ag nanospheres in terms of sensitivity and FOM. The FOM of the transverse plasmon mode of the GZO-Ag nanodisk is almost two orders of magnitude higher than that of the longitudinal and transverse plasmon modes of the GZO-Ag nanorod in BW I and BW II. And it is 1.5 and 2 times higher than the plasmon resonance FOM of GZO-Ag nanospheres in BW I and BW II, respectively.
Collapse
Affiliation(s)
- Samar Moustafa
- Physics Department, College of Science, Taibah University, P. O. Box 30002, Medina, Saudi Arabia.
- Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Jamal Q M Almarashi
- Physics Department, College of Science, Taibah University, P. O. Box 30002, Medina, Saudi Arabia.
| | - Mohamed K Zayed
- Physics Department, College of Science, Taibah University, P. O. Box 30002, Medina, Saudi Arabia.
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 6111, Egypt
| | - Mohamed Almokhtar
- Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Rashad
- Physics Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hesham Fares
- Physics Department, College of Science, Taibah University, P. O. Box 30002, Medina, Saudi Arabia.
- Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
2
|
Hertenstein T, Tang Y, Day AS, Reynolds J, Viboolmate PV, Yoon JY. Rapid and sensitive detection of miRNA via light scatter-aided emulsion-based isothermal amplification using a custom low-cost device. Biosens Bioelectron 2023; 237:115444. [PMID: 37329805 DOI: 10.1016/j.bios.2023.115444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs are likely to be a next-generation clinical biomarker for many diseases. While gold-standard technologies, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR), exist for microRNA detection, there is a need for rapid and low-cost testing. Here, an emulsion loop-mediated isothermal amplification (eLAMP) assay was developed for miRNA that compartmentalizes a LAMP reaction and shortens the time-to-detection. The miRNA was a primer to facilitate the overall amplification rate of template DNA. Light scatter intensity decreased when the emulsion droplet got smaller during the ongoing amplification, which was utilized to moitor the amplification non-invasively. A custom low-cost device was designed and fabricated using a computer cooling fan, a Peltier heater, an LED, a photoresistor, and a temperature controller. It allowed more stable vortexing and accurate light scatter detection. Three miRNAs, miR-21, miR-16, and miR-192, were successfully detected using the custom device. Specifically, new template and primer sequences were developed for miR-16 and miR-192. Zeta potential measurements and microscopic observations confirmed emulsion size reduction and amplicon adsorption. The detection limit was 0.01 fM, corresponding to 2.4 copies per reaction, and the detection could be made in 5 min. Since the assays were rapid and both template and miRNA + template could eventually be amplified, we introduced the success rate (compared to the 95% confidence interval of the template result) as a new measure, which worked well with lower concentrations and inefficient amplifications. This assay brings us one step closer to allowing circulating miRNA biomarker detection to become commonplace in the clinical world.
Collapse
Affiliation(s)
- Tyler Hertenstein
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Alexander S Day
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Patrick V Viboolmate
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
3
|
Hu J, Safir F, Chang K, Dagli S, Balch HB, Abendroth JM, Dixon J, Moradifar P, Dolia V, Sahoo MK, Pinsky BA, Jeffrey SS, Lawrence M, Dionne JA. Rapid genetic screening with high quality factor metasurfaces. Nat Commun 2023; 14:4486. [PMID: 37495593 PMCID: PMC10372074 DOI: 10.1038/s41467-023-39721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Genetic analysis methods are foundational to advancing personalized medicine, accelerating disease diagnostics, and monitoring the health of organisms and ecosystems. Current nucleic acid technologies such as polymerase chain reaction (PCR) and next-generation sequencing (NGS) rely on sample amplification and can suffer from inhibition. Here, we introduce a label-free genetic screening platform based on high quality (high-Q) factor silicon nanoantennas functionalized with nucleic acid fragments. Each high-Q nanoantenna exhibits average resonant quality factors of 2,200 in physiological buffer. We quantitatively detect two gene fragments, SARS-CoV-2 envelope (E) and open reading frame 1b (ORF1b), with high-specificity via DNA hybridization. We also demonstrate femtomolar sensitivity in buffer and nanomolar sensitivity in spiked nasopharyngeal eluates within 5 minutes. Nanoantennas are patterned at densities of 160,000 devices per cm2, enabling future work on highly-multiplexed detection. Combined with advances in complex sample processing, our work provides a foundation for rapid, compact, and amplification-free molecular assays.
Collapse
Affiliation(s)
- Jack Hu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
| | - Fareeha Safir
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Sahil Dagli
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Halleh B Balch
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - John M Abendroth
- Laboratory for Solid State Physics, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jefferson Dixon
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Varun Dolia
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
| | - Mark Lawrence
- Department of Electrical & Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Nguyen DD, Lee S, Kim I. Recent Advances in Metaphotonic Biosensors. BIOSENSORS 2023; 13:631. [PMID: 37366996 PMCID: PMC10296124 DOI: 10.3390/bios13060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Metaphotonic devices, which enable light manipulation at a subwavelength scale and enhance light-matter interactions, have been emerging as a critical pillar in biosensing. Researchers have been attracted to metaphotonic biosensors, as they solve the limitations of the existing bioanalytical techniques, including the sensitivity, selectivity, and detection limit. Here, we briefly introduce types of metasurfaces utilized in various metaphotonic biomolecular sensing domains such as refractometry, surface-enhanced fluorescence, vibrational spectroscopy, and chiral sensing. Further, we list the prevalent working mechanisms of those metaphotonic bio-detection schemes. Furthermore, we summarize the recent progress in chip integration for metaphotonic biosensing to enable innovative point-of-care devices in healthcare. Finally, we discuss the impediments in metaphotonic biosensing, such as its cost effectiveness and treatment for intricate biospecimens, and present a prospect for potential directions for materializing these device strategies, significantly influencing clinical diagnostics in health and safety.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seho Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Yang K, Chen Y, Yan S, Yang W. Nanostructured surface plasmon resonance sensors: Toward narrow linewidths. Heliyon 2023; 9:e16598. [PMID: 37292265 PMCID: PMC10245261 DOI: 10.1016/j.heliyon.2023.e16598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Surface plasmon resonance sensors have found wide applications in optical sensing field due to their excellent sensitivity to the slight refractive index change of surrounding medium. However, the intrinsically high optical losses in metals make it nontrivial to obtain narrow resonance spectra, which greatly limits the performance of surface plasmon resonance sensors. This review first introduces the influence factors of plasmon linewidths of metallic nanostructures. Then, various approaches to achieve narrow resonance linewidths are summarized, including the fabrication of nanostructured surface plasmon resonance sensors supporting surface lattice resonance/plasmonic Fano resonance or coupling with a photonic cavity, the preparation of surface plasmon resonance sensors with ultra-narrow resonators, as well as strategies such as platform-induced modification, alternating different dielectric layers, and the coupling with whispering-gallery-modes. Lastly, the applications and some existing challenges of surface plasmon resonance sensors are discussed. This review aims to provide guidance for the further development of nanostructured surface plasmon resonance sensors.
Collapse
Affiliation(s)
- Kang Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yan Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| |
Collapse
|
6
|
Hsu CC, Yang Y, Kannisto E, Zeng X, Yu G, Patnaik SK, Dy GK, Reid ME, Gan Q, Wu Y. Simultaneous Detection of Tumor Derived Exosomal Protein-MicroRNA Pairs with an Exo-PROS Biosensor for Cancer Diagnosis. ACS NANO 2023; 17:8108-8122. [PMID: 37129374 DOI: 10.1021/acsnano.2c10970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumor derived exosomes (TEXs) have emerged as promising biomarkers for cancer liquid biopsy. Conventional methods (such as ELISA and qRT-PCR) and emerging biosensing technologies mainly detect a single type of exosomal biomarker due to the distinct properties of different biomolecules. Sensitive detection of two different types of TEX biomarkers, i.e., protein and microRNA combined biomarkers, may greatly improve cancer diagnostic accuracy. We developed an exosome protein microRNA one-stop (Exo-PROS) biosensor that not only selectively captured TEXs but also enabled in situ, simultaneous detection of TEX protein-microRNA pairs via a surface plasmon resonance mechanism. Exo-PROS assay is a fast, reliable, low sample consumption, and user-friendly test. With a total of 175 cancer patients and normal controls, we demonstrated that TEX protein-microRNA pairs measured by Exo-PROS assay detected lung cancer and breast cancer with 99% and 96% accuracy, respectively. Exo-PROS assay also showed superior diagnostic performance to conventional ELISA and qRT-PCR methods. Our results demonstrated that Exo-PROS assay is a potent liquid biopsy assay for cancer diagnosis.
Collapse
Affiliation(s)
- Chang-Chieh Hsu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Xie Zeng
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Guan Yu
- Department of Biostatistics, University at Buffalo, The State University of New York, Buffalo, New York 14263, United States
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Mary E Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Qiaoqiang Gan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Materials Science Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Masterson AN, Chowdhury NN, Fang Y, Yip-Schneider MT, Hati S, Gupta P, Cao S, Wu H, Schmidt CM, Fishel ML, Sardar R. Amplification-Free, High-Throughput Nanoplasmonic Quantification of Circulating MicroRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection. ACS Sens 2023; 8:1085-1100. [PMID: 36853001 DOI: 10.1021/acssensors.2c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is often detected at an advanced stage. Earlier diagnosis of PDAC is key to reducing mortality. Circulating biomarkers such as microRNAs are gaining interest, but existing technologies require large sample volumes, amplification steps, extensive biofluid processing, lack sensitivity, and are low-throughput. Here, we present an advanced nanoplasmonic sensor for the highly sensitive, amplification-free detection and quantification of microRNAs (microRNA-10b, microRNA-let7a) from unprocessed plasma microsamples. The sensor construct utilizes uniquely designed -ssDNA receptors attached to gold triangular nanoprisms, which display unique localized surface plasmon resonance (LSPR) properties, in a multiwell plate format. The formation of -ssDNA/microRNA duplex controls the nanostructure-biomolecule interfacial electronic interactions to promote the charge transfer/exciton delocalization processes and enhance the LSPR responses to achieve attomolar (10-18 M) limit of detection (LOD) in human plasma. This improve LOD allows the fabrication of a high-throughput assay in a 384-well plate format. The performance of nanoplasmonic sensors for microRNA detection was further assessed by comparing with the qRT-PCR assay of 15 PDAC patient plasma samples that shows a positive correlation between these two assays with the Pearson correlation coefficient value >0.86. Evaluation of >170 clinical samples reveals that oncogenic microRNA-10b and tumor suppressor microRNA-let7a levels can individually differentiate PDAC from chronic pancreatitis and normal controls with >94% sensitivity and >94% specificity at a 95% confidence interval (CI). Furthermore, combining both oncogenic and tumor suppressor microRNA levels significantly improves differentiation of PDAC stages I and II versus III and IV with >91% and 87% sensitivity and specificity, respectively, in comparison to the sensitivity and specificity values for individual microRNAs. Moreover, we show that the level of microRNAs varies substantially in pre- and post-surgery PDAC patients (n = 75). Taken together, this ultrasensitive nanoplasmonic sensor with excellent sensitivity and specificity is capable of assaying multiple biomarkers simultaneously and may facilitate early detection of PDAC to improve patient care.
Collapse
Affiliation(s)
- Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Nayela N Chowdhury
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Yue Fang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Prashant Gupta
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Huangbing Wu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - C Max Schmidt
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
8
|
Iqbal MJ, Javed Z, Herrera-Bravo J, Sadia H, Anum F, Raza S, Tahir A, Shahwani MN, Sharifi-Rad J, Calina D, Cho WC. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int 2022; 22:354. [PMCID: PMC9664821 DOI: 10.1186/s12935-022-02777-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractRecent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient’s clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.
Collapse
|
9
|
Bordy S, Byun J, Poulikakos LV. Nanophotonic materials: enabling targeted cancer diagnostics and therapeutics with light. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Masterson AN, Sardar R. Selective Detection and Ultrasensitive Quantification of SARS-CoV-2 IgG Antibodies in Clinical Plasma Samples Using Epitope-Modified Nanoplasmonic Biosensing Platforms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26517-26527. [PMID: 35639080 PMCID: PMC9173676 DOI: 10.1021/acsami.2c06599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 06/01/2023]
Abstract
Monitoring the human immune response by assaying (detection and quantification) the antibody level against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important in conducting epidemiological surveillance and immunization studies at a population level. Herein, we present the design and fabrication of a solid-state nanoplasmonic biosensing platform that is capable of quantifying SARS-CoV-2 neutralizing antibody IgG with a limit of detection as low as 30.0 attomolar (aM) and a wide dynamic range spanning seven orders of magnitude. Based on IgG binding constant determination for different biological motifs, we show that the covalent attachment of highly specific SARS-CoV-2 linear epitopes with an appropriate ratio, in contrast to using SARS-CoV-2 spike protein subunits as receptor molecules, to gold triangular nanoprisms (Au TNPs) results in a construction of a highly selective and more sensitive, label-free IgG biosensor. The biosensing platform displays specificity against other human antibodies and no cross reactivity against MERS-CoV antibodies. Furthermore, the nanoplasmonic biosensing platform can be assembled in a multi-well plate format to translate to a high-throughput assay that allowed us to conduct SARS-CoV-2 IgG assays of COVID-19 positive patient (n = 121) and healthy individual (n = 65) plasma samples. Most importantly, performing a blind test in an additional cohort of 30 patient plasma samples, our nanoplasmonic biosensing platform successfully identified COVID-19 positive samples with 90% specificity and 100% sensitivity. Very recent studies show that our selected epitopes are conserved in the highly mutated SARS-CoV-2 variant "Omicron"; therefore, the demonstrated high-throughput nanoplasmonic biosensing platform holds great promise for a highly specific serological assay for conducting large-scale COVID-19 testing and epidemiological studies and monitoring the immune response and durability of immunity as part of the global immunization programs.
Collapse
Affiliation(s)
- Adrianna N. Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
12
|
Abstract
Current advances in the fabrication of smart nanomaterials and nanostructured surfaces find wide usage in the biomedical field. In this context, nanosensors based on localized surface plasmon resonance exhibit unprecedented optical features that can be exploited to reduce the costs, analytic times, and need for expensive lab equipment. Moreover, they are promising for the design of nanoplatforms with multiple functionalities (e.g., multiplexed detection) with large integration within microelectronics and microfluidics. In this review, we summarize the most recent design strategies, fabrication approaches, and bio-applications of plasmonic nanoparticles (NPs) arranged in colloids, nanoarrays, and nanocomposites. After a brief introduction on the physical principles behind plasmonic nanostructures both as inherent optical detection and as nanoantennas for external signal amplification, we classify the proposed examples in colloid-based devices when plasmonic NPs operate in solution, nanoarrays when they are assembled or fabricated on rigid substrates, and nanocomposites when they are assembled within flexible/polymeric substrates. We highlight the main biomedical applications of the proposed devices and offer a general overview of the main strengths and limitations of the currently available plasmonic nanodevices.
Collapse
|
13
|
Azzouz A, Hejji L, Kim KH, Kukkar D, Souhail B, Bhardwaj N, Brown RJC, Zhang W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens Bioelectron 2022; 197:113767. [PMID: 34768064 DOI: 10.1016/j.bios.2021.113767] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 01/25/2023]
Abstract
Surface plasmon resonance approach is a highly useful option to offer optical and label-free detection of target bioanalytes with numerous advantages (e.g., low-cost fabrication, appreciable sensitivity, label-free detection, and outstanding accuracy). As such, it allows early diagnosis of cancer biomarkers to monitor tumor progression and to prevent the recurrence of oncogenic tumors. This work highlights the recent progress in SPR biosensing technology for the diagnosis of various cancer types (e.g., lung, breast, prostate, and ovarian). Further, the performance of various SPR biosensors is also evaluated in terms of the basic quality assurance criteria (e.g., limit of detection (LOD), selectivity, sensor response time, and reusability). Finally, the limitations and future challenges associated with SPR biosensors are also discussed with respect to cancer biomarker detection.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| | - Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Wei Zhang
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
14
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
15
|
Liyanage T, Alharbi B, Quan L, Esquela-Kerscher A, Slaughter G. Plasmonic-Based Biosensor for the Early Diagnosis of Prostate Cancer. ACS OMEGA 2022; 7:2411-2418. [PMID: 35071928 PMCID: PMC8771705 DOI: 10.1021/acsomega.1c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A tapered optical fiber (TOF) plasmonic biosensor was fabricated and used for the sensitive detection of a panel of microRNAs (miRNAs) in human serum obtained from noncancer and prostate cancer (PCa) patients. Oncogenic and tumor suppressor miRNAs let-7a, let-7c, miR-200b, miR-141, and miR-21 were tested as predictive cancer biomarkers since multianalyte detection minimizes false-positive and false-negative rates and establishes a strong foundation for early PCa diagnosis. The biosensing platform integrates metallic gold triangular nanoprisms (AuTNPs) laminated on the TOF to excite surface plasmon waves in the supporting metallic layer and enhance the evanescent mode of the fiber surface. This sensitive TOF plasmonic biosensor as a point-of-care (POC) cancer diagnostic tool enabled the detection of the panel of miRNAs in seven patient serums without any RNA extraction or sample amplification. The TOF plasmonic biosensor could detect miRNAs in human serum with a limit of detection between 179 and 580 aM and excellent selectivity. Statistical studies were obtained to differentiate cancerous from noncancerous samples with a p-value <0.0001. This high-throughput TOF plasmonic biosensor has the potential to expand and advance POC diagnostics for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Center
for Bioelectronics, Bioelectronics Laboratory, Department of Electrical
and Computer Engineering, Old Dominion University, Norfolk, Virginia 23508, United States
| | - Bayan Alharbi
- Center
for Bioelectronics, Bioelectronics Laboratory, Department of Electrical
and Computer Engineering, Old Dominion University, Norfolk, Virginia 23508, United States
| | - Linh Quan
- Leroy
T. Canoles Jr. Cancer Research Center, Department of Microbiology
and Molecular Cell Biology, Eastern Virginia
Medical School, Norfolk, Virginia 23507, United States
| | - Aurora Esquela-Kerscher
- Leroy
T. Canoles Jr. Cancer Research Center, Department of Microbiology
and Molecular Cell Biology, Eastern Virginia
Medical School, Norfolk, Virginia 23507, United States
| | - Gymama Slaughter
- Center
for Bioelectronics, Bioelectronics Laboratory, Department of Electrical
and Computer Engineering, Old Dominion University, Norfolk, Virginia 23508, United States
| |
Collapse
|
16
|
Mobed A, Dolati S, Shakouri SK, Eftekharsadat B, Izadseresht B. Recent advances in biosensors for detection of osteoarthritis and rheumatoid arthritis biomarkers. SENSORS AND ACTUATORS A: PHYSICAL 2021; 331:112975. [DOI: 10.1016/j.sna.2021.112975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
|
17
|
Hati S, Langlais SR, Masterson AN, Liyanage T, Muhoberac BB, Kaimakliotis H, Johnson M, Sardar R. Photoswitchable Machine-Engineered Plasmonic Nanosystem with High Optical Response for Ultrasensitive Detection of microRNAs and Proteins Adaptively. Anal Chem 2021; 93:13935-13944. [PMID: 34606247 DOI: 10.1021/acs.analchem.1c02990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modulating optoelectronic properties of inorganic nanostructures tethered with light-responsive molecular switches by their conformational change in the solid state is fundamentally important for advanced nanoscale-device fabrication, specifically in biosensing applications. Herein, we present an entirely new solid-state design approach employing the light-induced reversible conformational change of spiropyran (SP)-merocyanine (MC) covalently attached to gold triangular nanoprisms (Au TNPs) via alkylthiolate self-assembled monolayers to produce a large localized surface plasmon resonance response (∼24 nm). This shift is consistent with the increase in thickness of the local dielectric shell-surrounded TNPs and perhaps short-range dipole-dipole (permanent and induced) interactions between TNPs and the zwitterionic MC form. Water contact angle measurement and Raman spectroscopy characterization unequivocally prove the formation of a stable TNP-MC structural motif. Utilizing this form, we fabricated the first adaptable nanoplasmonic biosensor, which uses an identical structural motif for ultrasensitive, highly specific, and programmable detection of microRNAs and proteins at attomolar concentrations in standard human plasma and urine samples, and at femtomolar concentrations from bladder cancer patient plasma (n = 10) and urine (n = 10), respectively. Most importantly, the TNP-MC structural motif displays a strong binding affinity with receptor molecules (i.e., single-stranded DNA and antibody) producing a highly stable biosensor. Taken together, the TNP-MC structural motif represents a multifunctional super biosensor with the potential to expand clinical diagnostics through simplifying biosensor design and providing highly accurate disease diagnosis.
Collapse
Affiliation(s)
- Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Sarah R Langlais
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Thakshila Liyanage
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Barry B Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Hristos Kaimakliotis
- Department of Urology, Indiana University School of Medicine, 535 N. Barnhill Dr., Indianapolis, Indiana 46202, United States
| | - Merrell Johnson
- Department of Physics, Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, Indiana 46805, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States.,Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
18
|
Hu J, Safir F, Chang K, Dagli S, Balch HB, Abendroth JM, Dixon J, Moradifar P, Dolia V, Sahoo MK, Pinsky BA, Jeffrey SS, Lawrence M, Dionne JA. Rapid genetic screening with high quality factor metasurfaces. ARXIV 2021:arXiv:2110.07862v2. [PMID: 34671699 PMCID: PMC8528080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/31/2022] [Indexed: 12/25/2022]
Abstract
Genetic analysis methods are foundational to advancing personalized and preventative medicine, accelerating disease diagnostics, and monitoring the health of organisms and ecosystems. Current nucleic acid technologies such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and DNA microarrays rely on fluorescence and absorbance, necessitating sample amplification or replication and leading to increased processing time and cost. Here, we introduce a label-free genetic screening platform based on high quality (high-Q) factor silicon nanoantennas functionalized with monolayers of nucleic acid fragments. Each nanoantenna exhibits substantial electromagnetic field enhancements with sufficiently localized fields to ensure isolation from neighboring resonators, enabling dense biosensor integration. We quantitatively detect complementary target sequences using DNA hybridization simultaneously for arrays of sensing elements patterned at densities of 160,000 pixels per cm$^2$. In physiological buffer, our nanoantennas exhibit average resonant quality factors of 2,200, allowing detection of two gene fragments, SARS-CoV-2 envelope (E) and open reading frame 1b (ORF1b), down to femtomolar concentrations. We also demonstrate high specificity sensing in clinical nasopharyngeal eluates within 5 minutes of sample introduction. Combined with advances in biomarker isolation from complex samples (e.g., mucus, blood, wastewater), our work provides a foundation for rapid, compact, amplification-free and high throughput multiplexed genetic screening assays spanning medical diagnostics to environmental monitoring.
Collapse
Affiliation(s)
- Jack Hu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - Fareeha Safir
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sahil Dagli
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - Halleh B. Balch
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - John M. Abendroth
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jefferson Dixon
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - Varun Dolia
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Stefanie S. Jeffrey
- Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
| | - Mark Lawrence
- Department of Electrical & Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Amplified plasmonic and microfluidic setup for DNA monitoring. Mikrochim Acta 2021; 188:326. [PMID: 34494176 DOI: 10.1007/s00604-021-04983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Plasmonic nanosensors for label-free detection of DNA require excellent sensing resolution, which is crucial when monitoring short DNA sequences, as these induce tiny peak shifts, compared to large biomolecules. We report a versatile and simple strategy for plasmonic sensor signal enhancement by assembling multiple (four) plasmonic sensors in series. This approach provided a fourfold signal enhancement, increased signal-to-noise ratio, and improved sensitivity for DNA detection. The response of multiple sensors based on AuNSpheres was also compared with AuNRods, the latter showing better sensing resolution. The amplification system based on AuNR was integrated into a microfluidic sequential injection platform and applied to the monitoring of DNA, specifically from environmental invasive species-zebra mussels. DNA from zebra mussels was log concentration-dependent from 1 to 1 × 106 pM, reaching a detection limit of 2.0 pM. In situ tests were also successfully applied to real samples, within less than 45 min, using DNA extracted from zebra mussel meat. The plasmonic nanosensors' signal can be used as a binary output (yes/no) to assess the presence of those invasive species. Even though these genosensors were applied to the monitoring of DNA in environmental samples, they potentially offer advantage in a wide range of fields, such as disease diagnostics.
Collapse
|
20
|
Asghari A, Wang C, Yoo KM, Rostamian A, Xu X, Shin JD, Dalir H, Chen RT. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. APPLIED PHYSICS REVIEWS 2021; 8:031313. [PMID: 34552683 PMCID: PMC8427516 DOI: 10.1063/5.0022211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/21/2021] [Indexed: 05/14/2023]
Abstract
The sudden rise of the worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in early 2020 has called into drastic action measures to perform instant detection and reduce the rate of spread. Common clinical and nonclinical diagnostic testing methods have been partially effective in satisfying the increasing demand for fast detection point-of-care (POC) methods to slow down further spread. However, accurate point-of-risk diagnosis of this emerging viral infection is paramount as the need for simultaneous standard operating procedures and symptom management of SARS-CoV-2 will be the norm for years to come. A sensitive, cost-effective biosensor with mass production capability is crucial until a universal vaccination becomes available. Optical biosensors can provide a noninvasive, extremely sensitive rapid detection platform with sensitivity down to ∼67 fg/ml (1 fM) concentration in a few minutes. These biosensors can be manufactured on a mass scale (millions) to detect the COVID-19 viral load in nasal, saliva, urine, and serological samples, even if the infected person is asymptotic. Methods investigated here are the most advanced available platforms for biosensing optical devices that have resulted from the integration of state-of-the-art designs and materials. These approaches include, but are not limited to, integrated optical devices, plasmonic resonance, and emerging nanomaterial biosensors. The lab-on-chip platforms examined here are suitable not only for SARS-CoV-2 spike protein detection but also for other contagious virions such as influenza and Middle East respiratory syndrome (MERS).
Collapse
Affiliation(s)
- Aref Asghari
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Chao Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Kyoung Min Yoo
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Ali Rostamian
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Xiaochuan Xu
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Jong-Dug Shin
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Hamed Dalir
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Ray T. Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
21
|
Liyanage T, Lai M, Slaughter G. Label-free tapered optical fiber plasmonic biosensor. Anal Chim Acta 2021; 1169:338629. [PMID: 34088366 DOI: 10.1016/j.aca.2021.338629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022]
Abstract
We designed and fabricated a novel label-free ultrasensitive tapered optical fiber (TOF) plasmonic biosensor that successfully detected a five panel of microRNAs with good selectivity. The biosensing platform integrates three different metallic nanoparticles: gold spherical nanoparticles (AuNPs), gold nanorods (AuNRs), and gold triangular nanoprisms (AuTNPs) laminated TOF to enhance the evanescent mode. The dip in the intensity profile of the transmission spectrum corresponded to the specific wavelength of the nanoparticle. The AuTNPs laminated TOF was found to exhibit the highest refractive index sensitivity and was therefore used to assay the panel of microRNAs. Single stranded DNA probes were self-assembled on the AuTNPs TOF plasmonic biosensors to achieve the highest sensitivity from the formation of hydrogen bonds between the ssDNAs and the target microRNAs. Experimentally, we observed that by measuring the spectral shifts, a limit of detection (LOD) between 103 aM and 261 aM for the panel of microRNAs can be achieved. Additionally, the ssDNA layer immobilized on the TOF plasmonic biosensor resulted in an extended dynamic range of 1 fM - 100 nM. In human serum solution, clinically relevant concentration of the panel of microRNAs were successfully detected with a LOD between 1.097 fM to 1.220 fM. This is the first report to demonstrate the applicability of our TOF plasmonic biosensor approach to detect a panel of microRNAs. This simple yet highly sensitive approach can provide a high-throughput and scalable sensor for detecting and quantifying large arrays of microRNAs, thereby expanding the applications of biosensors.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA
| | - Meimei Lai
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA.
| |
Collapse
|
22
|
Yao Y, Liu Y, Jin F, Meng Z. LINC00662 Promotes Oral Squamous Cell Carcinoma Cell Growth and Metastasis through miR-144-3p/EZH2 Axis. Yonsei Med J 2021; 62:640-649. [PMID: 34164962 PMCID: PMC8236341 DOI: 10.3349/ymj.2021.62.7.640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Long non-coding RNA (lncRNA) is identified as an important regulator involved in oral squamous cell carcinoma (OSCC) tumorigenesis. This study aimed to investigate the functional role and underlying mechanism of LINC00662 in OSCC. MATERIALS AND METHODS The expression levels of LINC00662, miR-144-3p, and enhancer of zeste homolog 2 (EZH2) mRNA were quantified with quantitative real-time polymerase chain reaction in OSCC tissues and cell lines. Western blot analysis was used to assay the expression levels of E-cadherin, Vimentin, and EZH2. Cell proliferation, migration, and invasion were monitored by cell counting kit-8 and Transwell assays. Dual-luciferase reporter and RNA immunoprecipitation assays were employed to verify the regulatory relationship between LINC00662 and miR-144-3p. RESULTS The expression of LINC00662, positively associated with the increased TNM stage and lymph node metastasis of the patients, was up-regulated in OSCC tissues and cells. The overexpression of LINC00662 facilitated the proliferation, migration, and invasion of OSCC cells. MiR-144-3p could bind to LINC00662, and the promoting effect of LINC00662 overexpression was counteracted by miR-144-3p mimic. Moreover, EZH2 expression was negatively regulated by miR-144-3p and positively regulated by LINC00662. The silencing of EZH2 attenuated the promoting effects of overexpression of LINC00662 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition. CONCLUSION LINC00662, as an oncogenic lncRNA of OSCC, accelerates OSCC progression by repressing miR-144-3p expression and increasing EZH2 expression.
Collapse
Affiliation(s)
- Yongmei Yao
- Affiliated Hospital of Shandong Medical College, Linyi, China
| | - Yang Liu
- Department of Stomatology, Dongping County People's Hospital, Dongping, China
| | - Fengqin Jin
- Department of Stomatology, Tianqiao People's Hospital, Jinan, China
| | - Zhaohua Meng
- Department of Stomatology, Dongping Hospital Affiliated to Shandong First Medical University, Dongping, China.
| |
Collapse
|
23
|
Zhang D, Wang K, Wei W, Liu Y, Liu S. Multifunctional Plasmonic Core-Satellites Nanoprobe for Cancer Diagnosis and Therapy Based on a Cascade Reaction Induced by MicroRNA. Anal Chem 2021; 93:9521-9530. [PMID: 34190531 DOI: 10.1021/acs.analchem.1c01539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Constructing multifunctional plasmonic core-satellites (CS) nanoassembly for clinical cancer diagnosis and therapy has gained vast attention. Herein, we reported a doxorubicin (Dox)-loaded CS nanoprobe for microRNA (miRNA) detection, targeting drug release, and therapy evaluation. The plasmonic CS nanoprobe was constructed with uniformly distributional 50 nm (core) and 13 nm (satellites) gold nanoparticles (AuNPs), which were functionally assembled with a specific sequence of DNA and peptides. Anticancer drug Dox was loaded by intercalating into the GC-rich double strands. In the presence of target miRNA (miRNA-21 used as model), the constructed CS nanostructure was disassembled, producing characteristic localized surface plasmon resonance (LSPR) signals and releasing Dox. With the increase of the miRNA-21 concentration ranging from 0.01 to 1000 fM, a distinct blue shift of scattering spectra peak occurred, along with obvious color change from orange to green under a dark-field microscope (DFM), which can be used to detect miRNA at single-particle level. Meanwhile, it released Dox-induced apoptosis. Caspase-3 involved in apoptosis was then activated to cleave the specific peptide substrate, releasing fluorophore FAM from AuNPs. As a result, caspase-3 was detected based on restored fluorescence intensity, which was used to evaluate the therapy effectiveness. In a word, the multifunctional plasmonic CS nanoprobe can be used not only to image cellular miRNA-21 to distinguish tumor cells from normal cells, but also to release drugs and monitor the apoptotic process in situ by confocal imaging.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
24
|
Masterson AN, Muhoberac BB, Gopinadhan A, Wilde DJ, Deiss FT, John CC, Sardar R. Multiplexed and High-Throughput Label-Free Detection of RNA/Spike Protein/IgG/IgM Biomarkers of SARS-CoV-2 Infection Utilizing Nanoplasmonic Biosensors. Anal Chem 2021; 93:8754-8763. [PMID: 34125535 PMCID: PMC8230954 DOI: 10.1021/acs.analchem.0c05300] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
To tackle the COVID-19 outbreak, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an unmet need for highly accurate diagnostic tests at all stages of infection with rapid results and high specificity. Here, we present a label-free nanoplasmonic biosensor-based, multiplex screening test for COVID-19 that can quantitatively detect 10 different biomarkers (6 viral nucleic acid genes, 2 spike protein subunits, and 2 antibodies) with a limit of detection in the aM range, all within one biosensor platform. Our newly developed nanoplasmonic biosensors demonstrate high specificity, which is of the upmost importance to avoid false responses. As a proof of concept, we show that our detection approach has the potential to quantify both IgG and IgM antibodies directly from COVID-19-positive patient plasma samples in a single instrument run, demonstrating the high-throughput capability of our detection approach. Most importantly, our assay provides receiving operating characteristics, areas under the curve of 0.997 and 0.999 for IgG and IgM, respectively. The calculated p-value determined through the Mann-Whitney nonparametric test is <0.0001 for both antibodies when the test of COVID-19-positive patients (n = 80) is compared with that of healthy individuals (n = 72). Additionally, the screening test provides a calculated sensitivity (true positive rate) of 100% (80/80), a specificity (true negative rate) >96% (77/80), a positive predictive value of 98% at 5% prevalence, and a negative predictive value of 100% at 5% prevalence. We believe that our very sensitive, multiplex, high-throughput testing approach has potential applications in COVID-19 diagnostics, particularly in determining virus progression and infection severity for clinicians for an appropriate treatment, and will also prove to be a very effective diagnostic test when applied to diseases beyond the COVID-19 pandemic.
Collapse
Affiliation(s)
- Adrianna N. Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
| | - Barry B. Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
| | - Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, Indiana, 46205, United States
| | - David J. Wilde
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
| | - Frédérique T. Deiss
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, Indiana, 46205, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
25
|
Ortega MA, Rodríguez-Comas J, Yavas O, Velasco-Mallorquí F, Balaguer-Trias J, Parra V, Novials A, Servitja JM, Quidant R, Ramón-Azcón J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. BIOSENSORS-BASEL 2021; 11:bios11050138. [PMID: 33924867 PMCID: PMC8144989 DOI: 10.3390/bios11050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 01/10/2023]
Abstract
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
Collapse
Affiliation(s)
- María A. Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Ozlem Yavas
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
| | - Ferran Velasco-Mallorquí
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Jordina Balaguer-Trias
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Victor Parra
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Joan M. Servitja
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Romain Quidant
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
26
|
Yan HH, Zhang Q, Cheng R, Zhu F, Liu JJ, Gao PF, Zou HY, Liang GL, Huang CZ, Wang J. Size-Dependent Plasmonic Resonance Scattering Characteristics of Gold Nanorods for Highly Sensitive Detection of microRNA-27a. ACS APPLIED BIO MATERIALS 2021; 4:3469-3475. [DOI: 10.1021/acsabm.1c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Hong Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Qiang Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Ru Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Fu Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Jia Jun Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Hong Yan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Gao Lin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
27
|
Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002545. [PMID: 33854877 PMCID: PMC8025024 DOI: 10.1002/advs.202002545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its aggressiveness and the challenge to early diagnosis and treatment. In recent decades, nanomaterials have received increasing attention for diagnosis and therapy of PDAC. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the crucial nano-bio interactions in the heterogeneous microenvironment of PDAC remain poorly understood. As a result, the majority of potent nanomedicines show limited performance in ameliorating PDAC in clinical translation. Therefore, exploiting the unique nature of the PDAC by detecting potential biomarkers together with a deep understanding of nano-bio interactions that occur in the tumor microenvironment is pivotal to the design of PDAC-tailored effective nanomedicine. This review will introduce tailor-made nanomaterials-enabled laboratory tests and advanced noninvasive imaging technologies for early and accurate diagnosis of PDAC. Moreover, the fabrication of a myriad of tailor-made nanomaterials for various PDAC therapeutic modalities will be reviewed. Furthermore, much preferred theranostic multifunctional nanomaterials for imaging-guided therapies of PDAC will be elaborated. Lastly, the prospects of these nanomaterials in terms of clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Fan Xia
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiyoung Lee
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangyuan Li
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| | - Xiaoyang Lu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaozhen Zhuo
- Department of Cardiologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyNo.11 Zhongguancun BeiyitiaoBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700China
| | - Daishun Ling
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
28
|
Farshchi F, Saadati A, Fathi N, Hasanzadeh M, Samiei M. Flexible paper-based label-free electrochemical biosensor for the monitoring of miRNA-21 using core-shell Ag@Au/GQD nano-ink: a new platform for the accurate and rapid analysis by low cost lab-on-paper technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1286-1294. [PMID: 33624680 DOI: 10.1039/d1ay00142f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
miRNA-21 is one of the most famous and prominent microRNAs that is important in the development and emergence of cancers. So, the sensitive and selective monitoring of miRNA-21 as a very common biomarker in cancer treatment is necessary. In this work, a novel paper-based electrochemical peptide nucleic acid (PNA) sensor was developed for the detection of miRNA-21 in human plasma samples by using Ag@Au core-shell nanoparticles electrodeposited on graphene quantum dots (GQD) conductive nano-ink (Ag@Au core-shell/GQD nano-ink), which was designed directly by writing pen-on paper technology on the surface of photographic paper. This nano-ink has a great surface area for biomarker immobilization. The prepared paper-based biosensor is very small and cheap, and also has high stability and sensitivity. Hybridization of PNA was measured using various electrochemical techniques, such as cyclic voltammetry (CV), square wave voltammetry (SWV) and chronoamperometry (ChA). FE-SEM (Field Scanning Electron Microscope), TEM (Transmission Electron Microscope), EDS and DLS (Dynamic Light Scattering) tests were performed to identify the engineering safety sensor. Under optimal conditions, the linear range for the calibration curve was from 5 pM to 5 μM, and the achieved LLOQ was 5 pM. The obtained results recommended that the proposed bioassay might be suitable for an early diagnosis of cancer based on the inhibition of the expression of miRNA-21, which activates the enzyme caspase and accelerates apoptotic proteins and death in tumor cells.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Arezoo Saadati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
|
30
|
Liyanage T, Masterson AN, Hati S, Ren G, Manicke NE, Rusyniak DE, Sardar R. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma. Analyst 2020; 145:7662-7672. [PMID: 32969415 DOI: 10.1039/d0an01372b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report the programmable preparation of ultrasensitive surface-enhanced Raman scattering (SERS)-based nanoplasmonic superlattice substrates to assay fentanyl and cocaine (detection and quantification) from 10 μL aliquots of emergency department patient plasma without the need for purification steps. Highly homogeneous three-dimensional (3D) nanoplasmonic superlattices are generated through the droplet evaporation-based self-assembly process of chemically-synthesized, polyethylene glycol thiolate-coated gold triangular nanoprisms (Au TNPs). Close-packed, solid-state 3D superlattice substrates produce electromagnetic hot spots due to near-field plasmonic coupling of Au TNPs, which display unique localized surface plasmonic resonance properties. These uniquely prepared superlattice substrates enable strong SERS enhancement to achieve a parts-per-quadrillion limit of detection using the label-free SERS-based technique. Our reported limit of detection is at least 100-fold better than any known SERS substrates for the drug assay. Importantly, our density functional theory calculations show that a specific electronic interaction between the drug molecule and novel nanoplasmonic superlattice substrates plays a critical role that may trigger achieving this unprecedentedly high sensitivity. Additionally, we show high selectivity of the superlattice substrate in the SERS-based detection of analytes from different patient samples, which do and do not contain target analytes (i.e., fentanyl and/or cocaine). The demonstrated sensitivity and selectivity of 3D superlattice substrates for SERS-based drug analysis in real toxicological samples are expected to advance the field of measurement science, and forensic and clinical toxicology by obviating the need for complicated sample processing steps, long assay times, and the low sensitivity of existing "gold standard" analytical techniques including gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and enzyme-linked immunosorbent assays. Taken together, we believe that this entirely new and reproducible superlattice substrate for the SERS analysis will aid scientific, forensic, and healthcare communities to battle the drug overdose epidemic in the United States.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Department Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Imas JJ, Ruiz Zamarreño C, Zubiate P, Sanchez-Martín L, Campión J, Matías IR. Optical Biosensors for the Detection of Rheumatoid Arthritis (RA) Biomarkers: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6289. [PMID: 33158306 PMCID: PMC7663853 DOI: 10.3390/s20216289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
A comprehensive review of optical biosensors for the detection of biomarkers associated with rheumatoid arthritis (RA) is presented here, including microRNAs (miRNAs), C-reactive protein (CRP), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), interleukin-6 (IL-6) and histidine, which are biomarkers that enable RA detection and/or monitoring. An overview of the different optical biosensors (based on fluorescence, plasmon resonances, interferometry, surface-enhanced Raman spectroscopy (SERS) among other optical techniques) used to detect these biomarkers is given, describing their performance and main characteristics (limit of detection (LOD) and dynamic range), as well as the connection between the respective biomarker and rheumatoid arthritis. It has been observed that the relationship between the corresponding biomarker and rheumatoid arthritis tends to be obviated most of the time when explaining the mechanism of the optical biosensor, which forces the researcher to look for further information about the biomarker. This review work attempts to establish a clear association between optical sensors and rheumatoid arthritis biomarkers as well as to be an easy-to-use tool for the researchers working in this field.
Collapse
Affiliation(s)
- José Javier Imas
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Carlos Ruiz Zamarreño
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Pablo Zubiate
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
| | | | - Javier Campión
- Making Genetics S.L., Plaza CEIN 5, 31110 Noáin, Spain; (L.S.-M.); (J.C.)
| | - Ignacio Raúl Matías
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| |
Collapse
|
32
|
Moccia M, Caratelli V, Cinti S, Pede B, Avitabile C, Saviano M, Imbriani AL, Moscone D, Arduini F. Paper-based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: a pancreatic ductal adenocarcinoma biomarker. Biosens Bioelectron 2020; 165:112371. [PMID: 32729503 DOI: 10.1016/j.bios.2020.112371] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/29/2022]
Abstract
Pancreatic ductal adenocarcinoma is the predominant neoplastic disease of the pancreas and it represents the fourth most frequent cause of death in cancer-related disease, with only 8% of survivors after 5-year to the diagnosis. The main issues of this type of cancer rely on fast progress (i.e. 14 months from T1 to a T4 stage), nonspecific symptoms with delay in diagnosis, and the absence of effective screening strategies. To address the lack of early diagnosis, we report a cost-effective paper-based biosensor for the detection of miRNA-492, which is recognised as a biomarker for pancreatic ductal adenocarcinoma. To design a miniaturised, sensitive, and robust paper-based platform, an electrochemical sensor was screen-printed on office paper previously wax-patterned via wax-printing technique. The paper-based sensor was then engineered with a novel and highly specific peptide nucleic acid (PNA) as the recognition element. The formation of PNA/miRNA-492 adduct was evaluated by monitoring the interaction between the positively charged ruthenium (III) hexamine with uncharged PNA and/or negatively charged PNA/miRNA-492 duplex by differential pulse voltammetry. The paper-based biosensor provided a linear range up to 100 nM, with a LOD of 6 nM. Excellent selectivity towards one- and two-base mismatches (1MM, 2MM) or scrambled (SCR) sequences was highlighted and the applicability for biomedical analyses was demonstrated, measuring miRNA-492 in undiluted serum samples.
Collapse
Affiliation(s)
- Maria Moccia
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technology, Via G. Amendola 122/O, 70126, Bari, Italy.
| | - Veronica Caratelli
- Tor Vergata University, Department of Chemical Science and Technologies, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Stefano Cinti
- University of Naples "Federico II", Department of Pharmacy, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Biagio Pede
- Tor Vergata University, Department of Chemical Science and Technologies, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Concetta Avitabile
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technology, Via G. Amendola 122/O, 70126, Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technology, Via G. Amendola 122/O, 70126, Bari, Italy
| | - Anna Lisa Imbriani
- Biochemical Systems International S.p.A. Loc, Palazzo del Pero, 23, 52100, Arezzo, Italy
| | - Danila Moscone
- Tor Vergata University, Department of Chemical Science and Technologies, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Fabiana Arduini
- Tor Vergata University, Department of Chemical Science and Technologies, Via Della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, Via Renato Rascel 30, 00133, Rome, Italy.
| |
Collapse
|
33
|
Miti A, Thamm S, Müller P, Csáki A, Fritzsche W, Zuccheri G. A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction. Biosens Bioelectron 2020; 167:112465. [PMID: 32798803 PMCID: PMC7395652 DOI: 10.1016/j.bios.2020.112465] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The dysregulation of the concentration of individual circulating microRNAs or small sets of them has been recognized as a marker of disease. For example, an increase of the concentration of circulating miR-17 has been linked to lung cancer and metastatic breast cancer, while its decrease has been found in multiple sclerosis and gastric cancer. Consequently, techniques for the fast, specific and simple quantitation of microRNAs are becoming crucial enablers of early diagnosis and therapeutic follow-up. DNA based biosensors can serve this purpose, overcoming some of the drawbacks of conventional lab-based techniques. Herein, we report a cost-effective, simple and robust biosensor based on localized surface plasmon resonance and hybridization chain reaction. Immobilized gold nanoparticles are used for the detection of miR-17. Specificity of the detection was achieved by the use of hairpin surface-tethered probes and the hybridization chain reaction was used to amplify the detection signal and thus extend the dynamic range of the quantitation. Less than 1 h is needed for the entire procedure that achieved a limit of detection of about 1 pM or 50 amol/measurement, well within the reported useful range for diagnostic applications. We suggest that this technology could be a promising substitute of traditional lab-based techniques for the detection and quantification of miRNAs after these are extracted from diagnostic specimens and their analysis is thus made possible.
Collapse
Affiliation(s)
- Andrea Miti
- Department of Pharmacy and Biotechnology and Interdepartmental Center for Industrial Research for Life and Health Sciences, University of Bologna, via San Giacomo 11, Bologna, Italy
| | - Sophie Thamm
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Philipp Müller
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Andrea Csáki
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology and Interdepartmental Center for Industrial Research for Life and Health Sciences, University of Bologna, via San Giacomo 11, Bologna, Italy; S3 Center, Institute of Nanoscience of the Italian CNR, Italy.
| |
Collapse
|
34
|
Urban PL. Please Avoid Plotting Analytical Response against Logarithm of Concentration. Anal Chem 2020; 92:10210-10212. [DOI: 10.1021/acs.analchem.0c02096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pawel L. Urban
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
35
|
Masterson AN, Liyanage T, Kaimakliotis H, Gholami Derami H, Deiss F, Sardar R. Bottom-Up Fabrication of Plasmonic Nanoantenna-Based High-throughput Multiplexing Biosensors for Ultrasensitive Detection of microRNAs Directly from Cancer Patients' Plasma. Anal Chem 2020; 92:9295-9304. [PMID: 32469524 DOI: 10.1021/acs.analchem.0c01639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is an unmet need in clinical point-of-care (POC) cancer diagnostics for early state disease detection, which would greatly increase patient survival rates. Currently available analytical techniques for early stage cancer diagnosis do not meet the requirements for POC of a clinical setting. They are unable to provide the high demand of multiplexing, high-throughput, and ultrasensitive detection of biomarkers directly from low volume patient samples ("liquid biopsy"). To overcome these current technological bottle-necks, herein we present, for the first time, a bottom-up fabrication strategy to develop plasmonic nanoantenna-based sensors that utilize the unique localized surface plasmon resonance (LSPR) properties of chemically synthesized gold nanostructures, gold triangular nanoprisms (Au TNPs), gold nanorods (Au NRs), and gold spherical nanoparticles (Au SNPs). Our Au TNPs, NRs, and SNPs display refractive index unit (RIU) sensitivities of 318, 225, and 135 nm/RIU respectively. Based on the RIU results, we developed plasmonic nanoantenna-based multiplexing and high-throughput biosensors for the ultrasensitive assay of microRNAs. MicroRNAs are directly linked with cancer development, progression, and metastasis, thus they hold promise as next generation biomarkers for cancer diagnosis and prognosis. The developed biosensors are capable of assaying five different types of microRNAs at an attomolar detection limit. These sets of microRNAs include both oncogenic and tumor suppressor microRNAs. To demonstrate the efficiency as a POC cancer diagnostic tool, we analyzed the plasma of 20-bladder cancer patients without any sample processing steps. Importantly, our liquid biopsy-based biosensing approach is capable of differentiating healthy from early ("non-metastatic") and late ("metastatic") stage cancer with a p value <0.0001. Further, receiver operating characteristic analysis shows that our biosensing approach is highly specific, with an area under the curve of 1.0. Additionally, our plasmonic nanoantenna-based biosensors are regenerative, allowing multiple measurements using the same biosensors, which is essential in low- and middle-income countries. Taken together, our multiplexing and high-throughput biosensors have the unmatched potential to advance POC diagnostics and meet global needs for early stage detection of cancer and other diseases (e.g., infectious, autoimmune, and neurogenerative diseases).
Collapse
Affiliation(s)
- Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
| | - Thakshila Liyanage
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
| | - Hristos Kaimakliotis
- Department of Urology, Indiana University School of Medicine, 535 N. Barnhill Dr. Indianapolis, Indiana 46202, United States
| | - Hamed Gholami Derami
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Frédérique Deiss
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford Street, Indianapolis, Indiana 46202, United States.,Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
36
|
de Oliveira WF, dos Santos Silva PM, Coelho LCBB, dos Santos Correia MT. Biomarkers, Biosensors and Biomedicine. Curr Med Chem 2020; 27:3519-3533. [DOI: 10.2174/0929867326666190124103125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/31/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
The discovery of new biomarkers associated with cancer, neurological and cardiovascular
diseases is necessary, since these are common, recurrent diseases considered as leading causes of
death in the human population. Molecular signatures of these disorders that can be identified at the
outset of their pathogenesis leading to prompt and targeted treatment may increase patient survival.
Cancer is a heterogeneous disease that can be expressed differently among individuals; in addition,
treatments may have a differentiated approach according to the type of malignant neoplasm. Thus,
these neoplastic cells can synthesize and release specific molecules depending on the site where
carcinogenesis begins. Moreover, life expectancy is increasing especially in developed countries,
however, cases of neurodegenerative diseases have grown in the older members of the population.
Commonly, some neurological disorders, which can occur physiologically by the process of senescence,
are confused with Alzheimer's Disease (AD). In addition, cardiovascular diseases are the
main cause of death in the world; studies capable of identifying, through molecular probes, the beginning
of development of an atherosclerotic process can lead to early treatment to avoid an acute
myocardial infarction. Accuracy in the detection of these biomarkers can be obtained through biosensors
whose design has been increasingly studied to elaborate inexpensive sensory platforms capable
of precise detection, even at low concentrations, of the molecule to be measured. The aim of
this review is to address biomarkers to be used in diagnoses instead of invasive exams; biosensors
for the specific and sensitive detection of these biological markers are also investigated.
Collapse
Affiliation(s)
- Weslley Felix de Oliveira
- Departamento de Bioquimica, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
37
|
Masterson AN, Liyanage T, Berman C, Kaimakliotis H, Johnson M, Sardar R. A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses. Analyst 2020; 145:4173-4180. [PMID: 32490854 DOI: 10.1039/d0an00538j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies have shown that microRNAs, which are small noncoding RNAs, hold tremendous promise as next-generation circulating biomarkers for early cancer detection via liquid biopsies. A novel, solid-state nanoplasmonic sensor capable of assaying circulating microRNAs through a combined surface-enhanced Raman scattering (SERS) and plasmon-enhanced fluorescence (PEF) approach has been developed. Here, the unique localized surface plasmon resonance properties of chemically-synthesized gold triangular nanoprisms (Au TNPs) are utilized to create large SERS and PEF enhancements. With careful modification to the surface of Au TNPs, this sensing approach is capable of quantifying circulating microRNAs at femtogram/microliter concentrations. Uniquely, the multimodal analytical methods mitigate both false positive and false negative responses and demonstrate the high stability of our sensors within bodily fluids. As a proof of concept, microRNA-10b and microRNA-96 were directly assayed from the plasma of six bladder cancer patients. Results show potential for a highly specific liquid biopsy method that could be used in point-of-care clinical diagnostics to increase early cancer detection or any other diseases including SARS-CoV-2 in which RNAs can be used as biomarkers.
Collapse
Affiliation(s)
- Adrianna N Masterson
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Basu AK, Basu A, Bhattacharya S. Micro/Nano fabricated cantilever based biosensor platform: A review and recent progress. Enzyme Microb Technol 2020; 139:109558. [PMID: 32732024 DOI: 10.1016/j.enzmictec.2020.109558] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Recent trends in biosensing research have motivated scientists and research professionals to investigate the development of miniaturized bioanalytical devices to make them portable, label-free and smaller in size. The performance of the cantilever-based devices which is one of the very important domains of sensitive field level detection has improved significantly with the development of new micro/nanofabrication technologies and surface functionalization techniques. The cantilevers have scaled down to Nano from micro-level and have become exceptionally sensitive and also have some anomalous associated properties due to the scale. In this review we have discussed about fundamental principles of cantilever operation, detection methods, and previous, present and future approaches of study through cantilever-based sensing platform. Other than that, we have also discussed the past major bio-sensing efforts through micro/nano cantilevers and about recent progress in the field.
Collapse
Affiliation(s)
- Aviru Kumar Basu
- Design Programme, Indian Institute of Technology, Kanpur, U.P. 208016, India; Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India; Singapore University of Technology and Design, 487372 Singapore
| | - Adreeja Basu
- Department of Biological Sciences, St. John's University, New York, N.Y 11439, USA
| | - Shantanu Bhattacharya
- Design Programme, Indian Institute of Technology, Kanpur, U.P. 208016, India; Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India.
| |
Collapse
|
39
|
Mujica ML, Zhang Y, Bédioui F, Gutiérrez F, Rivas G. Label-free graphene oxide–based SPR genosensor for the quantification of microRNA21. Anal Bioanal Chem 2020; 412:3539-3546. [DOI: 10.1007/s00216-020-02593-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
|
40
|
Prusty G, Lee JT, Seifert S, Muhoberac BB, Sardar R. Ultrathin Plasmonic Tungsten Oxide Quantum Wells with Controllable Free Carrier Densities. J Am Chem Soc 2020; 142:5938-5942. [DOI: 10.1021/jacs.9b13909] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gyanaranjan Prusty
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Jacob T. Lee
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Barry B. Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University−Purdue University Indianapolis, 423 West Michigan Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
41
|
Ou L, Sun T, Liu M, Zhang Y, Zhou Z, Zhan X, Lu L, Zhao Q, Lai R, Shao L. Efficient miRNA Inhibitor Delivery with Graphene Oxide-Polyethylenimine to Inhibit Oral Squamous Cell Carcinoma. Int J Nanomedicine 2020; 15:1569-1583. [PMID: 32210552 PMCID: PMC7069571 DOI: 10.2147/ijn.s220057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are widely believed to be promising targets for oral squamous cell carcinoma (OSCC) gene therapy. miR-214 has been identified as a promoter of OSCC aggression and metastasis. Methods Graphene oxide-polyethylenimine (GO-PEI) complexes were prepared and loaded with a miRNA inhibitor at different N/P ratios. The transfection efficiency of GO-PEI-inhibitor was tested in Cal27 and SCC9 cells. Moreover, the tumor inhibition ability of GO-PEI-inhibitor was measured in an OSCC xenograft mouse model by intratumoral injection. Results Here, we show that a GO-PEI complex efficiently delivers a miR-214 inhibitor into OSCC cells and controls the intracellular release of the miR-214 inhibitor. These results indicate that the GO-PEI-miR-214 inhibitor complex efficiently inhibited cellular miR-214, resulting in a decrease in OSCC cell invasion and migration and an increase in cell apoptosis by targeting PTEN and p53. In the xenograft mouse model, the GO-PEI-miR-214 inhibitor complex significantly prevented tumor volume growth. Conclusion This study indicates that functionalized GO-PEI with low toxicity has promising potential for miRNA delivery for the treatment of OSCC.
Collapse
Affiliation(s)
- Lingling Ou
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Ting Sun
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Minyi Liu
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Ye Zhang
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Zhiying Zhou
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Xiaozhen Zhan
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Lihong Lu
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Qingtong Zhao
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Renfa Lai
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Longquan Shao
- Stomatological Hospital of Southern Medical University, Department of Prosthodontics, Guangzhou 510260, People's Republic of China
| |
Collapse
|
42
|
Liyanage T, Nagaraju M, Johnson M, Muhoberac BB, Sardar R. Reversible Tuning of the Plasmoelectric Effect in Noble Metal Nanostructures Through Manipulation of Organic Ligand Energy Levels. NANO LETTERS 2020; 20:192-200. [PMID: 31765167 DOI: 10.1021/acs.nanolett.9b03588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ligand-controlled tuning of localized surface plasmon resonance (LSPR) properties of noble metal nanostructures is fundamentally important for various optoelectronic applications such as photocatalysis, photovoltaics, and sensing. Here we demonstrate that the free carrier concentration of gold triangular nanoprisms (Au TNPs) can be tuned up to 12% upon functionalization of their surface with different para-substituted thiophenolate (X-Ph-S-) ligands. We achieve this unprecedentedly large optical response (plasmoelectric effect) in TNPs through the selective manipulation of electronic processes at the Au-thiolate interface. Interestingly, thiophenolates with electron withdrawing (donating) groups (X) produce λLSPR blue (red) shifts with broadening (narrowing) of localized surface plasmon resonance peak (λLSPR) line widths. Surprisingly, these experimental results are opposite to a straightforward application of the Drude model. Utilizing density functional theory calculations, we develop here a frontier molecular orbital approach of Au-thiophenolate interactions in the solid-state to delineate the observed spectral response. Importantly, all the spectroscopic properties are fully reversible by exchanging thiophenolates containing electron withdrawing groups with thiophenolates having electron donating groups, and vice versa. On the basis of the experimental data and calculations, we propose that the delocalization of electrons wave function controls the free carrier concentration of Au and thus the LSPR properties rather than simple electronic properties (inductive and/or resonance effects) of thiophenolates. This is further supported by the experimentally determined work functions, which are tunable over 1.9 eV in the X-Ph-S-passivated Au TNPs. We believe that our unexpected finding has great potential to guide in developing unique noble metal nanostructure-organic ligand hybrid nanoconjugates, which could allow us to bypass the complications associated with off-resonance LSPR activation of noble metal-doped semiconductor nanocrystals for various surface plasmon-driven applications.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Malpuri Nagaraju
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Merrell Johnson
- Department of Physics , Purdue University Fort Wayne , 2101 E. Coliseum Boulevard , Fort Wayne , Indiana 46805 , United States
| | - Barry B Muhoberac
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
43
|
Lynn NS, Špringer T, Slabý J, Špačková B, Gráfová M, Ermini ML, Homola J. Analyte transport to micro- and nano-plasmonic structures. LAB ON A CHIP 2019; 19:4117-4127. [PMID: 31740906 DOI: 10.1039/c9lc00699k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study of optical affinity biosensors based on plasmonic nanostructures has received significant attention in recent years. The sensing surfaces of these biosensors have complex architectures, often composed of localized regions of high sensitivity (electromagnetic hot spots) dispersed along a dielectric substrate having little to no sensitivity. Under conditions such that the sensitive regions are selectively functionalized and the remaining regions passivated, the rate of analyte capture (and thus the sensing performance) will have a strong dependence on the nanoplasmonic architecture. Outside of a few recent studies, there has been little discussion on how changes to a nanoplasmonic architecture will affect the rate of analyte transport. We recently proposed an analytical model to predict transport to such complex architectures; however, those results were based on numerical simulation and to date, have only been partially verified. In this study we measure the characteristics of analyte transport across a wide range of plasmonic structures, varying both in the composition of their base plasmonic element (microwires, nanodisks, and nanorods) and the packing density of such elements. We functionalized each structure with nucleic acid-based bioreceptors, where for each structure we used analyte/receptor sequences as to maintain a Damköhler number close to unity. This method allows to extract both kinetic (in the form of association and dissociation constants) and analyte transport parameters (in the form of a mass transfer coefficient) from sensorgrams taken from each substrate. We show that, despite having large differences in optical characteristics, measured rates of analyte transport for all plasmonic structures match very well to predictions using our previously proposed model. These results highlight that, along with optical characteristics, analyte transport plays a large role in the overall sensing performance of a nanoplasmonic biosensor.
Collapse
Affiliation(s)
- N Scott Lynn
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| | - Jiří Slabý
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| | - Barbora Špačková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| | - Michaela Gráfová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| | - Maria Laura Ermini
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| |
Collapse
|
44
|
Liu J, Jalali M, Mahshid S, Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2019; 145:364-384. [PMID: 31832630 DOI: 10.1039/c9an02149c] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmonics has drawn significant attention in the area of biosensors for decades due to the unique optical properties of plasmonic resonant nanostructures. While the sensitivity and specificity of molecular detection relies significantly on the resonance conditions, significant attention has been dedicated to the design, fabrication, and optimization of plasmonic substrates. The adequate choice of materials, structures, and functionality goes hand in hand with a fundamental understanding of plasmonics to enable the development of practical biosensors that can be deployed in real life situations. Here we provide a brief review of plasmonic biosensors detailing most recent developments and applications. Besides metals, novel plasmonic materials such as graphene are highlighted. Sensors based on Surface Plasmon Resonance (SPR), Localized Surface Plasmon Resonance (LSPR), and Surface Enhanced Raman Spectroscopy (SERS) are presented and classified based on their materials and structure. In addition, most recent applications to environment monitoring, health diagnosis, and food safety are presented. Potential problems related to the implementation in such applications are discussed and an outlook is presented.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
45
|
Gu XY, Liu JJ, Gao PF, Li YF, Huang CZ. Gold Triangular Nanoplates Based Single-Particle Dark-Field Microscopy Assay of Pyrophosphate. Anal Chem 2019; 91:15798-15803. [DOI: 10.1021/acs.analchem.9b04093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
|
47
|
Das J, Kelley SO. High-Performance Nucleic Acid Sensors for Liquid Biopsy Applications. Angew Chem Int Ed Engl 2019; 59:2554-2564. [PMID: 31332937 DOI: 10.1002/anie.201905005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/21/2019] [Indexed: 12/18/2022]
Abstract
Circulating tumour nucleic acids (ctNAs) are released from tumours cells and can be detected in blood samples, providing a way to track tumors without requiring a tissue sample. This "liquid biopsy" approach has the potential to replace invasive, painful, and costly tissue biopsies in cancer diagnosis and management. However, a very sensitive and specific approach is required to detect relatively low amounts of mutant sequences linked to cancer because they are masked by the high levels of wild-type sequences. This review discusses high-performance nucleic acid biosensors for ctNA analysis in patient samples. We compare sequencing- and amplification-based methods to next-generation sensors for ctDNA and ctRNA (including microRNA) profiling, such as electrochemical methods, surface plasmon resonance, Raman spectroscopy, and microfluidics and dielectrophoresis-based assays. We present an overview of the analytical sensitivity and accuracy of these methods as well as the biological and technical challenges they present.
Collapse
Affiliation(s)
- Jagotamoy Das
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| |
Collapse
|
48
|
Label-Free MicroRNA Optical Biosensors. NANOMATERIALS 2019; 9:nano9111573. [PMID: 31698769 PMCID: PMC6915498 DOI: 10.3390/nano9111573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers. Conventional biosensors for miRNA require fluorescent labeling, which is complicated, time-consuming, laborious, costly, and exhibits low sensitivity. The detection of miRNA remains a big challenge due to their intrinsic properties such as small sizes, low abundance, and high sequence similarity. A label-free biosensor can simplify the assay and enable the direct detection of miRNA. The optical approach for a label-free miRNA sensor is very promising and many assays have demonstrated ultra-sensitivity (aM) with a fast response time. Here, we review the most relevant label-free microRNA optical biosensors and the nanomaterials used to enhance the performance of the optical biosensors.
Collapse
|
49
|
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019; 213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.
Collapse
Affiliation(s)
- Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qiaobin Li
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Kwaku Baryeh
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Wanwei Qiu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Jing Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qingcai Yu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Dongqin Xu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Wenju Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueji Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China.
| | - Wei Chen
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota.
| |
Collapse
|
50
|
Bellassai N, D'Agata R, Jungbluth V, Spoto G. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis. Front Chem 2019; 7:570. [PMID: 31448267 PMCID: PMC6695566 DOI: 10.3389/fchem.2019.00570] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Biomarker-based cancer analysis has great potential to lead to a better understanding of disease at the molecular level and to improve early diagnosis and monitoring. Unlike conventional tissue biopsy, liquid biopsy allows the detection of a large variety of circulating biomarkers, such as microRNA (miRNA), exosomes, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and proteins, in an easily accessible and minimally invasive way. In this review, we describe and evaluate the relevance and applicability of surface plasmon resonance (SPR) and localized SPR (LSPR)-based platforms for the detection of different classes of cancer biomarkers in liquid biopsy samples. Firstly, we critically discuss unsolved problems and issues in capturing and analyzing biomarkers. Secondly, we highlight current challenges which need to be resolved in applying SPR biosensors into clinical practice. Then, we mainly focus on applications of SPR-based platforms that process a patient sample aiming to detect and quantify biomarkers as a minimally invasive liquid biopsy tool for cancer patients appearing over the last 5 years. Finally, we describe the analytical performances of selected SPR biosensor assays and their significant advantages in terms of high sensitivity and specificity as well as accuracy and workflow simplicity.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|