1
|
Poonia N, Kumar V, Subudhi RN, Dalabehera M, Setia A, Bora KS, Arora V. Iron oxide nanoparticles: a versatile nanoplatform for the treatment and diagnosis of ovarian cancer. Ther Deliv 2025; 16:379-392. [PMID: 39722582 DOI: 10.1080/20415990.2024.2442301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Ovarian cancer remains one of the main causes of human mortality, accounting for millions of deaths every year. Despite of several clinical options such as chemotherapy, photodynamic therapy (PDT), hormonal treatment, radiation therapy, and surgery to manage this disease, the mortality rate is still very high. This alarming statistic highlights the urgent need for innovative approaches to improve both diagnosis and treatment. Success stories of iron oxide nanoparticles, i.e. Ferucarbotran (Resovist®) and Ferrixan (Cliavist®) for liver imaging, CNS (Central nervous system) imaging, cell labeling, etc. have motivated researchers to explore these nanocarriers for treatment and diagnosis of different diseases. Iron oxide nanoparticles have improved the therapeutic efficacy of anticancer drugs through targeted delivery, heat/ROS (reactive oxygen species) generation on application of external energy and have also shown great potential as contrast agents for magnetic resonance imaging (MRI). Their unique magnetic properties enable sensitive imaging, and surface modification allows the attachment of specific biomolecules for targeted detection of ovarian cancer cells. Their unique properties, viz. magnetic responsiveness and surface functionalization, make them versatile tools for enhancing both imaging and therapeutic outcomes. Present article reviews the literature on the synthesis, functionalization, and applications of iron oxide nanoparticles in management of ovarian cancer.
Collapse
Affiliation(s)
- Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vipan Kumar
- Department of Pharmaceutical Chemistry, Swami Vivekanand College of Pharmacy, Rajpura, India
| | | | - Manoj Dalabehera
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Anupama Setia
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa, India
| | - Kundan Singh Bora
- Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
2
|
Dănilă AI, Romînu M, Munteanu K, Moacă EA, Geamantan-Sîrbu A, Olariu I, Marian D, Olariu T, Talpoş-Niculescu IC, Cosoroabă RM, Popovici R, Dinu Ş. Development of Solid Nanosystem for Delivery of Chlorhexidine with Increased Antimicrobial Activity and Decreased Cytotoxicity: Characterization and In Vitro and In Ovo Toxicological Screening. Molecules 2025; 30:162. [PMID: 39795218 PMCID: PMC11721946 DOI: 10.3390/molecules30010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells. After the characterization of the CHX-NPS nanosystem through infrared spectroscopy and electronic microscopy, the in vitro results showed that the CHX antimicrobial efficacy was enhanced when delivered through a nanoscale system, with improved bioavailability and reduced toxicity when this was tested as the newly CHX-NPS nanosystem. The in ovo screening exhibited that the CHX-NPS nanosystem did not cause any sign of irritation on the chorioallantoic membrane vasculature and was classified as a non-irritant substance. Despite this, future research should focus on optimizing this type of nanosystem and conducting comprehensive in vivo studies to validate its therapeutic efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Alexandra-Ioana Dănilă
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.D.); (K.M.)
| | - Mihai Romînu
- Research Center of Digital and Advanced Technique for Endodontic, Restorative and Prosthetic Treatment (TADERP), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Krisztina Munteanu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.D.); (K.M.)
| | - Elena-Alina Moacă
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation (FARMTOX), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andreea Geamantan-Sîrbu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation (FARMTOX), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iustin Olariu
- Faculty of Dental Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Diana Marian
- Faculty of Dental Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Teodora Olariu
- Faculty of Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Ioana-Cristina Talpoş-Niculescu
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Raluca Mioara Cosoroabă
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Ramona Popovici
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Ştefania Dinu
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
- Pediatric Dentistry Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Naikwadi N, Paul M, Biswas S, Chitlange S, Wavhale R. Self-propelling, protein-bound magnetic nanobots for efficient in vitro drug delivery in triple negative breast cancer cells. Sci Rep 2024; 14:31547. [PMID: 39733210 PMCID: PMC11682353 DOI: 10.1038/s41598-024-83393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported. The self-propulsion of magnetic nanobots occurs due to a catalytic interaction between Fe3O4 nanoparticles and hydrogen peroxide. This interaction results in generation of O2 bubbles and high-speed propulsion in blood serum. Cell entry kinetic studies confirmed higher internalization of the drug into TNBC cells with Fe-GSH-Protein-Dox nanobots, resulting in a lower observed IC50 and higher potential to kill cancer cells compared to free doxorubicin. Moreover, fluorescence imaging studies confirmed an increase in the production of reactive oxygen species, leading to maximum cellular damage. Endocytosis studies elucidate the mechanism of cellular internalization, revealing clathrin-mediated endocytosis, while the cell cycle study demonstrates significant cell cycle arrest in the G2-M phase. Thus, the designed protein-conjugated self-propelling magnetic nanobots have the potential to develop into a novel drug delivery platform for clinical applications.
Collapse
Affiliation(s)
- Neha Naikwadi
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology &, Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology &, Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, Telangana, India.
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Ravindra Wavhale
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
| |
Collapse
|
4
|
Salimi M, Kuddannaya S, Bulte JWM. Pharmacokinetic Profiling of Unlabeled Magnetic Nanoparticles Using Magnetic Particle Imaging as a Novel Cold Tracer Assay. NANO LETTERS 2024; 24:15557-15564. [PMID: 39591368 PMCID: PMC11646110 DOI: 10.1021/acs.nanolett.4c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
We present a magnetic particle imaging (MPI)-based assay for calculating the blood half-life and tissue uptake of magnetic nanoparticles (MNPs) without the need of labeling them. Dual-catheterized rats received 2.0 mg Fe of Synomag®-D70, Synomag®-D50, ferucarbotran, and Feraheme® by femoral vein injection. The MPI signal of blood samples drawn from the femoral artery at various time points was then measured. Synomag®-D70 exhibited biexponential clearance with half-lives of 3.2 and 31.2 min, Synomag®-D50 a monoexponential clearance (t1/2 = 11.4 min), ferucarbotran a biexponential clearance (t1/2 = 2.4 and 10.8 min), and Feraheme® a biexponential clearance (t1/2 = 60.9 and 4.5 min). MPI of perfused tissues showed MNPs primarily localizing in the spleen, liver, and lymph nodes. Spectrophotometric/chemical iron detection proved unreliable due to residual iron from endogenous blood. The MPI assay is a sensitive and specific method for evaluating the pharmacokinetics of existing MNP formulations and those in the pipeline, with exquisite sensitivity for ultrashort half-lives.
Collapse
Affiliation(s)
- Marzieh Salimi
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research and Cellular Imaging Section and Vascular Biology Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Shreyas Kuddannaya
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research and Cellular Imaging Section and Vascular Biology Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Department of Biomedical Engineering, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States; Department of Chemical & Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland 21218, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
Weng Y, Yuan X, Fan S, Duan W, Tan Y, Zhou R, Wu J, Shen Y, Zhang Z, Xu H. 3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair. ACS OMEGA 2024; 9:26097-26111. [PMID: 38911726 PMCID: PMC11190930 DOI: 10.1021/acsomega.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
The treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold's physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold's significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold's exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
Collapse
Affiliation(s)
- Yiping Weng
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Xiuchen Yuan
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Shijie Fan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Weihao Duan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yadong Tan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Ruikai Zhou
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Jingbin Wu
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yifei Shen
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Zhonghua Zhang
- Changzhou
Economic Development District Hengshanqiao People’s Hospital, Changzhou 213003, China
| | - Hua Xu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Zhang L, Li C. Eco-friendly green synthesis of N‑pyrazole amino chitosan using PEG-400 as an anticancer agent against gastric cancer cells via inhibiting EGFR. In Vitro Cell Dev Biol Anim 2024; 60:365-373. [PMID: 38564118 DOI: 10.1007/s11626-024-00890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
The present study was conducted to develop a green process that provides access to the development of Schiff base derivatives of chitosan with the heterocyclic moiety as a novel class of anti-gastric cancer agent. In the present study, we have synthesized these derivatives by reacting various pyrazoles with chitosan using CAN in PEG400. The compounds were synthesized in 20 min in excellent yield by using CAN at 5% in PEG400 at 80°C in the shortest reaction time of 20 min. The PEG400 could be efficiently recycled for the three consecutive runs. The developed compounds were tested for EGFR-TK inhibition using a Kinase-Glo Plus luminescence kinase assay kit where they exhibited significant activity revealing compound 2d as the most potent analog, while other compounds showed mild to moderate inhibitory activity. MTT assay was conducted to determine the effect of the three most potent EGFR inhibitors (2b, 2c, and 2d) on the proliferation of gastric cancer cells (SGC-7901). The results showed compound 2d as the most potent anticancer agent against SGC7901 cells. The effect of compound 2d was also quantified on the apoptosis and cell phase of SGC7901 cells using flow cytometry assay at various concentrations ranging from 0, 10, 20, and 30 µM. Results suggest that compound 2d showed significant inhibition of SGC-7901 by inducing apoptosis and arresting G0/G1 cell phase. The western blot analysis also revealed that compound 2d significantly inhibited the overexpression of EGFR in SGC-7901 cells. The study successfully demonstrated the development of N‑pyrazole amino chitosan as a novel class of agent against gastric cancer via inhibition of EGFR.
Collapse
Affiliation(s)
- Limin Zhang
- Department of Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150081, China
| | - Chunfeng Li
- Department of Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150081, China.
| |
Collapse
|
7
|
Nasaj M, Farmany A, Shokoohizadeh L, Jalilian FA, Mahjoub R, Roshanaei G, Nourian A, Shayesteh OH, Arabestani M. Vancomycin and nisin-modified magnetic Fe 3O 4@SiO 2 nanostructures coated with chitosan to enhance antibacterial efficiency against methicillin resistant Staphylococcus aureus (MRSA) infection in a murine superficial wound model. BMC Chem 2024; 18:43. [PMID: 38395982 PMCID: PMC10893753 DOI: 10.1186/s13065-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The objective of this research was to prepare some Fe3O4@SiO2@Chitosan (CS) magnetic nanocomposites coupled with nisin, and vancomycin to evaluate their antibacterial efficacy under both in vitro and in vivo against the methicillin-resistant Staphylococcus. aureus (MRSA). METHODS In this survey, the Fe3O4@SiO2 magnetic nanoparticles (MNPs) were constructed as a core and covered the surface of MNPs via crosslinking CS by glutaraldehyde as a shell, then functionalized with vancomycin and nisin to enhance the inhibitory effects of nanoparticles (NPs). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) techniques were then used to describe the nanostructures. RESULTS Based on the XRD, and FE-SEM findings, the average size of the modified magnetic nanomaterials were estimated to be around 22-35 nm, and 34-47 nm, respectively. The vancomycin was conjugated in three polymer-drug ratios; 1:1, 2:1 and 3:1, with the percentages of 45.52%, 35.68%, and 24.4%, respectively. The polymer/drug ratio of 1:1 exhibited the slowest release rate of vancomycin from the Fe3O4@SiO2@CS-VANCO nanocomposites during 24 h, which was selected to examine their antimicrobial effects under in vivo conditions. The nisin was grafted onto the nanocomposites at around 73.2-87.2%. All the compounds resulted in a marked reduction in the bacterial burden (P-value < 0.05). CONCLUSION The vancomycin-functionalized nanocomposites exhibited to be more efficient in eradicating the bacterial cells both in vitro and in vivo. These findings introduce a novel bacteriocin-metallic nanocomposite that can suppress the normal bacterial function on demand for the treatment of MRSA skin infections.
Collapse
Affiliation(s)
- Mona Nasaj
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Farid Aziz Jalilian
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Reza Mahjoub
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Omid Heydari Shayesteh
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Mohammadreza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
| |
Collapse
|
8
|
Zhang L, Wang Z, Zhang R, Yang H, Wang WJ, Zhao Y, He W, Qiu Z, Wang D, Xiong Y, Zhao Z, Tang BZ. Multi-Stimuli-Responsive and Cell Membrane Camouflaged Aggregation-Induced Emission Nanogels for Precise Chemo-photothermal Synergistic Therapy of Tumors. ACS NANO 2023; 17:25205-25221. [PMID: 38091262 DOI: 10.1021/acsnano.3c08409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Targeted and controllable drug release at lesion sites with the aid of visual navigation in real-time is of great significance for precise theranostics of cancers. Benefiting from the marvelous features (e.g., bright emission and phototheranostic effects in aggregates) of aggregation-induced emission (AIE) materials, constructing AIE-based multifunctional nanocarriers that act as all-arounders to integrate multimodalities for precise theranostics is highly desirable. Here, an intelligent nanoplatform (P-TN-Dox@CM) with homologous targeting, controllable drug release, and in vivo dual-modal imaging for precise chemo-photothermal synergistic therapy is proposed. AIE photothermic agent (TN) and anticancer drug (Dox) are encapsulated in thermo-/pH-responsive nanogels (PNA), and the tumor cell membranes are camouflaged onto the surface of nanogels. Active targeting can be realized through homologous effects derived from source tumor cell membranes, which advantageously elevates the specific drug delivery to tumor sites. After being engulfed into tumor cells, the nanogels exhibit a burst drug release at low pH. The near-infrared (NIR) photoinduced local hyperthermia can activate severe cytotoxicity and further accelerate drug release, thus generating enhanced synergistic chemo-photothermal therapy to thoroughly eradicate tumors. Moreover, P-TN-Dox@CM nanogels could achieve NIR-fluorescence/photothermal dual-modal imaging to monitor the dynamic distribution of therapeutics in real-time. This work highlights the great potential of smart P-TN-Dox@CM nanogels as a versatile nanoplatform to integrate multimodalities for precise chemo-photothermal synergistic therapy in combating cancers.
Collapse
Affiliation(s)
- Liping Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Rongyuan Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Han Yang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Wen-Jin Wang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Yun Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zijie Qiu
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zheng Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong 518057, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
9
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Priyadarshini B, Stango AX, Balasubramanian M, Vijayalakshmi U. In situ fabrication of cerium-incorporated hydroxyapatite/magnetite nanocomposite coatings with bone regeneration and osteosarcoma potential. NANOSCALE ADVANCES 2023; 5:5054-5076. [PMID: 37705779 PMCID: PMC10496897 DOI: 10.1039/d3na00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023]
Abstract
With the ultimate goal of providing a novel platform able to inhibit bacterial adhesion, biofilm formation, and anticancer properties, cerium-doped hydroxyapatite films enhanced with magnetite were developed via spin-coating. The unique aspect of the current study is the potential for creating cerium-doped hydroxyapatite/Fe3O4 coatings on a titanium support to enhance the functionality of bone implants. To assure an increase in the bioactivity of the titanium surface, alkali pretreatment was done before deposition of the apatite layer. Scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) analysis, and Fourier transform-infrared (FTIR) spectroscopy were used to evaluate coatings. Coatings demonstrated good efficacy against Staphylococcus aureus and Escherichia coli, with the latter showing the highest efficacy. In vitro bioactivity in simulated body fluid solution showed this material to be proficient for bone-like apatite formation on the implant surface. Electrochemical impedance spectroscopy was undertaken on intact coatings to examine the barrier properties of composites. We found that spin-coating at 4000 rpm could greatly increase the total resistance. After seeding with osteoblastic populations, Ce-HAP/Fe3O4 materials the adhesion and proliferation of cells. The heating capacity of the Ce-HAP/Fe3O4 film was optimal at 45 °C at 15 s at a frequency of 318 kHz. Osseointegration depends on many more parameters than hydroxyapatite production, so these coatings have significant potential for use in bone healing and bone-cancer therapy.
Collapse
Affiliation(s)
- B Priyadarshini
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - Arul Xavier Stango
- Department of Chemistry, Kalasalingam Academy of Research and Education Krishnankoil Srivilliputhur Tamil Nadu 626126 India
| | - M Balasubramanian
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - U Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
| |
Collapse
|
11
|
Gandla K, Kumar KP, Rajasulochana P, Charde MS, Rana R, Singh LP, Haque MA, Bakshi V, Siddiqui FA, Khan SL, Ganguly S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023; 9:669. [PMID: 37623124 PMCID: PMC10453855 DOI: 10.3390/gels9080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hyderabad 500075, India
| | - K. Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Government of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - P. Rajasulochana
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kanchipuram 602105, India
| | - Manoj Shrawan Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad 415124, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur 177033, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Rohtas 821305, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - S. Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
12
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
13
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
14
|
Nayak J, Prajapati KS, Kumar S, Vashistha VK, Sahoo SK, Kumar R. Thiolated β-cyclodextrin modified iron oxide nanoparticles for effective targeted cancer therapy. MATERIALS TODAY COMMUNICATIONS 2022; 33:104644. [DOI: 10.1016/j.mtcomm.2022.104644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
15
|
Anjum T, Hussain N, Hafsa, Iqbal HM, Jedrzak A, Jesionowski T, Bilal M. Magnetic nanomaterials as drug delivery vehicles and therapeutic constructs to treat cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
17
|
Karageorgou MA, Rapsomanikis AN, Mirković M, Vranješ-Ðurić S, Stiliaris E, Bouziotis P, Stamopoulos D. 99mTc-Labeled Iron Oxide Nanoparticles as Dual-Modality Contrast Agent: A Preliminary Study from Synthesis to Magnetic Resonance and Gamma-Camera Imaging in Mice Models. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2728. [PMID: 35957159 PMCID: PMC9370270 DOI: 10.3390/nano12152728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The combination of two imaging modalities in a single agent has received increasing attention during the last few years, since its synergistic action guarantees both accurate and timely diagnosis. For this reason, dual-modality contrast agents (DMCAs), such as radiolabeled iron oxide (namely Fe3O4) nanoparticles, constitute a powerful tool in diagnostic applications. In this respect, here we focus on the synthesis of a potential single photon emission computed tomography/magnetic resonance imaging (SPECT/MRI) DMCA, which consists of Fe3O4 nanoparticles, surface functionalized with 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD) and radiolabeled with 99mTc, [99mTc]Tc-DPD-Fe3O4. The in vitro stability results showed that this DMCA is highly stable after 24 h of incubation in phosphate buffer saline (~92.3% intact), while it is adequately stable after 24 h of incubation with human serum (~67.3% intact). Subsequently, [99mTc]Tc-DPD-Fe3O4 DMCA was evaluated in vivo in mice models through standard biodistribution studies, MR imaging and gamma-camera imaging. All techniques provided consistent results, clearly evidencing noticeable liver uptake. Our work documents that [99mTc]Tc-DPD-Fe3O4 has all the necessary characteristics to be a potential DMCA.
Collapse
Affiliation(s)
- Maria-Argyro Karageorgou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Marija Mirković
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Sanja Vranješ-Ðurić
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Efstathios Stiliaris
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Dimosthenis Stamopoulos
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
18
|
Meng Z, Xue H, Wang T, Chen B, Dong X, Yang L, Dai J, Lou X, Xia F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. J Nanobiotechnology 2022; 20:344. [PMID: 35883086 PMCID: PMC9327335 DOI: 10.1186/s12951-022-01553-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer remains a serious threat to human health owing to the lack of effective treatments. Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment that consists of three main elements: photosensitizers (PSs), light and oxygen. However, some traditional PSs are prone to aggregation-caused quenching (ACQ), leading to reduced reactive oxygen species (ROS) generation capacity. Aggregation-induced emission (AIE)-PSs, due to their distorted structure, suppress the strong molecular interactions, making them more photosensitive in the aggregated state instead. Activated by light, they can efficiently produce ROS and induce cell death. PS is one of the core factors of efficient PDT, so proceeding from the design and preparation of AIE-PSs, including how to manipulate the electron donor (D) and receptor (A) in the PSs configuration, introduce heavy atoms or metal complexes, design of Type I AIE-PSs, polymerization-enhanced photosensitization and nano-engineering approaches. Then, the preclinical experiments of AIE-PSs in treating different types of tumors, such as ovarian cancer, cervical cancer, lung cancer, breast cancer, and its great potential clinical applications are discussed. In addition, some perspectives on the further development of AIE-PSs are presented. This review hopes to stimulate the interest of researchers in different fields such as chemistry, materials science, biology, and medicine, and promote the clinical translation of AIE-PSs.
Collapse
Affiliation(s)
- Zijuan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
19
|
Zhou H, Tian J, Sun H, Fu J, Lin N, Yuan D, Zhou L, Xia M, Sun L. Systematic Identification of Genomic Markers for Guiding Iron Oxide Nanoparticles in Cervical Cancer Based on Translational Bioinformatics. Int J Nanomedicine 2022; 17:2823-2841. [PMID: 35791307 PMCID: PMC9250777 DOI: 10.2147/ijn.s361483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Magnetic iron oxide nanoparticle (MNP) drug delivery system is a novel promising therapeutic option for cancer treatment. Material issues such as fabrication and functionalized modification have been investigated; however, pharmacologic mechanisms of bare MNPs inside cancer cells remain obscure. This study aimed to explore a systems pharmacology approach to understand the reaction of the whole cell to MNPs and suggest drug selection in MNP delivery systems to exert synergetic or additive anti-cancer effects. Methods HeLa and SiHa cell lines were used to estimate the properties of bare MNPs in cervical cancer through 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and enzyme activity assays and cellular fluorescence imaging. A systems pharmacology approach was utilized by combining bioinformatics data mining with clinical data analysis and without a predefined hypothesis. Key genes of the MNP onco-pharmacologic mechanism in cervical cancer were identified and further validated through transcriptome analysis with quantitative reverse transcription PCR (qRT-PCR). Results Low cytotoxic activity and cell internalization of MNP in HeLa and SiHa cells were observed. Lysosomal function was found to be impaired after MNP treatment. Protein tyrosine kinase 2 beta (PTK2B), liprin-alpha-4 (PPFIA4), mothers against decapentaplegic homolog 7 (SMAD7), and interleukin (IL) 1B were identified as key genes relevant for MNP pharmacology, clinical features, somatic mutation, and immune infiltration. The four key genes also exhibited significant correlations with the lysosome gene set. The qRT-PCR results showed significant alterations in the expression of the four key genes after MNP treatment in HeLa and SiHa cells. Conclusion Our research suggests that treatment of bare MNPs in HeLa and SiHa cells induced significant expression changes in PTK2B, PPFIA4, SMAD7, and IL1B, which play crucial roles in cervical cancer development and progression. Interactions of the key genes with specific anti-cancer drugs must be considered in the rational design of MNP drug delivery systems.
Collapse
Affiliation(s)
- Haohan Zhou
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China.,Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, People's Republic of China
| | - Jiayi Tian
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Danni Yuan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Li Zhou
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Meihui Xia
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
20
|
Wu K, Mohsin A, Zaman WQ, Zhang Z, Guan W, Chu M, Zhuang Y, Guo M. Urchin-like magnetic microspheres for cancer therapy through synergistic effect of mechanical force, photothermal and photodynamic effects. J Nanobiotechnology 2022; 20:224. [PMID: 35549715 PMCID: PMC9097396 DOI: 10.1186/s12951-022-01411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Background Magnetic materials mediated by mechanical forces to combat cancer cells are currently attracting attention. Firstly, the magnetic force penetrates deeper into tissues than the NIR laser alone to destroy tumours. Secondly, the synergistic effect of nano-magnetic-material characteristics results in a viable option for the targeted killing of cancer cells. Therefore, mechanical force (MF) produced by magnetic nanomaterials under low frequency dynamic magnetic field combined with laser technology is the most effective, safe and efficient tool for killing cancer cells and tumour growth. Results In this study, we synthesized novel urchin-like hollow magnetic microspheres (UHMMs) composed of superparamagnetic Fe3O4. We demonstrated the excellent performance of UHMMs for killing laryngocarcinoma cancer cells through mechanical force and photothermal effects under a vibrating magnetic field and near-infrared laser, respectively. The killing efficiency was further improved after loading the synthesised UHMMs with Chlorin e6 relative to unloaded UHMMs. Additionally, in animal experiments, laryngocarcinoma solid tumour growth was effectively inhibited by UHMMs@Ce6 through magneto-mechanic force, photothermal and photodynamic therapy. Conclusions The biocompatibility and high efficiency of multimodal integrated therapy with the UHMMs prepared in this work provide new insights for developing novel nano therapy and drug loading platforms for tumour treatment. In vivo experiments further demonstrated that UHMMs/Ce6 are excellent tools for strongly inhibiting tumour growth through the above-mentioned characteristic effects. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01411-y.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China.,Biomedical Multidisciplinary Innovation Research Institute and Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Zefei Zhang
- Biomedical Multidisciplinary Innovation Research Institute and Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California, Merced, CA, 95343, USA
| | - Maoquan Chu
- Biomedical Multidisciplinary Innovation Research Institute and Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
21
|
Synytsia A, Sych O, Iatsenko A, Babutina T, Tomila T, Bykov O, Olifan O, Lobunets T, Perekos A, Boshytska N. Effect of type and parameters of synthesis on the properties of magnetite nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Fattahi Nafchi R, Ahmadi R, Heydari M, Rahimipour MR, Molaei MJ, Unsworth L. In Vitro Study: Synthesis and Evaluation of Fe 3O 4/CQD Magnetic/Fluorescent Nanocomposites for Targeted Drug Delivery, MRI, and Cancer Cell Labeling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3804-3816. [PMID: 35294836 DOI: 10.1021/acs.langmuir.1c03458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the present study, first, Fe3O4 nanoparticles were functionalized using glutaric acid and then composited with CQDs. Doxorubicin (DOX) drug was loaded to evaluate the performance of the nanocomposite for targeted drug delivery applications. The XRD pattern confirmed the presence of characteristic peaks of CQDs and Fe3O4. In the FTIR spectrum, the presence of carboxyl functional groups on Fe3O4/CQDs was observed; DOX (positive charge) is loaded onto Fe3O4/CQDs (negative charge) by electrostatic absorption. FESEM and AFM images showed that the particle sizes of Fe3O4 and CQDs were 23-75 and 1-3 nm, respectively. The hysteresis curves showed superparamagnetic properties for Fe3O4 and Fe3O4/CQDs (57.3 and 8.4 emu/g). The Fe3O4 hysteresis curve showed superparamagnetic properties (Ms and Mr: 57.3 emu/g and 1.46 emu/g. The loading efficiency and capacity for Fe3O4/CQDs were 93.90% and 37.2 mg DOX/g MNP, respectively. DOX release from Fe3O4/CQDs in PBS showed pH-dependent release behavior where after 70 h at pH 5 and 7.4, about 50 and 21% of DOX were released. Fluorescence images of Fe3O4/CQD-treated cells showed that Fe3O4/CQDs are capable of labeling MCF-7 and HFF cells. Also, T2-weighted MRI scans of Fe3O4/CQDs in water exhibited high r2 relaxivity (86.56 mM-1 S-1). MTT assay showed that DOX-loaded Fe3O4/CQDs are highly biocompatible in contact with HFF cells (viability = 95%), but they kill MCF-7 cancer cells (viability = 45%). Therefore, the synthesized nanocomposite can be used in MRI, targeted drug delivery, and cell labeling.
Collapse
Affiliation(s)
- Raziyeh Fattahi Nafchi
- Department of Ceramics, Materials and Energy Research Center (MERC), Karaj 317878-316, Alborz, Iran
| | - Reza Ahmadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
| | - Mojgan Heydari
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj 317878-316, Alborz, Iran
| | - Mohammad Reza Rahimipour
- Department of Ceramics, Materials and Energy Research Center (MERC), Karaj 317878-316, Alborz, Iran
| | - Mohammad Jafar Molaei
- Faculty of Chemical Engineering and Materials, Shahrood University of Technology (SUT), Shahrood 3619995-161, Semnan, Iran
| | - Larry Unsworth
- Faculty of Engineering, Department of Chemical and Materials Engineering Department, University of Alberta, Edmonton AB T6G 2R3, Alberta, Canada
| |
Collapse
|
23
|
Zhang L, Xu L, Wang Y, Liu J, Tan G, Huang F, He N, Lu Z. A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
25
|
Maurizi L, Bellat V, Moreau M, De Maistre E, Boudon J, Dumont L, Denat F, Vandroux D, Millot N. Titanate nanoribbon-based nanobiohybrid for potential applications in regenerative medicine. RSC Adv 2022; 12:26875-26881. [PMID: 36320832 PMCID: PMC9490774 DOI: 10.1039/d2ra04753e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Nanoparticles capable of mimicking natural tissues represent a major technological advancement in regenerative medicine. In this pilot study, the development of a new nanohybrid composed of titanate nanoribbons to mimic the extracellular matrix is reported. During the first phase, nanoribbons were synthesized by hydrothermal treatment. Subsequently, titanate nanoribbons were functionalized by heterobifunctional polyethylene-glycol (PEG) to graft type I collagen on their surface. Biological properties of this new nanobiohybrid such as cytotoxicity to cardiac cells and platelet aggregation ability were evaluated. The so-formed nanobiohybrid permits cellular adhesion and proliferation favoring fine cardiac tissue healing and regeneration. Titanate nanoribbons functionalized by heterobifunctional polymer and type I collagen for cellular adhesion and proliferation. This new nanobiohybrid affected neither cytotoxicity nor platelet aggregation ability.![]()
Collapse
Affiliation(s)
- Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | - Vanessa Bellat
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
- Société NVH Medicinal, Dijon, France
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, New York, NY, 10021, USA
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | | | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | | | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| | | | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon, France
| |
Collapse
|
26
|
Shevtsov M, Kaesler S, Posch C, Multhoff G, Biedermann T. Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Res 2021; 11:127. [PMID: 34905138 PMCID: PMC8671576 DOI: 10.1186/s13550-021-00868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include surgical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic melanoma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Primorsky Krai, 690091, Vladivostok, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str, Saint Petersburg, Russian Federation, 197341
| | - Susanne Kaesler
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Ismaninger Str. 22, 81675, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany.
| |
Collapse
|
27
|
Wavhale RD, Dhobale KD, Rahane CS, Chate GP, Tawade BV, Patil YN, Gawade SS, Banerjee SS. Water-powered self-propelled magnetic nanobot for rapid and highly efficient capture of circulating tumor cells. Commun Chem 2021; 4:159. [PMID: 36697678 PMCID: PMC9814645 DOI: 10.1038/s42004-021-00598-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023] Open
Abstract
Nanosized robots with self-propelling and navigating capabilities have become an exciting field of research, attributable to their autonomous motion and specific biomolecular interaction ability for bio-analysis and diagnosis. Here, we report magnesium (Mg)-Fe3O4-based Magneto-Fluorescent Nanorobot ("MFN") that can self-propel in blood without any other additives and can selectively and rapidly isolate cancer cells. The nanobots viz; Mg-Fe3O4-GSH-G4-Cy5-Tf and Mg-Fe3O4-GSH-G4-Cy5-Ab have been designed and synthesized by simple surface modifications and conjugation chemistry to assemble multiple components viz; (i) EpCAM antibody/transferrin, (ii) cyanine 5 NHS (Cy5) dye, (iii) fourth generation (G4) dendrimers for multiple conjugation and (iv) glutathione (GSH) by chemical conjugation onto one side of Mg nanoparticle. The nanobots propelled efficiently not only in simulated biological media, but also in blood samples. With continuous motion upon exposure to water and the presence of Fe3O4 shell on Mg nanoparticle for magnetic guidance, the nanobot offers major improvements in sensitivity, efficiency and speed by greatly enhancing capture of cancer cells. The nanobots showed excellent cancer cell capture efficiency of almost 100% both in serum and whole blood, especially with MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Ravindra D. Wavhale
- Central Research Laboratory, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| | - Kshama D. Dhobale
- Central Research Laboratory, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| | - Chinmay S. Rahane
- Central Research Laboratory, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| | - Govind P. Chate
- Central Research Laboratory, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| | - Bhausaheb V. Tawade
- Central Research Laboratory, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| | - Yuvraj N. Patil
- Central Research Laboratory, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| | - Sandesh S. Gawade
- Department of Surgery, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| | - Shashwat S. Banerjee
- Central Research Laboratory, Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507 India
| |
Collapse
|
28
|
Baghban R, Afarid M, Soleymani J, Rahimi M. Were magnetic materials useful in cancer therapy? Biomed Pharmacother 2021; 144:112321. [PMID: 34656061 DOI: 10.1016/j.biopha.2021.112321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the major challenges fronting the biomedical basic researches in our time. The study and development of effective therapeutic strategies for cancer therapy are vital. Among the many probable core constituents of nanoparticles, magnetite-based nanoparticles have been widely studied for cancer therapy owing to their inherent magnetic features, multifunctional design, biodegradable and biocompatible properties. Magnetic nanoparticles have been also designed for utilizing as contrast enhancer agents for magnetic resonance imaging, drug delivery systems, and most recently as a therapeutic element in inducing cellular death in tumor ablation therapies. This review aimed to provide an overview of the various applications of magnetic nanoparticles and recent achievements in developing these advanced materials for cancer therapy.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
29
|
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021; 14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.
Collapse
|
30
|
Assessing the Biocompatibility of Multi-Anchored Glycoconjugate Functionalized Iron Oxide Nanoparticles in a Normal Human Colon Cell Line CCD-18Co. NANOMATERIALS 2021; 11:nano11102465. [PMID: 34684906 PMCID: PMC8537094 DOI: 10.3390/nano11102465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
We have previously demonstrated that iron oxide nanoparticles with dopamine-anchored heterobifunctional polyethylene oxide (PEO) polymer, namely PEO-IONPs, and bio-functionalized with sialic-acid specific glycoconjugate moiety (Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp), namely GM3-IONPs, can be effectively used as antibacterial agents against target Escherichia coli. In this study, we evaluated the biocompatibility of PEO-IONPs and GM3-IONPs in a normal human colon cell line CCD-18Co via measuring cell proliferation, membrane integrity, and intracellular adenosine triphosphate (ATP), glutathione GSH, dihydrorhodamine (DHR) 123, and caspase 3/7 levels. PEO-IONPs caused a significant decrease in cell viability at concentrations above 100 μg/mL whereas GM3-IONPs did not cause a significant decrease in cell viability even at the highest dose of 500 μg/mL. The ATP synthase activity of CCD-18Co was significantly diminished in the presence of PEO-IONPs but not GM3-IONPs. PEO-IONPs also compromised the membrane integrity of CCD-18Co. In contrast, cells exposed to GM3-IONPs showed significantly different cell morphology, but with no apparent membrane damage. The interaction of PEO-IONPs or GM3-IONPs with CCD-18Co resulted in a substantial decrease in the intracellular GSH levels in a time- and concentration-dependent manner. Conversely, levels of DHR-123 increased with IONP concentrations. Levels of caspase 3/7 proteins were found to be significantly elevated in cells exposed to PEO-IONPs. Based on the results, we assume GM3-IONPs to be biocompatible with CCD-18Co and could be further evaluated for selective killing of pathogens in vivo.
Collapse
|
31
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Day NB, Wixson WC, Shields CW. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021; 11:2172-2196. [PMID: 34522583 PMCID: PMC8424374 DOI: 10.1016/j.apsb.2021.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.
Collapse
Key Words
- BW, body weight
- Biomaterials
- CpG, cytosine-phosphate-guanine
- DAMP, damage associated molecular pattern
- Drug delivery
- EPR, enhanced permeability and retention
- FFR, field free region
- HS-TEX, heat-stressed tumor cell exosomes
- HSP, heat shock protein
- ICD, immunogenic cell death
- IVIS, in vivo imaging system
- Immunotherapy
- MICA, MHC class I-related chain A
- MPI, magnetic particle imaging
- Magnetic hyperthermia
- Magnetic nanoparticles
- Microrobotics
- ODNs, oligodeoxynucleotides
- PARP, poly(adenosine diphosphate-ribose) polymerase
- PDMS, polydimethylsiloxane
- PEG, polyethylene glycol
- PLGA, poly(lactic-co-glycolic acid)
- PNIPAM, poly(N-isopropylacrylamide)
- PVA, poly(vinyl alcohol)
- SDF, stromal cell derived-factor
- SID, small implantable device
- SLP, specific loss power
Collapse
Affiliation(s)
- Nicole B Day
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - William C Wixson
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - C Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
33
|
Liu Y, Gan Y, Zhao C, Yang J, Zhu H, Li Y, Shuai S, Hao J. Shaping Magnetite by Hydroxyl Group Numbers of Small Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5582-5590. [PMID: 33938217 DOI: 10.1021/acs.langmuir.1c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite numerous reports on magnetite formation with the assistance of various additives, the role of hydroxyl group (-OH) numbers in small polyol molecules has not yet been understood well. We selected small molecules containing different -OH numbers, such as ethanol, ethylene glycol, propanetriol, butanetetrol, pentitol, hexanehexol, and cyclohexanehexol, as additives in coprecipitation. By increasing the -OH number in these small polyol molecules, the formation of crystallization was slowed, and the size and shape of magnetite were regulated as well possibly due to the changed complexation strength and the stability of the precursor. The increase in temperature and the Fe2+/Fe3+ ratio can reduce the complexation strength. The nucleation and growth of magnetite proceed possibly through the aggregation of polyol-stabilized amorphous complexes and two-line ferrihydrite with low crystallinity based on the -OH numbers, suggesting a nonclassical pathway. The as-prepared magnetite showed a r2/r1 ratio after in vitro MRI measurement as follows: Fe3O4@He-6OH rod < Fe3O4@Pr-3OH sheet < Fe3O4@Pe-5OH cube. The Fe3O4@He-6OH rod and Fe3O4@Pr-3OH sheet displayed T1-T2 dual modal contrast ability, while the Fe3O4@Pe-5OH cube can be T2-dominated. This research provides a simple but an essential approach for designing MRI contrast agents.
Collapse
Affiliation(s)
- Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| | - Ying Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| | - Cong Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| | - Jingxuan Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| | - Hongyu Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| | - Yang Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| | - Shirong Shuai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| | - Jianyuan Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054 China
| |
Collapse
|
34
|
Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Overcoming the protein corona in chitosan-based nanoparticles. Drug Discov Today 2021; 26:1825-1840. [PMID: 33892141 DOI: 10.1016/j.drudis.2021.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Numerous properties of chitosan have led to its extensive use in the formulation of nanomaterials for drug delivery. However, the cationic surface of chitosan-based nanoparticles adsorbs proteins upon exposure to biological fluids, forming a phenomenon known as 'protein corona'. This causes several effects such as decreased bioavailability and limited in vivo clinical applications of chitosan nanoparticles. Understanding and overcoming the effects of protein adsorption on chitosan nanoparticles is key for drug delivery purposes. This review focuses on the strategies implemented to increase the stability of chitosan nanoparticles in the systemic circulation by averting the formation of protein corona and the limitations of PEGylation.
Collapse
Affiliation(s)
- Anna E Caprifico
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Peter J S Foot
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Elena Polycarpou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Gianpiero Calabrese
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| |
Collapse
|
35
|
Wang K, Kievit FM, Chiarelli PA, Stephen ZR, Lin G, Silber JR, Ellenbogen RG, Zhang M. siRNA nanoparticle suppresses drug-resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007166. [PMID: 33708035 PMCID: PMC7942690 DOI: 10.1002/adfm.202007166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 05/31/2023]
Abstract
Temozolomide (TMZ) is the standard of care chemotherapy drug for treating glioblastomas (GBMs), the most aggressive cancer that affects people of all ages. However, its therapeutic efficacy is limited by the drug resistance mediated by a DNA repair protein, O6-methylguanine-DNA methyltransferase (MGMT), which eliminates the TMZ-induced DNA lesions. Here we report the development of an iron oxide nanoparticle (NP) system for targeted delivery of siRNAs to suppress the TMZ-resistance gene (MGMT). We show that our NP is able to overcome biological barriers, bind specifically to tumor cells, and reduce MGMT expression in tumors of mice bearing orthotopic GBM serially-passaged patient-derived xenografts. The treatment with sequential administration of this NP and TMZ resulted in increased apoptosis of GBM stem-like cells, reduced tumor growth, and significantly-prolonged survival as compared to mice treated with TMZ alone. This study introduces an approach that holds great promise to improve the outcomes of GBM patients.
Collapse
Affiliation(s)
- Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - Forrest M Kievit
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, United States
| | - Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - John R Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, United States
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, United States
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, United States; Department of Neurological Surgery, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
36
|
Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe 2O 3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan. Int J Biol Macromol 2020; 171:44-58. [PMID: 33373634 DOI: 10.1016/j.ijbiomac.2020.12.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Fatty acids-assisted superparamagnetic maghemite (γ-Fe2O3) NPs was biologically synthesized using extract of polyherbal drug Liv52 (L52E). The NPs were characterized by UV-vis spectroscopy, FT-IR, SEM, TEM, EDX, XRD and VSM. The major biological molecules present in L52E analysed by GC-MS were saturated fatty acids (palmitic acid 21.95%; stearic acid 13.99%; myristic acid 1.14%), monounsaturated fatty acid (oleic acid 18.43%), polyunsaturated fatty acid (linoleic acid 20.45%), and aromatic phenol (cardanol monoene 11.92%) that could imply in bio-fabrication and stabilization of γ-Fe2O3 NPs. The FT-IR spectra revealed involvement of carboxylic group of fatty acids, amide group of proteins and hydroxyl group of phenolic compounds that acts as reducing and capping agents. The synthesized NPs were used to investigate their antimicrobial, antibiofilm activity against P. aeruginosa, MRSA and C. albicans and anticancer activity on colon cancer cells (HCT-116) for biomedical applications. Further, molecular docking study was performed to explore the interaction of Fe2O3 NPs with major cell wall components i.e., peptidoglycan and mannoproteins. The docking studies revealed that Fe2O3 interacted efficiently with peptidoglycan and mannoproteins and Fe2O3 get accommodated into catalytic cleft of mannoprotein. Due to magnetic property, the biological activity of γ-Fe2O3 can be further enhanced by applying external magnetic field alone or in amalgamation with other therapeutics drugs.
Collapse
|
37
|
Nabavinia M, Beltran-Huarac J. Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:8172-8187. [DOI: 10.1021/acsabm.0c00947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahboubeh Nabavinia
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| | - Juan Beltran-Huarac
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| |
Collapse
|
38
|
Kerroum MAA, Iacovita C, Baaziz W, Ihiawakrim D, Rogez G, Benaissa M, Lucaciu CM, Ersen O. Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in Zn xFe 3-xO 4 Nanoparticles. Int J Mol Sci 2020; 21:E7775. [PMID: 33096631 PMCID: PMC7590026 DOI: 10.3390/ijms21207775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Superparamagnetic ZnxFe3-xO4 magnetic nanoparticles (0 ≤ x < 0.5) with spherical shapes of 16 nm average diameter and different zinc doping level have been successfully synthesized by co-precipitation method. The homogeneous zinc substitution of iron cations into the magnetite crystalline structure has led to an increase in the saturation magnetization of nanoparticles up to 120 Am2/kg for x ~ 0.3. The specific absorption rate (SAR) values increased considerably when x is varied between 0 and 0.3 and then decreased for x ~ 0.5. The SAR values are reduced upon the immobilization of the nanoparticles in a solid matrix being significantly increased by a pre-alignment step in a uniform static magnetic field before immobilization. The SAR values displayed a quadratic dependence on the alternating magnetic field amplitude (H) up to 35 kA/m. Above this value, a clear saturation effect of SAR was observed that was successfully described qualitatively and quantitatively by considering the non-linear field's effects and the magnetic field dependence of both Brown and Neel relaxation times. The Neel relaxation time depends more steeply on H as compared with the Brown relaxation time, and the magnetization relaxation might be dominated by the Neel mechanism, even for nanoparticles with large diameter.
Collapse
Affiliation(s)
- Mohamed Alae Ait Kerroum
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Faculty of Sciences, BP 1014 RP, Mohammed V University in Rabat, 10000 Rabat, Morocco;
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| | - Guillaume Rogez
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| | - Mohammed Benaissa
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Faculty of Sciences, BP 1014 RP, Mohammed V University in Rabat, 10000 Rabat, Morocco;
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| |
Collapse
|
39
|
Du J, Zhang Y, Jin Z, Wu H, Cang J, Shen Y, Miao F, Zhang A, Zhang Y, Zhang J, Teng G. Targeted NIRF/MR dual-mode imaging of breast cancer brain metastasis using BRBP1-functionalized ultra-small iron oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111188. [PMID: 32806329 DOI: 10.1016/j.msec.2020.111188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022]
Abstract
Tumor metastasis to brain is the main clinical manifestation of patients with advanced breast cancer, leading to poor survival prognosis. In order to detect the early incidence of brain metastasis, it is urgent to develop hypersensitive contrast agents for multimode imaging. In this study, PEG-phospholipids coated, a phage play derived peptide, BRBP1 peptide modified ultra-small iron oxide nanoparticles were prepared for targeted NIRF and MR imaging of breast cancer brain metastasis. The nanoparticles showed 10 nm core-shell, high relaxivity values and photon emission efficiency in vitro. The nanoparticles offered a T2 contrast imaging effect and near-infrared fluorescent signal enhancement. Compared with control peptide modified nanoparticles, the MR/NIRF imaging signal of BRBP1-modified nanoparticles in tumor tissue was significantly enhanced, which should be induced by the targeting ability of BRBP1 peptide. These results indicated that BRBP1-SPIO@mPEG (DiR) nanoparticles could be applied as an effective targeted delivery system for diagnosis of breast cancer brain metastasis.
Collapse
Affiliation(s)
- Jiawei Du
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Zhangya Jin
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Hao'an Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
| | - Jiehui Cang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China.
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China; Jiangsu key laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| | - Gaojun Teng
- Jiangsu key laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
40
|
King AM, Bray C, Hall SCL, Bear JC, Bogart LK, Perrier S, Davies GL. Exploring precision polymers to fine-tune magnetic resonance imaging properties of iron oxide nanoparticles. J Colloid Interface Sci 2020; 579:401-411. [PMID: 32615483 DOI: 10.1016/j.jcis.2020.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/14/2020] [Accepted: 06/07/2020] [Indexed: 11/27/2022]
Abstract
The use of bio-polymers as stabilising agents for iron oxide-based negative magnetic resonance imaging (MRI) contrast agents has become popular in recent years, however the wide polydispersity of biologically-derived and commercially available polymers limits the ability to produce truly tuneable and reproducible behaviour, a major challenge in this area. In this work, stable colloids of iron oxide nanoparticles were prepared utilising precision-engineered bio-polymer mimics, poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) polymers, with controlled narrow polydispersity molecular weights, as templating stabilisers. In addition to producing magnetic colloids with excellent MRI contrast capabilities (r2 values reaching 434.2 mM-1 s-1 at 25 °C and 23 MHz, several times higher than similar commercial analogues), variable field relaxometry provided unexpected important insights into the dynamic environment of the hydrated materials, and hence their exceptional MRI behaviour. Thanks to the polymer's templating backbone and flexible conformation in aqueous suspension, nanocomposites appear to behave as "multi-core" clustered species, enhancing interparticle interactions whilst retaining water diffusion, boosting relaxation properties at low frequency. This clustering behaviour, evidenced by small-angle X-ray scattering, and strong relaxometric response, was fine-tuned using the well-defined molecular weight polymer species with precise iron to polymer ratios. By also showing negligible haemolytic activity, these nanocomposites exhibit considerable potential for MRI diagnostics.
Collapse
Affiliation(s)
- Aaron M King
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Caroline Bray
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Stephen C L Hall
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Joseph C Bear
- School of Life Science, Pharmacy and Chemistry, Kingston University, Penryhn Road, Kingston-upon-Thames, KT1 2EE, UK
| | - Lara K Bogart
- UCL Healthcare Biomagnetics Laboratory, 21 Albemarle Street, London W1S 4BS, UK
| | - Sebastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Gemma-Louise Davies
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
41
|
Montaseri H, Kruger CA, Abrahamse H. Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment. Int J Mol Sci 2020; 21:E3358. [PMID: 32397477 PMCID: PMC7247422 DOI: 10.3390/ijms21093358] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy-PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; (H.M.); (C.A.K.)
| |
Collapse
|
42
|
Dutta B, Nema A, Shetake NG, Gupta J, Barick KC, Lawande MA, Pandey BN, Priyadarsini IK, Hassan PA. Glutamic acid-coated Fe 3O 4 nanoparticles for tumor-targeted imaging and therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110915. [PMID: 32409067 DOI: 10.1016/j.msec.2020.110915] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
We have developed surface functionalised Fe3O4 magnetic nanoparticles (MNPs) based system that can be used for tumor-targeted multimodal therapies and MR imaging. Biocompatible, non-essential amino acid (glutamic acid) was introduced onto the surface of Fe3O4 MNPs to provide functional sites for binding of chemotherapeutic drugs. These glutamic acid-coated Fe3O4 MNPs (GAMNPs) exhibit good water-dispersibility, magnetic responsivity and pH dependent charge conversal feature. The magnetic core as well as organic shell of GAMNPs was characterized by XRD, TEM, DLS, FTIR, PPMS and UV-visible spectroscopy and zeta-potential analyzer etc. The broad spectrum anticancer drugs, doxorubicin hydrochloride (DOX) and methotrexate (MTX) were electrostatically and covalently conjugated to the surface of GAMNPs, respectively for combination chemotherapy. These dual drugs loaded system (DOX-MTX-GAMNPs) shows pH dependent release behaviour of both the drugs and enhanced toxicity towards breast cancer cell line (MCF-7) as compared to their individual treatment. Fluorescence microscopy and flow cytometric analyses confirmed the successful uptake of drug loaded system into MCF-7 cell lines. Further MTX being analogue of folic acid, its co-delivery with DOX would help in internalization of both the drugs into MCF-7 cells. These GAMNPs also show good heating efficiency under AC magnetic field (Intrinsic loss power, ILP = 0.95 and 0.73 and 0.48 nHm2/Kg at Fe concentration of 0.5, 1 and 2 mg/ml, respectively) and transverse relaxivity (r2 = 152 mM-1 s-1) indicating their potential capability for hyperthermia therapy and MRI tracking. Furthermore, it has been observed that the combination of chemotherapeutic drugs and hyperthermia leads to an enhancement of cytotoxicity in MCF-7 cells.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anshika Nema
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Tathawade, Pune 411033, India
| | - Neena G Shetake
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jagriti Gupta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Malini A Lawande
- Dept. of MRI, Dr. Balabhai Nanavati Hospital and Research Centre, Mumbai 400056, India
| | - B N Pandey
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
43
|
Andhari SS, Wavhale RD, Dhobale KD, Tawade BV, Chate GP, Patil YN, Khandare JJ, Banerjee SS. Self-Propelling Targeted Magneto-Nanobots for Deep Tumor Penetration and pH-Responsive Intracellular Drug Delivery. Sci Rep 2020; 10:4703. [PMID: 32170128 PMCID: PMC7070039 DOI: 10.1038/s41598-020-61586-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Self-propelling magnetic nanorobots capable of intrinsic-navigation in biological fluids with enhanced pharmacokinetics and deeper tissue penetration implicates promising strategy in targeted cancer therapy. Here, multi-component magnetic nanobot designed by chemically conjugating magnetic Fe3O4 nanoparticles (NPs), anti-epithelial cell adhesion molecule antibody (anti-EpCAM mAb) to multi-walled carbon nanotubes (CNT) loaded with an anticancer drug, doxorubicin hydrochloride (DOX) is reported. Autonomous propulsion of the nanobots and their external magnetic guidance is enabled by enriching Fe3O4 NPs with dual catalytic-magnetic functionality. The nanobots propel at high velocities even in complex biological fluids. In addition, the nanobots preferably release DOX in the intracellular lysosomal compartment of human colorectal carcinoma (HCT116) cells by the opening of Fe3O4 NP gate. Further, nanobot reduce ex vivo HCT116 tumor spheroids more efficiently than free DOX. The multicomponent nanobot's design represents a more pronounced method in targeting tumors with self-assisted anticancer drug delivery for 'far-reaching' sites in treating cancers.
Collapse
Affiliation(s)
- Saloni S Andhari
- Maharashtra Academy of Engineering Education and Research's Maharashtra Institute of Pharmacy, Pune, 411038, India
| | - Ravindra D Wavhale
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507, India
| | - Kshama D Dhobale
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507, India
| | - Bhausaheb V Tawade
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507, India
| | - Govind P Chate
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507, India
| | - Yuvraj N Patil
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507, India
| | - Jayant J Khandare
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India.
| | - Shashwat S Banerjee
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Pune, 410507, India.
| |
Collapse
|
44
|
Armijo LM, Wawrzyniec SJ, Kopciuch M, Brandt YI, Rivera AC, Withers NJ, Cook NC, Huber DL, Monson TC, Smyth HDC, Osiński M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnology 2020; 18:35. [PMID: 32070354 PMCID: PMC7029462 DOI: 10.1186/s12951-020-0588-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 01/29/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Novel methods are necessary to reduce morbidity and mortality of patients suffering from infections with Pseudomonas aeruginosa. Being the most common infectious species of the Pseudomonas genus, P. aeruginosa is the primary Gram-negative etiology responsible for nosocomial infections. Due to the ubiquity and high adaptability of this species, an effective universal treatment method for P. aeruginosa infection still eludes investigators, despite the extensive research in this area. RESULTS We report bacterial inhibition by iron-oxide (nominally magnetite) nanoparticles (NPs) alone, having a mean hydrodynamic diameter of ~ 16 nm, as well as alginate-capped iron-oxide NPs. Alginate capping increased the average hydrodynamic diameter to ~ 230 nm. We also investigated alginate-capped iron-oxide NP-drug conjugates, with a practically unchanged hydrodynamic diameter of ~ 232 nm. Susceptibility and minimum inhibitory concentration (MIC) of the NPs, NP-tobramycin conjugates, and tobramycin alone were determined in the PAO1 bacterial colonies. Investigations into susceptibility using the disk diffusion method were done after 3 days of biofilm growth and after 60 days of growth. MIC of all compounds of interest was determined after 60-days of growth, to ensure thorough establishment of biofilm colonies. CONCLUSIONS Positive inhibition is reported for uncapped and alginate-capped iron-oxide NPs, and the corresponding MICs are presented. We report zero susceptibility to iron-oxide NPs capped with polyethylene glycol, suggesting that the capping agent plays a major role in enabling bactericidal ability in of the nanocomposite. Our findings suggest that the alginate-coated nanocomposites investigated in this study have the potential to overcome the bacterial biofilm barrier. Magnetic field application increases the action, likely via enhanced diffusion of the iron-oxide NPs and NP-drug conjugates through mucin and alginate barriers, which are characteristic of cystic-fibrosis respiratory infections. We demonstrate that iron-oxide NPs coated with alginate, as well as alginate-coated magnetite-tobramycin conjugates inhibit P. aeruginosa growth and biofilm formation in established colonies. We have also determined that susceptibility to tobramycin decreases for longer culture times. However, susceptibility to the iron-oxide NP compounds did not demonstrate any comparable decrease with increasing culture time. These findings imply that iron-oxide NPs are promising lower-cost alternatives to silver NPs in antibacterial coatings, solutions, and drugs, as well as other applications in which microbial abolition or infestation prevention is sought.
Collapse
Affiliation(s)
- Leisha M. Armijo
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Stephen J. Wawrzyniec
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Michael Kopciuch
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Yekaterina I. Brandt
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Antonio C. Rivera
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Nathan J. Withers
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Nathaniel C. Cook
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, 1000 Eubank SE, Albuquerque, NM 87123 USA
| | - Todd C. Monson
- Sandia National Laboratories, Nanomaterials Sciences, P.O. Box 5800, MS 1415, Albuquerque, NM 87185 USA
| | - Hugh D. C. Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Stop A1900, Austin, TX 78712 USA
| | - Marek Osiński
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| |
Collapse
|
45
|
Mukherjee S, Liang L, Veiseh O. Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12020147. [PMID: 32053995 PMCID: PMC7076668 DOI: 10.3390/pharmaceutics12020147] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetic nanomaterials belong to a class of highly-functionalizable tools for cancer therapy owing to their intrinsic magnetic properties and multifunctional design that provides a multimodal theranostics platform for cancer diagnosis, monitoring, and therapy. In this review article, we have provided an overview of the various applications of magnetic nanomaterials and recent advances in the development of these nanomaterials as cancer therapeutics. Moreover, the cancer targeting, potential toxicity, and degradability of these nanomaterials has been briefly addressed. Finally, the challenges for clinical translation and the future scope of magnetic nanoparticles in cancer therapy are discussed.
Collapse
|
46
|
Cai W, Chen Q, Shen T, Yang Q, Hu W, Zhao P, Yu J. Intravenous anti-VEGF agents with RGD peptide-targeted core cross-linked star (CCS) polymers modified with indocyanine green for imaging and treatment of laser-induced choroidal neovascularization. Biomater Sci 2020; 8:4481-4491. [DOI: 10.1039/c9bm02086a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
S-PEG-ICG-RGD-RBZ NPs were synthesized to intravenously deliver anti-VEGF agents to choroidal neovascularization (CNV) areas for the treatment of CNV.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| | - Qijing Chen
- Institute for Translational Medicine
- Institute for Biomedical Engineering and Nanoscience
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Tianyi Shen
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| | - Qian Yang
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| | - Weinan Hu
- Department of Ophthalmology
- Anhui University of Science and Technology
- Huainan
- China
| | - Peng Zhao
- Institute for Translational Medicine
- Institute for Biomedical Engineering and Nanoscience
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Jing Yu
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| |
Collapse
|
47
|
Nagi JS, Skorenko K, Bernier W, Jones WE, Doiron AL. Near Infrared-Activated Dye-Linked ZnO Nanoparticles Release Reactive Oxygen Species for Potential Use in Photodynamic Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E17. [PMID: 31861462 PMCID: PMC6982235 DOI: 10.3390/ma13010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
Novel dye-linked zinc oxide nanoparticles (NPs) hold potential as photosensitizers for biomedical applications due to their excellent thermal- and photo-stability. The particles produced reactive oxygen species (ROS) upon irradiation with 850 nm near infrared (NIR) light in a concentration- and time-dependent manner. Upon irradiation, ROS detected in vitro in human umbilical vein endothelial cells (HUVEC) and human carcinoma MCF7 cells positively correlated with particle concentration and interestingly, ROS detected in MCF7 was higher than in HUVEC. Preferential cytotoxicity was also exhibited by the NPs as cell killing was higher in MCF7 than in HUVEC. In the absence of irradiation, dye-linked ZnO particles minimally affected the viability of cell (HUVEC) at low concentrations (<30 μg/mL), but viability significantly decreased at higher particle concentrations, suggesting a need for particle surface modification with poly (ethylene glycol) (PEG) for improved biocompatibility. The presence of PEG on particles after dialysis was indicated by an increase in size, an increase in zeta potential towards neutral, and spectroscopy results. Cell viability was improved in the absence of irradiation when cells were exposed to PEG-coated, dye-linked ZnO particles compared to non-surface modified particles. The present study shows that there is potential for biological application of dye-linked ZnO particles in photodynamic therapy.
Collapse
Affiliation(s)
- Jaspreet Singh Nagi
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| | | | - William Bernier
- ChromaNanoTech LLC, Binghamton, NY 13902, USA; (K.S.); (W.B.)
- Department of Chemistry, Binghamton University (SUNY), Binghamton, NY 13902, USA;
| | - Wayne E. Jones
- Department of Chemistry, Binghamton University (SUNY), Binghamton, NY 13902, USA;
- Provost and Vice President for Academic Affairs, University of New Hampshire, Durham, NH 03824, USA
| | - Amber L. Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
48
|
The Application of Nanotechnology in the Codelivery of Active Constituents of Plants and Chemotherapeutics for Overcoming Physiological Barriers during Antitumor Treatment. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9083068. [PMID: 31915707 PMCID: PMC6930735 DOI: 10.1155/2019/9083068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Antitumor therapy using a combination of drugs has shown increased clinical efficacy. Active constituents derived from plants can offer several advantages, such as high efficiacy, low toxicity, extensive effects, and multiple targets. At present, the combination of plants' active constituents and chemotherapeutic drugs has attracted increased attention. Nanodrug delivery systems (NDDSs) have been widely used in tumor-targeted therapy because of their efficacy of delivering antitumor drugs. The in vivo process of tumor-targeted NDDSs has several steps. They include blood circulation, tumor accumulation and penetration, target cell internalization and uptake, and drug release and drug response. In each step, NDDSs encounter multiple barriers that prevent their effective delivery to target sites. Studies have been performed to find alternative strategies to overcome these barriers. We reviewed the recent progress of codelivery of active constituents of plants and chemotherapeutics using NDDSs. Progress into transversing the physiological barriers for more effective in vivo antitumor delivery will be discussed in this review.
Collapse
|
49
|
Paun IA, Calin BS, Mustaciosu CC, Mihailescu M, Moldovan A, Crisan O, Leca A, Luculescu CR. 3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation. MATERIALS 2019; 12:ma12172834. [PMID: 31484381 PMCID: PMC6747966 DOI: 10.3390/ma12172834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.9 ± 1.5 nm and saturation magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The specific magnetizations of the scaffolds with 2 and 4 mg/mL MNPs concentrations were of 14 emu/g and 17 emu/g, respectively. The MNPs reduced the shrinkage of the structures from 80.2 ± 5.3% for scaffolds without MNPs to 20.7 ± 4.7% for scaffolds with 4 mg/mL MNPs. Osteoblast cells seeded on scaffolds exposed to static magnetic field of 1.3 T deformed the regular architecture of the scaffolds and evoked faster mineralization in comparison to unstimulated samples. Scaffolds deformation and extracellular matrix mineralization under static magnetic field (SMF) exposure increased with increasing MNPs concentration. The results are discussed in the frame of gradient magnetic fields of ~3 × 10−4 T/m generated by MNPs over the cells bodies.
Collapse
Affiliation(s)
- Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania.
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania.
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Cosmin Catalin Mustaciosu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, RO-077125 Magurele-Ilfov, Romania
| | - Mona Mihailescu
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Antoniu Moldovan
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| | - Ovidiu Crisan
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Aurel Leca
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Catalin Romeo Luculescu
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| |
Collapse
|
50
|
Li X, Zhu X, Pan D, Xue Y, Jia Q, Liu F, Li Z. Magnetic domains characterization of crystalline Fe3O4 under DC and AC magnetic field. Microscopy (Oxf) 2019; 68:310-315. [PMID: 31034075 DOI: 10.1093/jmicro/dfz018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/22/2019] [Accepted: 04/06/2019] [Indexed: 11/13/2022] Open
Abstract
Fe3O4 nanoparticles with crystallite sizes around 10 nm were synthesized by an emulsion method. X-ray diffractometer (XRD) shows that nanocrystalline Fe3O4 possesses face center cubic structure. The magnetic characteristics are investigated by magnetic force microscopy (MFM). Magnetic field directions were applied parallel and perpendicular to the Fe3O4 sample surface for magnetic measurements. Under the perpendicular magnetic field, the phase images of most magnetic nanoparticles exhibit bright or dark MFM contrast. In comparison, the parallel field phase images display a bright-dark dipole MFM contrast, with in-plane magnetic domain configurations. Furthermore, the investigation of strip domains inside Fe3O4 particles under altering magnetic fields indicates the existence of magnetic anisotropy energies, dipole energies as well as inter-grain coupling energies inside the clusters. This approach for probing magnetic responses on nanoscale magnetic domains can be further extended to the analysis of local physical features.
Collapse
Affiliation(s)
- Xiang Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojuan Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dong Pan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Xue
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingqing Jia
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fang Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenghua Li
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|