1
|
Zhou X, Cao Y, Li R, Di X, Wang Y, Wang K. PEI, a new transfection method, augments the inhibitory effect of RBM5 on prostate cancer. Biochem Biophys Res Commun 2024; 704:149703. [PMID: 38402723 DOI: 10.1016/j.bbrc.2024.149703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
PEI is a cationic polymer, serving as a non-viral transfection carrier grounded in nanotechnology that enhances transfection efficiency via the proton sponge effect. RBM5 is an RNA-binding protein that can inhibit tumor development. This study involved the transfection of RBM5 in prostate cancer cells with PEI, Lipo2000, and their combination. Transwell and wound healing assays were used to observe invasion and migration of prostate cancer cells and flow cytometry was used to observe the apoptosis. Detect the expression of invasion and migration-related protein MMP9 through western blotting experiment. An activity detection kit was used to detect the activity of apoptotic protein caspase-3. We found that there was no significant difference in transfection efficiency when PEI and Lipo2000 were used alone but it significantly improved when they are combined. RBM5 reduced invasion, migration, and proliferation of prostate cancer and enhanced apoptosis. MMP9 expression was reduced, and the activity of caspase-3 was increased. PEI transfection could improve the inhibition of RBM5 on tumors more than Lipo2000. The inhibitory effect is more obvious when the two are used together. RBM5 transfected with PEI can amplify its inhibitory effect on prostate cancer, and this effect is more evident when combined with Lipo2000.
Collapse
Affiliation(s)
- Xijia Zhou
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yingshu Cao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanqiao Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
3
|
siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics 2022; 14:pharmaceutics14112520. [PMID: 36432711 PMCID: PMC9694336 DOI: 10.3390/pharmaceutics14112520] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.
Collapse
|
4
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
5
|
Wu C, Zhang Y, Li F, Bei S, Pan M, Feng L. Precise engineering of cholesterol-loaded chitosan micelles as a promising nanocarrier system for co-delivery drug-siRNA for the treatment of gastric cancer therapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
6
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
8
|
Oliveira ACN, Fernandes J, Gonçalves A, Gomes AC, Oliveira MECDR. Lipid-based Nanocarriers for siRNA Delivery: Challenges, Strategies and the Lessons Learned from the DODAX: MO Liposomal System. Curr Drug Targets 2020; 20:29-50. [PMID: 29968536 DOI: 10.2174/1389450119666180703145410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
The possibility of using the RNA interference (RNAi) mechanisms in gene therapy was one of the scientific breakthroughs of the last century. Despite the extraordinary therapeutic potential of this approach, the need for an efficient gene carrier is hampering the translation of the RNAi technology to the clinical setting. Although a diversity of nanocarriers has been described, liposomes continue to be one of the most attractive siRNA vehicles due to their relatively low toxicity, facilitated siRNA complexation, high transfection efficiency and enhanced pharmacokinetic properties. This review focuses on RNAi as a therapeutic approach, the challenges to its application, namely the nucleic acids' delivery process, and current strategies to improve therapeutic efficacy. Additionally, lipid-based nanocarriers are described, and lessons learned from the relation between biophysical properties and biological performance of the dioctadecyldimethylammonium:monoolein (DODAX: MO) system are explored. Liposomes show great potential as siRNA delivery systems, being safe nanocarriers to protect nucleic acids in circulation, extend their half-life time, target specific cells and reduce off-target effects. Nevertheless, several issues related to delivery must be overcome before RNAi therapies reach their full potential, namely target-cell specificity and endosomal escape. Understanding the relationship between biophysical properties and biological performance is an essential step in the gene therapy field.
Collapse
Affiliation(s)
- Ana C N Oliveira
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.,CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Joana Fernandes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Anabela Gonçalves
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M E C D Real Oliveira
- CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release 2017; 271:60-73. [PMID: 29273320 DOI: 10.1016/j.jconrel.2017.12.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 01/11/2023]
Abstract
Cancer remained a major cause of death providing diversified challenges in terms of treatment including non-specific toxicity, chemoresistance and relapse. Nanotechnology- based delivery systems grabbed tremendous attention for delivering cancer therapeutics as they provide benefits including controlled drug release, improved biological half-life, reduced toxicity and targeted delivery. Majority of the nanocarriers consists of either a polymer or a lipid component along with other excipients to stabilize the colloidal system. Lipid-based systems provide advantages like better entrapment efficiency, scalability and low- cost raw materials, however, suffer from limitations including instability, a burst release of the drug, and limited surface functionalization. On the other hand, polymeric systems provide an excellent diversity of chemical modifications, stability, controlled release, however limited drug loading capacities and scale up limit their use. Hybrid nanocarriers consisting of lipid and polymer were able to overcome some of these disadvantages while retaining the advantages of both the systems. Designing a stable lipid-polymer hybrid system requires a thorough understanding of the material properties and their behavior in in vitro and in vivo environments. This review highlights the current status and future prospects of lipid-polymer hybrid systems with a particular focus on cancer nanotherapeutics.
Collapse
Affiliation(s)
- Tushar Date
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Vaishnavi Nimbalkar
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Jyostna Kamat
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, NE 68198-6125, United States
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
10
|
Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 2017; 492:1-7. [DOI: 10.1016/j.jcis.2016.12.057] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
|
11
|
Degradable Polyethylenimine-Based Gene Carriers for Cancer Therapy. Top Curr Chem (Cham) 2017; 375:34. [DOI: 10.1007/s41061-017-0124-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
12
|
|
13
|
Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. NANOSCALE 2017; 9:1334-1355. [PMID: 27973629 DOI: 10.1039/c6nr08486a] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Lily Yi Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Jason Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Azhar Z Abbasi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| |
Collapse
|
14
|
Perepelyuk M, Shoyele O, Birbe R, Thangavel C, Liu Y, Den RB, Snook AE, Lu B, Shoyele SA. siRNA-Encapsulated Hybrid Nanoparticles Target Mutant K-ras and Inhibit Metastatic Tumor Burden in a Mouse Model of Lung Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:259-268. [PMID: 28325292 PMCID: PMC5363504 DOI: 10.1016/j.omtn.2016.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 10/26/2022]
Abstract
There is an unmet need in the development of an effective therapy for mutant K-ras-expressing non-small-cell lung cancer (NSCLC). Although various small molecules have been evaluated, an effective therapy remains a dream. siRNAs have the potential to downregulate mutant K-ras both at the protein and mRNA levels. However, a safe and effective delivery of siRNAs to tumors remains a limitation to their translational application in the treatment of this highly debilitating disease. Here we developed a novel hybrid nanoparticle carrier for effective delivery of anti-mutant K-ras to NSCLC (AKSLHN). The ability of this treatment modality to regress lung tumors in mouse models was evaluated as a monotherapy or as a combination treatment with erlotinib. Further, the toxicity of this treatment modality to healthy tissues was evaluated, along with its ability to elicit immune/inflammatory reactions. The results suggest that this treatment modality is a promising prospect for the treatment of mutant K-ras-expressing NSCLC without any accompanying toxicity. However, further understanding of the cellular-level interaction between AHSLHN and erlotinib needs to be attained before this promising treatment modality can be brought to the bedside.
Collapse
Affiliation(s)
- Maryna Perepelyuk
- Department of Pharmaceutical Science, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Olubunmi Shoyele
- Department of Pathology and Laboratory Medicine, Western Connecticut Health Network, Danbury Hospital, Danbury, CT 06810, USA
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Hospital-MD Anderson Cancer Center, Camden, NJ 08103, USA
| | | | - Yi Liu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia 19107, PA, USA
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sunday A Shoyele
- Department of Pharmaceutical Science, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
15
|
Dong S, Zhou X, Yang J. TAT modified and lipid - PEI hybrid nanoparticles for co-delivery of docetaxel and pDNA. Biomed Pharmacother 2016; 84:954-961. [PMID: 27764758 DOI: 10.1016/j.biopha.2016.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/22/2016] [Accepted: 10/01/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Co-delivery of anticancer drugs and gene is promising to generate synergistic anticancer effects. Surface modification of nanocarriers with specific ligands could further assist in targeting and internalization of the nanocarriers into specific cell populations, such as cancers and disease organs. PURPOSE The aim of the study reported here is to develop Cell-penetrating peptides (CPPs) modified lipid - PEI hybrid nanoparticles (LPNs) for effective co-delivery of docetaxel (DTX) and plasmid DNA (pDNA) for combination chemotherapy. METHODS RKKRRQRRR peptide (TAT) modified, DTX and pDNA loaded LPNs (TAT-DTX/pDNA LPNs) were prepared and evaluated in PC3 cancer cells (in vitro) and in a murine prostate cancer model (in vivo). RESULTS The results illustrated that the in vitro anticancer effect, in vitro transfection efficiency, in vivo antitumor and gene delivery efficacy of TAT-DTX/pDNA LPNs have advantages over other formulation tested. CONCLUSION The results demonstrated that TAT-DTX/pDNA LPNs could be a promising co-delivery nano-system to achieve therapeutic efficacy for treatment of cancer.
Collapse
Affiliation(s)
- Shufang Dong
- Department of Pharmacy, Linyi People's Hospital, Linyi, Shandong, PR China
| | - Xin Zhou
- Department of Pharmacy, Linyi Cancer Hospital, Linyi, Shandong, PR China
| | - Jiying Yang
- Department of Pharmacy, Linyi People's Hospital, Linyi, Shandong, PR China.
| |
Collapse
|
16
|
|
17
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
18
|
A biodistribution study of solid lipid-polyethyleneimine hybrid nanocarrier for cancer RNAi therapy. Eur J Pharm Biopharm 2016; 108:68-75. [PMID: 27569032 DOI: 10.1016/j.ejpb.2016.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023]
Abstract
Solid lipid-polymer hybrid nanocarrier (LPN) was previously reported to achieve high siRNA transfection efficiency and induce sustained RNAi-based chemosensitizing effect at cellular level. In this study, our objectives were to evaluate the in vivo biodistribution of LPNs in a prostate cancer model and determine the factors that potentially affect tumor penetration by LPNs. The LPN formulation with the highest transfection efficiency (64%) and stability was selected for the study. Mice bearing tumors of PC-3Mcells were treated with LPNs labeled with IR780 or AF647-siRNA. Near infrared imaging showed that LPNs achieved favorable in vivo biodistribution with high tumor/low organ ratios. LPN accumulation was also observed in liver metastatic tissue. Result of extravasation study confirmed that encapsulated siRNA molecules were able to escape into the tumor tissue at the extravascular area. When LPN levels in large (volume>750mm3) and small (<500mm3) tumors were compared, no significant difference was observed. However, both docetaxel pretreatment (72hbefore LPN) and concurrent docetaxel treatment significantly enhanced the tumor LPN levels by 3.9- and 3.1-fold, respectively (both p<0.01). In conclusion, LPN is a promising carrier system to deliver RNAi therapy to solid malignancies that also receive chemotherapy.
Collapse
|
19
|
Xue HY, Guo P, Wen WC, Wong HL. Lipid-Based Nanocarriers for RNA Delivery. Curr Pharm Des 2016; 21:3140-7. [PMID: 26027572 PMCID: PMC4618487 DOI: 10.2174/1381612821666150531164540] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/29/2015] [Indexed: 11/23/2022]
Abstract
RNA-interference (RNAi) agents such as small-interfering RNA (siRNA) and micro-RNA (miRNA) have strong potential as therapeutic agents for the treatment of a broad range of diseases such as malignancies, infections, autoimmune diseases and neurological diseases that are associated with undesirable gene expression. In recent years, several clinical trials of RNAi therapeutics especially siRNAs have been conducted with limited success so far. For systemic administration of these poorly permeable and easily degradable macromolecules, it is obvious that a safe and efficient delivery platform is highly desirable. Because of high biocompatibility, biodegradability and solid track record for clinical use, nanocarriers made of lipids and/or phospholipids have been commonly employed to facilitate RNA delivery. In this article, the key features of the major sub-classes of lipid-based nanocarriers, e.g. liposomes, lipid nanoparticles and lipid nanoemulsions, will be reviewed. Focus of the discussion is on the various challenges researchers face when developing lipid-based RNA nanocarriers, such as the toxicity of cationic lipids and issues related to PEGylated lipids, as well as the strategies employed in tackling these challenges. It is hoped that by understanding more about the pros and cons of these most frequently used RNA delivery systems, the pharmaceutical scientists, biomedical researchers and clinicians will be more successful in overcoming some of the obstacles that currently limit the clinical translation of RNAi therapy.
Collapse
Affiliation(s)
| | | | | | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, Pennsylvania, US 19140.
| |
Collapse
|
20
|
Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (Lond) 2016. [PMID: 26214357 DOI: 10.2217/nnm.15.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A major problem in cancer treatment is the multidrug resistance. siRNA inhibitors have great advantages to solve the problem, if the bottleneck of their delivery could be well addressed by the various nanocarriers. Moreover, co-delivery of siRNA together with the various anticancer agents in one nanocarrier may maximize their additive or synergistic effect. This review provides a comprehensive summary on the state-of-the-art of the nanocarriers, which may include prodrugs, micelles, liposomes, dendrimers, nanohydrogels, solid lipid nanoparticles, nanoparticles of biodegradable polymers and nucleic acid nanocarriers for delivery of siRNA and co-delivery of siRNA together with anticancer agents with focus on synthesis of the nanocarrier materials, design and characterization, in vitro and in vivo evaluation, and prospect and challenges of nanocarriers.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
21
|
Inhibition of osteoclastogenesis through siRNA delivery with tunable mesoporous bioactive nanocarriers. Acta Biomater 2016; 29:352-364. [PMID: 26432439 DOI: 10.1016/j.actbio.2015.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022]
Abstract
Gene silencing through siRNA delivery has shown great promise for treating diseases and repairing damaged tissues, including bone. This report is the first to develop siRNA delivery system in the inhibition of osteoclastic functions which in turn can help turn-over bone mass increase in the diseases like osteoporosis. For this reason, biocompatible and degradable nanocarriers that can effectively load and deliver genetic molecules to target cells and tissues are being actively sought by researchers. In this study, mesoporous bioactive glass nanospheres (MBG), a novel unique biocompatible degradable inorganic nanocarrier, is introduced. Furthermore, siRNA was designed to function by inhibiting the expression of the receptor activator of nuclear factor kappa B (RANK) in order to suppress osteoclastogenesis. Amine-functionalized MBG were synthesized with tunable mesoporosities, showing a strong complexation with siRNA. An in vitro release profile indicated that the siRNA from the MBG was able to achieve a highly sustainable liberation for up to 4 days, confirming a temporary delivery system can be designed to function for that period of time. The intracellular uptake capacity of the complex siRNA(RANK)-MBG was recorded to be around 70%. Furthermore, the RANK-expressing cell population declined down to 29% due to the delivery of siRNA(RANK)-MBG (vs. 86% in control). The expression of osteoclastogenesis-related genes, including c-fos, cathepsin-K, tartrate-resistant acid phosphatase (TRAP), and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), was substantially down-regulated by the siRNA delivery system. This study reports for the first time on the use of a novel MBG delivery system for siRNA that aims to suppress osteoclastic actions. MBGs may be a potential gene delivery platform for hard tissue repair and disease treatment due to the collective results which indicate a high loading capacity, temporary release kinetics, high intracellular uptake rate, and sufficient gene silencing effects, together with the intrinsic beneficial properties like bone-bioactivity and degradability. STATEMENT OF SIGNIFICANCE This report is the first to develop siRNA delivery system of biocompatible and degradable nanocarriers made from a unique composition, i.e., mesoporous bioactive glass that can effectively load and deliver genetic molecules to osteoclastic cells. We proved through a series of studies that the biocompatible nanocarriers are effective for the delivery of siRNA in the inhibition of osteoclastic functions which thus might be considered as a nanocarrier platform to help turn-over bone mass increase in the diseases like osteoporosis.
Collapse
|
22
|
Chen Z, Zhang L, He Y, Shen Y, Li Y. Enhanced shRNA delivery and ABCG2 silencing by charge-reversible layered nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:952-962. [PMID: 25330768 DOI: 10.1002/smll.201401397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/01/2014] [Indexed: 06/04/2023]
Abstract
Polycationic vectors have been used to deliver short hairpin RNAs (shRNAs) to knock-down genes for cancer therapies, but their inefficiency in lysosomal escape and shRNA release causes their low gene transcription efficiency. Herein, a three-layered polyethyleneimine (PEI)-coated gold nanocomplex interlaid with a pH-responsive charge-reversible chitosan-aconitic anhydride (CS-Aco) is constructed: a Au-PEI/CS-Aco/PEI/shRNA nanoparticle. The negatively charged CS-Aco hydrolyzes into positively charged CS in lysosomes, causing the nanocomposite to disassemble. The released Au-PEI nanoparticles efficiently rupture the lysosomes and thus release the PEI/shRNA polyplexes into cytoplasm, where they quickly disassociate because the PEI chains are short (1.2 kDa). As a consequence, the nanocomplexes display higher shRNA delivery efficiency than the 25 kDa PEI, and efficiently deliver shABCG2 to tumors and markedly silence ABCG2 expression, which sensitizes HepG2 cells to the drugs with minimal toxicity.
Collapse
Affiliation(s)
- Zhenzhen Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | | | | | | | | |
Collapse
|
23
|
Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier. Biomaterials 2014; 35:10058-69. [DOI: 10.1016/j.biomaterials.2014.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022]
|
24
|
Wu X, Tai Z, Zhu Q, Fan W, Ding B, Zhang W, Zhang L, Yao C, Wang X, Ding X, Li Q, Li X, Liu G, Liu J, Gao S. Study on the prostate cancer-targeting mechanism of aptamer-modified nanoparticles and their potential anticancer effect in vivo. Int J Nanomedicine 2014; 9:5431-40. [PMID: 25473281 PMCID: PMC4247134 DOI: 10.2147/ijn.s71101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ligand-mediated prostate cancer (PCa)-targeting gene delivery is one of the focuses of research in recent years. Our previous study reported the successful preparation of aptamer-modified nanoparticles (APT-NPs) in our laboratory and demonstrated their PCa-targeting ability in vitro. However, the mechanism underlying this PCa-targeting effect and their anticancer ability in vivo have not yet been elucidated. The objective of this study was to assess the feasibility of using APT-NPs to deliver micro RNA (miRNA) systemically to PCa cells, to testify their tumor-targeting efficiency, and to observe their biodistribution after systemic administration to a xenograft mouse model of PCa. In addition, the effect of APT depletion and endocytosis inhibitors on cellular uptake was also evaluated quantitatively in LNCaP cells to explore the internalization mechanism of APT-NPs. Finally, blood chemistry, and renal and liver function parameters were measured in the xenograft mouse model of PCa to see whether APT-NPs had any demonstrable toxicity in mice in vivo. The results showed that APT-NPs prolonged the survival duration of the PCa tumor-bearing mice as compared with the unmodified NPs. In addition, they had a potential PCa-targeting effect in vivo. In conclusion, this research provides a prototype for the safe and efficient delivery of miRNA expression vectors to PCa cells, which may prove useful for preclinical and clinical studies on the treatment of PCa.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China ; Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Quangang Zhu
- Department of Pharmaceutics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Fan
- Department of Pharmaceutics, The 425th Hospital of PLA, Sanya, People's Republic of China
| | - Baoyue Ding
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Wei Zhang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China ; Department of Pharmaceutics, The 522nd Hospital of PLA, Luoyang, People's Republic of China
| | - Lijuan Zhang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaoyu Wang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qin Li
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyu Li
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Gaolin Liu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jiyong Liu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond) 2014; 9:295-312. [PMID: 24552562 DOI: 10.2217/nnm.13.204] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
siRNAs have immense therapeutic potential for the treatment of various gene-related diseases ranging from cancer, viral infections and neuropathy to autoimmune diseases. However, their bench-to-bedside translation in recent years has faced several challenges, with inefficient siRNA delivery being one of the most frequently encountered issues. In order to improve the siRNA delivery especially for systemic treatment, nanocarriers made of polymers, lipids or inorganic materials have become almost essential. The 'negative' aspects of these carriers such as their nanotoxicity and immunogenicity thus can no longer be overlooked. In this article, we will extensively review the nanotoxicity of siRNA carriers. The strategies for mitigating the risks of nanotoxicity and the methodology for evaluating these strategies will also be discussed. By addressing this often overlooked but important issue, it will help clear the way for siRNAs to fulfill their promise as a versatile class of therapeutic agents.
Collapse
Affiliation(s)
- Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
26
|
Shen J, Kim HC, Mu C, Gentile E, Mai J, Wolfram J, Ji LN, Ferrari M, Mao ZW, Shen H. Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy. Adv Healthc Mater 2014; 3:1629-37. [PMID: 24692076 DOI: 10.1002/adhm.201400103] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/05/2014] [Indexed: 11/08/2022]
Abstract
Cancer is a complex disease that usually requires several treatment modalities. A multifunctional nanotherapeutic system is designed, incorporating small interfering RNA (siRNA) and gold nanorods (Au NRs) for photothermal therapy. Surface-engineered Au NRs with polyethylenimine are synthesized using a layer-by-layer assembly and siRNA is absorbed on the surface. The siRNA is efficiently delivered into breast cancer cells, resulting in subsequent gene silencing. Cells are then irradiated with near-infrared (NIR) light, causing heat-induced anticancer activity. The combination of gene silencing and photothermal therapy results in effective inhibition of cell proliferation.
Collapse
Affiliation(s)
- Jianliang Shen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Han-Cheon Kim
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Chaofeng Mu
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Emanuela Gentile
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Junhua Mai
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Joy Wolfram
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Liang-nian Ji
- MOE Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
| | - Mauro Ferrari
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
- Department of Medicine; Weill Cornell Medical College; New York 10065 USA
| | - Zong-wan Mao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
| | - Haifa Shen
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
- Department of Cell and Developmental Biology; Weill Cornell Medical College; New York 10065 USA
| |
Collapse
|
27
|
Tekade RK, Youngren-Ortiz SR, Yang H, Haware R, Chougule MB. Designing hybrid onconase nanocarriers for mesothelioma therapy: a Taguchi orthogonal array and multivariate component driven analysis. Mol Pharm 2014; 11:3671-83. [PMID: 25179221 DOI: 10.1021/mp500403b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Onconase (ONC) is a member of a ribonuclease superfamily that has cytostatic activity against malignant mesothelioma (MM). The objective of this investigation was to develop bovine serum albumin (BSA)-chitosan based hybrid nanoformulations for the efficient delivery of ONC to MM while minimizing the exposure to normal tissues. Taguchi orthogonal array L9 type design was used to formulate ONC loaded BSA nanocarriers (ONC-ANC) with a mean particle size of 15.78 ± 0.24 nm (ζ = -21.89 ± 0.11 mV). The ONC-ANC surface was hybridized using varying chitosan concentrations ranging between 0.100 and 0.175% w/v to form various ONC loaded hybrid nanocarriers (ONC-HNC). The obtained data set was analyzed by principal component analysis (PCA) and principal component regressions (PCR) to decode the effects of investigated design variables. PCA showed positive correlations between investigated design variables like BSA, ethanol dilution, and total ethanol with particle size and entrapment efficiency (EE) of formulated nanocarriers. PCR showed that the particle size depends on BSA, ethanol dilution, and total ethanol content, while EE was only influenced by BSA content. Further analysis of chitosan and TPP effects used for coating of ONC-ANC by PCR confirmed their positive impacts on the particle size, zeta potential, and prolongation of ONC release compared to uncoated ONC-ANC. PCR analysis of preliminary stability studies showed increase in the particle size and zeta potential at lower pH. However, particle size, zeta potential, and EE of developed HNC were below 63 nm, 31 mV, and 96%, respectively, indicating their stability under subjected buffer conditions. Out of the developed formulations, HNC showed enhanced inhibition of cell viability with lower IC50 against human MM-REN cells compared to ONC and ONC-ANC. This might be attributed to the better cell uptake of HNC, which was confirmed in the cell uptake fluorescence studies. These studies indicated that a developed nanotherapeutic approach might aid in reducing the therapeutic dose of ONC, minimizing adverse effects by limiting the exposure of ONC to normal tissues, and help in the development of new therapeutic forms and routes of administration.
Collapse
Affiliation(s)
- Rakesh K Tekade
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo , Hilo, Hawaii 96720, United States
| | | | | | | | | |
Collapse
|
28
|
Fortier C, Durocher Y, De Crescenzo G. Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine (Lond) 2014; 9:135-51. [PMID: 24354815 DOI: 10.2217/nnm.13.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomedical nanotechnology has given a new lease of life to gene therapy with the ever-developing and ever-diversifying nonviral gene delivery nanocarriers. These are designed to pass a series of barriers in order to bring their nucleic acid cargo to the right subcellular location of particular cells. For a given application, each barrier has its dedicated strategy, which translates into a physicochemical, biological and temporal identity of the nanocarrier surface. Different strategies have thus been explored to implement adequate surface identities on nanocarriers over time for systemic delivery. In that context, this review will mainly focus on organic nanocarriers, for which these strategies will be described and discussed.
Collapse
Affiliation(s)
- Charles Fortier
- Life Sciences NRC Human Health Therapeutics Portfolio, Building Montréal-Royalmount, National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | | | | |
Collapse
|
29
|
Ku SH, Kim K, Choi K, Kim SH, Kwon IC. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy. Adv Healthc Mater 2014; 3:1182-93. [PMID: 24577795 DOI: 10.1002/adhm.201300607] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Indexed: 11/06/2022]
Abstract
RNA interference (RNAi) is a naturally occurring regulatory process that controls posttranscriptional gene expression. Small interfering RNA (siRNA), a common form of RNAi-based therapeutics, offers new opportunities for cancer therapy via silencing specific genes, which are associated to cancer progress. However, clinical applications of RNAi-based therapy are still limited due to the easy degradation of siRNA during body circulation and the difficulty in the delivery of siRNA to desired tissues and cells. Thus, there have been many efforts to develop efficient siRNA delivery systems, which protect siRNA from serum nucleases and deliver siRNA to the intracellular region of target cells. Here, the recent advances in siRNA nanocarriers, which possess tumor-targeting ability are reviewed; various nanoparticle systems and their antitumor effects are summarized. The development of multifunctional nanocarriers for theranostics or combinatorial therapy is also discussed.
Collapse
Affiliation(s)
- Sook Hee Ku
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Kuiwon Choi
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
30
|
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech 2014; 15:822-33. [PMID: 24687241 DOI: 10.1208/s12249-014-0107-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/06/2014] [Indexed: 12/13/2022] Open
Abstract
Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.
Collapse
|
31
|
Liu S, Huang W, Jin MJ, Wang QM, Zhang GL, Wang XM, Shao S, Gao ZG. High gene delivery efficiency of alkylated low-molecular-weight polyethylenimine through gemini surfactant-like effect. Int J Nanomedicine 2014; 9:3567-81. [PMID: 25114526 PMCID: PMC4122513 DOI: 10.2147/ijn.s64554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To our knowledge, the mechanism underlying the high transfection efficiency of alkylated low-molecular-weight polyethylenimine (PEI) is not yet well understood. In this work, we grafted branched PEI (molecular weight of 1,800 Da; bPEI1800) with lauryl chains (C12), and found that bPEI1800-C12 was structurally similar to gemini surfactant and could similarly assemble into micelle-like particles. Stability, cellular uptake, and lysosome escape ability of bPEI1800-C12/DNA polyplexes were all greatly enhanced after C12 grafting. bPEI1800-C12/DNA polyplexes exhibited significantly higher transfection efficiency than Lipofectamine™ 2000 in the presence of serum. Bioluminescence imaging showed that systemic injection of bPEI1800-C12/DNA polyplexes resulted in intensive luciferase expression in vivo and bioluminescence signals that could be detected even in the head. Altogether, the high transfection efficacy of bPEI1800-C12 was because bPEI1800-C12, being an analog of gemini surfactant, facilitated lysosome escape and induced the coil–globule transition of DNA to assemble into a highly organized micelle-like structure that showed high stability.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China ; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China ; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ming-Ji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China ; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi-Ming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China ; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Gan-Lin Zhang
- Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, People's Republic of China
| | - Xiao-Min Wang
- Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, People's Republic of China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China ; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhong-Gao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China ; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
32
|
Panzarini E, Dini L. Nanomaterial-induced autophagy: a new reversal MDR tool in cancer therapy? Mol Pharm 2014; 11:2527-38. [PMID: 24921216 DOI: 10.1021/mp500066v] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most of the therapeutic strategies to counteract cancer imply killing of malignant cells. The most exploited cell death mechanism in cancer therapies is apoptosis, but recently, a lot of papers report that other mechanisms, mainly autophagy, could represent a new line of attack in the fight against cancer. One of the limitations for the effectiveness of the approved clinical treatments is the phenomenon of multidrug resistance (MDR) which enables the cancer cells to develop resistance to therapy, especially for chemotherapy. The MDR mechanisms include (a) decreased uptake of drug, (b) reduced intracellular drug concentration by efflux pumps, (c) altered cell cycle checkpoints, (d) altered drug targets, (e) increased metabolism of drugs, (f) induced emergency response genes to impair apoptotic pathway, and (g) altered drug detoxification. Great efforts have been made to reverse MDR. Currently, autophagy and nanosized drug delivery systems (DDSs) belonging to nanomaterials (NMs) provide alternative strategies to circumvent MDR. Nanosized DDSs are very promising tools to accumulate chemotherapeutics at targeting sites and control temporal and spatial drug release into tumor cells. On the other hand, autophagy could overrule drug resistance upon its activation by ensuring cell death via switching its prosurvival role to a prodeath one or by mediating the occurrence of cell death, i.e., apoptosis or necrosis. Likewise, the autophagy inhibition could counteract MDR by sensitizing the cells to anticancer molecules, i.e., Src family tyrosine kinase (SFK) inhibitors or 5-fluorouracil. Noteworthy, autophagy has been recently indicated to be a common cellular response to NMs, corroborating the fascinating idea of the exploitation of NM-induced autophagy in nanomedicine therapy. This review focuses on recently published literature about the relationship between MDR reversal and NMs or autophagy pointing to hypothesize a pivotal role of autophagy modulation induced by NMs in counteracting MDR.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento , 73100 Lecce, Italy
| | | |
Collapse
|
33
|
Shen J, Kim HC, Su H, Wang F, Wolfram J, Kirui D, Mai J, Mu C, Ji LN, Mao ZW, Shen H. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Am J Cancer Res 2014; 4:487-97. [PMID: 24672582 PMCID: PMC3966054 DOI: 10.7150/thno.8263] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/20/2014] [Indexed: 12/26/2022] Open
Abstract
Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective endosomal escape of siRNA. Using intravital microscopy we were able to monitor tumor enrichment of CP-MSNP/siRNA particles in live mice bearing orthotopic MDA-MB-231 xenograft tumors. CP-MSNP delivery of siRNA targeting the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) resulted in effective knockdown of gene expression in vitro and in vivo. Suppression of PKM2 led to inhibition of tumor cell growth, invasion, and migration.
Collapse
|
34
|
Meng Q, Yin Q, Li Y. Nanocarriers for siRNA delivery to overcome cancer multidrug resistance. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-6030-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev 2013; 65:1699-715. [PMID: 23611952 DOI: 10.1016/j.addr.2013.04.011] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/01/2013] [Accepted: 04/13/2013] [Indexed: 12/15/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle to successful cancer therapy, especially for chemotherapy. The new drug delivery system (DDS) provides promising approaches to reverse MDR, for which the poor cellular uptake and insufficient intracellular drug release remain rate-limiting steps for reaching the drug concentration level within the therapeutic window. Stimulus-coupled drug delivery can control the drug-releasing pattern temporally and spatially, and improve the accumulation of chemotherapeutic agents at targeting sites. In this review, the applications of DDS which is responsive to different types of stimuli in MDR cancer therapy is introduced, and the design, construction, stimuli-sensitivity and the effect to reverse MDR of the stimuli-responsive DDS are discussed.
Collapse
|
36
|
Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy. J Control Release 2013; 172:219-228. [DOI: 10.1016/j.jconrel.2013.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
|
37
|
Li Z, Liu Z, Yin M, Yang X, Ren J, Qu X. Combination delivery of antigens and CpG by lanthanides-based core-shell nanoparticles for enhanced immune response and dual-mode imaging. Adv Healthc Mater 2013; 2:1309-13. [PMID: 23526798 DOI: 10.1002/adhm.201200364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/01/2013] [Indexed: 01/16/2023]
Abstract
Europium-doped GdPO4 hollow spheres/polymer core-shell nanoparticles are functionalized with ovalbumin (OVA) as a model antigen and an oligonucleotide (CpG) that stimulates the immune response. These functionalized core-shell nanoparticles are used as vaccines, where they enable efficient delivery of an antigen to target sites, tracking of the vaccines using non-invasive clinical imaging technology.
Collapse
Affiliation(s)
- Zhenhua Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences Chinese Academy of Sciences, Changchun, Jilin 130022, China, Fax: 86-431-85262625
| | | | | | | | | | | |
Collapse
|
38
|
Formulation development and evaluation of hybrid nanocarrier for cancer therapy: Taguchi orthogonal array based design. BIOMED RESEARCH INTERNATIONAL 2013; 2013:712678. [PMID: 24106715 PMCID: PMC3784087 DOI: 10.1155/2013/712678] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/13/2013] [Indexed: 02/03/2023]
Abstract
Taguchi orthogonal array design is a statistical approach that helps to overcome limitations associated with time consuming full factorial experimental design. In this study, the Taguchi orthogonal array design was applied to establish the optimum conditions for bovine serum albumin (BSA) nanocarrier (ANC) preparation. Taguchi method with L9 type of robust orthogonal array design was adopted to optimize the experimental conditions. Three key dependent factors namely, BSA concentration (% w/v), volume of BSA solution to total ethanol ratio (v : v), and concentration of diluted ethanolic aqueous solution (% v/v), were studied at three levels 3%, 4%, and 5% w/v; 1 : 0.75, 1 : 0.90, and 1 : 1.05 v/v; 40%, 70%, and 100% v/v, respectively. The ethanolic aqueous solution was used to impart less harsh condition for desolvation and attain controlled nanoparticle formation. The interaction plot studies inferred the ethanolic aqueous solution concentration to be the most influential parameter that affects the particle size of nanoformulation. This method (BSA, 4% w/v; volume of BSA solution to total ethanol ratio, 1 : 0.90 v/v; concentration of diluted ethanolic solution, 70% v/v) was able to successfully develop Gemcitabine (G) loaded modified albumin nanocarrier (M-ANC-G) of size 25.07 ± 2.81 nm (ζ = −23.03 ± 1.015 mV) as against to 78.01 ± 4.99 nm (ζ = −24.88 ± 1.37 mV) using conventional method albumin nanocarrier (C-ANC-G). Hybrid nanocarriers were generated by chitosan layering (solvent gelation technique) of respective ANC to form C-HNC-G and M-HNC-G of sizes 125.29 ± 5.62 nm (ζ = 12.01 ± 0.51 mV) and 46.28 ± 2.21 nm (ζ = 15.05 ± 0.39 mV), respectively. Zeta potential, entrapment, in vitro release, and pH-based stability studies were investigated and influence of formulation parameters are discussed. Cell-line-based cytotoxicity assay (A549 and H460 cells) and cell internalization assay (H460 cell line) were performed to assess the influence on the bioperformance of these nanoformulations.
Collapse
|
39
|
Tao Y, Li Z, Ju E, Ren J, Qu X. Polycations-functionalized water-soluble gold nanoclusters: a potential platform for simultaneous enhanced gene delivery and cell imaging. NANOSCALE 2013; 5:6154-60. [PMID: 23727891 DOI: 10.1039/c3nr01326j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Noble metal nanoclusters have emerged as a fascinating area of widespread interest in nanomaterials. Herein, we report the synthesis of the PEI-templated gold nanoclusters (PEI-AuNCs) as an efficient carrier for gene delivery. The PEI-AuNCs integrate the advantages of PEI and AuNCs: the presence of AuNCs can effectively decrease the cytotoxicity of PEI, making it possible to apply them in biological systems, while the cationic polymer layer PEI with positive charges is essential for enhanced gene transfection efficiency. In addition, with excellent photoluminescent properties, the AuNCs also endow our system with the versatility of fluorescent imaging, indicating a great potential as an ideal fluorescent probe to track the transfection behavior. Our studies provide strong evidence that the PEI-AuNCs can be utilized as efficient gene delivery agents.
Collapse
Affiliation(s)
- Yu Tao
- State Key laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | | | |
Collapse
|
40
|
Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 2013; 5:96-107. [PMID: 22869005 DOI: 10.1039/c2ib20135f] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages over "naked" therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration, carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a stimulus-sensitive drug or imaging agent delivery system for tumor targeting is based on the significant abnormalities in the tumor microenvironment and its cells, such as an acidic pH, altered redox potential, up-regulated proteins and hyperthermia. These internal conditions as well as external stimuli, such as magnetic field, ultrasound and light, can be used to modify the behavior of the nanopreparations that control drug release, improve drug internalization, control the intracellular drug fate and even allow for certain physical interactions, resulting in an enhanced tumor targeting and antitumor effect. This article provides a critical view of current stimulus-sensitive drug delivery strategies and possible future directions in tumor targeting with primary focus on the combined use of stimulus-sensitivity with other strategies in the same nanopreparation, including multifunctional nanopreparations and theranostics.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Trends in polymeric delivery of nucleic acids to tumors. J Control Release 2013; 170:209-18. [PMID: 23770011 DOI: 10.1016/j.jconrel.2013.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/21/2022]
Abstract
Delivery of nucleic acids to tumors has received extensive attention in the past few decades since these molecules are capable of treating disease by modulating the source of abnormalities. Although high efficiency and low toxicity of numerous delivery systems for nucleic acids have been approved frequently with in vitro assays, contradictions have been observed in many cases between these results and what has occurred in the dynamic in vivo situation. Filling this gap seems to be crucial for further preclinical development of such systems. In this paper, we discuss various barriers which polymeric DNA or siRNA nanoparticles encounter upon systemic administration with an aim to assist in designing more relevant in vitro assays. Furthermore, individual considerations concerning delivery of DNA and siRNA have been addressed.
Collapse
|
42
|
Resnier P, Montier T, Mathieu V, Benoit JP, Passirani C. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 2013; 34:6429-43. [PMID: 23727262 DOI: 10.1016/j.biomaterials.2013.04.060] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/27/2013] [Indexed: 12/11/2022]
Abstract
RNA interference currently offers new opportunities for gene therapy by the specific extinction of targeted gene(s) in cancer diseases. However, the main challenge for nucleic acid delivery still remains its efficacy through intravenous administration. Over the last decade, many delivery systems have been developed and optimized to encapsulate siRNA and to specifically promote their delivery into tumor cells and improve their pharmacokinetics for anti-cancer purposes. This review aims to sum up the potential targets in numerous pathways and the properties of recently optimized siRNA synthetic nanomedicines with their preclinical applications and efficacy. Future perspectives in cancer treatment are discussed including promising concomitant treatment with chemotherapies or other siRNA. The outcomes in human clinical trials are also presented.
Collapse
|
43
|
Höbel S, Aigner A. Polyethylenimines for siRNA and miRNA delivery in vivo. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:484-501. [PMID: 23720168 DOI: 10.1002/wnan.1228] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 12/23/2022]
Abstract
The discovery of RNA interference (RNAi) as a naturally occurring mechanism for gene knockdown has attracted considerable attention toward the use of small interfering RNAs (siRNAs) for therapeutic purposes. Likewise, microRNAs (miRNAs) have emerged as important cellular regulators of gene expression, and their pathological underexpression allows for novel therapeutic strategies ('miRNA replacement therapy'). To address issues related to the instability, charge, and molecular weight of small RNA molecules, nanoparticle formulations have been explored for their in vivo application. Polyethylenimines (PEIs) are positively charged, linear, or branched polymers that are able to form nanoscale complexes with small RNAs, leading to RNA protection, cellular delivery, and intracellular release. This review highlights the important properties of various PEIs with regard to their use for in vivo RNA delivery. PEI modifications for increased efficacy, altered pharmacokinetic properties, improved biocompatibility and, upon covalent coupling of ligands, targeted delivery are described. An overview of various modified PEIs and a comprehensive list of representative studies using PEI-based siRNA or miRNA delivery in vivo are given.
Collapse
Affiliation(s)
- Sabrina Höbel
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University Leipzig, Leipzig, Germany
| | | |
Collapse
|
44
|
Khatun Z, Nurunnabi M, Reeck GR, Cho KJ, Lee YK. Oral delivery of taurocholic acid linked heparin-docetaxel conjugates for cancer therapy. J Control Release 2013; 170:74-82. [PMID: 23665255 DOI: 10.1016/j.jconrel.2013.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/14/2013] [Accepted: 04/28/2013] [Indexed: 11/30/2022]
Abstract
We have synthesized taurocholic acid (TCA) linked heparin-docetaxel (DTX) conjugates for oral delivery of anticancer drug. The ternary biomolecular conjugates formed self-assembly nanoparticles where docetaxel was located inside the core and taurocholic acid was located on the surface of the nanoparticles. The coupled taurocholic acid in the nanoparticles had enhanced oral absorption, presumably through the stimulation of a bile acid transporter of the small intestine. The oral absorption profile demonstrated that the concentration of the conjugates in plasma is about 6 fold higher than heparin alone. An anti-tumor study in MDA-MB231 and KB tumor bearing mice showed significant tumor growth inhibition activity by the ternary biomolecular conjugates. Ki-67 histology study also showed evidence of anticancer activity of the nanoparticles. Finally, noninvasive imaging using a Kodak Molecular Imaging System demonstrated that the nanoparticles were accumulated efficiently in tumors. Thus, this approach for oral delivery using taurocholic acid in the ternary biomolecular conjugates is promising for treatment of various types of cancer.
Collapse
Affiliation(s)
- Zehedina Khatun
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, Yue H, Ma GH. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials 2013; 34:3912-23. [DOI: 10.1016/j.biomaterials.2013.02.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/10/2013] [Indexed: 11/25/2022]
|
46
|
Aditya NP, Shim M, Lee I, Lee Y, Im MH, Ko S. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1878-83. [PMID: 23362941 DOI: 10.1021/jf305143k] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To increase the oral bioavailability of curcumin and genistein, we fabricated nanostructured lipid carriers (NLCs), and the impact of these carriers on bioaccessibility of curcumin and genistein was studied. Entrapment efficiency was more than 75% for curcumin and/or genistein-loaded NLCs. Solubility of curcumin and/or genistein in simulated intestinal medium (SIM) was >75% after encapsulating within NLCs which otherwise was <20%. Both curcumin and genistein have shown good stability (≥85%) in SIM and simulated gastric medium (SGM) up to 6 h. Coloading of curcumin and genistein had no adverse effect on solubility and stability of each molecule. Instead, coloading increased loading efficiency and the cell growth inhibition in prostate cancer cells. Collectively, these results have shown that coloaded lipid based carriers are promising vehicles for oral delivery of poorly bioaccessible molecules like curcumin and genistein.
Collapse
Affiliation(s)
- N P Aditya
- Department of Food Science and Technology, Sejong University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
47
|
Kong WH, Park K, Lee MY, Lee H, Sung DK, Hahn SK. Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. Biomaterials 2013; 34:542-51. [DOI: 10.1016/j.biomaterials.2012.09.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 02/05/2023]
|
48
|
Jia L, Li Z, Zhang D, Zhang Q, Shen J, Guo H, Tian X, Liu G, Zheng D, Qi L. Redox-responsive catiomer based on PEG-ss-chitosan oligosaccharide-ss-polyethylenimine copolymer for effective gene delivery. Polym Chem 2013. [DOI: 10.1039/c2py20781h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Xue HY, Narvikar M, Zhao JB, Wong HL. Lipid encapsulation of cationic polymers in hybrid nanocarriers reduces their non-specific toxicity to breast epithelial cells. Pharm Res 2012; 30:572-83. [PMID: 23135818 DOI: 10.1007/s11095-012-0902-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 10/08/2012] [Indexed: 01/08/2023]
Abstract
PURPOSE Clinical application of cationic polymers for delivery of nucleic acids has been limited by their toxicity. The purpose of this study is to evaluate whether the polymer-in-lipid hybrid nanotechnology recently developed for controlled siRNA delivery can tackle this toxicity issue by reducing exposure of the cellular components to free cationic polymers. METHODS Lipid-polymer hybrid nanocarriers (LPNs) encapsulating complexes of hexadecylated polyethylenimine (H-PEI) and biologically inactive siRNA in lipids were prepared at different lipid-polymer ratios. Comparative toxicity of these LPNs and unencapsulated cationic materials on breast epithelial cell lines MDA-MB-231 and MCF-10a was evaluated. RESULTS Even at a low lipid-polymer ratio (3:1 w/w), encapsulation of H-PEI improved its LC(50) values measured within hours by 3-5 fold, and caused less reduction in the colony-formation rates in 10-14 days. The observed reductions in the acute and delayed carrier toxicity were associated with significantly less membrane damages, improved mitochondrial functions, reduced reactive oxidative species production, and lower caspase-3 activity (all p < 0.05) without sacrificing the siRNA transfection efficiency. CONCLUSIONS This study has validated the hybrid nanotechnology for controlled RNA delivery from a toxicological perspective. This is especially valuable if local or long-term RNA therapy is intended for which low carrier toxicity is essential.
Collapse
Affiliation(s)
- Hui Yi Xue
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
50
|
Han L, Zhao J, Zhang X, Cao W, Hu X, Zou G, Duan X, Liang XJ. Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. ACS NANO 2012; 6:7340-7351. [PMID: 22838646 DOI: 10.1021/nn3024688] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A simple nanocarrier coated with chitosan and the pH-responsive charge-reversible polymer, PAH-Cit, was constructed using layer-by-layer assembly to deliver siRNA. Gold nanoparticles (AuNPs) were di-rectly reduced and stabilized by chitosan (CS), forming a positively charged AuNP-CS core. Charge-reversible PAH-Cit and polyethylenimine (PEI) were sequentially deposited onto the surface of AuNP-CS through electrostatic interaction, forming a PEI/PAH-Cit/AuNP-CS shell/core structure. After loading siRNA, the cytotoxicity of siRNA/PEI/PAH-Cit/AuNP-CS against HeLa and MCF-7R cells was negligible. This vehicle completely protected siRNA against enzymatic degradation at vector/RNA mass ratios of 2.5:1 and above. An in vitro release profile demonstrated an efficient siRNA release (79%) from siRNA/PEI/PAH-Cit/AuNP-CS at pH 5.5, suggesting a pH-induced charge-reversing action of PAH-Cit. This mechanism also worked in vivo and facilitated the escape of siRNA from endosomes. Using this carrier, the uptake of cy5-siRNA by HeLa cells was significantly increased compared to PEI, an efficient polycationic transfection reagent. In drug-resistant MCF-7 cells, specific gene silencing effectively reduced expression of MDR1, the gene encoding the drug exporter P-gp, and consequently promoted the uptake of doxorubicin. This simple charge-reversal polymer assembly nanosystem has three essential benefits (protection, efficient uptake, and facilitated escape) and provides a safe strategy with good biocompatibility for enhanced siRNA delivery and silencing.
Collapse
Affiliation(s)
- Lu Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|