1
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2025; 15:455-482. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
2
|
Kim TY, De R, Choi I, Kim H, Hahn SK. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024; 310:122630. [PMID: 38815456 DOI: 10.1016/j.biomaterials.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Wearable diabetic healthcare devices have attracted great attention for real-time continuous glucose monitoring (CGM) using biofluids such as tears, sweat, saliva, and interstitial fluid via noninvasive ways. In response to the escalating global demand for CGM, these devices enable proactive management and intervention of diabetic patients with incorporated drug delivery systems (DDSs). In this context, multifunctional nanomaterials can trigger the development of innovative sensing and management platforms to facilitate real-time selective glucose monitoring with remarkable sensitivity, on-demand drug delivery, and wireless power and data transmission. The seamless integration into wearable devices ensures patient's compliance. This comprehensive review evaluates the multifaceted roles of these materials in wearable diabetic healthcare devices, comparing their glucose sensing capabilities with conventionally available glucometers and CGM devices, and finally outlines the merits, limitations, and prospects of these devices. This review would serve as a valuable resource, elucidating the intricate functions of nanomaterials for the successful development of advanced wearable devices in diabetes management.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ranjit De
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
3
|
Abu Elella MH, Kolawole OM. Recent advances in modified chitosan-based drug delivery systems for transmucosal applications: A comprehensive review. Int J Biol Macromol 2024; 277:134531. [PMID: 39116977 DOI: 10.1016/j.ijbiomac.2024.134531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Recently, transmucosal drug delivery systems (TDDSs) have been extensively studied because they protect therapeutic agents from degradation; improve drug residence time at the mucosal membranes; and facilitate sustained drug release for a prolonged period. Chitosan is a well-researched polymeric excipient due to its biocompatibility, non-toxicity, biodegradability, mucoadhesive, antimicrobial, and low immunogenicity. Its limited mucoadhesiveness in the physiological environment necessitated its chemical modification. This review highlights the recent advances in the chemical modification of chitosan with various chemical groups to generate various functionalized chitosan derivatives, such as thiolated, acrylated, methacrylated, boronated, catechol, and maleimide-functionalized chitosans with superior mucoadhesive capabilities compared to the parent chitosan. Moreover, it presents the different prepared dosage forms, such as tablets, hydrogels, films, micro/nanoparticles, and liposomes/niosomes for drug administration within various mucosal routes including oral, buccal, nasal, ocular, colonic, intravesical, and vaginal routes. The reported data from preclinical studies of these pharmaceutical formulations have revealed the controlled and target-specific delivery of therapeutics because of their formation of covalent bonds with thiol groups on the mucosal surface. All functionalized chitosan derivatives exhibited long drug residence time on mucosal surfaces and sustainable drug release with excellent cellular permeability, drug efficacy, and biocompatibility. These promising data could be translated from the research laboratories to the clinics with consistent and intensive research effort.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6AD, United Kingdom; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | |
Collapse
|
4
|
Wang S, Yang C, Zhang W, Zhao S, You J, Cai R, Wang H, Bao Y, Zhang Y, Zhang J, Ji K, Zhang Y, Ye X, Gu Z, Yu J. Glucose-Responsive Microneedle Patch with High Insulin Loading Capacity for Prolonged Glycemic Control in Mice and Minipigs. ACS NANO 2024. [PMID: 39259604 DOI: 10.1021/acsnano.4c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Transdermal microneedle-mediated glucose-responsive insulin delivery systems can modulate insulin release based on fluctuations in blood glucose levels, thus maintaining normoglycemia effectively in a continuous, convenient, and minimally invasive manner. However, conventional microneedles are limited by the low drug loading capacity, making it challenging to be applied on human skin at a reasonable size for a lasting glucose-controlling effect, thus hindering their clinical translation. Here, we design a microneedle patch with a solid insulin powder core to achieve a high loading capacity of insulin (>70 wt %) as well as a glucose-sensitive polymeric shell to realize glucose-responsive insulin release. Once exposed to hyperglycemia, the formation of negatively charged glucose-boronate complexes increases the charge density of the shell matrix, leading to swelling of the shell and accelerating insulin release from the core. We have demonstrated that this glucose-responsive microneedle patch could achieve long-term regulation of blood glucose levels in both type 1 diabetic mice and minipigs (up to 48 h with patches of ∼3.5 cm2 for minipigs >25 kg).
Collapse
Affiliation(s)
- Shiqi Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changwei Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruisi Cai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhang Bao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao Ye
- Center for General Practice Medicine, Department of Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou 310014, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
5
|
Krysztofik A, Warżajtis M, Pochylski M, Boecker M, Yu J, Marchesi D'Alvise T, Puła P, Majewski PW, Synatschke CV, Weil T, Graczykowski B. Multi-responsive poly-catecholamine nanomembranes. NANOSCALE 2024; 16:16227-16237. [PMID: 39140363 DOI: 10.1039/d4nr01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e., membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies.
Collapse
Affiliation(s)
- Adam Krysztofik
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Marta Warżajtis
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Mikołaj Pochylski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Marcel Boecker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jiyao Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Przemysław Puła
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland
| | - Paweł W Majewski
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland
| | | | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| |
Collapse
|
6
|
Caturano A, Nilo R, Nilo D, Russo V, Santonastaso E, Galiero R, Rinaldi L, Monda M, Sardu C, Marfella R, Sasso FC. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel) 2024; 17:945. [PMID: 39065795 PMCID: PMC11279564 DOI: 10.3390/ph17070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, which comprises a group of metabolic disorders affecting carbohydrate metabolism, is characterized by improper glucose utilization and excessive production, leading to hyperglycemia. The global prevalence of diabetes is rising, with projections indicating it will affect 783.2 million people by 2045. Insulin treatment is crucial, especially for type 1 diabetes, due to the lack of β-cell function. Intensive insulin therapy, involving multiple daily injections or continuous subcutaneous insulin infusion, has proven effective in reducing microvascular complications but poses a higher risk of severe hypoglycemia. Recent advancements in insulin formulations and delivery methods, such as ultra-rapid-acting analogs and inhaled insulin, offer potential benefits in terms of reducing hypoglycemia and improving glycemic control. However, the traditional subcutaneous injection method has drawbacks, including patient compliance issues and associated complications. Nanomedicine presents innovative solutions to these challenges, offering promising avenues for overcoming current drug limitations, enhancing cellular uptake, and improving pharmacokinetics and pharmacodynamics. Various nanocarriers, including liposomes, chitosan, and PLGA, provide protection against enzymatic degradation, improving drug stability and controlled release. These nanocarriers offer unique advantages, ranging from enhanced bioavailability and sustained release to specific targeting capabilities. While oral insulin delivery is being explored for better patient adherence and cost-effectiveness, other nanomedicine-based methods also show promise in improving delivery efficiency and patient outcomes. Safety concerns, including potential toxicity and immunogenicity issues, must be addressed, with the FDA providing guidance for the safe development of nanotechnology-based products. Future directions in nanomedicine will focus on creating next-generation nanocarriers with precise targeting, real-time monitoring, and stimuli-responsive features to optimize diabetes treatment outcomes and patient safety. This review delves into the current state of nanomedicine for insulin delivery, examining various types of nanocarriers and their mechanisms of action, and discussing the challenges and future directions in developing safe and effective nanomedicine-based therapies for diabetes management.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
7
|
Yang L, Li H, Luo A, Zhang Y, Chen H, Zhu L, Yang D. Macrophage membrane-camouflaged pH-sensitive nanoparticles for targeted therapy of oral squamous cell carcinoma. J Nanobiotechnology 2024; 22:168. [PMID: 38610015 PMCID: PMC11015647 DOI: 10.1186/s12951-024-02433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Oral cancer is the most common malignant tumor of the head and neck, and 90% of cases are oral squamous cell carcinoma (OSCC). Chemotherapy is an important component of comprehensive treatment for OSCC. However, the clinical treatment effect of chemotherapy drugs, such as doxorubicin (DOX), is limited due to the lack of tumor targeting and rapid clearance by the immune system. Thus, based on the tumor-targeting and immune evasion abilities of macrophages, macrophage membrane-encapsulated poly(methyl vinyl ether alt maleic anhydride)-phenylboronic acid-doxorubicin nanoparticles (MM@PMVEMA-PBA-DOX NPs), briefly as MM@DOX NPs, were designed to target OSCC. The boronate ester bonds between PBA and DOX responded to the low pH value in the tumor microenvironment, selectively releasing the loaded DOX. RESULTS The results showed that MM@DOX NPs exhibited uniform particle size and typical core-shell structure. As the pH decreased from 7.4 to 5.5, drug release increased from 14 to 21%. The in vitro targeting ability, immune evasion ability, and cytotoxicity of MM@DOX NPs were verified in HN6 and SCC15 cell lines. Compared to free DOX, flow cytometry and fluorescence images demonstrated higher uptake of MM@DOX NPs by tumor cells and lower uptake by macrophages. Cell toxicity and live/dead staining experiments showed that MM@DOX NPs exhibited stronger in vitro antitumor effects than free DOX. The targeting and therapeutic effects were further confirmed in vivo. Based on in vivo biodistribution of the nanoparticles, the accumulation of MM@DOX NPs at the tumor site was increased. The pharmacokinetic results demonstrated a longer half-life of 9.26 h for MM@DOX NPs compared to 1.94 h for free DOX. Moreover, MM@DOX NPs exhibited stronger tumor suppression effects in HN6 tumor-bearing mice and good biocompatibility. CONCLUSIONS Therefore, MM@DOX NPs is a safe and efficient therapeutic platform for OSCC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Hongjiao Li
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Aihua Luo
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Yao Zhang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
8
|
Dai L, Wu F, Xiao Y, Liu Q, Meng M, Xi R, Yin Y. Template-Free Self-Assembly of Hollow Microtubular Covalent Organic Frameworks for Oral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17891-17903. [PMID: 38546545 DOI: 10.1021/acsami.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Covalent organic frameworks (COFs) have demonstrated versatile application potential since their discovery. Although the structure of COFs is orderly arranged, the synthesis of controllable macrostructures still faces challenges. Herein, we report, to our knowledge, the first template-free self-assembled COF-18 Å hollow microtubule (MT-COF-18 Å) structure and its use for insulin delivery that exhibits high loading capacity, gastroresistance, and glucose-responsive properties. The hollow MT-COF-18 Å was achieved by a template-free method benefiting from the mixed solvents of mesitylene and dioxane. The formation mechanism and morphology changes with insulin loading and release were observed. In Caco-2 cells, the transferrin-coated system demonstrated enhanced insulin cellular uptake and transcellular transport, which indicated great potential for oral applications. Additionally, the composites presented sustained glycemic control and effective insulin blood concentrations without noticeable toxicity in diabetic rats. This work shows that hollow microtubular COFs hold great promise in loading and delivery of biomolecules.
Collapse
Affiliation(s)
- Lihui Dai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fang Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yi Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
9
|
Ashwani PV, Gopika G, Arun Krishna KV, Jose J, John F, George J. Stimuli-Responsive and Multifunctional Nanogels in Drug Delivery. Chem Biodivers 2023; 20:e202301009. [PMID: 37718283 DOI: 10.1002/cbdv.202301009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
Nanogels represent promising drug delivery systems in the biomedical field, designed to overcome challenges associated with standard treatment approaches. Stimuli-responsive nanogels, often referred to as intelligent materials, have garnered significant attention for their potential to enhance control over properties such as drug release and targeting. Furthermore, researchers have recently explored the application of nanogels in diverse sectors beyond biomedicine including sensing materials, catalysts, or adsorbents for environmental applications. However, to fully harness their potential as practical delivery systems, further research is required to better understand their pharmacokinetic behaviour, interactions between nanogels and bio distributions, as well as toxicities. One promising future application of stimuli-responsive multifunctional nanogels is their use as delivery agents in cancer treatment, offering an alternative to overcome the challenges with conventional approaches. This review discusses various synthetic methods employed in developing nanogels as efficient carriers for drug delivery in cancer treatment. The investigations explore, the key aspects of nanogels, including their multifunctionality and stimuli-responsive properties, as well as associated toxicity concerns. The discussions presented herein aim to provide the readers a comprehensive understanding of the potential of nanogels as smart drug delivery systems in the context of cancer therapy.
Collapse
Affiliation(s)
- P V Ashwani
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - G Gopika
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - K V Arun Krishna
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Josena Jose
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
10
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
12
|
Akolgo GA, Partridge BM, D Craggs T, Amewu RK. Alternative boronic acids in the detection of Mycolactone A/B using the thin layer chromatography (f-TLC) method for diagnosis of Buruli ulcer. BMC Infect Dis 2023; 23:495. [PMID: 37501134 PMCID: PMC10373253 DOI: 10.1186/s12879-023-08426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Mycobacterium ulcerans is the causative agent of Buruli ulcer. The pathology of M. ulcerans disease has been attributed to the secretion of a potent macrolide cytotoxin known as mycolactone which plays an important role in the virulence of the disease. Mycolactone is a biomarker for the diagnosis of BU that can be detected using the fluorescent-thin layer chromatography (f-TLC) technique. The technique relies on the chemical derivatization of mycolactone A/B with 2-naphthylboronic acid (BA) which acts as a fluorogenic chemosensor. However, background interferences due to co-extracted human tissue lipids, especially with clinical samples coupled with the subjectivity of the method call for an investigation to find an alternative to BA. METHODS Twenty-six commercially available arylboronic acids were initially screened as alternatives to BA using the f-TLC experiment. UV-vis measurements were also conducted to determine the absorption maximum spectra of mycolactone A/B and myco-boronic acid adducts followed by an investigation of the fluorescence-enhancing ability of the boronate ester formation between mycolactone A/B and our three most promising boronic acids (BA15, BA18, and BA21). LC-MS technique was employed to confirm the adduct formation between mycolactone and boronic acids. Furthermore, a comparative study was conducted between BA18 and BA using 6 Polymerase Chain Reaction (PCR) confirmed BU patient samples. RESULTS Three of the boronic acids (BA15, BA18, and BA21) produced fluorescent band intensities superior to BA. Complexation studies conducted on thin layer chromatography (TLC) using 0.1 M solution of the three boronic acids and various volumes of 10 ng/µL of synthetic mycolactone ranging from 1 µL - 9 µL corresponding to 10 ng - 90 ng gave similar results with myco-BA18 adduct emerging with the most visibly intense fluorescence bands. UV-vis absorption maxima (λmax) for the free mycolactone A/B was observed at 362 nm, and the values for the adducts myco-BA15, myco-BA18, and myco-BA21 were at 272 nm, 270 nm, and 286 nm respectively. The comparable experimental λmax of 362 nm for mycolactone A/B to the calculated Woodward-Fieser value of 367 nm for the fatty acid side chain of mycolactone A/B demonstrate that even though 2 cyclic boronates were formed, only the boronate of the southern side chain with the chromophore was excited by irradiation at 365 nm. Fluorescence experiments have demonstrated that coupling BA18 to mycolactone A/B along the 1,3-diols remarkably enhanced the fluorescence intensity at 537 nm. High-Resolution Mass Spectrometer (HR-MS) was used to confirm the formation of the myco-BA15 adduct. Finally, f-TLC analysis of patient samples with BA18 gave improved BA18-adduct intensities compared to the original BA-adduct. CONCLUSION Twenty-six commercially available boronic acids were investigated as alternatives to BA, used in the f-TLC analysis for the diagnosis of BU. Three (3) of them BA15, BA18, and BA21 gave superior fluorescence band intensity profiles. They gave profiles that were easier to interpret after the myco-boronic acid adduct formation and in experiments with clinical samples from patients with BA18 the best. BA18, therefore, has been identified as a potential alternative to BA and could provide a solution to the challenge of background interference of co-extracted human tissue lipids from clinical samples currently associated with the use of BA.
Collapse
Grants
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
Collapse
Affiliation(s)
- Gideon A Akolgo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 56, Legon, Accra, Ghana
| | - Benjamin M Partridge
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK
| | - Timothy D Craggs
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK
| | - Richard K Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 56, Legon, Accra, Ghana.
| |
Collapse
|
13
|
Lü T, Zhou S, Ma R, Qi D, Sun Y, Zhang D, Huang J, Zhao H. Demulsification Performance and Mechanism of Tertiary Amine Polymer-Grafted Magnetic Nanoparticles in Surfactant-Free Oil-in-Water Emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1288-1298. [PMID: 36621519 DOI: 10.1021/acs.langmuir.2c03090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Numerous cationic magnetic nanoparticles (MNPs) have previously been developed for demulsifying oil-in-water (O/W) emulsion, and results showed that the cationic MNPs could effectively flocculate and remove the negatively charged oil droplets via charge attraction; however, to the best of our knowledge, there are no research reports regarding the synergetic influence of both the positive charge density and interfacial activity of MNPs on the demulsification performance. In this study, three tertiary amine polymer-grafted MNPs, namely, poly(2-dimethylaminoethyl acrylate)-grafted MNPs (M-PDMAEA), poly(2-dimethylamino)ethyl methacrylate)-grafted MNPs (M-PDMAEMA), and poly(2-diethylaminoethyl methacrylate)-grafted MNPs (M-PDEAEMA), were synthesized and evaluated for their demulsification performance. Results demonstrated that a high positive charge density and superior interfacial activity of MNPs could cause partial oil droplet re-dispersion when excessive MNPs were introduced, leading to a lower magnetic separation efficiency and narrower demulsification window. Herein, a demulsification window is defined as a range of nanoparticle dosages in which the MNPs can effectively demulsify the O/W emulsion under certain conditions. For highly positively charged MNPs, their good interfacial activity could aggravate the formation of a narrower demulsification window. When tertiary amine polymer-grafted MNPs carried a lower positive charge density or weak interfacial activity, that is, M-PDMAEA at pH 4.0, M-PDMAEMA at pH 5.0-9.0, and M-PDEAEMA at pH 9.0-10.0, wide demulsification windows were observed. Additionally, a recycling experiment suggested that MNPs could maintain high demulsification efficiency up to at least five cycles, indicating their satisfactory recyclability. The three tertiary amine polymer-grafted MNPs can be potentially used for efficient demulsification from surfactant-free O/W emulsion in various pH ranges.
Collapse
Affiliation(s)
- Ting Lü
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Shuangshuang Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Ronggang Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Dongming Qi
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China
| | - Yangyi Sun
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China
| | - Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Hongting Zhao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528011, Guangdong, China
| |
Collapse
|
14
|
Kusmus DNM, van Veldhuisen TW, Khan A, Cornelissen JJLM, Paulusse JMJ. Uniquely sized nanogels via crosslinking polymerization. RSC Adv 2022; 12:29423-29432. [PMID: 36320766 PMCID: PMC9562763 DOI: 10.1039/d2ra04123e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Nanogels are very promising carriers for nanomedicine, as they can be prepared in the favorable nanometer size regime, can be functionalized with targeting agents and are responsive to stimuli, i.e. temperature and pH. This induces shrinking or swelling, resulting in controlled release of a therapeutic cargo. Our interest lies in the controlled synthesis of functional nanogels, such as those containing epoxide moieties, that can be subsequently functionalized. Co-polymerization of glycidyl methacrylate and a bifunctional methacrylate crosslinker under dilute conditions gives rise to well-defined epoxide-functional nanogels, of which the sizes are controlled by the degree of polymerization. Nanogels with well-defined sizes (polydispersity of 0.2) ranging from 38 nm to 95 nm were prepared by means of controlled radical polymerization. The nanogels were characterized in detail by FT-IR, DLS, size exclusion chromatography, NMR spectroscopy, AFM and TEM. Nucleophilic attack with functional thiols or amines on the least hindered carbon of the epoxide provides water-soluble nanogels, without altering the backbone structure, while reaction with sodium azide provides handles for further functionalization via click chemistry.
Collapse
Affiliation(s)
- Disraëli N. M. Kusmus
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Thijs W. van Veldhuisen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Anzar Khan
- Korea University145 Anam-ro, Anam-dongSeoulSeongbuk-guKorea
| | - Jeroen J. L. M. Cornelissen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Jos M. J. Paulusse
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| |
Collapse
|
15
|
Chremos A, Douglas JF, Basser PJ, Horkay F. Molecular dynamics study of the swelling and osmotic properties of compact nanogel particles. SOFT MATTER 2022; 18:6278-6290. [PMID: 35968626 PMCID: PMC9425154 DOI: 10.1039/d2sm00681b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Owing to their great importance in materials science and other fields, we investigate the solution and osmotic properties of uncharged compact nanogel particles over a wide range of solvent quality and particle concentration by molecular dynamics (MD) simulations. We characterize the osmotic pressure by estimating the second and third virial coefficients, and by extension, we identify the θ-point where the second virial coefficient vanishes. Calculations of the structure factor indicate that these particles are similar to macrogels in that the particle-like scattering profile disappears at moderate concentrations. We also find that improving the solvent quality enhances the spatial segmental uniformity, while significant heterogeneous structure arises near the θ-point. Well below the θ-point where the second osmotic virial coefficient vanishes, these heterogeneous structures become less prevalent as the particles tend to collapse. We also investigate the degree of swelling and structure of compact nanogel particles with a variable excluded volume interaction and gel particle concentration. The osmotic modulus and the scaling exponents in good and θ-point conditions of these gels are characteristic of interacting randomly branched polymers, i.e., "lattice animals".
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
17
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
18
|
Chen Y, An Q, Teng K, Zhang Y, Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
20
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Selective Glucose Sensing under Physiological pH with Flexible and Binder‐Free Prussian Blue Coated Carbon Cloth Electrodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202101355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramadan Chalil Oglou
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | | | - Ekmel Ozbay
- NANOTAM – Nanotechnology Research Center, Department of Electrical and Electronics Engineering Department of Physics Bilkent University Ankara 06800 Turkey
| | - Ferdi Karadas
- Department of Chemistry Bilkent University Ankara 06800 Turkey
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| |
Collapse
|
21
|
Ma R, An X, Shao R, Zhang Q, Sun S. Recent advancement in noninvasive glucose monitoring and closed-loop management system for diabetes. J Mater Chem B 2022; 10:5537-5555. [DOI: 10.1039/d2tb00749e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes can cause many complications, which has become one of the most common diseases that may lead to death. Currently, the number of diabetics continues increasing year by year. Thus,...
Collapse
|
22
|
Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels 2021; 7:228. [PMID: 34842728 PMCID: PMC8628665 DOI: 10.3390/gels7040228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, research in nanoparticles as a drug delivery system has broadened to include their use as a delivery system for bioactive substances and a diagnostic or theranostic system. Nanogels, nanoparticles containing a high amount of water, have gained attention due to their advantages of colloidal stability, core-shell structure, and adjustable structural components. These advantages provide the potential to design and fabricate multifunctional nanosystems for various biomedical applications. Modified or functionalized polymers and some metals are components that markedly enhance the features of the nanogels, such as tunable amphiphilicity, biocompatibility, stimuli-responsiveness, or sensing moieties, leading to specificity, stability, and tracking abilities. Here, we review the diverse designs of core-shell structure nanogels along with studies on the fabrication and demonstration of the responsiveness of nanogels to different stimuli, temperature, pH, reductive environment, or radiation. Furthermore, additional biomedical applications are presented to illustrate the versatility of the nanogels.
Collapse
Affiliation(s)
- Tisana Kaewruethai
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Zhang P, Fischer A, Ouyang Y, Wang J, Sohn YS, Nechushtai R, Pikarsky E, Fan C, Willner I. Aptamer-modified DNA tetrahedra-gated metal-organic framework nanoparticle carriers for enhanced chemotherapy or photodynamic therapy. Chem Sci 2021; 12:14473-14483. [PMID: 34880998 PMCID: PMC8580039 DOI: 10.1039/d1sc04229g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
UiO-66 metal-organic framework nanoparticles (NMOFs) gated by aptamer-functionalized DNA tetrahedra provide superior biomarker-responsive hybrid nano-carriers for biomedical applications. Hybrid nano-carriers consisting of ATP-aptamer or VEGF-aptamer functionalized tetrahedra-gated NMOFs are loaded with the chemotherapeutic drug, doxorubicin (DOX). In the presence of ATP or VEGF, both abundant in cancer cells, the tetrahedra-gated NMOFs are unlocked to release the drug. Enhanced and selective permeation of the DOX-loaded ATP/VEGF-responsive tetrahedra-gated NMOFs into MDA-MB-231 breast cancer cells as compared to the reference ATP/VEGF-responsive duplex-gated NMOFs or non-malignant MCF-10A epithelial breast cells is observed. This results in enhanced and selective cytotoxicity of the tetrahedra-gated DOX-loaded NMOFs toward the malignant cells. Additional nano-carriers, consisting of photosensitizer Zn(ii) protoporphyrin IX (Zn(ii)-PPIX)-loaded VEGF-responsive tetrahedra-gated NMOFs, are introduced. The VEGF-triggered unlocking of the NMOFs yields separated G-quadruplex-VEGF aptamer complexes conjugated to the tetrahedra, resulting in the release of loaded Zn(ii)-PPIX. Association of the released Zn(ii)-PPIX to the G-quadruplex structures generates highly fluorescent supramolecular Zn(ii)-PPIX/G-quadruplex VEGF aptamer-tetrahedra structures. The efficient and selective generation of the highly fluorescent Zn(ii)-PPIX/G-quadruplex VEGF aptamer-tetrahedra nanostructures in malignant cells allows the light-induced photosensitized generation of reactive oxygen species (ROS), leading to high-efficacy PDT treatment of the malignant cells.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University Shanghai 200240 China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
24
|
Savage DT, Hilt JZ, Dziubla TD. Assessing the perfluoroalkyl acid-induced swelling of Förster resonance energy transfer-capable poly( N-isopropylacrylamide) microgels. SOFT MATTER 2021; 17:9799-9808. [PMID: 34661226 PMCID: PMC8889493 DOI: 10.1039/d1sm00985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a method to combat the extensive contamination of poly- and perfluoroalkyl substances (PFAS) in water supplies, poly(N-isopropylacrylamide) (PNIPAM) microgels copolymerized with 2,2,2-trifluoroethylacrylate (TFEA) represent a potential sensing tool for recognizing PFAS at dilute aqueous concentrations. The microgels exhibit exceptional temperature responsiveness, transitioning from a swollen z-average diameter of 890.8 ± 19.8 nm to a collapsed diameter of 246.4 ± 10.3 nm below and above their lower critical solution temperature, respectively, for non-fluorinated gels, offering broad size fluctuations that are susceptible to coadded contaminants. Monitoring size perturbations as a function of analyte concentration, the polymers were observed to deswell in the presence of perfluorooctanoic acid, octanoic acid, phenol, and sodium 1-octane sulfonate while tetraethylammonium perfluorooctane sulfonate (TPFOS) augmented swelling. Adding up to 40 mol% TFEA to the networks lowered the concentration at which the microgels' normalized z-average diameter demonstrated a significant deviation from 0.25 mM to 0.1 mM for TPFOS, indicating fluorophilicity as a key contributor to the copolymers' associative capacity. Implanting Förster resonance energy transfer-compatible dyes, cyanine 3 and cyanine 5, into non-fluorinated microgels largely reiterated results from light scattering, as expected for the size-dependent energy transfer mechanism. Including dyes did, however, reinforce the customizability of this system, leaving windows open for functionalization with other signal transduction motifs to lower the detection limits of the polymer further. The swelling changes for PNIPAM microgels stimulated by the acidic constituents of PFAS highlight the polymer as a candidate for detecting the substances following additional development.
Collapse
Affiliation(s)
- Dustin T Savage
- University of Kentucky, Department of Chemical and Materials Engineering, 177 F. Paul Anderson Tower, Lexington, KY 40506-0046, USA.
| | - J Zach Hilt
- University of Kentucky, Department of Chemical and Materials Engineering, 177 F. Paul Anderson Tower, Lexington, KY 40506-0046, USA.
| | - Thomas D Dziubla
- University of Kentucky, Department of Chemical and Materials Engineering, 177 F. Paul Anderson Tower, Lexington, KY 40506-0046, USA.
| |
Collapse
|
25
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
26
|
Zhao J, Xu G, Yao X, Zhou H, Lyu B, Pei S, Wen P. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res 2021; 12:2403-2427. [PMID: 34671948 PMCID: PMC8528479 DOI: 10.1007/s13346-021-01077-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus is a metabolic disease manifested by hyperglycemia. For patients with type 1 and advanced type 2 diabetes mellitus, insulin therapy is essential. Subcutaneous injection remains the most common administration method. Non-invasive insulin delivery technologies are pursued because of their benefits of decreasing patients' pain, anxiety, and stress. Transdermal delivery systems have gained extensive attention due to the ease of administration and absence of hepatic first-pass metabolism. Microneedle (MN) technology is one of the most promising tactics, which can effectively deliver insulin through skin stratum corneum in a minimally invasive and painless way. This article will review the research progress of MNs in insulin transdermal delivery, including hollow MNs, dissolving MNs, hydrogel MNs, and glucose-responsive MN patches, in which insulin dosage can be strictly controlled. The clinical studies about insulin delivery with MN devices have also been summarized and grouped based on the study phase. There are still several challenges to achieve successful translation of MNs-based insulin therapy. In this review, we also discussed these challenges including safety, efficacy, patient/prescriber acceptability, manufacturing and scale-up, and regulatory authority acceptability.
Collapse
Affiliation(s)
- Jing Zhao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Genying Xu
- Department of Pharmacy, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Xin Yao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Huirui Zhou
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Boyang Lyu
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Shuangshuang Pei
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Ping Wen
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road Zhangjiang Hi-Tech Park , Shanghai, 200120 China
| |
Collapse
|
27
|
Dey GR, Saha A. Surface Engineered PLGA Nanoparticle for Threshold Responsive Glucose Monitoring and "Self-Programmed" Insulin Delivery. ACS Biomater Sci Eng 2021; 7:4645-4658. [PMID: 34424676 DOI: 10.1021/acsbiomaterials.1c00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have developed a reversible, biocompatible, "self-programmed" PLGA [poly(lactic-co-glycolic acid)] nanoparticle-based optical biosensor capable of sensing and continuous monitoring of glucose above the physiologically relevant threshold value (100-125 mg/dL) as well as "on-demand" insulin delivery via an "On-Off" technique. We have carefully surface engineered the PLGA nanoparticle using amino dextran-fluorescein (A-DexFl) and amino-phenyl boronic acid (A-PBA) to exploit the binding affinity of boronic acids with that of cis-1,2 diols of dextran/glucose. Initially, the dextran chains wrap the nanoparticle surface due to its high affinity toward A-PBA (Kb = 6.1 × 106 M-1). The close proximity of the fluorophores with that of A-PBA quenches the fluorescence, resulting in an "Off" state. On the addition of glucose, it competes with A-DexFl to bind with A-PBA. Above a certain threshold concentration of glucose, the binding affinity overcomes (Kb = 6.3 × 107 M-1) the dextran-A-PBA binding. This opens-up the wrapped A-DexFl chains from the nanoparticle surface and results in an increased distance between the fluorophore and A-PBA, triggering the "On" state. The activation of the On-Off state can be finely tuned in the desired range of physiologically relevant glucose concentrations by varying the ligand ratios on the PLGA surface. The nanoparticle core has also been used as an insulin reservoir to trigger the drug release in the "On" state. We have obtained ∼53% encapsulation efficiency and ∼20% loading efficiency for insulin loading. Once the glucose concentration falls beyond the detection range, the dextran chains collapse on the nanoparticle surface with a suspension in drug release. The process is solely controlled by the competition and multivalent binding affinity between glucose, A-DexFl, and A-PBA, which allows it to be "self-programmed" and "self-regulated" with continuous monitoring up to 8-10 cycles over a 72 h time period. A sustained drug release has been found with ∼70% of released drug over a period of 72 h, although this release is insignificant in the absence of glucose. Several control experiments have been performed to optimize the sensor design.
Collapse
Affiliation(s)
- Gaurav Ranjan Dey
- Functional Materials and Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Arindam Saha
- Functional Materials and Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| |
Collapse
|
28
|
Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021; 9:573748. [PMID: 34307293 PMCID: PMC8299995 DOI: 10.3389/fchem.2021.573748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels possess a unique three-dimensional, cross-linked network of polymers capable of absorbing large amounts of water and biological fluids without dissolving. Nanohydrogels (NGs) or nanogels are composed of diverse types of polymers of synthetic or natural origin. Their combination is bound by a chemical covalent bond or is physically cross-linked with non-covalent bonds like electrostatic interactions, hydrophobic interactions, and hydrogen bonding. Its remarkable ability to absorb water or other fluids is mainly attributed to hydrophilic groups like hydroxyl, amide, and sulphate, etc. Natural biomolecules such as protein- or peptide-based nanohydrogels are an important category of hydrogels which possess high biocompatibility and metabolic degradability. The preparation of protein nanohydrogels and the subsequent encapsulation process generally involve use of environment friendly solvents and can be fabricated using different proteins, such as fibroins, albumin, collagen, elastin, gelatin, and lipoprotein, etc. involving emulsion, electrospray, and desolvation methods to name a few. Nanohydrogels are excellent biomaterials with broad applications in the areas of regenerative medicine, tissue engineering, and drug delivery due to certain advantages like biodegradability, biocompatibility, tunable mechanical strength, molecular binding abilities, and customizable responses to certain stimuli like ionic concentration, pH, and temperature. The present review aims to provide an insightful analysis of protein/peptide nanohydrogels including their preparation, biophysiochemical aspects, and applications in diverse disciplines like in drug delivery, immunotherapy, intracellular delivery, nutraceutical delivery, cell adhesion, and wound dressing. Naturally occurring structural proteins that are being explored in protein nanohydrogels, along with their unique properties, are also discussed briefly. Further, the review also covers the advantages, limitations, overview of clinical potential, toxicity aspects, stability issues, and future perspectives of protein nanohydrogels.
Collapse
Affiliation(s)
- Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| | - Giriraj T. Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, India
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | | | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| |
Collapse
|
29
|
Akbarian M. Insulin therapy; a valuable legacy and its future perspective. Int J Biol Macromol 2021; 181:1224-1230. [PMID: 33989689 DOI: 10.1016/j.ijbiomac.2021.05.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Proteins and peptides are widely used in various areas including pharmaceutical, health, food, textile and biofuel industries. At present, pharmaceutical proteins and peptides have attracted the attention of many researchers. These types of drugs are superior to chemical drugs in many ways so that every year the number of drugs with a protein or peptide moiety is increasing. Due to high performance and low side effects, the demand for these drugs has increased year by year. The beginning of the protein and peptide drug industry dates back to 1982 with the introduction of the protein hormone insulin into the field of treatment. From this year onwards, a new number of protein and peptide drugs have entered the field of treatment every year. In this article, we focus on human therapeutic insulin. First, the history of the hormone will be introduced, then-current methods for insulin therapy will be discussed and finally, the treatments by this hormone in the future will be pointed. Reading this article would be very helpful for nano researchers, biochemists, organic chemists, material scientists and other people who are interested in soft and hard matters interfaces.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan..
| |
Collapse
|
30
|
|
31
|
Shu T, Hu L, Shen Q, Jiang L, Zhang Q, Serpe MJ. Stimuli-responsive polymer-based systems for diagnostic applications. J Mater Chem B 2021; 8:7042-7061. [PMID: 32743631 DOI: 10.1039/d0tb00570c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive polymers exhibit properties that make them ideal candidates for biosensing and molecular diagnostics. Through rational design of polymer composition combined with new polymer functionalization and synthetic strategies, polymers with myriad responsivities, e.g., responses to temperature, pH, biomolecules, CO2, light, and electricity can be achieved. When these polymers are specifically designed to respond to biomarkers, stimuli-responsive devices/probes, capable of recognizing and transducing analyte signals, can be used to diagnose and treat disease. In this review, we highlight recent state-of-the-art examples of stimuli-responsive polymer-based systems for biosensing and bioimaging.
Collapse
Affiliation(s)
- Tong Shu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
32
|
Preman N, Jain S, Johnson RP. "Smart" Polymer Nanogels as Pharmaceutical Carriers: A Versatile Platform for Programmed Delivery and Diagnostics. ACS OMEGA 2021; 6:5075-5090. [PMID: 33681548 PMCID: PMC7931185 DOI: 10.1021/acsomega.0c05276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
"Smart" polymeric nanoformulations are evolving as a promising therapeutic, diagnostic paradigm. The polymeric nanovehicles demonstrated excellent capability to encapsulate theranostic cargos and their successful delivery in physiological conditions and even to monitor the therapeutic response. Currently, polymer nanogels (NGs) are established as capable carriers toward triggered delivery of diverse therapeutic and diagnostic agents. Notably, biodegradable and "intelligent" NGs constructed from intelligent polymers are highly beneficial because of their responsiveness toward endogenous as well as exogenous stimuli like pH gradients, bioresponsiveness, photoresponsiveness, temperature, and so on. In the past decade, plenty of multifunctional NGs with excellent targetability and sensitivity were reported for a wide range of theragnostic applications. This mini-review briefly propounds the synthesis strategies of "smart" NGs and summarizes the notable applications like delivery of genetic materials, anticancer agents, photodynamic/photothermal therapies, imaging, and biosensing. Herein, we have also addressed the current clinical status of NGs and the major challenges that are essential to overcome for the further advancement of NGs for specific applications.
Collapse
|
33
|
Zhang T, Tang JZ, Fei X, Li Y, Song Y, Qian Z, Peng Q. Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharm Sin B 2021; 11:651-667. [PMID: 33777673 PMCID: PMC7982494 DOI: 10.1016/j.apsb.2020.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
Insulin therapy plays an essential role in the treatment of diabetes mellitus. However, frequent injections required to effectively control the glycemic levels lead to substantial inconvenience and low patient compliance. In order to improve insulin delivery, many efforts have been made, such as developing the nanoparticles (NPs)-based release systems and oral insulin. Although some improvements have been achieved, the ultimate results are still unsatisfying and none of insulin-loaded NPs systems have been approved for clinical use so far. Recently, nano‒protein interactions and protein corona formation have drawn much attention due to their negative influence on the in vivo fate of NPs systems. As the other side of a coin, such interactions can also be used for constructing advanced drug delivery systems. Herein, we aim to provide an insight into the advance and flaws of various NPs-based insulin delivery systems. Particularly, an interesting discussion on nano‒protein interactions and its potentials for developing novel insulin delivery systems is initiated. Insulin therapy plays essential roles in treating diabetes. Optimizing insulin delivery enhances insulin therapy. Nanoparticles are promising systems for delivery of insulin. Nano-protein interactions influence the delivery of nanoparticles. Nano-protein interactions can be used for advanced delivery of insulin.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - James Zhenggui Tang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, School of Pharmacy, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Xiaofan Fei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Song
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author.
| |
Collapse
|
34
|
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH
‐sensitive polymers: Classification and some fine potential applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5230] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabrice Ofridam
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Émilie Gagnière
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Denis Mangin
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| |
Collapse
|
35
|
Kumari M, Prasad S, Fruk L, Parshad B. Polyglycerol-based hydrogels and nanogels: from synthesis to applications. Future Med Chem 2021; 13:419-438. [PMID: 33403867 DOI: 10.4155/fmc-2020-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hydrogels and nanogels have emerged as promising materials for biomedical applications owing to their large surface area and tunable mechanical and chemical properties. Their large surface area is well suited for bioconjugation, whilst the interior porous network can be utilized for the transport of valuable biomolecules. The use of biocompatible hydrophilic building blocks/linkers for the preparation of hydrogels and nanogels not only avoids undesired side effects within the biological system, but also retains high water content, thereby creating an environment which is very similar to extracellular matrix. Their tunable multivalency and hydrophilicity and excellent biocompatibility, together with ease of functionalization, makes polyglycerol macromonomers well suited for synthesizing cross-linked networks that can be used as extracellular matrix mimics. Here we provide an overview of the synthesis of polyglycerol-based hydrogels and nanogels for various biomedical applications.
Collapse
Affiliation(s)
- Meena Kumari
- Department of Chemistry, Government College for Women, Badhra, Ch. Dadri, Haryana 127308, India
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ljiljana Fruk
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Badri Parshad
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
36
|
In situ construction of zeolitic imidazolate framework-67 derived Co3O4 on CCCH NWs/CF hierarchical nanowires for high-performance enzymeless glucose detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
38
|
Zhao R, Lu Z, Yang J, Zhang L, Li Y, Zhang X. Drug Delivery System in the Treatment of Diabetes Mellitus. Front Bioeng Biotechnol 2020; 8:880. [PMID: 32850735 PMCID: PMC7403527 DOI: 10.3389/fbioe.2020.00880] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus has been described as a chronic endocrine and metabolic disease, which is characterized by hyperglycemia and the coexistence of multiple complications. At present, the drugs widely applied in clinical treatment of diabetes mellitus mainly include insulin, insulin analogs, non-insulin oral hypoglycemic drugs and genetic drugs. Nevertheless, there is still no complete therapy strategy for diabetes mellitus management by far due to the intrinsic deficiencies of drugs and limits in administration routes such as the adverse reactions caused by long-term subcutaneous injection and various challenges in oral administration, such as enzymatic degradation, chemical instability and poor gastrointestinal absorption. Therefore, it is remarkably necessary to develop appropriate delivery systems and explore complete therapy strategies according to the characters of drugs and diabetes mellitus. Delivery systems have been found to be potentially beneficial in many aspects for effective diabetes treatment, such as improving the stability of drugs, overcoming different biological barriers in vivo to increase bioavailability, and acting as an intelligent automatized system to mimic endogenous insulin delivery and reduce the risk of hypoglycemia. This review aims to provide an overview related with the research advances, development trend of drug therapy and the application of delivery systems in the treatment diabetes mellitus, which could offer reference for the application of various drugs in the field of diabetes mellitus treatment.
Collapse
Affiliation(s)
- Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liqun Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Lan R, Liu H, Zhu L, Lu F, Wu Q, Wu W. One-pot HTST synthesis of responsive fluorescent ZnO@apo-enzyme composite microgels for intracellular glucometry. RSC Adv 2020; 10:26566-26578. [PMID: 35519737 PMCID: PMC9055424 DOI: 10.1039/d0ra04339g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Responsive fluorescent microgels, that can selectively, reversibly, and rapidly convert the fluctuation in intracellular glucose level into fluorescence signal, have the potential use for intracellular glucometry to promote the understanding of physiology. Herein, we report one-pot synthesis of such a responsive fluorescent composite microgels, which is made of a representative apo-enzyme, apo-glucose oxidase (apo-GOx), interpenetrated in a composite gel network that is comprised of ZnO quantum dots covalently bonded onto crosslinked poly(ethylene glycol) dimethacrylate. The key of this one-pot synthesis is applying a high-temperature short-time heating (HTST) method, so that the naturally dynamic profile of apo-GOx can be maintained and harnessed on the composite microgels to allow the highly selective response to glucose over a glucose concentration range of 0-20 mM. While the composite microgels can undergo volume phase transitions and convert both an increase and a decrease in glucose concentration into fluorescence signal shortly (<1 s), the changes in average hydrodynamic diameter and fluorescence of the composite microgels can be fully reversible even after twenty cycles of adding/removing glucose, indicating a reversible and rapid time response to the glucose concentration variations. With the composite microgels as biosensors, the fluorescence of the composite microgels embedded in the model cancer cells B16F10 can be modulated in response to intracellular glucose level variations, which are derived from a change in glucose concentration in the culture medium by an external supply, or that can be triggered by biochemical reactions (with the β-galactosidase catalysed hydrolysis of lactose as a model reaction for achieving increased glucose levels, and the GOx catalysed oxidation of glucose for achieving decreased glucose levels).
Collapse
Affiliation(s)
- Ruyue Lan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Huijiao Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Lin Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Fan Lu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Qingshi Wu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou Fujian 362000 China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
40
|
Zhang C, Peng SY, Hong S, Chen QW, Zeng X, Rong L, Zhong ZL, Zhang XZ. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials 2020; 245:119986. [DOI: 10.1016/j.biomaterials.2020.119986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
|
41
|
Elshaarani T, Yu H, Wang L, Feng J, Li C, Zhou W, Khan A, Usman M, Amin BU, Khan R. Chitosan reinforced hydrogels with swelling-shrinking behaviors in response to glucose concentration. Int J Biol Macromol 2020; 161:109-121. [PMID: 32512091 DOI: 10.1016/j.ijbiomac.2020.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Different hydrogels of poly(acrylamide-co-3-acrylamido phenylboronic acid-co-chitosan grafted maleic acid) (P(AM-co-AAPBA-co-CSMA)s) were synthesized using poly(ethylene glycol) diacrylate (PEGDA) as a crosslinker to serve for glucose sensing and insulin delivery. The structure and morphology of the hydrogels, named as CSPBA were studied by FTIR and SEM, while the mechanical properties were tested using dynamic mechanical analysis (DMA) and universal testing machine. The prepared hydrogels shrinked at low glucose concentration due to the 2:1 boronate-glucose binding, and swelled at high glucose concentration because of 1:1 boronate-glucose complexation. Both binding mechanisms are useful for glucose sensing and insulin delivery. The integration of CSMA into hydrogels network not only enhanced the response to glucose at physiological pH, but also improved the mechanical properties and increased the encapsulation efficiency of the prepared hydrogels. These CSPBA may find potential as implantable hydrogels in applications were continuous glucose monitoring and controlled release is beneficial.
Collapse
Affiliation(s)
- Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Jingyi Feng
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, 310003, PR China
| | - Chengjiang Li
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, 310003, PR China
| | - Weibin Zhou
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, 310003, PR China
| | - Amin Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Muhammad Usman
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Rizwan Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
42
|
Qin YT, Feng YS, Ma YJ, He XW, Li WY, Zhang YK. Tumor-Sensitive Biodegradable Nanoparticles of Molecularly Imprinted Polymer-Stabilized Fluorescent Zeolitic Imidazolate Framework-8 for Targeted Imaging and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24585-24598. [PMID: 32390415 DOI: 10.1021/acsami.0c05154] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Targeting enrichment of nanocarriers at tumor sites and effective drug release are critical in cancer treatment. Accordingly, we used fluorescent zeolitic imidazolate framework-8 nanoparticles loaded with doxorubicin (FZIF-8/DOX) as the core and a molecularly imprinted polymer (MIP) as the shell to synthesize tumor-sensitive biodegradable FZIF-8/DOX-MIP nanoparticles (FZIF-8/DOX-MIPs). The MIP prepared with the epitope of CD59 cell membrane glycoprotein as the template allowed FZIF-8/DOX-MIPs to be enriched to tumor sites by actively targeting recognition of MCF-7 cancer cells (CD59-positive). Moreover, using N,N'-diacrylylcystamine as the cross-linker and dimethylaminoethyl methacrylate as the main monomer, the MIP's framework will be broken under the stimulation of a tumor microenvironment (high-concentration glutathione and weakly acidic), so that the internal FZIF-8/DOX is exposed to a microacidic environment to release DOX through further degradation. More importantly, the ability of FZIF-8/DOX-MIPs in targeted fluorescence imaging and effective drug release has been validated both in vitro and in vivo. Compared to other cells and nanoparticles, FZIF-8/DOX-MIPs were more capable of being phagocytosed by MCF-7 cells and were more lethal to MCF-7 cells. In the comparative experiments carried out on tumor-bearing mice, FZIF-8/DOX-MIPs had the best inhibitory effect on the growth of MCF-7 tumors. Furthermore, the FZIF-8/DOX-MIPs can serve as a diagnostic agent because of the active targeting of MCF-7 cells and the stronger red fluorescence of the embedded carbon quantum dots. Because of the active targeting ability, good biocompatibility, tumor-sensitive biodegradability, and effective drug release performance, FZIF-8/DOX-MIPs can be widely used in tumor imaging and treatment.
Collapse
Affiliation(s)
- Ya-Ting Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yu-Sheng Feng
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yao-Jia Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
43
|
Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y, Kahkoska AR, Buse JB, Langer R, Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 2020; 4:499-506. [PMID: 32015407 PMCID: PMC7231631 DOI: 10.1038/s41551-019-0508-y] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Glucose-responsive insulin delivery systems that mimic pancreatic endocrine function could enhance health and improve quality of life for people with type 1 and type 2 diabetes with reduced β-cell function. However, insulin delivery systems with rapid in vivo glucose-responsive behaviour typically have limited insulin-loading capacities and cannot be manufactured easily. Here, we show that a single removable transdermal patch, bearing microneedles loaded with insulin and a non-degradable glucose-responsive polymeric matrix, and fabricated via in situ photopolymerization, regulated blood glucose in insulin-deficient diabetic mice and minipigs (for minipigs >25 kg, glucose regulation lasted >20 h with patches of ~5 cm2). Under hyperglycaemic conditions, phenylboronic acid units within the polymeric matrix reversibly form glucose-boronate complexes that-owing to their increased negative charge-induce the swelling of the polymeric matrix and weaken the electrostatic interactions between the negatively charged insulin and polymers, promoting the rapid release of insulin. This proof-of-concept demonstration may aid the development of other translational stimuli-responsive microneedle patches for drug delivery.
Collapse
Affiliation(s)
- Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Zenomics Inc., Los Angeles, CA, USA
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Zenomics Inc., Los Angeles, CA, USA
| | - Guojun Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Zenomics Inc., Los Angeles, CA, USA
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Zhang C, Hong S, Liu MD, Yu WY, Zhang MK, Zhang L, Zeng X, Zhang XZ. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J Control Release 2020; 320:159-167. [DOI: 10.1016/j.jconrel.2020.01.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
|
45
|
Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z. Glucose-Responsive Insulin and Delivery Systems: Innovation and Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902004. [PMID: 31423670 PMCID: PMC7141789 DOI: 10.1002/adma.201902004] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Indexed: 05/18/2023]
Abstract
Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose-responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed-loop insulin delivery or "smart insulin" systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose-responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose-responsive moieties, including glucose oxidase, phenylboronic acid, and glucose-binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Anna R. Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Zenomics Inc., Durham, NC 27709, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Fischer A, Lilienthal S, Vázquez-González M, Fadeev M, Sohn YS, Nechushtai R, Willner I. Triggered Release of Loads from Microcapsule-in-Microcapsule Hydrogel Microcarriers: En-Route to an "Artificial Pancreas". J Am Chem Soc 2020; 142:4223-4234. [PMID: 32031792 PMCID: PMC7467680 DOI: 10.1021/jacs.9b11847] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 12/19/2022]
Abstract
A method to assemble stimuli-responsive nucleic acid-based hydrogel-stabilized microcapsule-in-microcapsule systems is introduced. An inner aqueous compartment stabilized by a stimuli-responsive hydrogel-layer (∼150 nm) provides the inner microcapsule (diameter ∼2.5 μm). The inner microcapsule is separated from an outer aqueous compartment stabilized by an outer stimuli-responsive hydrogel layer (thickness of ∼150 nm) that yields the microcapsule-in-microcapsule system. Different loads, e.g., tetramethyl rhodamine-dextran (TMR-D) and CdSe/ZnS quantum dots (QDs), are loaded in the inner and outer aqueous compartments. The hydrogel layers exist in a higher stiffness state that prevents inter-reservoir or leakage of the loads from the respective aqueous compartments. Subjecting the inner hydrogel layer to Zn2+-ions and/or the outer hydrogel layer to acidic pH or crown ether leads to the triggered separation of the bridging units associated with the respective hydrogel layers. This results in the hydrogel layers of lower stiffness allowing either the mixing of the loads occupying the two aqueous compartments, the guided release of the load from the outer aqueous compartment, or the release of the loads from the two aqueous compartments. In addition, a pH-responsive microcapsule-in-microcapsule system is loaded with glucose oxidase (GOx) in the inner aqueous compartment and insulin in the outer aqueous compartment. Glucose permeates across the two hydrogel layers resulting in the GOx catalyzed aerobic oxidation of glucose to gluconic acid. The acidification of the microcapsule-in-microcapsule system leads to the triggered unlocking of the outer, pH-responsive hydrogel layer and to the release of insulin. The pH-stimulated release of insulin is controlled by the concentration of glucose. While at normal glucose levels, the release of insulin is practically prohibited, the dose-controlled release of insulin in the entire diabetic range is demonstrated. Also, switchable ON/OFF release of insulin is achieved highlighting an autonomous glucose-responsive microdevice operating as an "artificial pancreas" for the release of insulin.
Collapse
Affiliation(s)
- Amit Fischer
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Lilienthal
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Margarita Vázquez-González
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
47
|
Liu X, Li C, Lv J, Huang F, An Y, Shi L, Ma R. Glucose and H2O2 Dual-Responsive Polymeric Micelles for the Self-Regulated Release of Insulin. ACS APPLIED BIO MATERIALS 2020; 3:1598-1606. [DOI: 10.1021/acsabm.9b01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Juan Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center1 of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Navarro L, Theune LE, Calderón M. Effect of crosslinking density on thermoresponsive nanogels: A study on the size control and the kinetics release of biomacromolecules. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Elshaarani T, Yu H, Wang L, Lin L, Wang N, ur Rahman Naveed K, Zhang L, Han Y, Fahad S, Ni Z. Dextran-crosslinked glucose responsive nanogels with a self-regulated insulin release at physiological conditions. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Mugo SM, Alberkant J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal Bioanal Chem 2020; 412:1825-1833. [PMID: 32002581 DOI: 10.1007/s00216-020-02430-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
A selective cortisol sensor based on molecularly imprinted poly(glycidylmethacrylate-co ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) has been demonstrated for detection of cortisol in human sweat. The non-enzymatic biomimetric flexible sweat sensor was fabricated inexpensively by layer by layer (LbL) assembly. The sensor layers comprised a stretchable polydimethylsiloxane (PDMS) base with carbon nanotubes-cellulose nanocrystals (CNC/CNT) conductive nanoporous nanofilms. The imprinted (MIP) poly(GMA-co-EGDMA) deposited on the CNC/CNT was the cortisol biomimetric receptor. Rapid in analyte response (3 min), the cortisol MIP sensor demonstrated excellent performance. The sensor has a limit of detection (LOD) of 2.0 ng/mL ± 0.4 ng/mL, dynamic range of 10-66 ng/mL, and a sensor reproducibility of 2.6% relative standard deviation (RSD). The MIP sensor also had high cortisol specificity and was inherently blind to selected interfering species including glucose, epinephrine, β-estradiol, and methoxyprogestrone. The MIP was four orders of magnitude more sensitive than its non-imprinted (NIP) counterpart. The MIP sensor remains stable over time, responding proportionately to doses of cortisol in human sweat. Graphical abstract.
Collapse
Affiliation(s)
- Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| | - Jonathan Alberkant
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|