1
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
2
|
Chen Y, Liu Y, Liu X, Li P, Li Z, Jiang P, Huang X. On-Demand Preparation of Boron Nitride Nanosheets for Functional Nanocomposites. SMALL METHODS 2024; 8:e2301386. [PMID: 38236164 DOI: 10.1002/smtd.202301386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Boron nitride nanosheets (BNNSs) have garnered significant attention across diverse fields; however, accomplishing on-demand, large-scale, and highly efficient preparation of BNNSs remains a challenge. Here, an on-demand preparation (OdP) method combining high-pressure homogenization and short-time ultrasonication is presented; it enables a highly efficient and controllable preparation of BNNSs from bulk hexagonal boron nitride (h-BN). The homogenization pressure and number of cycles are adjusted, and the production efficiency and yield of BNNSs reach 0.95 g g-1h-1 and 82.8%, respectively, which significantly exceed those attained by using existing methods. The universality of the OdP method is demonstrated on h-BN raw materials of various bulk sizes from various producers. Furthermore, this method allows the preparation of BNNSs having specific sizes based on the final requirements. Both simulation and experimental results indicate that large BNNSs are particularly suitable for enhancing the thermal conductivity and electrical insulation properties of dielectric polymer nanocomposites. Interestingly, the small BNNS-filled photonic nanocomposite films fabricated via the OdP method exhibit superior daytime radiative cooling properties. Additionally, the OdP method offers the benefits of low energy consumption and reduced greenhouse gas emissions and fossil energy use. These findings underscore the unique advantages of the OdP method over other techniques for a high-efficiency and controllable preparation of large BNNSs.
Collapse
Affiliation(s)
- Yu Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangyu Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengli Li
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Li
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Navik R, Tan H, Zhang H, Shi L, Li J, Zhao Y. High-Throughput and Scalable Exfoliation of Large-Sized Ultrathin 2D Materials by Ball-Milling in Supercritical Carbon Dioxide. SMALL METHODS 2024; 8:e2301334. [PMID: 38528378 DOI: 10.1002/smtd.202301334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/09/2024] [Indexed: 03/27/2024]
Abstract
The 2D materials exhibit numerous technological applications, but their scalable production is a core challenge. Herein, ball milling exfoliation in supercritical carbon dioxide (scCO2) and polystyrene (PS) is demonstrated to completely exfoliate hexagonal boron nitride nanosheets (BNNSs), graphene, molybdenum disulfide (MoS2), and tungsten disulfide (WS2). The exfoliation yield of 91%, 93%, 92%, and 92% and average aspect ratios of 743, 565, 564, and 502 for BNNSs, graphene, MoS2, and WS2, respectively, are achieved. Integrating exfoliated BNNSS in the polystyrene matrix, 3768 % thermal conductivity in the axial direction and 316% in the cross-plane direction at 12 wt.% loading is increased. Also, the in-plane and cross-plane electrical conductivity of 6.3 × 10-4 S m-1 and 6.6 × 10-3 S m-1, respectively, and the electromagnetic interference (EMI) of 63.3 dB is achieved by exfoliated graphene nanosheets based composite. High thermal and electrical conductivities and EMI shielding are attributed to the high aspect ratio and ultrathin morphology of the exfoliated nanosheets, which exert high charge mobility and form better the percolation network in the composite films due to their high surface area. The process demonstrate herein can produce substantial quantities of diverse 2D nanosheets for widespread commercial utilization.
Collapse
Affiliation(s)
- Rahul Navik
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha IT Park, No. 2 Huan Shi Da Dao Road Nansha, Guangzhou, 511458, China
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Liyun Shi
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Jia Li
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha IT Park, No. 2 Huan Shi Da Dao Road Nansha, Guangzhou, 511458, China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
5
|
Singh B, Han J, Meziani MJ, Cao L, Yerra S, Collins J, Dumra S, Sun YP. Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1259. [PMID: 39120364 PMCID: PMC11314323 DOI: 10.3390/nano14151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Polymeric composites with boron nitride nanosheets (BNNs), which are thermally conductive yet electrically insulating, have been pursued for a variety of technological applications, especially those for thermal management in electronic devices and systems. Highlighted in this review are recent advances in the effort to improve in-plane thermal transport performance in polymer/BNNs composites and also the growing research activities aimed at composites of enhanced cross-plane or isotropic thermal conductivity, for which various filler alignment strategies during composite fabrication have been explored. Also highlighted and discussed are some significant challenges and major opportunities for further advances in the development of thermally conductive composite materials and their mechanistic understandings.
Collapse
Affiliation(s)
- Buta Singh
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Jinchen Han
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Mohammed J. Meziani
- Department of Natural Sciences, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Li Cao
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Subhadra Yerra
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Jordan Collins
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Simran Dumra
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| |
Collapse
|
6
|
Yuan F, Guan Q, Dou X, Yang H, Hong Y, Xue Y, Cao Z, Li H, Xu Z, Qin Y. High-yield synthesis of hydroxylated boron nitride nanosheets and their utilization in thermally conductive polymeric nanocomposites. RSC Adv 2024; 14:21230-21240. [PMID: 38974223 PMCID: PMC11224952 DOI: 10.1039/d4ra02329c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Hexagonal boron nitride nanosheets (BNNSs) possess remarkable potential for various applications due to their unprecedented properties. However, the scalable production of BNNSs with both expansive surface and high solubility continues to present a significant challenge. Herein, we propose an innovative and efficient two-step method for manufacturing hydroxyl-functionalized BNNSs (OH-BNNSs). Initially, hydroxyl groups are covalently attached to bulk hexagonal boron nitride (h-BN) surfaces through H2O2 treatment. Then, the hydroxyl-functionalized h-BN undergoes exfoliation on account of a sudden increase in interlayer gas pressure generated by the vigorous decomposition of H2O2 in alkali solutions, resulting in the creation of OH-BNNSs. This approach produces relatively large flakes with an average dimension of 1.65 μm and a high yield of 45.2%. The resultant OH-BNNSs exhibit remarkable stability and dispersibility in a range of solvents. Their integration into thermoplastic polyurethane (TPU) significantly enhances both thermal conductivity and stability, attributed to the excellent compatibility with the resin matrix. This study represents a significant advancement in the functionalization and exfoliation of h-BN, opening new avenues for its promising applications in polymer composites.
Collapse
Affiliation(s)
- Feng Yuan
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Qinhan Guan
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Xuehan Dou
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Han Yang
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Yiming Hong
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Yawen Xue
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Zhenxing Cao
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Northeast Petroleum University Daqing 163318 China
| | - Zexiao Xu
- Suzhou Jiren High-Tech Materials Co., Ltd Suzhou China
| | - Yuyang Qin
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
- School of Chemistry and Chemical Engineering, Northeast Petroleum University Daqing 163318 China
- Suzhou Jiren High-Tech Materials Co., Ltd Suzhou China
| |
Collapse
|
7
|
Ravichandran V, Chandrashekar A, Prabhu TN, Varrla E. SPI-Modified h-BN Nanosheets-Based Thermal Interface Materials for Thermal Management Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34367-34376. [PMID: 38896498 DOI: 10.1021/acsami.4c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The rising concern over the usage of electronic devices and the operating environment requires efficient thermal interface materials (TIMs) to take away the excess heat generated from hotspots. TIMs are crucial in dissipating undesired heat by transferring energy from the source to the heat sink. Silicone oil (SO)-based composites are the most used TIMs due to their strong bonding and oxidation resistance. However, thermal grease performance is unreliable due to aging effects, toxic chemicals, and a higher percentage of fillers. In this work, TIMs are prepared using exfoliated hexagonal boron nitride nanosheets (h-BNNS) as a nanofiller, and they were functionalized by ecofriendly natural biopolymer soy protein isolate (SPI). The exfoliated h-BNNS has an average lateral size of ∼266 nm. The functionalized h-BNNS/SPI are used as fillers in the SO matrix, and composites are prepared using solution mixing. Hydrogen bonding is present between the organic chain/oxygen in silicone polymer, and the functionalized h-BNNS are evident from the FTIR measurements. The thermal conductivity of h-BNNS/SPI/SO was measured using the modified transient plane source (MTPS) method. At room temperature, the maximum thermal conductivity is 1.162 Wm-1K-1 (833% enhancement) at 50 wt % of 3:1 ratio of h-BNNS:SPI, and the thermal resistance (TR) of the composite is 5.249 × 106 K/W which is calculated using the Foygel nonlinear model. The heat management application was demonstrated by applying TIM on a 10 W LED bulb. It was found that during heating, the 50 wt % TIM decreases the surface temperature of LED by ∼6 °C compared with the pure SO-based TIM after 10 min of ON condition. During cooling, the modified TIM reduces the surface temperature by ∼8 °C under OFF conditions within 1 min. The results indicate that natural polymers can effectively stabilize and link layered materials, enhancing the efficiency of TIMs for cooling electronics and LEDs.
Collapse
Affiliation(s)
- Vanmathi Ravichandran
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - Akshatha Chandrashekar
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Peenya Industrial Area, Bangalore, Karnataka 560058, India
| | - T Niranjana Prabhu
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Peenya Industrial Area, Bangalore, Karnataka 560058, India
| | - Eswaraiah Varrla
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| |
Collapse
|
8
|
Xu Y, Huang Z, Zhang Z, Ding B, Li P, Liu J, Hao Y, Dai L, Zhang H, Zhu C, Cai W, Liu B. An Electro-Optical Kerr Device Based on 2D Boron Nitride Liquid Crystals for Solar-Blind Communications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307330. [PMID: 38497596 DOI: 10.1002/adma.202307330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Achieving light modulation in the spectral range of 200-280 nm is a prerequisite for solar-blind ultraviolet communication, where current technologies are mainly based on the electro-luminescent self-modulation of the ultraviolet source. External light modulation through the electro-birefringence control of liquid crystal (LC) devices has shown success in the visible-to-infrared regions. However, the poor stability of conventional LCs against ultraviolet irradiation and their weak electro-optical response make it challenging to modulate ultraviolet light. Here, an external ultraviolet light modulator is demonstrated using two-dimensional boron nitride LC. It exhibits robust ultraviolet stability and a record-high specific electro-optical Kerr coefficient of 5.1 × 10⁻2 m V-2, being three orders of magnitude higher than those of other known electro-optical media that are transparent (or potentially transparent) in the ultraviolent spectral range. The sensitive response enables fabricating transmissive and stable ultraviolet-C electro-optical Kerr modulators for solar-blind ultraviolet light. An M-ary coding array with high transmission density is also demonstrated for solar-blind ultraviolet communication.
Collapse
Affiliation(s)
- Youan Xu
- Xi'an Research Institute of High Technology, Xi'an, 710025, China
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ziyang Huang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zehao Zhang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baofu Ding
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality/Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, 518055, China
| | - Peixuan Li
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiarong Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yugan Hao
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lixin Dai
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Zhang
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen, 518060, China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen, 518060, China
| | - Wei Cai
- Xi'an Research Institute of High Technology, Xi'an, 710025, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
9
|
Chen L, Hu K, Lu M, Chen Z, Chen X, Zhou T, Liu X, Yin W, Casiraghi C, Song X. Wearable Sensors for Breath Monitoring Based on Water-Based Hexagonal Boron Nitride Inks Made with Supramolecular Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312621. [PMID: 38168037 DOI: 10.1002/adma.202312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Wearable humidity sensors are attracting strong attention as they allow for real-time and continuous monitoring of important physiological information by enabling activity tracking as well as air quality assessment. Amongst 2Dimensional (2D) materials, graphene oxide (GO) is very attractive for humidity sensing due to its tuneable surface chemistry, high surface area, processability in water, and easy integration onto flexible substrates. However, strong hysteresis, low sensitivity, and cross-sensitivity issues limit the use of GO in practical applications, where continuous monitoring is preferred. Herein, a wearable and wireless impedance-based humidity sensor made with pyrene-functionalized hexagonal boron nitride (h-BN) nanosheets is demonstrated. The device shows enhanced sensitivity towards relative humidity (RH) (>1010 Ohms/%RH in the range from 5% to 100% RH), fast response (0.1 ms), no appreciable hysteresis, and no cross-sensitivity with temperature in the range of 25-60 °C. The h-BN-based sensor is able to monitor the whole breathing cycle process of exhaling and inhaling, hence enabling to record in real-time the subtlest changes of respiratory signals associated with different daily activities as well as various symptoms of flu, without requiring any direct contact with the individual.
Collapse
Affiliation(s)
- Liming Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Kui Hu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Mingyang Lu
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Ziqi Chen
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Xiwen Chen
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Tianqi Zhou
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Xuqing Liu
- Department of Materials Science, University of Manchester, Manchester, M13 9PL, UK
| | - Wuliang Yin
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Xiuju Song
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
10
|
Liu F, Yu C, Guo X, Peng H, Qiu S. Eco-friendly preparation and characterization of high-performance electrothermal graphene-AgNPs/lignocellulose composites. RSC Adv 2024; 14:10538-10545. [PMID: 38567325 PMCID: PMC10985585 DOI: 10.1039/d4ra00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Graphene-based (Gr-based) electrothermal heaters, due to their light weight, low electrical resistance, high thermal conductivity, and easy accessibility, have attracted widespread attention in the field of electrothermal heating. To achieve a high steady-state temperature in electrothermal heaters under low voltage, here we constructed a Gr-based film with low electrical resistance. Firstly, we employed non-toxic vitamin C to reduce silver nitrate for the in situ chemical deposition of silver nanoparticles (AgNPs) on the Gr surface. The SEM results confirmed that the AgNPs were uniformly deposited on the Gr surface. The synergistic interaction between AgNPs and Gr provided high-speed electrons transport paths for the film. On the other hand, we employed biodegradable lignocellulose fiber (LCF) as a dispersant and film-forming agent. The aromatic ring structure of LCF interacts with Gr via π-π interactions, aiding the dispersion of Gr in aqueous solutions. SEM results revealed that LCF permeated through the surfaces and interstices of the two-dimensional Gr sheets, providing mechanical support for the composite film. This approach enables the creation of freestanding Gr-AgNPs/LCF electrothermal composites. The resistivity and electrothermal results demonstrated that the obtained 20 wt% Gr-based composite film possessed low electrical resistance (5.4 Ω sq-1) and exhibited an outstanding saturated temperature of 214 °C under a very low input voltage of 7 V. The preparation method of this Gr-based composite film is simple, easy to operate, and environmentally friendly, providing a new reference for the preparation of eco-friendly and high-performance resistance heating electronics.
Collapse
Affiliation(s)
- Furong Liu
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science Changde 415000 PR China
| | - Cuiping Yu
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science Changde 415000 PR China
| | - Xinyi Guo
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science Changde 415000 PR China
| | - Hui Peng
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science Changde 415000 PR China
| | - Shengqiang Qiu
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science Changde 415000 PR China
| |
Collapse
|
11
|
Mo Y, Meng X, Liu C, Xu W, Zheng L, Chen F, Qian J, Cai H, Chen Z. Performance and mechanism of biochar@FeMg-LDH for efficient activation of persulfate for degradation of 2, 4-dichlorophenol in groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22630-22644. [PMID: 38413523 DOI: 10.1007/s11356-024-32456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
Groundwater environments are complex, and traditional advanced oxidation technologies mainly based on free radicals have limitations such as poor selectivity and low interference resistance, making it difficult to efficiently degrade target pollutants in groundwater. Therefore, we developed a sludge-based biochar-supported FeMg-layered double hydroxide catalyst (BC@FeMg-LDH) for the catalytic degradation of 2, 4-dichlorophenol (2, 4-DCP) using persulfate (PDS) as an oxidant. The removal efficiency of the catalyst exceeded 95%, showing high oxidation activity in a wide pH range while being almost unaffected by reducing substances and ions in the environment. Meanwhile, under neutral conditions, the leaching of metal ions from BC@FeMg-LDH was minimal, thereby eliminating the risk of secondary pollution. According to quenching experiments and electron paramagnetic resonance spectroscopy, the main active species during BC@FeMg-LDH/PDS degradation of 2, 4-DCP is 1O2, indicating a non-radical reaction mechanism dominated by 1O2. Characterization techniques, including X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, revealed that the carbonyl (C = O) and metal hydroxyl (M-OH) groups on the material surface were the main reactive sites mediating 1O2 generation. The 1O2 generation mechanism during the reaction involved ketone-like activation of carbonyl groups on the biochar surface and complexation of hydroxyl groups on the material surface with PDS, resulting in the formation of O2·- and further generation of 1O2. 1O2 exhibited high selectivity toward electron-rich organic compounds such as 2, 4-DCP and demonstrated strong interference resistance in complex groundwater environments. Therefore, BC@FeMg-LDH holds promising applications for the remediation of organic-contaminated groundwater.
Collapse
Affiliation(s)
- Yuanye Mo
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
| | - Xianrong Meng
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Chengbao Liu
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China.
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Wei Xu
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Leizhi Zheng
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feng Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Junchao Qian
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hui Cai
- Suzhou Yifante Environmental Remediation Co., Ltd, Suzhou, 215168, China
| | - Zhigang Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
12
|
Meng Y, Yang D, Jiang X, Bando Y, Wang X. Thermal Conductivity Enhancement of Polymeric Composites Using Hexagonal Boron Nitride: Design Strategies and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:331. [PMID: 38392704 PMCID: PMC10893155 DOI: 10.3390/nano14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
With the integration and miniaturization of chips, there is an increasing demand for improved heat dissipation. However, the low thermal conductivity (TC) of polymers, which are commonly used in chip packaging, has seriously limited the development of chips. To address this limitation, researchers have recently shown considerable interest in incorporating high-TC fillers into polymers to fabricate thermally conductive composites. Hexagonal boron nitride (h-BN) has emerged as a promising filler candidate due to its high-TC and excellent electrical insulation. This review comprehensively outlines the design strategies for using h-BN as a high-TC filler and covers intrinsic TC and morphology effects, functionalization methods, and the construction of three-dimensional (3D) thermal conduction networks. Additionally, it introduces some experimental TC measurement techniques of composites and theoretical computational simulations for composite design. Finally, the review summarizes some effective strategies and possible challenges for the design of h-BN fillers. This review provides researchers in the field of thermally conductive polymeric composites with a comprehensive understanding of thermal conduction and constructive guidance on h-BN design.
Collapse
Affiliation(s)
- Yuhang Meng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Dehong Yang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Magaletti F, Prioglio G, Giese U, Barbera V, Galimberti M. Hexagonal Boron Nitride as Filler for Silica-Based Elastomer Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:30. [PMID: 38202486 PMCID: PMC10780802 DOI: 10.3390/nano14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Two-dimensional hexagonal boron nitride (hBN) has attracted tremendous attention over the last few years, thanks to its stable structure and its outstanding properties, such as mechanical strength, thermal conductivity, electrical insulation, and lubricant behavior. This work demonstrates that hBN can also improve the rheological and mechanical properties of elastomer composites when used to partially replace silica. In this work, commercially available pristine hBN (hBN-p) was exfoliated and ball-mill treated in air for different durations (2.5, 5, and 10 h milling). Functionalization occurred with the -NH and -OH groups (hBN-OH). The functional groups were detected using Fourier-Transform Infrared pectroscopy (FT-IR) and were estimated to be up to about 7% through thermogravimetric analysis. The presence of an increased amount of oxygen in hBN-OH was confirmed using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy. (SEM-EDS). The number of stacked layers, estimated using WAXD analysis, decreased to 8-9 in hBN-OH (10 h milling) from about 130 in hBN-p. High-resolution transmission electron microscopy (HR-TEM) and SEM-EDS revealed the increase in disorder in hBN-OH. hBN-p and hBN-OH were used to partially replace silica by 15% and 30%, respectively, by volume, in elastomer composites based on poly(styrene-co-butadiene) from solution anionic polymerization (S-SBR) and poly(1,4-cis-isoprene) from Hevea Brasiliensis (natural rubber, NR) as the elastomers (volume (mm3) of composites released by the instrument). The use of both hBNs in substitution of 30% of silica led to a lower Payne effect, a higher dynamic rigidity, and an increase in E' of up to about 15% at 70 °C, with similar/lower hysteresis. Indeed, the composites with hBN-OH revealed a better balance of tan delta (higher at low temperatures and lower at high temperatures) and better ultimate properties. The functional groups reasonably promote the interaction of hBN with silica and with the silica's coupling agent, sulfur-based silane, and thus promoted the interaction with the elastomer chains. The volume of the composite, measured using a high-pressure capillary viscometer, increased by about 500% and 400% after one week of storage in the presence of hBN-p and hBN-OH. Hence, both hBNs improved the processability and the shelf life of the composites. Composites obtained using hBN-OH had even filler dispersion without the detachments of the filler from the elastomer matrix, as shown through TEM micrographs. These results pave the way for substantial improvements in the important properties of silica-based composites for tire compounds, used to reduce rolling resistance and thus the improve environmental impacts.
Collapse
Affiliation(s)
- Federica Magaletti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (G.P.)
| | - Gea Prioglio
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (G.P.)
| | - Ulrich Giese
- Deutsches Institut für Kautschuktechnologie e. V., Eupener Straße 33, 30519 Hannover, Germany
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (G.P.)
| | - Maurizio Galimberti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (G.P.)
| |
Collapse
|
14
|
Chaurasia A, Kumar K, Harsha SP, Parashar A. Covalently bonded interface in polymer/boron nitride nanosheet composite toward enhanced mechanical and thermal behaviour. Phys Chem Chem Phys 2023; 25:31396-31409. [PMID: 37962035 DOI: 10.1039/d3cp04497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
This experimental study aimed to enhance the mechanical and thermal properties of BN (hexagonal boron nitride) nanosheet-reinforced high-density polyethylene by functionalizing its interface. The challenges associated with this nanocomposites are its poor dispersion and weak interface. Accordingly, to improve the load transfer at the interface, BN nanosheets were chemically modified with silane functional groups ((3-aminopropyl)tri-ethoxy silane), making it possible to form covalent bonds between the maleic anhydride-grafted polyethylene and nanosheet. Consequently, three different types of nanocomposite samples were fabricated based on the covalently bonded or non-bonded interface. Two nanocomposite configurations featured a non-bonded interface between the nanofiller and PE matrix (p-BN/PE and (silane functionalized) s-BN/PE). In contrast, the third configuration had a covalently bonded interface (silane-functionalized h-BN + maleic anhydride-grafted PE, i.e., PE-g-BN). According to the zeta potential analysis, the silane-functionalized BN nanosheets were stable suspensions and uniformly dispersed in the polymer matrix. The tensile and flexure strength of the nanocomposites showed over 100% improvement due to the covalently bonded interface. The lamellae structure of PE in the bonded interface samples was responsible for achieving higher mechanical strength in the nanocomposites. Furthermore, the thermal conductivity of the nanocomposites was significantly affected by the type of interfacial bonding, BN wt%, and operating temperature.
Collapse
Affiliation(s)
- Ankur Chaurasia
- Mechanical Engineering Department, School of Technology Pandit Deendayal Energy University, 382007, India.
| | - Kaushlendra Kumar
- Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| | - S P Harsha
- Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| | - Avinash Parashar
- Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
15
|
Martínez-Jiménez C, Chow A, Smith McWilliams AD, Martí AA. Hexagonal boron nitride exfoliation and dispersion. NANOSCALE 2023; 15:16836-16873. [PMID: 37850487 DOI: 10.1039/d3nr03941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Research on hexagonal boron nitride (hBN) 2-dimensional nanostructures has gained traction due to their unique chemical, thermal, and electronic properties. However, to make use of these exceptional properties and fabricate macroscopic materials, hBN often needs to be exfoliated and dispersed in a solvent. In this review, we provide an overview of the many different methods that have been used for dispersing hBN. The approaches that will be covered in this review include solvents, covalent functionalization, acids and bases, surfactants and polymers, biomolecules, intercalating agents, and thermal expansion. The properties of the exfoliated sheets obtained and the dispersions are discussed, and an overview of the work in the field throughout the years is provided.
Collapse
Affiliation(s)
| | - Alina Chow
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | | | - Angel A Martí
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
16
|
Zhang X, Long C, Zhu X, Zhang X, Li J, Luo J, Li J, Gao Q. Preparation of Strong and Thermally Conductive, Spider Silk-Inspired, Soybean Protein-Based Adhesive for Thermally Conductive Wood-Based Composites. ACS NANO 2023; 17:18850-18863. [PMID: 37781925 DOI: 10.1021/acsnano.3c03782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The development of formaldehyde-free functional wood composite materials through the preparation of strong and multifunctional soybean protein adhesives to replace formaldehyde-based resins is an important research area. However, ensuring the bonding performance of soybean protein adhesive while simultaneously developing thermally conductive adhesive and its corresponding wood composites is challenging. Taking inspiration from the microphase separation structure of spider silk, boron nitride (BN) and soy protein isolate (SPI) were mixed by ball milling to obtain a BN@SPI matrix and combined with the self-synthesized hyperbranched reactive substrates as amorphous region reinforcer and cross-linker triglycidylamine to prepare strong and thermally conductive soybean protein adhesive with cross-linked microphase separation structure. These findings indicate that mechanical ball milling can be employed to strip BN followed by combination with SPI, resulting in a tight bonded interface connection. Subsequently, the adhesive's dry and wet shear strengths increased by 14.3% and 90.5% to 1.83 and 1.05 MPa, respectively. The resultant adhesive also possesses a good thermal conductivity (0.363 W/mK). Impressively, because hot-pressing helps the resultant adhesive to establish a thermal conduction pathway, the thermal conductivity of the resulting wood-based composite is 10 times higher than that of the SPI adhesive, which shows a thermal conductivity similar to that of ceramic tile and has excellent potential for developing biothermal conductivity materials, geothermal floors, and energy storage materials. Moreover, the adhesive possessed effective flame retardancy (limit oxygen index = 36.5%) and mildew resistance (>50 days). This bionic design represents an efficient technique for developing multifunctional biomass adhesives and composites.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Chun Long
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xiaobo Zhu
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xilin Zhang
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jing Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingchao Li
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Travaš L, Rujnić Havstad M, Pilipović A. Optimization of Thermal Conductivity and Tensile Properties of High-Density Polyethylene by Addition of Expanded Graphite and Boron Nitride. Polymers (Basel) 2023; 15:3645. [PMID: 37688271 PMCID: PMC10489680 DOI: 10.3390/polym15173645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Due to its mechanical, rheological, and chemical properties, high-density polyethylene (HDPE) is commonly used as a material for producing the pipes for transport of various media. Low thermal conductivity (0.4 W/mK) narrows down the usage of HDPE in the heat exchanger systems. The main goal of the work is to reduce the vertical depth of the HDPE pipe buried in the borehole by increasing the thermal conductivity of the material. This property can be improved by adding certain additives to the pure HDPE matrix. Composites made of HDPE with metallic and non-metallic additives show increased thermal conductivity several times compared to the thermal conductivity of pure HDPE. Those additives affect the mechanical properties too, by enhancing or degrading them. In this research, the thermal conductivity and tensile properties of composite made of HDPE matrix and two types of additives, expanded graphite (EG) and boron nitride (BN), were tested. Micro-sized particles of EG and two different sizes of BN particles, micro and nano, were used to produce composite. The objective behind utilizing composite materials featuring dual additives is twofold: firstly, to enhance thermal properties, and secondly, to improve mechanical properties when compared with the pure HDPE. As anticipated, the thermal conductivity of the composites exhibited an eightfold rise in comparison to the pure HDPE. The tensile modulus experienced augmentation across all variations of additive ratios within the composites, albeit with a marginal reduction in tensile strength. This implies that the composite retains a value similar to pure HDPE in terms of tensile strength. Apart from the enhancement observed in all the aforementioned properties, the most significant downside of these composites pertains to their strain at yield, which experienced a reduction, declining from the initial 8.5% found in pure HDPE to a range spanning from 6.6% to 1.8%, dependent upon the specific additive ratios and the size of the BN particles.
Collapse
Affiliation(s)
- Lovro Travaš
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10000 Zagreb, Croatia; (M.R.H.); (A.P.)
| | | | | |
Collapse
|
18
|
Zhang Y, Kang HG, Xu HZ, Luo H, Suzuki M, Lan Q, Chen X, Komatsu N, Zhao L. Tumor Eradication by Boron Neutron Capture Therapy with 10 B-enriched Hexagonal Boron Nitride Nanoparticles Grafted with Poly(Glycerol). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301479. [PMID: 37243974 DOI: 10.1002/adma.202301479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Boron neutron capture therapy (BNCT) has emerged as a treatment modality with high precision and efficacy of intractable tumors. At the core of effective tumor BNCT are 10 B carriers with facile preparation as well as advantageous pharmacokinetic and therapeutic profiles. Herein, the design and preparation of sub-10 nm 10 B-enriched hexagonal boron nitride nanoparticles grafted with poly(glycerol) (h-10 BN-PG), and their application to cancer treatment by BNCT are reported. By virtue of their small particle size and outstanding stealth property, h-10 BN-PG nanoparticles accumulate efficiently in murine CT26 colon tumors with a high intratumor 10 B concentration of 8.8%ID g-1 or 102.1 µg g-1 at 12 h post-injection. Moreover, h-10 BN-PG nanoparticles penetrate into the inside of the tumor parenchyma and then are taken up by the tumor cells. BNCT comprising a single bolus injection of h-10 BN-PG nanoparticles and subsequent one-time neutron irradiation results in significant shrinkage of subcutaneous CT26 tumors. h-10 BN-PG-mediated BNCT not only causes direct DNA damage to the tumor cells, but also triggers pronounced inflammatory immune response in the tumor tissues, which contributes to long-lasting tumor suppression after the neutron irradiation. Thus, the h-10 BN-PG nanoparticles are promising BNCT agents to eradicate tumor through highly efficient 10 B accumulation.
Collapse
Affiliation(s)
- Yucai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Honghui Luo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
19
|
Chandra Mallick B, Chang HY, Chen GS. A new method for characterizing piezoelectric properties of hexagonal boron nitride nanoflakes activated by focused ultrasound. ULTRASONICS 2023; 134:107048. [PMID: 37302337 DOI: 10.1016/j.ultras.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Piezoelectric nanomaterials wirelessly activated by ultrasound have been studied for biomedical applications. However, the quantitative measurement of piezoelectric effects in nanomaterials and the correlation between the ultrasound dose and the piezoelectric amplitude are still explored. We demonstrated the synthesis of boron nitride nanoflakes by mechanochemical exfoliation and employed the electrochemical method to quantitatively evaluate the piezoelectric performance of the nanoflakes under ultrasonic circumstances. The change of voltametric charge, current, and voltage in response to different acoustic pressure was obtained in the electrochemical system. The charge was reached up to 69.29 μC with a net increase of 49.54 μC/mm2 under 2.976 MPa. The output current was measured up to 597 pA/mm2 and positive shift of output voltage shifted from -600 mV to -450 mV. Additionally, the piezoelectric performance linearly increased with acoustic pressure. The proposed method could be a standardized evaluation test bench for characterization of ultrasound-mediated piezoelectric nanomaterials.
Collapse
Affiliation(s)
- Bikash Chandra Mallick
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Yun Chang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Gin-Shin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
20
|
Bhadra BN, Shrestha LK, Ariga K. Porous Boron Nitride Nanoarchitectonics for Environment: Adsorption in Water. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
The synergistic catalytic mechanism between different functional sites of boron/iron on iron oxides in Fenton-like reactions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
E S, Liu J, Zhao R, Ning D, Lu Z. Formation Mechanisms of Hexagonal Boron Nitride Nanosheets in Solvothermal Exfoliation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1619-1628. [PMID: 36657978 DOI: 10.1021/acs.langmuir.2c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solvothermal techniques are widely used to exfoliate many two-dimensional materials, but the formation mechanisms of these nanomaterials have not been clearly revealed. Herein, we discovered the dissociation of hexagonal boron nitride (h-BN) in solvothermal exfoliation evidenced by the formation of B(OH)3, NH4B5O8·4H2O, and (NH4)2B10O16·8H2O. In the selected solvents, the lateral sizes of the formed boron nitride nanosheets (BNNSs) are increased in the order of N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), acetonitrile (MeCN), and isopropanol (IPA), suggesting the decreased dissolving abilities of these solvents to h-BN in turn. The dissociation behaviors are the properties of solvents themselves, but the inclusion of lithium chloride (LiCl) and cetyltrimethylammonium bromide (CTAB) can elevate the dissociation degree and yield BNNSs with smaller lateral sizes due to the intercalating effects. The cation-π interactions make CTAB more effective in obtaining uniform BNNSs than using the neutral halogenated hydrocarbons as assistant reagents. The dissociation abilities of the solvents have strong relationships with the surface tension, Hansen solubility parameters distances (Ra), and polarities, whereas there is little relevance with the pressures. Meanwhile, we also observed the cracking of CTAB and the polymerization of MeCN in these reactions. Our findings indicate that the impurities are prone to be attached to the BNNSs exfoliated by the solvothermal route.
Collapse
Affiliation(s)
- Songfeng E
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Jiayi Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Ruixia Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an710021, China
| |
Collapse
|
23
|
Benelmekki M, Kim JH. Stimulus-Responsive Ultrathin Films for Bioapplications: A Concise Review. Molecules 2023; 28:molecules28031020. [PMID: 36770701 PMCID: PMC9921802 DOI: 10.3390/molecules28031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The term "nanosheets" has been coined recently to describe supported and free-standing "ultrathin film" materials, with thicknesses ranging from a single atomic layer to a few tens of nanometers. Owing to their physicochemical properties and their large surface area with abundant accessible active sites, nanosheets (NSHs) of inorganic materials such as Au, amorphous carbon, graphene, and boron nitride (BN) are considered ideal building blocks or scaffolds for a wide range of applications encompassing electronic and optical devices, membranes, drug delivery systems, and multimodal contrast agents, among others. A wide variety of synthetic methods are employed for the manufacturing of these NSHs, and they can be categorized into (1) top-down approaches involving exfoliation of layered materials, or (2) bottom-up approaches where crystal growth of nanocomposites takes place in a liquid or gas phase. Of note, polymer template liquid exfoliation (PTLE) methods are the most suitable as they lead to the fabrication of high-performance and stable hybrid NSHs and NSH composites with the appropriate quality, solubility, and properties. Moreover, PTLE methods allow for the production of stimulus-responsive NSHs, whose response is commonly driven by a favorable growth in the appropriate polymer chains onto one side of the NSHs, resulting in the ability of the NSHs to roll up to form nanoscrolls (NSCs), i.e., open tubular structures with tunable interlayer gaps between their walls. On the other hand, this review gives insight into the potential of the stimulus-responsive nanostructures for biosensing and controlled drug release systems, illustrating the last advances in the PTLE methods of synthesis of these nanostructures and their applications.
Collapse
Affiliation(s)
- Maria Benelmekki
- Nanomaterials Lab, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK
- Correspondence:
| | - Jeong-Hwan Kim
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
24
|
Lavi A, Pyrikov M, Ohayon-Lavi A, Tadmor R, Shachar-Michaely G, Leibovitch Y, Ruse E, Vradman L, Regev O. Total exfoliation of graphite in molten salts. Phys Chem Chem Phys 2023; 25:2618-2628. [PMID: 36602270 DOI: 10.1039/d2cp01613c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The exfoliation of graphite to graphene nanoplatelets (GnP) in a molten salt medium is investigated in this study. It is shown that this mechanical force-free process yielded a large-sized GnP product (>15 microns) with a low defect density. The effect of the surface tension of the molten salt on graphite exfoliation efficiency was investigated for a series of alkali chloride salts (CsCl, KCl, NaCl and eutectic NaCl-KCl) at 850 °C. It was demonstrated that the produced GnP could be completely and easily separated from the salt. Molten salt with the lowest value of surface tension (CsCl) displayed the highest wettability of the graphitic layers and hence facilitated total exfoliation of the graphite to GnP. The exfoliation of graphite in molten salts is applicable in the thermal energy storage field, as well as in exfoliation of other layered materials. Herein, it is demonstrated that the thermal conductivity of the GnP-CsCl composite is enhanced by ∼300% compared to the neat salt.
Collapse
Affiliation(s)
- Adi Lavi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Department of Chemistry, Nuclear Research Center-Negev, P.O.B. 9001, Beer-Sheva, 84190, Israel.
| | - Michael Pyrikov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Avia Ohayon-Lavi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Rafael Tadmor
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Gal Shachar-Michaely
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Yelena Leibovitch
- Department of Chemistry, Nuclear Research Center-Negev, P.O.B. 9001, Beer-Sheva, 84190, Israel.
| | - Efrat Ruse
- Department of Chemistry, Nuclear Research Center-Negev, P.O.B. 9001, Beer-Sheva, 84190, Israel.
| | - Leonid Vradman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Department of Chemistry, Nuclear Research Center-Negev, P.O.B. 9001, Beer-Sheva, 84190, Israel.
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
25
|
Cui P, Zhang J. Photovoltaic performance of heteroatom-doped boron nitride quantum dots in quantum dot photovoltaic cells. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Cai H, Wang J, Du Z, Zhao Z, Gu Y, Guo Z, Huang Y, Tang C, Chen G, Fang Y. Construction of novel ternary MoSe2/ZnO/p-BN photocatalyst for efficient ofloxacin degradation under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Wang TY, Li XF, Liu SM, Liu BX, Liang XD, Li S, Zhang GX, Liu JB, Dang ZM. Self-assembled wide bandgap nanocoatings enabled outstanding dielectric characteristics in the sandwich-like structure polymer composites. NANO CONVERGENCE 2022; 9:55. [PMID: 36484882 PMCID: PMC9733754 DOI: 10.1186/s40580-022-00346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Polymer dielectrics are insulators or energy storage materials widely used in electrical and electronic devices. Polymer dielectrics are needed with outstanding dielectric characteristics than current technologies. In this study, the self-assembly of boron nitride nanosheets (BNNSs) was applied to form an inorganic-organic nanocoating on various common polymer dielectrics. It is inexpensive and easy to fabricate this thin coating on a large scale. The coating has a wide bandgap and thus can significantly improve the breakdown strength of polymer dielectrics. The charge characteristics and trapping parameters of nano-domains on the surfaces of polymer dielectrics were measured, and the coating had shallow trap levels. This facilitated the dissipation of surface charges and thus greatly increased the flashover voltage. The coating also effectively improved the temperature stability and dielectric constant of the polymer dielectric. This nanocoating shows potential as a method to effectively improve the dielectric characteristics of polymer dielectrics and outperform existing composite polymer dielectrics, which are crucial for large-scale applications in energy storage and power and electronic devices.
Collapse
Affiliation(s)
- Tian-Yu Wang
- State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiao-Fen Li
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shu-Ming Liu
- State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bai-Xin Liu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xi-Dong Liang
- State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shunning Li
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Gui-Xin Zhang
- State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jian-Bo Liu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zhi-Min Dang
- State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Zhu Z, Xu X, Yao Y, Guo C, Chen J, Zhang Y, Wu K. Liquid Metal-Assisted High-Efficiency Exfoliation of Boron Nitride for Electrically Insulating Heat-Spreader Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54256-54265. [PMID: 36414259 DOI: 10.1021/acsami.2c17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Boron nitride nanosheets (BNNSs) are regarded as promising two-dimensional materials in thermally conductive yet electrically insulating applications. Attributed to the strong interlayer "lip-lip" interactions in bulk hexagonal boron nitride (h-BN), high-efficiency exfoliation and scalable fabrication of BNNSs via the top-down strategies remain formidable challenges. Herein, an interesting observation is manifested that gallium-based liquid metal (LM) forming robust coordination interactions with h-BN helps reduce the lip-lip interlayer interactions and thus facilitates successful exfoliation under intense shearing force. For example, employing the ball-milling technique, the BNNS yield can increase to 41.21% with the assistance of LM at only 2 h milling time. Its exfoliation efficiency (yield/time) reaches as high as 26.72%/h, more than 2-fold that of other previously reported methods, including sonication and other ball-milling methods. Moreover, the exfoliated BNNSs are still found to be highly electrically insulating with a band gap of 4.65 eV, showing prospective potential in thermally conductive yet electrical insulating applications. As a proof of concept, a microwave-transparent heat spreader (cellulose nanofiber/BNNSs) is fabricated and verified for applications in high-frequency thermal-management fields.
Collapse
Affiliation(s)
- Zheng Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Xuran Xu
- College of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yihang Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Jingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
- College of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| |
Collapse
|
29
|
Kim D, Mateti S, Yu B, Tanwar K, Cai Q, Jiang H, Fan Y, O'Dell LA, Chen Y. Hybrid Artificial Solid Electrolyte Interphase with Dendrite-Free Lithium Deposition and High Ion Transport Kinetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52993-53006. [PMID: 36378571 DOI: 10.1021/acsami.2c16604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interfacial issues and dendritic Li deposition in lithium metal batteries (LMBs) hamper the practical application of liquid or solid-state cells. Here, a hybrid solid electrolyte interphase (SEI), based on hydroxyl-functionalized boron nitride (BN) nanosheets and poly(vinyl alcohol), is designed to solve the unstable nature of the Li anode-electrolyte interface. Rather than acquiring a rich Li halide environment through intense electrolyte decomposition, the hybrid SEI effectively regulates electrolyte decomposition and guarantees uniform Li plating via boosting interfacial Li+ ion transport at the interface. The Li+ ion boosting kinetics were deeply analyzed using simulations and spectroscopic analysis. It is revealed that the hydroxyl-functionalized BN can decrease kinetic energy barriers for Li+ ions and strongly holds TFSI- ions, thereby ensuring faster Li+ ion migration between electrodes and electrolytes. Tailoring the interfacial Li+ ion dynamics with hybrid SEI renders the Li transference number enhancement from 0.391 to 0.562 and 0.178 to 0.327 in liquid and solid-state cells, respectively. Moreover, Li symmetric cells with hybrid SEI exhibit an ultrahigh stability over 3500 h at 2 mA cm-2 with 2 mA h cm-2, along with the improved solid-state LMB performances. Our results suggest increasing Li+ ion transport at the interface is an alternative to resolve Li anode issues.
Collapse
Affiliation(s)
- Donggun Kim
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Srikanth Mateti
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Baozhi Yu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Khagesh Tanwar
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Qiran Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Hongbo Jiang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Ye Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| | - Ying Chen
- Institute for Frontier Materials, Deakin University, Geelong, Victoria3216, Australia
| |
Collapse
|
30
|
Zuo S, Lan Y, Luo J, Zhou F, Xu L, Xie S, Wei X, Zhou L, Ma L, Li X, Yin C. Angular-Shaped Boron Nitride Nanosheets with a High Aspect Ratio to Improve the Out-of-Plane Thermal Conductivity of Polyimide Composite Films. ACS OMEGA 2022; 7:43273-43282. [PMID: 36467912 PMCID: PMC9713879 DOI: 10.1021/acsomega.2c06013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Polyimide/boron nitride nanosheet (PI/BNNS) composite films have potential applications in the field of electrical devices due to the superior thermal conductivity and outstanding insulating properties of the boron nitride nanosheet. In this study, the boron nitride nanosheet (BNNS-t) was prepared by the template method using sodium chloride as the template, and B2O3 and flowing ammonia as the boron and nitrogen sources, respectively. Then, the PI/BNNS-t composite films were investigated with different loading of BNNS-t as thermally conductive fillers. The results show that BNNS-t has a high aspect ratio and a uniform lateral dimension, with a large dimension and a thin thickness, and there are a few nanosheets with angular shapes in the as-obtained BNNS-t. The synergistic effect of the above characteristics for BNNS-t is beneficial to constructing the three-dimensional heat conduction network of the PI/BNNS-t composite films, which can significantly improve the out-of-plane thermal conduction properties. And then, the out-of-plane thermal conductivity of the PI/BNNS-t composite film achieves 0.67 W m-1 K-1 at 40% loading, which is nearly 3.5 times that of the PI film.
Collapse
Affiliation(s)
- Song Zuo
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Yu Lan
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Jinpeng Luo
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Fei Zhou
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Lexiang Xu
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Shaoxiong Xie
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Xiuqin Wei
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Lang Zhou
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Lei Ma
- Guangxi
Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin541004, China
| | - Xiaomin Li
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| | - Chuanqiang Yin
- Institute
of Photovoltaics, Nanchang University, Nanchang330031, China
| |
Collapse
|
31
|
Xu W, Yang C, Su W, Zhong N, Xia X. Effective corrosion protection by PDA-BN@CeO2 nanocomposite epoxy coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Efficient and Selective Adsorption of Uranium by Diamide-Pyridine-Functionalized Hierarchically Porous Boron Nitride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Huang L, Xiao G, Wang Y, Li H, Zhou Y, Jiang L, Wang J. Self-Exfoliation of Flake Graphite for Bioinspired Compositing with Aramid Nanofiber toward Integration of Mechanical and Thermoconductive Properties. NANO-MICRO LETTERS 2022; 14:168. [PMID: 35987964 PMCID: PMC9392675 DOI: 10.1007/s40820-022-00919-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 06/01/2023]
Abstract
A self-grinding exfoliation strategy that depends on mutual shear friction between flake graphite particles is successfully developed to prepare pristine graphene with largely enhanced yield and productivity. Bioinspired assembly of pristine graphene nanosheets to an interconnected aramid nanofiber network is achieved by a continuous sol-gel-film transformation strategy and generates a flexible yet highly thermoconductive film. Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices. Herein, we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network. A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles, generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies, such as ultrasonication, high-shear mixing and ball milling. Inspired by nacre, a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation. It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers, but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.
Collapse
Affiliation(s)
- Limei Huang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Guang Xiao
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yunjing Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Hao Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lei Jiang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
34
|
Boukheit A, Chabert F, Otazaghine B, Taguet A. h-BN Modification Using Several Hydroxylation and Grafting Methods and Their Incorporation into a PMMA/PA6 Polymer Blend. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2735. [PMID: 36014599 PMCID: PMC9414417 DOI: 10.3390/nano12162735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Hexagonal boron nitride (h-BN) has recently gained much attention due to its high thermal conductivity and low electrical conductivity. In this study, we proposed to evaluate the impact of the modification of h-BN for use in a polymethylmethacrylate/polyamide 6 (PMMA/PA6) polymer blend. Different methods to modify h-BN particles and improve their affinity with polymers were proposed. The modification was performed in two steps: (1) a hydroxylation step for which three different routes were used: calcination, acidic treatment, and ball milling using gallic acid; (2) a grafting step for which four different silane agents were used, carrying different molecular or macromolecular groups: the octadecyl group (Si-C18), propyl amine group (Si-NH2), polystyrene chain (Si-PS), and PMMA chain (Si-PMMA). The modified h-BN samples after hydroxylation and functionalization were characterized by FTIR and TGA. Py-GC/MS was also used to prove the successful graft with Si-C18 groups. Sedimentation tests and multiple light scattering were performed to assess the surface modification of h-BN. Granulometry and SEM observations were performed to evaluate the particle size distribution after hydroxylation. After the addition of Si-PMMA modified h-BN into a PMMA/PA6 co-continuous blend, the morphology of the polymer blend nanocomposites was characterized using SEM. The calculation of the wetting parameter based on the surface tension measurement using the liquid drop model showed that h-BN dispersed in the PA6 phase. Grafting PMMA chains onto hydroxylated h-BN particles combined with an adequate sequence mixing led to a successful localization of the grafted h-BN particles at the interface of the PMMA/PA6 blend.
Collapse
Affiliation(s)
| | - France Chabert
- Laboratoire Génie de Production (LGP), ENIT-INPT University of Toulouse, 65000 Tarbes, France
| | | | - Aurélie Taguet
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30319 Ales, France
| |
Collapse
|
35
|
Wu N, Yang W, Li H, Che S, Gao C, Jiang B, Li Z, Xu C, Wang X, Li Y. Amino acid functionalized boron nitride nanosheets towards enhanced thermal and mechanical performance of epoxy composite. J Colloid Interface Sci 2022; 619:388-398. [DOI: 10.1016/j.jcis.2022.03.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
36
|
Zhou Y, Xu L, Liu M, Qi Z, Wang W, Zhu J, Chen S, Yu K, Su Y, Ding B, Qiu L, Cheng HM. Viscous Solvent-Assisted Planetary Ball Milling for the Scalable Production of Large Ultrathin Two-Dimensional Materials. ACS NANO 2022; 16:10179-10187. [PMID: 35604394 DOI: 10.1021/acsnano.1c11097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ball milling is a widely used method to produce graphene and other two-dimensional (2D) materials for both industry and research. Conventional ball milling generates strong impact forces, producing small and thick nanosheets that limit their applications. In this study, a viscous solvent-assisted planetary ball milling method has been developed to produce large thin 2D nanosheets. The viscous solvent simultaneously increases the exfoliation energy (Ee) and lowers the impact energy (Ei). Simulations show a giant ratio of η = Ee/Ei, for the viscous solvent, 2 orders of magnitude larger than that of water. The method provides both a high exfoliation yield of 74%, a high aspect ratio of the generated nanosheets of 571, and a high quality for a representative 2D material of boron nitride nanosheets (BNNSs). The large thin BNNSs can be assembled into high-performance functional films, such as separation membranes and thermally conductive flexible films with some performance parameters better than those 2D nanosheets produced by chemical exfoliation methods.
Collapse
Affiliation(s)
- Yicong Zhou
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Lanshu Xu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Minsu Liu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
- Monash Suzhou Research Institute (MSRI), Monash University, Suzhou 215000, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - Zheng Qi
- China Iron and Steel Research Institute Group, Beijing 100081, China
| | - Wenbo Wang
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Jiuyi Zhu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Shaohua Chen
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Kuang Yu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Yang Su
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Baofu Ding
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Ling Qiu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), and Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
37
|
He S, Li C, Chen Y, Wang T, Liao X, Li Q, Hu W, Yuan W, Lin H. Converting inert AlOOH into efficient electrocatalyst for oxygen evolution reaction via structural/electronic modulation. J Colloid Interface Sci 2022; 627:532-540. [PMID: 35870405 DOI: 10.1016/j.jcis.2022.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Efficient and stable water-splitting electrocatalysts play a key role to obtain green and clean hydrogen energy. However, only a few kinds of materials display an intrinsically good performance towards water splitting. It is significant but challengeable to effectively improve the catalytic activity of inert or less active catalysts for water splitting. Herein, we present a structural/electronic modulation strategy to convert inert AlOOH nanorods into catalytic nanosheets for oxygen evolution reaction (OER) via ball milling, plasma etching and Co doping. Compared to inert AlOOH, the modulated AlOOH delivers much better OER performance with a low overpotential of 400 mV at 10 mA cm-2 and a very low Tafel slope of 52 mV dec-1, even lower than commercial OER catalyst RuO2. Significant performance enhancement is attributed to the electronic and structural modulation. The electronic structure is effectively improved by Co doping, ball milling-induced shear strain, plasma etching-caused rich vacancies; abrupt morphology/microstructure change from nanorod to nanoparticle to nanosheet, as well as rich defects caused by ball milling and plasma etching, can significantly increase active sites; the free energy change of the potential determining step of modulated AlOOH decreases from 2.93 eV to 1.70 eV, suggesting a smaller overpotential is needed to drive the OER processes. This strategy can be extended to improve the electrocatalytic performance for other materials with inert or less catalytic activity.
Collapse
Affiliation(s)
- Shijie He
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Chunmei Li
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yuanfu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tao Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xinyuan Liao
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Qing Li
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Weihua Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Weiyong Yuan
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
| | - Hua Lin
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
38
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
39
|
Sun J, Xiao X, Zhang Y, Cao W, Wang N, Gu L. Universal Method to Synergistically Exfoliate and Functionalize Boron Nitride Nanosheets with a Large Yield and High Concentration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiulong Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xinzhe Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yumin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wanwan Cao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ning Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen 518100, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Gu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
40
|
Ji Y, Dong B, Zhang Y, Su F, Shao C, Liu C. Investigation on the accelerating effect of two-dimensional boron nitride on the phase transition from form II to I in isotactic polybutene-1. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Serinçay N, Fellah MF. A Density Functional Theory Study on Graphene Triple Doped with Ga, Ge, P, Si, and Al. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Zhou J, Duo F, Wang C, Chu L, Zhang M, Yan D. Robust photocatalytic activity of two-dimensional h-BN/Bi 2O 3 heterostructure quantum sheets. RSC Adv 2022; 12:13535-13547. [PMID: 35520133 PMCID: PMC9067371 DOI: 10.1039/d2ra02115c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, defect intrinsic hexagonal boron nitride (h-BN) quantum sheets (QS) and bismuth oxide (Bi2O3) QS were prepared from bulk materials by ball milling and solvent stripping, respectively. The h-BN/Bi2O3 heterostructure was fabricated via a facile self-assembly method. The structure and performance of samples were systematically characterized. As expected, the layered h-BN QS is tightly coated on the surface of Bi2O3 QS in a face-to-face stacking structure and interconnected by strong interface interactions. The introduction of h-BN QS can significantly enhance the separation efficiency of the photogenerated carriers of h-BN/Bi2O3. The experimental results show that the photocatalytic activity of h-BN/Bi2O3 is markedly improved. The first-order reaction rate constant of the 3wt%-BN/Bi2O3 sample is 3.2 × 10-2 min-1, about 4.5 times that of Bi2O3 QS. By means of the active species capture test, it is found that the main oxidation species are holes (h+), followed by hydroxyl radicals (˙OH). Based on the surface charge transfer characteristics, the photogenerated carrier transfer and separation efficiency can be improved by coupling h-BN and a Bi2O3 semiconductor to the Schottky heterojunction, and the strong interaction between heterogeneous interfaces also enhances the surface catalytic reaction efficiency, which improves dramatically the photocatalytic performance.
Collapse
Affiliation(s)
- Jianwei Zhou
- Henan Photoelectrocatalytic Material and Micro-Nano Application Technology Academician Workstation, Xinxiang University Xinxiang Henan China +86-373-3682028 +86-373-3682028
- College of Chemistry and Material Engineering, Xinxiang University Xinxiang 453003 PR China
| | - Fangfang Duo
- Henan Photoelectrocatalytic Material and Micro-Nano Application Technology Academician Workstation, Xinxiang University Xinxiang Henan China +86-373-3682028 +86-373-3682028
| | - Chubei Wang
- Henan Photoelectrocatalytic Material and Micro-Nano Application Technology Academician Workstation, Xinxiang University Xinxiang Henan China +86-373-3682028 +86-373-3682028
| | - Liangliang Chu
- Henan Photoelectrocatalytic Material and Micro-Nano Application Technology Academician Workstation, Xinxiang University Xinxiang Henan China +86-373-3682028 +86-373-3682028
| | - Mingliang Zhang
- Henan Photoelectrocatalytic Material and Micro-Nano Application Technology Academician Workstation, Xinxiang University Xinxiang Henan China +86-373-3682028 +86-373-3682028
| | - Donglei Yan
- College of Chemistry and Material Engineering, Xinxiang University Xinxiang 453003 PR China
| |
Collapse
|
43
|
Duverger E, Herlem G, Picaud F. Nanovectorization of Ivermectin to avoid overdose of drugs. J Biomol Struct Dyn 2022:1-14. [PMID: 35470771 DOI: 10.1080/07391102.2022.2066020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ivermectin is an antiparasitic drug that results in the death of the targeted parasites using several mechanical actions. While very well supported, it can induce in rare cases, adverse effects including coma and respiratory failure in case of overdose. This problem should be solved especially in an emergency situation. For instance, the first pandemic of the 21th century was officially declared in early 2020, and while several vaccines around the worlds have been used, an effective treatment against this new strain of coronavirus, better known as SARS-CoV-2, should also be considered, especially given the massive appearance of variants. From all the tested therapies, Ivermectin showed a potential reduction of the viral portability, but sparked significant debate around the dose needed to achieve these positive results. To answer this general question, we propose, using simulations, to show that the nanovectorization of Ivermectin on BN oxide nanosheets can increase the transfer of the drug to its target and thus decrease the quantity of drug necessary to cope with the disease. This first application could help science to develop such nanocargo to avoid adverse effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eric Duverger
- FEMTO-ST Institute, Université Bourgogne Franche-Comté, CNRS, Besanco̧n, Cedex, France
| | - Guillaume Herlem
- Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne-Franche-Comté, UFR Sciences & Techniques, Besançon Cedex, France
| | - Fabien Picaud
- Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne-Franche-Comté, UFR Sciences & Techniques, Besançon Cedex, France
| |
Collapse
|
44
|
Shankar RB, Mistry EDR, Lubert-Perquel D, Nevjestic I, Heutz S, Petit C. A response surface model to predict and experimentally tune the chemical, magnetic and optoelectronic properties of oxygen-doped boron nitride. Chemphyschem 2022; 23:e202100854. [PMID: 35393663 PMCID: PMC9400848 DOI: 10.1002/cphc.202100854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Indexed: 11/15/2022]
Abstract
Porous boron nitride (BN), a combination of hexagonal, turbostratic and amorphous BN, has emerged as a new platform photocatalyst. Yet, this material lacks photoactivity under visible light. Theoretical studies predict that tuning the oxygen content in oxygen‐doped BN (BNO) could lower the band gap. This is yet to be verified experimentally. We present herein a systematic experimental route to simultaneously tune BNO's chemical, magnetic and optoelectronic properties using a multivariate synthesis parameter space. We report deep visible range band gaps (1.50–2.90 eV) and tuning of the oxygen (2–14 at.%) and specific paramagnetic OB3 contents (7–294 a.u. g−1). Through designing a response surface via a design of experiments (DOE) process, we have identified synthesis parameters influencing BNO's chemical, magnetic and optoelectronic properties. We also present model prediction equations relating these properties to the synthesis parameter space that we have validated experimentally. This methodology can help tailor and optimise BN materials for heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Ravi B Shankar
- Imperial College London, Chemical Engineering, UNITED KINGDOM
| | | | | | | | | | - Camille Petit
- Imperial College London, South Kensington Campus, ACEX Building, Exhibition Road, SW7 2AZ, London, UNITED KINGDOM
| |
Collapse
|
45
|
Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63891-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Wang C, Zhang Z, Zhu Y, Yang C, Wu J, Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102290. [PMID: 35052010 DOI: 10.1002/adma.202102290] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs), an emerging class of organic crystalline polymers with highly oriented structures and permanent porosity, can adopt 2D or 3D architectures depending on the different topological diagrams of the monomers. Notably, 2D COFs have particularly gained much attention due to the extraordinary merits of their extended in-plane π-conjugation and topologically ordered columnar π-arrays. These properties together with high crystallinity, large surface area, and tunable porosity distinguish 2D COFs as an ideal candidate for the fabrication of functional materials. Herein, this review surveys the recent research advances in 2D COFs with special emphasis on the preparation of 2D COF powders, single crystals, and thin films, as well as their advanced optical, electrical, and magnetic functionalities. Some challenging issues and potential research outlook for 2D COFs are also provided for promoting their development in terms of structure, synthesis, and functionalities.
Collapse
Affiliation(s)
- Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yating Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
47
|
Huang W, Mei D, Qin H, Li J, Wang L, Ma X, Zhu S, Guan S. Electrophoretic deposited boron nitride nanosheets-containing chitosan-based coating on Mg alloy for better corrosion resistance, biocompatibility and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Li J, Liu X, Feng Y, Yin J. Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101505] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Yin L, Gong K, Zhou K, Qian X, Shi C, Gui Z, Qian L. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin. J Colloid Interface Sci 2022; 608:853-863. [PMID: 34785460 DOI: 10.1016/j.jcis.2021.10.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/24/2023]
Abstract
In order to improve the fire safety of epoxy resin, ZIF-8 nanoparticle in-situ decorated boron nitride nanosheet (BN-OH/ZIF-8) is fabricated via self-assembly method and then ternary integrated BN-OH/ZIF-8/PA hybrids are prepared through the chemical etching effect of phytic acid. FTIR, XRD, XPS, TEM and TGA measurements are used to characterize the structure and morphology of the nanohybrids. The researches show that BN-OH/ZIF-8/PA not only uniformly distributed in EP matrix, but also improve the thermal stability of EP. The peak heat release rate, peak smoke production rate, total smoke production values, the fire growth index and peak CO production rate obtained from cone test are significantly decreased, demonstrating the reduction of the fire hazards of EP composites containing BN-OH/ZIF-8/PA. The nano barrier effect and catalytic activity of BN-OH/ZIF-8/PA may be conducive to suppress the release of combustible volatile products and heat, facilitate the formation of graphitized carbon layer, and protect matrix from flame damage. The ternary integrated method developed in this study explores a new way to improve the flame retardant properties of EP, thereby promoting its application range.
Collapse
Affiliation(s)
- Lian Yin
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China
| | - Kaili Gong
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China
| | - Keqing Zhou
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China; Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, PR China.
| | - Xiaodong Qian
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, PR China
| | - Congling Shi
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, PR China.
| | - Zhou Gui
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Lijun Qian
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, PR China; Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, PR China
| |
Collapse
|
50
|
Zheng X, Cong H, Yang T, Ji K, Wang C, Chen M. High-efficiency 2D nanosheet exfoliation by a solid suspension-improving method. NANOTECHNOLOGY 2022; 33:185602. [PMID: 35030544 DOI: 10.1088/1361-6528/ac4b7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials with mono or few layers have wide application prospects, including electronic, optoelectronic, and interface functional coatings in addition to energy conversion and storage applications. However, the exfoliation of such materials is still challenging due to their low yield, high cost, and poor ecological safety in preparation. Herein, a safe and efficient solid suspension-improving method was proposed to exfoliate hexagonal boron nitride nanosheets (hBNNSs) in a large yield. The method entails adding a permeation barrier layer in the solvothermal kettle, thus prolonging the contact time between the solvent and hexagonal boron nitride (hBN) nanosheet and improving the stripping efficiency without the need for mechanical agitation. In addition, the proposed method selectively utilizes a matching solvent that can reduce the stripping energy of the material and employs a high-temperature steam shearing process. Compared with other methods, the exfoliating yield ofhBNNSs is up to 42.3% at 150 °C for 12 h, and the strategy is applicable to other 2D materials. In application, the ionic conductivity of a PEO/hBNNSs composite electrolytes reached 2.18 × 10-4S cm-1at 60 °C. Overall, a versatile and effective method for stripping 2D materials in addition to a new safe energy management strategy were provided.
Collapse
Affiliation(s)
- Xuewen Zheng
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Haifeng Cong
- School of Chemical Engineering and Technology Tianjin University, Tianjin 300072, People's Republic of China
| | - Ting Yang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Kemeng Ji
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Chengyang Wang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Mingming Chen
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|