1
|
Turco E, Wu F, Catarina G, Krane N, Ma J, Fasel R, Feng X, Ruffieux P. Magnetic Excitations in Ferromagnetically Coupled Spin-1 Nanographenes. Angew Chem Int Ed Engl 2024:e202412353. [PMID: 39298142 DOI: 10.1002/anie.202412353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/07/2024]
Abstract
In the pursuit of high-spin building blocks for the formation of covalently bonded 1D or 2D materials with controlled magnetic interactions, π ${\pi }$ -electron magnetism offers an ideal framework to engineer ferromagnetic interactions between nanographenes. As a first step in this direction, we explore the spin properties of ferromagnetically coupled triangulenes-triangular nanographenes with spinS = 1 ${S = 1}$ . By combining in-solution synthesis of rationally designed molecular precursors with on-surface synthesis, we successfully achieve covalently bondedS = 2 ${S = 2}$ triangulene dimers andS = 3 ${S = 3}$ trimers on Au(111). Starting with the triangulene dimer, we meticulously characterize its low-energy magnetic excitations using inelastic electron tunneling spectroscopy (IETS). IETS reveals conductance steps corresponding to a quintet-to-triplet excitation, and a zero-bias peak resulting from higher-order spin-spin scattering of the five-fold degenerate ferromagnetic ground state. The Heisenberg model captures the key parameters of inter-triangulene ferromagnetic exchange, and its successful extension to the largerS = 3 ${S = 3}$ system validates the model's accuracy. We anticipate that incorporating ferromagnetically coupled building blocks into the repertoire of magnetic nanographenes will unlock new possibilities for designing carbon nanomaterials with complex magnetic ground states.
Collapse
Affiliation(s)
- Elia Turco
- Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Fupeng Wu
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Gonçalo Catarina
- Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Nils Krane
- Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Ji Ma
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Roman Fasel
- Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Pascal Ruffieux
- Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
2
|
Wäckerlin C, Cahlík A, Goikoetxea J, Stetsovych O, Medvedeva D, Redondo J, Švec M, Delley B, Ondráček M, Pinar A, Blanco-Rey M, Kolorenč J, Arnau A, Jelínek P. Role of the Magnetic Anisotropy in Atomic-Spin Sensing of 1D Molecular Chains. ACS NANO 2022; 16:16402-16413. [PMID: 36200735 DOI: 10.1021/acsnano.2c05609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
One-dimensional metal-organic chains often possess a complex magnetic structure susceptible to modification by alteration of their chemical composition. The possibility to tune their magnetic properties provides an interesting playground to explore quasi-particle interactions in low-dimensional systems. Despite the great effort invested so far, a detailed understanding of the interactions governing the electronic and magnetic properties of the low-dimensional systems is still incomplete. One of the reasons is the limited ability to characterize their magnetic properties at the atomic scale. Here, we provide a comprehensive study of the magnetic properties of metal-organic one-dimensional (1D) coordination polymers consisting of 2,5-diamino-1,4-benzoquinonediimine ligands coordinated with Co or Cr atoms synthesized under ultrahigh-vacuum conditions on a Au(111) surface. A combination of integral X-ray spectroscopy with local-probe inelastic electron tunneling spectroscopy corroborated by multiplet analysis, density functional theory, and inelastic electron tunneling simulations enables us to obtain essential information about their magnetic structures, including the spin magnitude and orientation at the magnetic atoms, as well as the magnetic anisotropy.
Collapse
Affiliation(s)
- Christian Wäckerlin
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
- Surface Science and Coating Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Aleš Cahlík
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
| | - Joseba Goikoetxea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Oleksandr Stetsovych
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
| | - Daria Medvedeva
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague, Czech Republic
| | - Jesús Redondo
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
| | - Martin Švec
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
| | - Bernard Delley
- Condensed Matter Theory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Martin Ondráček
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
| | - Andres Pinar
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Maria Blanco-Rey
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química, UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018 Donostia-San Sebastián, Spain
| | - Jindřich Kolorenč
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague, Czech Republic
| | - Andrés Arnau
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química, UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018 Donostia-San Sebastián, Spain
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech Republic
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Kuhness D, Pal J, Yang HJ, Mammen N, Honkala K, Häkkinen H, Schneider WD, Heyde M, Freund HJ. Binding Behavior of Carbonmonoxide to Gold Atoms on Ag(001). Top Catal 2020. [DOI: 10.1007/s11244-020-01290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe adsorption behavior of single CO molecules at 4 K bound to Au adatoms on a Ag(001) metal surface is studied with scanning tunneling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). In contrast to earlier observations two different binding configurations are observed—one on top of a Au adatom and the other one adsorbed laterally to Au on Ag(001). Moreover, IETS reveals different low-energy vibrational energies for the two binding sites as compared to the one for a single CO molecule bound to Ag(001). Density functional theory (DFT) calculations of the adsorption energies, the diffusion barriers, and the vibrational frequencies of the CO molecule on the different binding sites rationalize the experimental findings.
Collapse
|
4
|
Michnowicz T, Borca B, Pétuya R, Schendel V, Pristl M, Pentegov I, Kraft U, Klauk H, Wahl P, Mutombo P, Jelínek P, Arnau A, Schlickum U, Kern K. Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units. Angew Chem Int Ed Engl 2020; 59:6207-6212. [PMID: 31965698 PMCID: PMC7187382 DOI: 10.1002/anie.201915200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/04/2020] [Indexed: 11/09/2022]
Abstract
Among the prerequisites for the progress of single-molecule-based electronic devices are a better understanding of the electronic properties at the individual molecular level and the development of methods to tune the charge transport through molecular junctions. Scanning tunneling microscopy (STM) is an ideal tool not only for the characterization, but also for the manipulation of single atoms and molecules on surfaces. The conductance through a single molecule can be measured by contacting the molecule with atomic precision and forming a molecular bridge between the metallic STM tip electrode and the metallic surface electrode. The parameters affecting the conductance are mainly related to their electronic structure and to the coupling to the metallic electrodes. Here, the experimental and theoretical analyses are focused on single tetracenothiophene molecules and demonstrate that an in situ-induced direct desulfurization reaction of the thiophene moiety strongly improves the molecular anchoring by forming covalent bonds between molecular carbon and copper surface atoms. This bond formation leads to an increase of the conductance by about 50 % compared to the initial state.
Collapse
Affiliation(s)
- Tomasz Michnowicz
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
| | - Bogdana Borca
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
- National Institute of Materials PhysicsAtomistilor Strasse, No. 405A077125MagureleRomania
- Present address: Institute of Applied PhysicsTechnische Universität BraunschweigMendelssohnstrasse 238106BraunschweigGermany
| | - Rémi Pétuya
- Institution: Donostia International Physics CentrePaseo Manuel de Lardizabal 420018Donostia—San SebastiánSpain
- Present address: University of LiverpoolDepartment of ChemistryCrown StreetLiverpoolL69 7ZDUK
| | - Verena Schendel
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
| | - Marcel Pristl
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
| | - Ivan Pentegov
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
| | - Ulrike Kraft
- Department of Organic ElectronicsMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
- Present address: University of CambridgeCavendish LaboratoryJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Hagen Klauk
- Department of Organic ElectronicsMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
| | - Peter Wahl
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
- SUPASchool of Physics and AstronomyUniversity of St AndrewsNorth HaughSt AndrewsKY16 9SSUK
| | - Pingo Mutombo
- Nanosurf LabInstitute of Physics of the Czech Academy of ScienceCukrovarnicka 1016253Praha 6Czech Republic
| | - Pavel Jelínek
- Nanosurf LabInstitute of Physics of the Czech Academy of ScienceCukrovarnicka 1016253Praha 6Czech Republic
| | - Andrés Arnau
- Institution: Donostia International Physics CentrePaseo Manuel de Lardizabal 420018Donostia—San SebastiánSpain
- UPV/EHU and Material Physics Center (MPC)Centro Mixto CSIC-UPV/EHUPaseo Manuel de Lardizabal 520018Donostia—San SebastiánSpain
| | - Uta Schlickum
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
- Institute of Applied PhysicsTechnische Universität BraunschweigMendelssohnstraße 238106BraunschweigGermany
| | - Klaus Kern
- Department of Nanoscale ScienceMax Planck Institute for Solid State ResearchHeisenbergstrasse 170569StuttgartGermany
- Institut de PhysiqueÉcole Polytechnique Fédérale de Lausanne (EPFL)EPFL SB IPHYS-Direction Bâtiment PH, Station 31015LausanneSwitzerland
| |
Collapse
|
5
|
Michnowicz T, Borca B, Pétuya R, Schendel V, Pristl M, Pentegov I, Kraft U, Klauk H, Wahl P, Mutombo P, Jelínek P, Arnau A, Schlickum U, Kern K. Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomasz Michnowicz
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
| | - Bogdana Borca
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
- National Institute of Materials Physics Atomistilor Strasse, No. 405A 077125 Magurele Romania
- Present address: Institute of Applied PhysicsTechnische Universität Braunschweig Mendelssohnstrasse 2 38106 Braunschweig Germany
| | - Rémi Pétuya
- Institution: Donostia International Physics Centre Paseo Manuel de Lardizabal 4 20018 Donostia—San Sebastián Spain
- Present address: University of LiverpoolDepartment of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Verena Schendel
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
| | - Marcel Pristl
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
| | - Ivan Pentegov
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
| | - Ulrike Kraft
- Department of Organic ElectronicsMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
- Present address: University of CambridgeCavendish Laboratory J J Thomson Avenue Cambridge CB3 0HE UK
| | - Hagen Klauk
- Department of Organic ElectronicsMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
| | - Peter Wahl
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
- SUPASchool of Physics and AstronomyUniversity of St Andrews North Haugh St Andrews KY16 9SS UK
| | - Pingo Mutombo
- Nanosurf LabInstitute of Physics of the Czech Academy of Science Cukrovarnicka 10 16253 Praha 6 Czech Republic
| | - Pavel Jelínek
- Nanosurf LabInstitute of Physics of the Czech Academy of Science Cukrovarnicka 10 16253 Praha 6 Czech Republic
| | - Andrés Arnau
- Institution: Donostia International Physics Centre Paseo Manuel de Lardizabal 4 20018 Donostia—San Sebastián Spain
- UPV/EHU and Material Physics Center (MPC)Centro Mixto CSIC-UPV/EHU Paseo Manuel de Lardizabal 5 20018 Donostia—San Sebastián Spain
| | - Uta Schlickum
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
- Institute of Applied PhysicsTechnische Universität Braunschweig Mendelssohnstraße 2 38106 Braunschweig Germany
| | - Klaus Kern
- Department of Nanoscale ScienceMax Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
- Institut de PhysiqueÉcole Polytechnique Fédérale de Lausanne (EPFL) EPFL SB IPHYS-Direction Bâtiment PH, Station 3 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Bachellier N, Verlhac B, Garnier L, Zaldívar J, Rubio-Verdú C, Abufager P, Ormaza M, Choi DJ, Bocquet ML, Pascual JI, Lorente N, Limot L. Vibron-assisted spin excitation in a magnetically anisotropic molecule. Nat Commun 2020; 11:1619. [PMID: 32238814 PMCID: PMC7113279 DOI: 10.1038/s41467-020-15266-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
The electrical control and readout of molecular spin states are key for high-density storage. Expectations are that electrically-driven spin and vibrational excitations in a molecule should give rise to new conductance features in the presence of magnetic anisotropy, offering alternative routes to study and, ultimately, manipulate molecular magnetism. Here, we use inelastic electron tunneling spectroscopy to promote and detect the excited spin states of a prototypical molecule with magnetic anisotropy. We demonstrate the existence of a vibron-assisted spin excitation that can exceed in energy and in amplitude a simple excitation among spin states. This excitation, which can be quenched by structural changes in the magnetic molecule, is explained using first-principles calculations that include dynamical electronic correlations.
Collapse
Affiliation(s)
- N Bachellier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - B Verlhac
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| | - L Garnier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - J Zaldívar
- CIC nanoGUNE, 20018, Donostia-San Sebastián, Spain
| | | | - P Abufager
- Instituto de Física de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Av. Pellegrini 250 (2000), Rosario, Argentina
| | - M Ormaza
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
- Universidad del País Vasco, Dpto. Física Aplicada I, 20018, Donostia-San Sebastián, Spain
| | - D-J Choi
- Centro de Física de Materiales (CFM MPC) CSIC-EHU, 20018, Donostia-San San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - M-L Bocquet
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Universités, CNRS, 24 Rue Lhomond, 75005, Paris, France
| | - J I Pascual
- CIC nanoGUNE, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - N Lorente
- Centro de Física de Materiales (CFM MPC) CSIC-EHU, 20018, Donostia-San San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - L Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| |
Collapse
|
7
|
Li J, Xu Q, Sun L, Xu J, Hao D, Tang X, Shan X, Meng S, Lu X. Rotational and Vibrational Excitations of a Single Water Molecule by Inelastic Electron Tunneling Spectroscopy. J Phys Chem Lett 2020; 11:1650-1655. [PMID: 32039599 DOI: 10.1021/acs.jpclett.0c00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two low-energy excitations of a single water molecule are observed via inelastic electron tunneling spectroscopy, where a significant enhancement is achieved by attaching the molecule to the tip apex in a scanning tunneling microscope. Density functional theory simulations and quantum mechanical calculations of an asymmetric top are carried out to reveal the origin of both excitations. Variations in tunneling junction separation give rise to the quantum confinement effect on the quantum state of a water molecule in the tunneling junction. Our results demonstrate a potential method for measuring the dynamic behavior of a single molecule confined in a tunneling junction, where the molecule-substrate interaction can be purposely tuned.
Collapse
Affiliation(s)
- Jianmei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuhao Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lihuan Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiyu Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Hao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangqian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan, Guangdong 523000, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Topological Quantum Computation, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan, Guangdong 523000, China
| |
Collapse
|
8
|
Peronio A, Okabayashi N, Griesbeck F, Giessibl F. Radio frequency filter for an enhanced resolution of inelastic electron tunneling spectroscopy in a combined scanning tunneling- and atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123104. [PMID: 31893785 DOI: 10.1063/1.5119888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The combination of inelastic electron tunneling spectroscopy (IETS), also used for IET spectrum based on scanning tunneling microscopy with atomic force microscopy (AFM) enables us to measure the vibrational energies of a single molecule along with the force exerted by the tip of a microscope, which deepens our understanding on the interaction between the tip and the molecule on a surface. The resolution of IETS is a crucial factor in determining the vibrational energies of a molecule. However, radio frequency (RF) noise from the environment significantly deteriorates the resolution. We introduce an RF noise filtering technique, which enables high resolution IETS while maintaining uncompromised AFM performance, demonstrated by vibrational measurements of a CO molecule on a copper surface.
Collapse
Affiliation(s)
- Angelo Peronio
- Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
| | - Norio Okabayashi
- Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Ishikawa, Japan
| | - Florian Griesbeck
- Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
| | - Franz Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
9
|
Nazriq NKM, Minamitani E, Yamada TK. CO-tip manipulation using repulsive interactions. NANOTECHNOLOGY 2018; 29:495701. [PMID: 30207541 DOI: 10.1088/1361-6528/aae0df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the interactions between a tip apex and a target atom or molecule is crucial for the manipulation of individual molecules with precise control by using scanning tunnelling microscopy (STM) and atomic force microscopy. Herein, we demonstrate the manipulation of target CO molecules on a Cu(111) substrate using a CO-functionalized W tip with atomic-scale accuracy. All experiments were performed in a home-built ultra-high vacuum STM system at 5 K. The CO-tip was fabricated by picking up a single CO molecule from a Cu(111) surface. In contrast to a metal tip, repulsive interactions occur between the CO-tip and the target CO molecule. This repulsive interaction promises perfect lateral hopping without any vertical hopping. Hopping events were directly monitored as sudden current drops in the simultaneously measured I-z curves. A larger barrier height between the CO-tip and the target CO (∼9.5 eV) was found from the slope of the I-z curve, which decreases the electron tunnelling probability between the tip and sample. Therefore, electron-driven manipulation cannot be a major trigger for the CO-CO repulsive manipulation. The CO-tip is able to manipulate only the target CO molecule, even when another CO molecule was located ∼0.5 nm away. Statistical measurements revealed that the nearest neighbour atop site is the energetically stable position after hopping. However, if the CO target has another CO molecule in a neighbouring position (denoted as a 'pair'), the target CO hops more than twice as far. This means that the CO-tip experiences a larger repulsive interaction from the pair. These observations of CO-tip manipulation are useful for the design of two-dimensional artificial molecular networks as well as for developing a better understanding of catalytic oxidation processes.
Collapse
Affiliation(s)
- Nana K M Nazriq
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | |
Collapse
|
10
|
Tsuji Y, Yoshizawa K. Effects of electron-phonon coupling on quantum interference in polyenes. J Chem Phys 2018; 149:134115. [DOI: 10.1063/1.5048955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Abstract
The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.
Collapse
|
12
|
Jelínek P. High resolution SPM imaging of organic molecules with functionalized tips. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:343002. [PMID: 28749786 DOI: 10.1088/1361-648x/aa76c7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
One of the most remarkable and exciting achievements in the field of scanning probe microscopy (SPM) in the last years is the unprecedented sub-molecular resolution of both atomic and electronic structures of single molecules deposited on solid state surfaces. Despite its youth, the technique has already brought many new possibilities to perform different kinds of measurements, which cannot be accomplished by other techniques. This opens new perspectives in advanced characterization of physical and chemical processes and properties of molecular structures on surfaces. Here, we discuss the history and recent progress of the high resolution imaging with a functionalized probe by means of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). We describe the mechanisms responsible for the high-resolution AFM, STM and IETS-STM contrast. The complexity of this technique requires new theoretical approaches, where a relaxation of the functionalized probe is considered. We emphasise the similarities of the mechanism driving high-resolution SPM with other imaging methods. We also summarise briefly significant achievements and progress in different branches. Finally we provide brief perspectives and remaining challenges of the further refinement of these high-resolution methods.
Collapse
Affiliation(s)
- Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| |
Collapse
|
13
|
Hu W, Duan S, Zhang Y, Ren H, Jiang J, Luo Y. Identifying the structure of 4-chlorophenyl isocyanide adsorbed on Au(111) and Pt(111) surfaces by first-principles simulations of Raman spectra. Phys Chem Chem Phys 2017; 19:32389-32397. [DOI: 10.1039/c7cp06329f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high-precision Raman simulation method is developed. Using this method, we reveal that 4-chlorophenyl isocyanide prefers to adsorb on the top site of Au(111) with a vertical configuration, but with a bent configuration on the hollow site of Pt(111).
Collapse
Affiliation(s)
- Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei 230026
| | - Sai Duan
- Department of Theoretical Chemistry and Biology
- School of Biotechnology, Royal Institute of Technology
- S-106 91 Stockholm
- Sweden
| | - Yujin Zhang
- School of Science
- Qilu University of Technology
- Jinan 250353
- P. R. China
| | - Hao Ren
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei 230026
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
14
|
Xu C, Chiang CL, Han Z, Ho W. Nature of Asymmetry in the Vibrational Line Shape of Single-Molecule Inelastic Electron Tunneling Spectroscopy with the STM. PHYSICAL REVIEW LETTERS 2016; 116:166101. [PMID: 27152811 DOI: 10.1103/physrevlett.116.166101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Single molecule vibrational spectroscopy and microscopy was demonstrated in 1998 by inelastic electron tunneling with the scanning tunneling microscope. To date, the discussion of its application has mainly focused on the spatial resolution and the spectral energy and intensity. Here we report on the vibrational line shape for a single carbon monoxide molecule that qualitatively exhibits inversion symmetry when it is transferred from the surface to the tip. The dependence of the line shape on the molecule's asymmetric couplings in the tunnel junction can be understood from theoretical simulation and further validates the mechanisms of inelastic electron tunneling.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - Chi-Lun Chiang
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - Zhumin Han
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
15
|
Jiang Z, Wang H, Sanvito S, Hou S. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface. J Chem Phys 2015; 143:234709. [PMID: 26696072 DOI: 10.1063/1.4938087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.
Collapse
Affiliation(s)
- Zhuoling Jiang
- Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Hao Wang
- Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Stefano Sanvito
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Shimin Hou
- Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Hu W, Tian G, Duan S, Lin LL, Ma Y, Luo Y. Vibrational identification for conformations of trans-1,2-bis (4-pyridyl) ethylene in gold molecular junctions. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Inelastic electron tunneling through degenerate and nondegenerate ground state polymeric junctions. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Schwarz F, Lörtscher E. Break-junctions for investigating transport at the molecular scale. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:474201. [PMID: 25352355 DOI: 10.1088/0953-8984/26/47/474201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Break-junctions (BJs) enable a pair of atomic-sized electrodes to be created and the relative position between them to be controlled with sub-nanometer accuracy by mechanical means-a level of microscopic control that is not yet achievable by top-down fabrication. Locally, a BJ consists of a single-atom contact, an arrangement that is ideal not only to study various types of quantum point contacts, but also to investigate transport through an individual molecule that can bridge such a junction. In this topical review, we will provide a broad overview on the field of single-molecule electronics, in which BJs serve as the main tool of investigation. To correlate the molecular structure and transport properties to gain a fundamental understanding of the underlying transport mechanisms at the molecular scale, basic experiments that systematically cover all aspects of transport by rational chemical design and tailored experiments are needed. The variety of fascinating transport mechanisms and intrinsic molecular functionalities discovered in the past range from nonlinear transport over conductance switching to quantum interference effects observable even at room temperature. Beside discussing these results, we also look at novel directions and the most recent advances in molecular electronics investigating simultaneously electronic transport and also the mechanical and thermal properties of single-molecule junctions as well as the interaction between molecules and light. Finally, we will describe the requirements for a stepwise transition from fundamental BJ experiments towards technology-relevant architectures for future nanoelectronics applications based on ultimately-scaled molecular building blocks.
Collapse
Affiliation(s)
- Florian Schwarz
- IBM Research-Zurich, Department of Science and Technology, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | | |
Collapse
|
19
|
Franke KJ, Pascual JI. Effects of electron-vibration coupling in transport through single molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:394002. [PMID: 22964796 DOI: 10.1088/0953-8984/24/39/394002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using scanning tunneling spectroscopy, we study the transport of electrons through C(60) molecules on different metal surfaces. When electrons tunnel through a molecule, they may excite molecular vibrations. A fingerprint of these processes is a characteristic sub-structure in the differential conductance spectra of the molecular junction reflecting the onset of vibrational excitation. Although the intensity of these processes is generally weak, they become more important as the resonant character of the transport mechanism increases. The detection of single vibrational levels crucially depends on the energy level alignment and lifetimes of excited states. In the limit of large current densities, resonant electron-vibration coupling leads to an energy accumulation in the molecule, which eventually leads to its decomposition. With our experiments on C(60) we are able to depict a molecular scale picture of how electrons interact with the vibrational degrees of freedom of single molecules in different transport regimes. This understanding helps in the development of stable molecular devices, which may also carry a switchable functionality.
Collapse
Affiliation(s)
- Katharina J Franke
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | |
Collapse
|
20
|
Dash LK, Ness H, Verstraete MJ, Godby RW. Functionality in single-molecule devices: Model calculations and applications of the inelastic electron tunneling signal in molecular junctions. J Chem Phys 2012; 136:064708. [DOI: 10.1063/1.3684627] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
21
|
Lin LL, Wang CK, Luo Y. Inelastic electron tunneling spectroscopy of gold-benzenedithiol-gold junctions: accurate determination of molecular conformation. ACS NANO 2011; 5:2257-63. [PMID: 21309567 DOI: 10.1021/nn103522k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gold-benzenedithiol-gold junction is the classic prototype of molecular electronics. However, even with the similar experimental setup, it has been difficult to reproduce the measured results because of the lack of basic information about the molecular confirmation inside the junction. We have performed systematic first principles study on the inelastic electron tunneling spectroscopy of this classic junction. By comparing the calculated spectra with four different experimental results, the most possible conformations of the molecule under different experimental conditions have been successfully determined. The relationship between the contact configuration and the resulted spectra is revealed. It demonstrates again that one should always combine the theoretical and experimental inelastic electron tunneling spectra to determine the molecular conformation in a junction. Our simulations have also suggested that in terms of the reproducibility and stability, the electromigrated nanogap technique is much better than the mechanically controllable break junction technique.
Collapse
Affiliation(s)
- Li-Li Lin
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | | | | |
Collapse
|