1
|
Huang Y, Guo W, Wang X, Chang J, Lu B. An acidity-triggered aggregation nanoplatform based on degradable mesoporous organosilica nanoparticles for precise drug delivery and phototherapy of focal bacterial infection. Dalton Trans 2024. [PMID: 39431576 DOI: 10.1039/d4dt02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
It is crucial to precisely strike the bacterially infected area and avoid damaging healthy tissue in bacterial infection treatment. Herein, we report an acidity-triggered aggregation antibacterial nanoplatform based on biodegradable mesoporous organic silica nanoparticles (MON NPs). The surface of MON NPs modified with polydopamine (PDA) encapsulated ciprofloxacin (CIP) and methylene blue (MB) and was then further grafted with glycol chitosan to obtain MB/CIP@MON-PDA-GCS NPs (MCMPG NPs). In the bacterial infection environment with acidic characteristics, glycol chitosan (GCS) becomes positively charged. Consequently, the positively charged acidity-triggered GCS enables MCMPG NPs to accumulate on the negatively charged bacterial surfaces in the infected area and not in healthy tissue. The targeted method allows for the precise release of CIP and MB, ensuring the spatial accuracy of photodynamic therapy (PDT) and photothermal therapy (PTT) for effective bacteria-specific treatment.
Collapse
Affiliation(s)
- Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Xinyu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Jingrui Chang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| |
Collapse
|
2
|
Hayann L, da Rocha VF, Cândido MF, Vicente RM, Andrilli LHS, Fukada SY, Brassesco MS, Ciancaglini P, Engel EE, Ramos AP. A nontoxic strontium nanoparticle that holds the potential to act upon osteocompetent cells: An in vitro and in vivo characterization. J Biomed Mater Res A 2024; 112:1518-1531. [PMID: 38488327 DOI: 10.1002/jbm.a.37708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 07/12/2024]
Abstract
Estrogen deficiency, long-term immobilization, and/or aging are commonly related to bone mass loss, thus increasing the risk of fractures. One option for bone replacement in injuries caused by either traumas or pathologies is the use of orthopedic cement based on polymethylmethacrylate (PMMA). Nevertheless, its reduced bioactivity may induce long-term detachment from the host tissue, resulting in the failure of the implant. In view of this problem, we developed an alternative PMMA-based porous cement (pPMMA) that favors cell invasion and improves osteointegration with better biocompatibility. The cement composition was changed by adding bioactive strontium-nanoparticles that mimic the structure of bone apatite. The nanoparticles were characterized regarding their physical-chemical properties, and their effects on osteoblasts and osteoclast cultures were assessed. Initial in vivo tests were also performed using 16 New Zealand rabbits as animal models, in which the pPMMA-cement containing the strontium nanoparticles were implanted. We showed that the apatite nanoparticles in which 90% of Ca2+ ions were substituted by Sr2+ (NanoSr 90%) upregulated TNAP activity and increased matrix mineralization. Moreover, at the molecular level, NanoSr 90% upregulated the mRNA expression levels of, Sp7, and OCN. Runx2 was increased at both mRNA and protein levels. In parallel, in vivo tests revealed that pPMMA-cement containing NanoSr 90%, upregulated two markers of bone maturation, OCN and BMP2, as well as the formation of apatite minerals after implantation in the femur of rabbits. The overall data support that strontium nanoparticles hold the potential to up-regulate mineralization in osteoblasts when associated with synthetic biomaterials.
Collapse
Affiliation(s)
- Larwsk Hayann
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor Freire da Rocha
- Department of Orthopedics and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marina Ferreira Cândido
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raphael Martini Vicente
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz H S Andrilli
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sandra Y Fukada
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Pietro Ciancaglini
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Edgard Eduard Engel
- Department of Orthopedics and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
4
|
Kong J, Ma S, Chu R, Liu J, Yu H, Mao M, Ge X, Sun Y, Wang Y. Photothermal and Photocatalytic Glycol Chitosan and Polydopamine-Grafted Oxygen Vacancy Bismuth Oxyiodide (BiO 1-x I) Nanoparticles for the Diagnosis and Targeted Therapy of Diabetic Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307695. [PMID: 38150667 DOI: 10.1002/adma.202307695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Treatment of diabetic wounds is a significant clinical challenge due to the massive infections caused by bacteria. In this study, multifunctional glycol chitosan and polydopamine-coated BiO1-x I (GPBO) nanoparticles (NPs) with near-infrared (NIR) photothermal and photocatalytic abilities are prepared. When infection occurs, the local microenvironment becomes acidic, and the pH-switchable GPBO can target the bacteria of the wound site. The NIR-assisted GPBO treatment exhibits anti-bacterial effects with fast response, high efficiency, and long duration to Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. GPBO achieves excellent photothermal imaging and CT imaging of the mouse subcutaneous abscess model. With the assistance of NIR irradiation, the GPBO promotes the healing of the diabetic wound model with the effects of anti-bacteria, anti-inflammation, the M2 polarization promotion of macrophages, and angiogenesis. This is the first-time report of nano-sized BiO1-x I. The synthesis and selected application for the imaging and targeted therapy of diabetic wounds are presented. This study offers an example of the NP-assisted precise diagnosis and therapy of bacterial infection diseases.
Collapse
Affiliation(s)
- Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Sihan Ma
- College of Energy, Xiamen University, Xiamen City, Fujian Province, 361002, P. R. China
- Fujian Research Center for Nuclear Engineering, Xiamen City, Fujian Province, 361102, P. R. China
| | - Runxuan Chu
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P. R. China
| | - Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, P. R. China
| |
Collapse
|
5
|
Sun J, Jiang K, Wang Y, Liu Y, Wang T, Ding S, Zhang X, Xiong W, Zheng F, Yang H, Zhu JJ. One-Pot Synthesis of Tumor-Microenvironment Responsive Degradable Nanoflower-Medicine for Multimodal Cancer Therapy with Reinvigorating Antitumor Immunity. Adv Healthc Mater 2023; 12:e2302016. [PMID: 37713653 DOI: 10.1002/adhm.202302016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Multimodal cancer therapies show great promise in synergistically enhancing anticancer efficacy through different mechanisms. However, most current multimodal therapies either rely on complex assemblies of multiple functional nanomaterials and drug molecules or involve the use of nanomedicines with poor in vivo degradability/metabolizability, thus restricting their clinical translatability. Herein, a nanoflower-medicine using iron ions, thioguanine (TG), and tetracarboxylic porphyrin (TCPP) are synthesized as building blocks through a one-step hydrothermal method for combined chemo/chemodynamic/photodynamic cancer therapy. The resulting nanoflowers, consisting of low-density Fe2 O3 core and iron complex (Fe-TG and Fe-TCPP compounds) shell, exhibit high accumulation at the tumor site, desirable degradability in the tumor microenvironment (TME), robust suppression of tumor growth and metastasis, as well as effective reinvigoration of host antitumor immunity. Triggered by the low pH in tumor microenvironment, the nanoflowers gradually degrade after internalization, contributing to the effective drug release and initiation of high-efficiency catalytic reactions precisely in tumor sites. Moreover, iron ions can be eliminated from the body through renal clearance after fulfilling their mission. Strikingly, it is also found that the multimodal synergistic therapy effectively elicits the host antitumor immunity without inducing additional toxicity. This easy-manufactured and degradable multimodal therapeutic nanomedicine is promising for clinical precision oncology.
Collapse
Affiliation(s)
- Jiamin Sun
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Kai Jiang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Yifan Wang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Yuqing Liu
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Ting Wang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Shiyue Ding
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Xianzhi Zhang
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Ave 163, Nanjing, Jiangsu, 210023, China
| | - Weiwei Xiong
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Fenfen Zheng
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai 241, 200030, Shanghai, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Ave 163, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
6
|
Shestovskaya MV, Luss AL, Bezborodova OA, Makarov VV, Keskinov AA. Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity. Pharmaceutics 2023; 15:2406. [PMID: 37896166 PMCID: PMC10610190 DOI: 10.3390/pharmaceutics15102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The main concept of radiosensitization is making the tumor tissue more responsive to ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We collected data about the possible molecular mechanisms underlying the radiosensitizing effects of iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by variable modifications.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anna L. Luss
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
- The Department of Technology of Chemical, Pharmaceutical and Cosmetic Products Mendeleev of University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga A. Bezborodova
- P. Hertsen Moscow Oncology Research Institute of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia;
| | - Valentin V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| |
Collapse
|
7
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Li X, Yue R, Guan G, Zhang C, Zhou Y, Song G. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy. EXPLORATION (BEIJING, CHINA) 2023; 3:20220002. [PMID: 37933379 PMCID: PMC10624388 DOI: 10.1002/exp.20220002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2023]
Abstract
The acidic characteristic of the tumor site is one of the most well-known features and provides a series of opportunities for cancer-specific theranostic strategies. In this regard, pH-responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI-guided theranostic nanoplatforms for tumor-specific treatments. Therefore, various MRI-based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH-responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH-responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH-responsiveness for cancer diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Ying Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| |
Collapse
|
9
|
Sahiner M, Yilmaz AS, Ayyala RS, Sahiner N. Biocompatible Glycol Chitosan Microgels as Effective Drug Carriers. Gels 2023; 9:gels9050398. [PMID: 37232990 DOI: 10.3390/gels9050398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Glycol chitosan (GC) is a chitosan (CH) derivative with improved water solubility with regards to CH which affords significant solubility advantages. In this study, microgels of GC as p(GC) were synthesized by a microemulsion technique at various crosslinking ratios e.g., 5%, 10%, 50%, 75%, and 150% based on the repeating unit of GC using divinyl sulfone (DVS) as a crosslinker. The prepared p(GC) microgels were tested for blood compatibility and it was found that p(GC) microgels at 1.0 mg/mL concentration possessed a 1.15 ± 0.1% hemolysis ratio and 89 ± 5% blood clotting index value confirming their hemocompatibility. In addition, p(GC) microgels were found biocompatible with 75.5 ± 5% cell viability against L929 fibroblasts even at a 2.0 mg/mL concentration. By loading and releasing tannic acid (TA) (a polyphenolic compound with high antioxidant activity) as an active agent, p(GC) microgels' possible drug delivery device application was examined. The TA loading amount of p(GC) microgels was determined as 323.89 mg/g, and TA releases from TA loaded microgels (TA@p(GC)) were found to be linear within 9 h and a total amount of TA released was determined as 42.56 ± 2 mg/g within 57 h. According to the Trolox equivalent antioxidant capacity (TEAC) test, 400 µL of the sample added to the ABTS+ solution inhibited 68.5 ± 1.7% of the radicals. On the other hand, the total phenol content (FC) test revealed that 2000 μg/mL of TA@p(GC) microgels resulted in 27.5 ± 9.5 mg/mL GA eq antioxidant properties.
Collapse
Affiliation(s)
- Mehtap Sahiner
- Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Aynur S Yilmaz
- Department of Chemistry, Faculty of Sciences & Arts, Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute,12901 Bruce B Down Blvd, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute,12901 Bruce B Down Blvd, Tampa, FL 33612, USA
- Materials Science and Engineering Program, Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
10
|
Terracciano R, Carcamo-Bahena Y, Royal ALR, Messina L, Delk J, Butler EB, Demarchi D, Grattoni A, Wang Z, Cristini V, Dogra P, Filgueira CS. Zonal Intratumoral Delivery of Nanoparticles Guided by Surface Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13983-13994. [PMID: 36318182 PMCID: PMC9671122 DOI: 10.1021/acs.langmuir.2c02319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/13/2022] [Indexed: 06/12/2023]
Abstract
Delivery of small molecules and anticancer agents to malignant cells or specific regions within a tumor is limited by penetration depth and poor spatial drug distribution, hindering anticancer efficacy. Herein, we demonstrate control over gold nanoparticle (GNP) penetration and spatial distribution across solid tumors by administering GNPs with different surface chemistries at a constant injection rate via syringe pump. A key finding in this study is the discovery of different zone-specific accumulation patterns of intratumorally injected nanoparticles dependent on surface functionalization. Computed tomography (CT) imaging performed in vivo of C57BL/6 mice harboring Lewis lung carcinoma (LLC) tumors on their flank and gross visualization of excised tumors consistently revealed that intratumorally administered citrate-GNPs accumulate in particle clusters in central areas of the tumor, while GNPs functionalized with thiolated phosphothioethanol (PTE-GNPs) and thiolated polyethylene glycol (PEG-GNPs) regularly accumulate in the tumor periphery. Further, PEG functionalization resulted in larger tumoral surface coverage than PTE, reaching beyond the outer zone of the tumor mass and into the surrounding stroma. To understand the dissimilarities in spatiotemporal evolution across the different GNP surface chemistries, we modeled their intratumoral transport with reaction-diffusion equations. Our results suggest that GNP surface passivation affects nanoparticle reactivity with the tumor microenvironment, leading to differential transport behavior across tumor zones. The present study provides a mechanistic understanding of the factors affecting spatiotemporal distribution of nanoparticles in the tumor. Our proof of concept of zonal delivery within the tumor may prove useful for directing anticancer therapies to regions of biomarker overexpression.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas77030, United States
- Department
of Electronics and Telecommunications, Politecnico
di Torino, Torino10129, Italy
| | - Yareli Carcamo-Bahena
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas77030, United States
| | - Amber Lee R. Royal
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas77030, United States
| | - Luca Messina
- Univestià
degli Studi di Napoli Federico II, Naples80138, Italy
| | - Jack Delk
- Texas
A&M University, College
Station, Texas77843, United States
| | - E. Brian Butler
- Department
of Radiation Oncology, Houston Methodist
Research Institute, Houston, Texas77030, United States
| | - Danilo Demarchi
- Department
of Electronics and Telecommunications, Politecnico
di Torino, Torino10129, Italy
| | - Alessandro Grattoni
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas77030, United States
- Department
of Radiation Oncology, Houston Methodist
Research Institute, Houston, Texas77030, United States
- Department
of Surgery, Houston Methodist Research Institute, Houston, Texas77030, United States
| | - Zhihui Wang
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas77030, United
States
- Department
of Imaging Physics, University of Texas
MD Anderson Cancer Center, Houston, Texas77030, United States
- Department
of Physiology and Biophysics, Weill Cornell
Medical College, New York, New York10022, United States
| | - Vittorio Cristini
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas77030, United
States
- Department
of Imaging Physics, University of Texas
MD Anderson Cancer Center, Houston, Texas77030, United States
- Physiology,
Biophysics, and Systems Biology Program, Graduate School of Medical
Sciences, Weill Cornell Medicine, New York, New York10022, United States
| | - Prashant Dogra
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas77030, United
States
- Department
of Physiology and Biophysics, Weill Cornell
Medical College, New York, New York10022, United States
| | - Carly S. Filgueira
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas77030, United States
- Department
of Cardiovascular Surgery, Houston Methodist
Research Institute, Houston, Texas77030, United States
| |
Collapse
|
11
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, Meng X, Essiet Imeh A, Li W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front Bioeng Biotechnol 2022; 10:1024143. [PMID: 36277396 PMCID: PMC9585261 DOI: 10.3389/fbioe.2022.1024143] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Polymeric nanoparticles (NPs) play an important role in controlled cancer drug delivery. Anticancer drugs can be conjugated or encapsulated by polymeric nanocarriers, which are known as polymeric nanomedicine. Polymeric nanomedicine has shown its potential in providing sustained release of drugs with reduced cytotoxicity and modified tumor retention, but until now, few delivery systems loading drugs have been able to meet clinical demands, so more efforts are needed. This research reviews the current state of the cancer drug-loading system by exhibiting a series of published articles that highlight the novelty and functions from a variety of different architectures including micelles, liposomes, dendrimers, polymersomes, hydrogels, and metal–organic frameworks. These may contribute to the development of useful polymeric NPs to achieve different therapeutic purposes.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Fei Teng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Changkuo Shi
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Junyu Chen
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Shuqing Wu
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiang Meng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | | | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
- *Correspondence: Wenliang Li,
| |
Collapse
|
13
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
14
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
15
|
Zhang Y, Huo L, Wei Z, Tang Q, Sui H. Hotspots and Frontiers in Inflammatory Tumor Microenvironment Research: A Scientometric and Visualization Analysis. Front Pharmacol 2022; 13:862585. [PMID: 35370647 PMCID: PMC8968939 DOI: 10.3389/fphar.2022.862585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Methods: Articles on inflammatory tumor microenvironment were retrieved from the Web of Science Core Collection, and the characteristics of the articles were analyzed by CiteSpace software. Background: The inflammatory tumor microenvironment is an essential feature of the tumor microenvironment. The way in which it promotes or inhibits tumor progression plays an important role in the outcome of a tumor treatment. This research aims to explore a scientific collaboration network, describe evolution of hotspots, and predict future trends through bibliometric analysis. Results: A total of 3,534 papers published by 390 institutions in 81 countries/regions were screened, and the annual quantity has been increasing rapidly in the past decades. United States was the leading country and has the most productive institutions in this field. The research topics were mainly focused on inflammation and immunity mediated by crucial factors as well as the mechanisms of angiogenesis. Additionally, the development and application of nanoparticles is currently a novel research frontier with bright prospect. Conclusion: The present scientometric study provides an overview of inflammatory tumor microenvironment research over the previous decades using quantitative and qualitative methods, and the findings of this study can provide references for researchers focusing on tumor treatment.
Collapse
Affiliation(s)
- Yuli Zhang
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Traditional Chinese Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Huo
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenzhen Wei
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Tang
- Department of Clinical Laboratory, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Laboratory and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
17
|
Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022; 11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Indexed: 11/10/2022]
Abstract
Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment. According to the process of nanosystems entering the body, they can be classified into three categories. The first segment is to enhance the accumulation and permeation of nanosystems to tumor cells through extracellular microenvironment stimulation. The second segment is to improve cellular internalization from extracellular to intracellular via active targeting. The third segment is to enhance the intracellular retention of therapeutics by subcellular localization. The major factors in the delivery can be utilized to develop multifunctional nanosystems for strengthening the tumor therapy. Ultimately, the key challenges and prospective in the emerging research frontier are thoroughly outlined. This review is expected to provide inspiring ideas, promising strategies and potential pathways for developing advanced anticancer nanosystems in clinical practice.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Toukh 13736 Egypt
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
| |
Collapse
|
18
|
Triple cascade nanocatalyst with laser-activatable O 2 supply and photothermal enhancement for effective catalytic therapy against hypoxic tumor. Biomaterials 2021; 280:121308. [PMID: 34896860 DOI: 10.1016/j.biomaterials.2021.121308] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes have been combined with glucose oxidase (GOx) for dual-enzyme cascade catalytic therapy. However, their catalysis efficiency is restricted because of the hypoxia tumor microenvironment (TME). Although many methods are developed for O2 supply, the O2 leakage and consumption of H2O2 compromised their practical application. Herein, a biocompatible carbon nitride (C3N4)/nanozyme/GOx triple cascade nanocatalyst was designed with laser-activatable O2 self-supply via water splitting to relieve tumor hypoxia and thus improve the catalysis efficiency. To this end, polydopamine (PDA) nanosphere was prepared and attached with C3N4 nanosheet to improve water splitting efficiency and realize photothermal-enhanced catalysis, simultaneously. The PDA@C3N4 composite was then coated with MIL-100 (Fe), where GOx was loaded, to form C3N4/MIL-100/GOx triple cascade nanocatalyst. The triple cascade catalysis was realized with laser-activatable O2 supply from PDA@C3N4, H2O2 generation with GOx, and •OH production from peroxidase-like MIL-100 (Fe) for tumor therapy. Upon 808 nm irradiation, PDA, as a photothermal agent, realized photothermal therapy and enhanced the catalytic therapy. Thus, the synergy of laser-activatable O2 supply and photothermal enhancement in our triple cascade nanocatalyst improved the performance of catalytic therapy without drug resistance and toxicity to normal tissues.
Collapse
|
19
|
Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021; 272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, cancer is one of the most prominent issues related to human health since it causes more than one-tenth of death cases throughout the world. On the other hand, routine therapeutic approaches in cancer suppression such as radiation therapy, chemotherapy, surgery, etc. due to their undesirable therapeutic outputs, including low efficiency in cancer inhibition, non-targeted drug delivery, nonselective distribution, and enormous side effects, have been indicated inefficient potency in cancer therapy or at least its growth inhibition. As a result, the development of novel and practical therapeutic methods such as nanoparticle-based drug delivery systems can be outstandingly beneficial in cancer suppression. Among various nanoparticles used in the delivery of bioactive to the tumor site, chitosan (CS) nanoparticles have received high attention. CS, poly [β-(1-4)-linked-2-amino-2-deoxy-d-glucose], is a natural linear amino polysaccharide derived from chitin which is made of irregularly distributed d-glucosamine and N-acetyl-d-glucosamine units. CS nanoparticles owing to their appropriate aspects, including nanometric size, great drug loading efficacy, ease of manipulation, non-toxicity, excellent availability and biocompatibility, good serum stability, long-term circulation time, suitable pharmacokinetic and pharmacodynamics, non-immunogenicity, and enhanced drug solubility in the human body, have been designated as an efficient candidate for drug delivery systems. They can be involved in both passive (based on the enhanced permeability and retention effect cancer targeting) and active (receptor-mediated or stimuli-responsive cancer targeting) drug delivery systems for potential cancer therapy. This review presents the properties, preparation, modification, and numerous pharmaceutical applications of CS-based drug nanodelivery systems in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
20
|
Binandeh M, Rostamnia S, Karimi F. MNPs-IHSPN nanoparticles in multi-application with absorption of bio drugs in vitro. Biochem Biophys Rep 2021; 28:101159. [PMID: 34746450 PMCID: PMC8554450 DOI: 10.1016/j.bbrep.2021.101159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 09/04/2021] [Accepted: 10/19/2021] [Indexed: 11/04/2022] Open
Abstract
The aim of this project is to investigate the method of using a common buffer to determine the degree of stabilization and secretion of two drug molecules that have been analyzed in vitro. First, magnetic nanoparticles were synthesized and their structure was identified by instruments such as XPS (X-ray photoelectron spectroscopy) and FT-IR (Fourier transform infrared spectroscopy). The main purpose of this study was to investigate the stabilization and release of methotrexate on the surface of magnetic nanoparticles. The two temperatures were 37 and 25°, respectively. After reaction with the biomolecules, the adsorption rate for both drug molecules was about 60–80. PBS buffer was also used for diffusion of biomolecules and the results were analyzed by spectrophotometer analysis. With these results, the adsorption of cysteine and MTX was more than 60% and its release rate in MNPS-IHSPN was up to 90%, which means that high-strength stabilization and release by magnetic nanoparticles under external magnetic field and in vitro confirmed. The result of this project for the exchange of drugs by the surface of magnetic nanoparticles to repair damaged cells in the body of living organisms can be generalized.
Collapse
Affiliation(s)
- Mansour Binandeh
- Faculty of Science, Department of Chemistry, University of Maragheh, Iran
| | - Sadegh Rostamnia
- Faculty of Science, Department of Chemistry, University of Maragheh, Iran
| | - Farrokh Karimi
- Faculty of Science, Department of Biotechnology and Environmental, University of Maragheh, Iran
| |
Collapse
|
21
|
Zhuang Y, Zhao Y, Wang B, Wang Q, Cai T, Cai Y. Strategies for Preparing Different Types of Lipid Polymer Hybrid Nanoparticles in Targeted Tumor Therapy. Curr Pharm Des 2021; 27:2274-2288. [PMID: 33222665 DOI: 10.2174/1381612826666201120155558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/27/2020] [Indexed: 11/22/2022]
Abstract
At present, cancer is one of the most common diseases in the world, causing a large number of deaths and seriously affecting people's health. The traditional treatment of cancer is mainly surgery, radiotherapy or chemotherapy. Conventional chemotherapy is still an important treatment, but it has some shortcomings, such as poor cell selectivity, serious side effects, drug resistance and so on. Nanoparticle administration can improve drug stability, reduce toxicity, prolong drug release time, prolong system half-life, and bring broad prospects for tumor therapy. Lipid polymer hybrid nanoparticles (LPNs), which combine the advantages of polymer core and phospholipid shell to form a single platform, have become multi-functional drug delivery platforms. This review introduces the basic characteristics, structure and preparation methods of LPNs, and discusses targeting strategies of LPNs in tumor therapy in order to overcome the defects of traditional drug therapy.
Collapse
Affiliation(s)
- Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yiye Zhao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingyue Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Tiange Cai
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
23
|
Li J, Zhang Z, Deng H, Zheng Z. Cinobufagin-Loaded and Folic Acid-Modified Polydopamine Nanomedicine Combined With Photothermal Therapy for the Treatment of Lung Cancer. Front Chem 2021; 9:637754. [PMID: 33855009 PMCID: PMC8039290 DOI: 10.3389/fchem.2021.637754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cinobufagin is used as a traditional Chinese medicine for cancer therapy. However, it has some disadvantages, such as poor water solubility, short circulating half-life, and low bioavailability. In the present study, a targeted delivery and smart responsive polydopamine (PDA)-based nanomedicine for delivering cinobufagin was rationally designed to improve the anticancer efficacy of the compound for the treatment of lung cancer. The modification of the nanomedicine using folic acid first mediated tumor targeting via the interaction between folic acid and its receptors on tumor cells. After lysosomes escape, the PDA nanomedicine was triggered by the low pH and released its cargo into the tumor microenvironment. The nanomedicine had a better therapeutic effect against lung cancer when used in combination with photothermal therapy. Compared with other nanomedicines used with photothermal therapy, this nanocarrier was not only sensitive to biologically low pH levels for on-demand drug release, but was also biodegradable, breaking down into biocompatible terminal products. Therefore, the proposed drug delivery system with targeted delivery and smart release demonstrated potential as a multifunctional nanoplatform that can enhance the bioavailability and reduce the side effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- Jianwen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Deng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Zheng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Ryu JH, Yoon HY, Sun IC, Kwon IC, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002197. [PMID: 33051905 DOI: 10.1002/adma.202002197] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Nanomedicine is extensively employed for cancer treatment owing to its unique advantages over conventional drugs and imaging agents. This increased attention to nanomedicine, however, has not fully translated into clinical utilization and patient benefits due to issues associated with reticuloendothelial system clearance, tumor heterogeneity, and complexity of the tumor microenvironment. To address these challenges, efforts are being made to modify the design of nanomedicines, including optimization of their physiochemical properties, active targeting, and response to stimuli, but these studies are often performed independently. Combining favorable nanomedicine designs from individual studies may improve therapeutic outcomes, but, this is difficult to achieve as the effects of different designs are interconnected and often conflicting. Glycol chitosan nanoparticles (CNPs) are shown to accumulate in tumors, suggesting that this type of nanoparticle may constitute a good basis for the additional modification of nanoparticles. Here, multifunctional glycol CNPs designed to overcome multiple obstacles to their use are described and key factors influencing in vivo targeted delivery, targeting strategies, and interesting stimulus-responsive designs for improving cancer nanomedicine are discussed.
Collapse
Affiliation(s)
- Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
25
|
Zhu J, Xiao T, Zhang J, Che H, Shi Y, Shi X, van Hest JCM. Surface-Charge-Switchable Nanoclusters for Magnetic Resonance Imaging-Guided and Glutathione Depletion-Enhanced Photodynamic Therapy. ACS NANO 2020; 14:11225-11237. [PMID: 32809803 PMCID: PMC7513467 DOI: 10.1021/acsnano.0c03080] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Photodynamic therapy (PDT) is an effective noninvasive therapeutic method that employs photosensitizers (PSs) converting oxygen to highly cytotoxic singlet oxygen (1O2) under light irradiation. The conventional PDT efficacy is, however, compromised by the nonspecific delivery of PSs to tumor tissue, the hypoxic tumor microenvironment, and the reduction of generated 1O2 by the intracellular antioxidant glutathione (GSH). Herein, an intelligent multifunctional synergistic nanoplatform (CMGCC) for T1-weighted magnetic resonance (MR) imaging-guided enhanced PDT is presented, which consists of nanoparticles composed of catalase (CAT) and manganese dioxide (MnO2) that are integrated within chlorin-e6-modified glycol chitosan (GC) polymeric micelles. In this system, (1) GC polymers with pH-sensitive surface charge switchability from neutral to positive could improve the PS accumulation within the tumor region, (2) CAT could effectively reoxygenate the hypoxic tumor via catalyzing endogenous hydrogen peroxide to O2, and (3) MnO2 could consume the intracellular GSH while simultaneously producing Mn2+ as a contrast agent for T1-weighted MR imaging. The CMGCC particles possess uniform size distribution, well-defined structure, favorable enzyme activity, and superior 1O2 generation ability. Both in vitro and in vivo experiments demonstrate that the CMGCC exhibit significantly enhanced PDT efficacy toward HeLa cells and subcutaneous HeLa tumors. Our study thereby demonstrates this to be a promising synergistic theranostic nanoplatform with highly efficient PDT performance for cancer therapy.
Collapse
Affiliation(s)
- Jianzhi Zhu
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
International Joint Laboratory for Advanced Fiber and Low-dimension
Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Tingting Xiao
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
International Joint Laboratory for Advanced Fiber and Low-dimension
Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jiulong Zhang
- Department
of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People’s Republic
of China
| | - Hailong Che
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yuxin Shi
- Department
of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People’s Republic
of China
| | - Xiangyang Shi
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
International Joint Laboratory for Advanced Fiber and Low-dimension
Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
26
|
Liang J, Liu F, Zou J, Xu HHK, Han Q, Wang Z, Li B, Yang B, Ren B, Li M, Peng X, Li J, Zhang S, Zhou X, Cheng L. pH-Responsive Antibacterial Resin Adhesives for Secondary Caries Inhibition. J Dent Res 2020; 99:1368-1376. [PMID: 32600095 DOI: 10.1177/0022034520936639] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secondary caries caused by dental plaque is one of the major reasons for the high failure rate of resin composite restoration. Although antimicrobial agent-modified dental restoration systems have been researched for years, few reported intelligent anticaries materials could respond to the change of the oral environment and help keep oral eubiosis. Herein, we report tertiary amine (TA)-modified resin adhesives (TA@RAs) with pH-responsive antibacterial effect to reduce the occurrence of secondary caries. Two kinds of newly designed TA monomers were synthesized: DMAEM (dodecylmethylaminoethyl methacrylate) and HMAEM (hexadecylmethylaminoethyl methacrylate). In the minimum inhibitory concentration and minimum bactericidal concentration test against Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii, they exhibited antibacterial effect only in acidic medium, which preliminarily verified the acid-activated effect of TAs. Then DMAEM and HMAEM were incorporated into adhesive resin at the mass fraction of 5%, yielding TA@RAs. In vivo and in vitro tests showed that the mechanical properties and biocompatibility of the adhesive were not affected. A S. mutans biofilm model in acidic and neutral medium was used and confirmed that TA@RAs could respond to the critical pH value of de-/remineralization and acquire reversible antibiofilm effect via the protonation and deprotonation of TAs. Meanwhile, the stability of antibacterial effect was confirmed via a 5-d pH-cycling experiment and a saliva-derived biofilm aging model. Furthermore, 16S rRNA gene sequencing showed that TA@RAs could increase the diversity of the saliva-derived biofilms, which implied that the novel materials could help regulate the microbial community to a healthy one. Finally, an in vitro demineralization model and in vivo secondary caries model were applied and demonstrated that TA@RAs could prevent secondary dental caries effectively. In summary, the reversible pH-responsive and non-drug release antibacterial resin adhesives ingeniously overcome the defect of the present materials and hold great promise for clinical application.
Collapse
Affiliation(s)
- J Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - F Liu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, China
| | - J Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - H H K Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Q Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Z Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - B Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - B Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - B Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - M Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - X Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - J Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - S Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - L Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
A Review of ULK1-Mediated Autophagy in Drug Resistance of Cancer. Cancers (Basel) 2020; 12:cancers12020352. [PMID: 32033142 PMCID: PMC7073181 DOI: 10.3390/cancers12020352] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
The difficulty of early diagnosis and the development of drug resistance are two major barriers to the successful treatment of cancer. Autophagy plays a crucial role in several cellular functions, and its dysregulation is associated with both tumorigenesis and drug resistance. Unc-51-like kinase 1 (ULK1) is a serine/threonine kinase that participates in the initiation of autophagy. Many studies have indicated that compounds that directly or indirectly target ULK1 could be used for tumor therapy. However, reports of the therapeutic effects of these compounds have come to conflicting conclusions. In this work, we reviewed recent studies related to the effects of ULK1 on the regulation of autophagy and the development of drug resistance in cancers, with the aim of clarifying the mechanistic underpinnings of this therapeutic target.
Collapse
|
28
|
Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater 2020; 101:43-68. [PMID: 31518706 DOI: 10.1016/j.actbio.2019.09.009] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Recent findings suggest that the cellular and extracellular materials surrounding the cancerous cells from an atypical tumor microenvironment (TM) play a pivotal role in the process of tumor initiation and progression. TM comprises an intricate system involving diverse cell types including endothelial cells, pericytes, smooth muscle cells, fibroblasts, various inflammatory cells, dendritic cells, and cancer stem cells (CSCs). The TM-forming cells dynamically interact with the cancerous cells through various signaling mechanisms and pathways. The existence of this dynamic cellular communication is responsible for creating an environment suitable for sustaining a reasonably high cellular proliferation. Presently, researchers are showing interest to use these TM conditions to mediate effective targeting measures for cancer therapy. The use of nanotherapeutics-based combination therapy; stimuli-responsive nanotherapeutics targeting acidic pH, hypoxic environment; and nanoparticle-induced hyperthermia are some of the approaches that are under intense investigation for cancer therapy. This review discusses TM and its role in cancer progression and crosstalk understanding, opportunities, and epigenetic modifications involved therein to materialize the capability of nanotherapeutics to target cancer by availing TM. STATEMENT OF SIGNIFICANCE: This article presents various recent reports, proof-of-concept studies, patents, and clinical trials on the concept of tumor microenvironment for mediating the cancer-specific delivery of nanotechnology-based systems bearing anticancer drug and diagnostics. We highlight the potential of tumor microenvironment; its role in disease progression, opportunities, challenges, and allied treatment strategies for effective cancer therapy by conceptual understanding of tumor microenvironment and epigenetic modifications involved. Specifically, nanoparticle-based approaches to target various processes related to tumor microenvironment (pH responsive, hypoxic environment responsive, targeting of specific cells involved in tumor microenvironment, etc.) are dealt in detail.
Collapse
|
29
|
Ren B, Wang Y, Ou JZ. Engineering two-dimensional metal oxides via surface functionalization for biological applications. J Mater Chem B 2020; 8:1108-1127. [DOI: 10.1039/c9tb02423a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schematic illustration of 2D MO nanosheets for applications in biosystems.
Collapse
Affiliation(s)
- Baiyu Ren
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
- School of Resources and Environmental Engineering
| | - Yichao Wang
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - Jian Zhen Ou
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
- School of Engineering
| |
Collapse
|
30
|
Chen L, Xu S, Li W, Ren T, Yuan L, Zhang S, Zhang XB. Tumor-acidity activated surface charge conversion of two-photon fluorescent nanoprobe for enhanced cellular uptake and targeted imaging of intracellular hydrogen peroxide. Chem Sci 2019; 10:9351-9357. [PMID: 32110299 PMCID: PMC7017867 DOI: 10.1039/c9sc03781k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Elevated levels of intracellular hydrogen peroxide (H2O2) are closely related to the development of cancers. Specific imaging of H2O2 in tumor sites would be significant not only for cancer diagnosis but also for gaining a deep understanding of the role of H2O2 in cancer. However, traditional fluorescent probes based only on responses to overexpression levels of H2O2 in cancer cells are insufficient to distinguish cancer cells from other unhealthy or healthy cells in complex biological systems. Herein, we developed a smart, two-photon fluorescent GC-NABP nanoprobe with pH-dependent surface charge conversion for tumor-targeted imaging of H2O2. The nanoprobe was constructed by the self-assembly of amphiphilic GC-NABP, which was synthesized by grafting the hydrophobic, H2O2-responsive and two-photon fluorophore, NABP, onto hydrophilic biopolymer glycol chitosan (GC). Taking advantage of pH-titratable amino groups on GC, the nanoprobe had the capability of surface charge conversion from negative at physiologic pH to positive in the acidic tumor microenvironment. The positive charge of the nanoprobe promoted electrostatic interactions with cell membranes, leading to enhanced cellular uptake in acidic environment. Upon cellular uptake, the high level of H2O2 in tumor cells triggered boronate deprotections of the nanoprobe, generating a "turn-on" fluorescence emission for H2O2 imaging. The nanoprobe exhibited good sensitivity and selectivity to H2O2 with a detection limit down to 110 nM in vitro. The results from flow cytometry and two-photon fluorescence imaging of H2O2 in living cells and tissues evidenced the enhanced cellular uptake and targeted imaging of intracellular H2O2 in acidic environment. Compared to control nanoparticles that lack pH sensitivity, our nanoprobe showed enhanced accumulation in tumor sites and was applied to targeted imaging of H2O2 in a tumor-bearing mouse model. This work demonstrates that the nanoprobe GC-NABP holds great promise for tumor-specific imaging of cellular H2O2, providing a potential tool to explore the role of H2O2 in tumor sites.
Collapse
Affiliation(s)
- Lanlan Chen
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE , College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| |
Collapse
|
31
|
Activatable NIRF/MRI dual imaging probe using bio-inspired coating of glycol chitosan on superparamagnetic iron oxide nanoparticles. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Sun IC, Ahn CH, Kim K, Emelianov S. Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-5. [PMID: 31385483 PMCID: PMC6680094 DOI: 10.1117/1.jbo.24.12.121903] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
Utility of glycol-chitosan-coated gold nanoparticles (GC-AuNPs) as a photoacoustic contrast agent for cancer cell imaging was demonstrated. Through the synergistic effect of glycol chitosan and gold nanoparticles, GC-AuNPs showed cellular uptake in breast cancer cells and resulted in strong photoacoustic signals in tissue-mimicking cell phantoms. The performance of GC-AuNPs as contrast agents was established with photoacoustic imaging and confirmed with dark-field microscopy. The cell phantoms displayed strong photoacoustic signals if cells were incubated more than 3 h with GC-AuNPs, compared with PEG-AuNPs that showed no photoacoustic signal increase. The enhanced photoacoustic signals originated from the plasmon coupling effect of GC-AuNPs after the cellular uptake in cancer cells. Importantly, photoacoustic imaging of cancer cells was achieved with GC-AuNPs—contrast agents that did not require antibodies or complex surface modification. The endocytosis of GC-AuNPs was also confirmed with dark-field microscopy. The results show that GC-AuNPs have potential as a photoacoustic contrast agent for cellular imaging including tumor tissue imaging.
Collapse
Affiliation(s)
- In-Cheol Sun
- Georgia Institute of Technology, School of Electrical and Computer Engineering Atlanta, Georgia, United States
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Cheol-Hee Ahn
- Seoul National University, NanoBio Materials Laboratory, Department of Materials Science and Engineering, Seoul, Republic of Korea
| | - Kwangmeyung Kim
- Korea Institute of Science and Technology, Biomedical Research Institute, Seoul, Republic of Korea
| | - Stanislav Emelianov
- Georgia Institute of Technology, School of Electrical and Computer Engineering Atlanta, Georgia, United States
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Address all correspondence to Stanislav Emelianov, E-mail:
| |
Collapse
|
33
|
Yang X, Yang Z, Tang F, Xu J, Zhang M, Choi MMF. Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:955-966. [PMID: 31165022 PMCID: PMC6541327 DOI: 10.3762/bjnano.10.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Polydisperse water-soluble gold nanoclusters (AuNCs) protected by penicillamine have been synthesized in this work. The sequential size-selective precipitation (SSSP) technique has been applied for the size fractionation and purification of the monolayer-protected AuNCs. Through continuously adding acetone to a crude AuNC aqueous solution and controlling the volume percentage of acetone, we successfully separated the polydisperse AuNCs with diameters ranging from 0.5 to 5.4 nm into four different fractions sequentially. High-resolution transmission electron microscopy (HRTEM) shows that the four fractions are well-dispersed spherical particles of diameter 3.0 ± 0.6, 2.3 ± 0.5, 1.7 ± 0.4, and 1.2 ± 0.4 nm. Proton nuclear magnetic resonance spectroscopy suggests that disulfide, excess ligands and gold(I) complexes were removed from the AuNCs fractions. These results demonstrate the considerable potential of the SSSP technique for size-based separation and purification of AuNCs, achieving not only the isolation of larger nanoclusters (NCs) from small NCs in a continuous fashion, but also for the removal of small-molecule impurities. Based on the results from the mass spectrometry and thermogravimetric analysis, the average composition of the four fractions can be represented by Au38(SR)18, Au28(SR)15, Au18(SR)12, and Au11(SR)8, respectively. This indicates that the SSSP separation is mainly dependent on the core size and the ratio of Au atoms to ligands of AuNCs. X-ray photoelectron spectroscopy (XPS) has also been applied to observe the molecular dependence on the gold and sulfur chemical state of organosulfur monolayers of the fractions. The photoluminescence spectra of these AuNCs in the range of 900-790 nm was investigated at room temperature. The results show that the peak emission energy of the size-selected AuNCs undergoes a blue shift when the size is decreased, which can be attributed to the quantum confinement effect.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Zhengli Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Maoxue Zhang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Martin M F Choi
- Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
34
|
Cherukula K, Uthaman S, Park IK. "Navigate-dock-activate" anti-tumor strategy: Tumor micromilieu charge-switchable, hierarchically activated nanoplatform with ultrarapid tumor-tropic accumulation for trackable photothermal/chemotherapy. Theranostics 2019; 9:2505-2525. [PMID: 31131050 PMCID: PMC6525992 DOI: 10.7150/thno.33280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/19/2019] [Indexed: 11/05/2022] Open
Abstract
The delivery of therapeutics into tumors remains a challenge in nanoparticle-mediated drug delivery. However, effective therapies such as photothermal therapy (PTT) are limited by quick systemic clearance and non-specific biodistribution. Anti-tumor strategies tailored to accommodate both tumor accumulation/retention and cellular internalization under a single platform would be a promising strategy. This work demonstrates a hierarchical activating strategy that would exhibit enhanced circulation and rapid tumor-tropism as well as facilitate tumor penetration, followed by tumor-specific drug release to realize trackable photothermal/chemotherapy. Methods: We engineered a lithocholic acid-conjugated disulfide-linked polyethyleneimine micelle (LAPMi) loaded with paclitaxel (LAPMi-PTX, L), followed by the electrostatic adsorption of indocyanine green (ICG, I) on LAPMI-PTX and subsequently coated them with thermosensitive DPPC and DSPE-PEG-NH2 lipids (L), producing Lipid/ICG/LAPMi-PTX (LIL-PTX) nanoparticles (NPs). The characteristics of NPs, including physicochemical characterization, photothermal & pH responsiveness, cell uptake, tumor spheroid penetration, anti-tumor efficacy and hierarchical activation of LIL-PTX NPs were investigated in vitro and in vivo by using CT26 cell line. The anti-metastatic potential of LIL-PTX NPs were demonstrated using 4T1 orthotopic tumor model. Results: The NPs synthesized possessed charge switchability in the mildly acidic pH, and were laser- and pH-responsive. Dual stimuli-responsive nature of LIL-PTX NPs improved the disposition of therapeutics to the tumor, reflected by enhanced intracellular uptake, tumor spheroid penetration and in vitro cytotoxicity studies. LIL-PTX NPs readily switched its surface charge from neutral to positive upon reaching the tumor milieu, thus resulting in rapid tumor tropism and accumulation. Under near-infrared laser irradiation, the thermosensitive lipids on LIL-PTX NPs were deshielded, and the tumor-penetrating LAPMi-PTX was subsequently exposed to the tumor milieu, thus resulting in enhanced intracellular internalization. Next, LAPMi-PTX evaded the endo-lysosomes, thereby releasing the PTX through the degradation of LAPMi mediated by intracellular GSH in the tumor. LIL-PTX NPs significantly improved the therapy by eradicating primary tumors completely and suppressing their subsequent lung metastasis. Conclusion: The improved therapeutic index is due to enhanced passive targeting by rapid tumor-tropic accumulation and tumor penetration by laser-driven exposure of LAPMi, thereby improving the therapeutic delivery for image-guided photothermal/chemotherapy.
Collapse
|
35
|
Gu LQ, Cui PF, Xing L, He YJ, Chang X, Zhou TJ, Liu Y, Li L, Jiang HL. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Adv 2019; 9:12110-12123. [PMID: 35548379 PMCID: PMC9087936 DOI: 10.1039/c9ra01356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance (MDR) of tumor cells has greatly hindered the therapeutic efficacy of chemotherapeutic drugs, resulting in chemotherapy failure, while overexpression of ATP-binding cassette (ABC) transporters in cell membranes is the leading cause of MDR. In this study, we reported novel self-assembled triphenylphosphine-quercetin-polyethylene glycol-monoclonal antibody nanoparticles (TQ-PEG-mAb NPs) for overcoming MDR primarily through mitochondrial damage to block ATP supply to ABC transporters both in vitro and in vivo. The doxorubicin (DOX)-loaded NPs (TQ/DOX-PEG-mAb) were composed of two drugs (TQ and DOX) and an outer shielding shell of the PEG-mAb conjugate. Besides, the outer shell could be acid-responsively detached to expose the positive charge of TQ inside the NPs to enhance cellular uptake. TQ was proved to effectively induce mitochondrial damage with increased ROS levels and depolarization of mitochondrial membrane potential (MMP), leading to prominently reduced ATP supply to ABC transporters. Moreover, the involvement of the anti-vascular endothelial growth factor (VEGF) mAb was not only for efficient targeting but also for combined therapy. Consequently, TQ/DOX-PEG-mAb showed that the internalized amount of DOX was largely improved while the efflux amount was dramatically inhibited on MCF-7/ADR cells, indicating excellent reversal of DOX resistance. Importantly, the growth of DOX-resistant breast tumors was significantly inhibited with no evident systemic toxicity. Therefore, the employment of TQ-PEG-mAb is believed to be a new approach to improve the efficacy of chemotherapeutic drugs in MDR tumors.
Collapse
Affiliation(s)
- Liu-Qing Gu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Yu Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009 China +86-25-83271019 +86-25-83271543
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, Southeast University Nanjing 210009 China +86-25-83272011 +86-25-83272012
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
36
|
Yu M, Xu J, Zheng J. Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angew Chem Int Ed Engl 2019; 58:4112-4128. [PMID: 30182529 PMCID: PMC6943938 DOI: 10.1002/anie.201807847] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/14/2022]
Abstract
With more and more engineered nanoparticles (NPs) being translated to the clinic, the United States Food and Drug Administration (FDA) has recently issued the latest draft guidance on nanomaterial-containing drug products with an emphasis on understanding their in vivo transport and nano-bio interactions. Following these guidelines, NPs can be designed to target and treat diseases more efficiently than small molecules, have minimum accumulation in normal tissues, and induce minimum toxicity. In this Minireview, we integrate this guidance with our ten-year studies on developing renal clearable luminescent gold NPs. These gold NPs resist serum protein adsorption, escape liver uptake, target cancerous tissues, and report kidney dysfunction at early stages. At the same time, off-target gold NPs can be eliminated by the kidneys with minimum accumulation in the body. Additionally, we identify challenges to the translation of renal clearable gold NPs from the bench to the clinic.
Collapse
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- ClearNano, Inc., Venture Development Center, The University of Texas at Dallas, 17217 Waterview Parkway, Suite 1.202, Dallas, TX 75252 (USA)
| | - Jing Xu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- ClearNano, Inc., Venture Development Center, The University of Texas at Dallas, 17217 Waterview Parkway, Suite 1.202, Dallas, TX 75252 (USA)
| |
Collapse
|
37
|
Peng S, Men Y, Xie R, Tian Y, Yang W. Biodegradable phosphorylcholine-based zwitterionic polymer nanogels with smart charge-conversion ability for efficient inhibition of tumor cells. J Colloid Interface Sci 2019; 539:19-29. [DOI: 10.1016/j.jcis.2018.12.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
|
38
|
Yu M, Xu J, Zheng J. Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
- ClearNano, Inc., Venture Development CenterThe University of Texas at Dallas 17217 Waterview Parkway, Suite 1.202 Dallas TX 75252 USA
| | - Jing Xu
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Jie Zheng
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
- ClearNano, Inc., Venture Development CenterThe University of Texas at Dallas 17217 Waterview Parkway, Suite 1.202 Dallas TX 75252 USA
| |
Collapse
|
39
|
He Z, Su H, Shen Y, Shi W, Liu X, Liu Y, Zhang F, Zhang Y, Sun Y, Ge D. Poly(norepinephrine)-coated FeOOH nanoparticles as carriers of artemisinin for cancer photothermal-chemical combination therapy. RSC Adv 2019; 9:9968-9982. [PMID: 35520919 PMCID: PMC9062392 DOI: 10.1039/c9ra01289c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 11/25/2022] Open
Abstract
The photothermal-chemical combination therapy is a promising approach for cancer treatment, however, chemotherapy often causes severe toxic and side effects on normal tissues. Herein, tumor-specific FeOOH@PNE-Art nanoparticles were fabricated via coating poly(norepinephrine) (PNE) on FeOOH nanoparticles, followed by loading of artemisinin (Art). The as-prepared nanoparticles exhibited excellent biocompatibility, strong near-infrared (NIR) absorbance and pH-responsive synchronous release of Art and iron ions. The released iron ions could not only supply iron ions in cancer cells which mediate endoperoxide bridge cleavage of Art and generate reactive oxygen species (ROS), but also react with H2O2 at tumour sites via the Fenton reaction and produce hydroxyl radicals, inducing a tumour-specific killing. Moreover, owing to the synchronous release of Art and iron ions as well as the low leakage of iron ions, FeOOH@PNE-Art nanoparticles showed extremely low toxicity to normal tissue. Under NIR light irradiation, the tumours in FeOOH@PNE-Art injected mice were thoroughly eliminated after 7 days of treatment and no tumour recurrence was found 30 days after treatment, manifesting very high efficacy of combination therapy. Tumor-specific FeOOH@PNE-Art nanoparticles were fabricated that showed high efficacy of photothermal-chemical combination therapy and low toxicity to normal tissue.![]()
Collapse
Affiliation(s)
- Zi He
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Huiling Su
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Yuqing Shen
- Xiamen Maternal and Child Health Hospital
- Xiamen 361003
- China
| | - Wei Shi
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xin Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Yang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Fuhui Zhang
- Xiamen Maternal and Child Health Hospital
- Xiamen 361003
- China
| | - Yansheng Zhang
- Xiamen Maternal and Child Health Hospital
- Xiamen 361003
- China
| | - Yanan Sun
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Dongtao Ge
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| |
Collapse
|
40
|
Wei G, Wang Y, Huang X, Yang G, Zhao J, Zhou S. Enhancing the Accumulation of Polymer Micelles by Selectively Dilating Tumor Blood Vessels with NO for Highly Effective Cancer Treatment. Adv Healthc Mater 2018; 7:e1801094. [PMID: 30565900 DOI: 10.1002/adhm.201801094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Indexed: 12/28/2022]
Abstract
The accumulation of nanoparticles in tumors by the enhanced permeability and retention (EPR) effect is effective and well known. However, how to maximize accumulation is still a bottleneck in the development of nanomedicine. Herein, a tumor vascular-targeted hybrid polymeric micelle, which has a great capacity to selectively augment the EPR effect of nanoparticles by dilating tumor blood vessels via the activity of nitric oxide (NO), is presented. Under neutral conditions, the micelle is stable, with a long blood circulation half-life due to the carboxylated poly(ethylene glycol) (PEG) layer; in mildly acidic tumor tissues, the micelle can selectively target the tumor blood vessels by the exposed cyclic Arg-Gly-Asp peptide (cRGD) peptides, which is realized with a pH-dependent hydrolysis of the monomethoxy PEG layer. Simultaneously, exposed copper ions catalyze the decomposition of endogenous NO donors, which generates NO in situ, leading to vasodilation and increased tumor vascular permeability. As a result, the accumulation of nanoparticles is significantly enhanced, and a high accumulation of doxorubicin in tumors is achieved at 48 h after injection. This high dose of therapeutic agent produces a large inhibition of tumor growth (94%) in cancer treatment, and shows no general toxicity, with 100% of the mice surviving the treatment regimen.
Collapse
Affiliation(s)
- Guoqing Wei
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Xuehui Huang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Guang Yang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Jingya Zhao
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| |
Collapse
|
41
|
Feng L, Xie R, Wang C, Gai S, He F, Yang D, Yang P, Lin J. Magnetic Targeting, Tumor Microenvironment-Responsive Intelligent Nanocatalysts for Enhanced Tumor Ablation. ACS NANO 2018; 12:11000-11012. [PMID: 30339353 DOI: 10.1021/acsnano.8b05042] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Therapeutic nanosystems which can be triggered by the distinctive tumor microenvironment possess great selectivity and safety to treat cancers via in situ transformation of nontoxic prodrugs into toxic therapeutic agents. Here, we constructed intelligent, magnetic targeting, and tumor microenvironment-responsive nanocatalysts that can acquire oxidation therapy of cancer via specific reaction at tumor site. The magnetic nanoparticle core of iron carbide-glucose oxidase (Fe5C2-GOD) achieved by physical absorption has a high enzyme payload, and the manganese dioxide (MnO2) nanoshell as an intelligent "gatekeeper" shields GOD from premature leaking until reaching tumor tissue. Fe5C2-GOD@MnO2 nanocatalysts maintained inactive in normal cells upon systemic administration. On the contrary, after endocytosis by tumor cells, tumor acidic microenvironment induced decomposition of MnO2 nanoshell into Mn2+ and O2, meanwhile releasing GOD. Mn2+ could serve as a magnetic resonance imaging (MRI) contrast agent for real-time monitoring treatment process. Then the generated O2 and released GOD in nanocatalysts could effectively exhaust glucose in tumor cells, simultaneously generating plenty of H2O2 which may accelerate the subsequent Fenton reaction catalyzed by the Fe5C2 magnetic core in mildly acidic tumor microenvironments. Finally, we demonstrated the tumor site-specific production of highly toxic hydroxyl radicals for enhanced anticancer therapeutic efficacy while minimizing systemic toxicity in mice.
Collapse
Affiliation(s)
- Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education , Harbin Engineering University , Harbin 150001 , P. R. China
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130021 , P. R. China
| | - Rui Xie
- Department of Digestive Internal Medicine and Photodynamic Therapy Center , Harbin Medical University Cancer Hospital , Harbin 150081 , P. R. China
| | - Chuanqing Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education , Harbin Engineering University , Harbin 150001 , P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education , Harbin Engineering University , Harbin 150001 , P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education , Harbin Engineering University , Harbin 150001 , P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education , Harbin Engineering University , Harbin 150001 , P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education , Harbin Engineering University , Harbin 150001 , P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130021 , P. R. China
| |
Collapse
|
42
|
Sugiura Y, Makita Y. Ammonium Substitutional Solid Solution of Octacalcium Phosphate (OCP). CHEM LETT 2018. [DOI: 10.1246/cl.180636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuki Sugiura
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yoji Makita
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| |
Collapse
|
43
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
44
|
Li J, Jiang F, Chi Z, Han D, Yu L, Liu C. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Int J Biol Macromol 2018; 112:413-421. [DOI: 10.1016/j.ijbiomac.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/15/2022]
|
45
|
Tang H, Guo Y, Peng L, Fang H, Wang Z, Zheng Y, Ran H, Chen Y. In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15428-15441. [PMID: 29652130 DOI: 10.1021/acsami.8b01967] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As one of the most representative noninvasive therapeutic modalities, high-intensity focused ultrasound (HIFU) has shown great promise for cancer therapy, but its low therapeutic efficacy and biosafety significantly hinder further extensive clinical translation and application. In this work, we report on the construction of a multifunctional theranostic nanoplatform to synergistically enhance the HIFU-therapeutic efficacy based on nanomedicine. A targeted and temperature-responsive theranostic nanoplatform (PFH/DOX@PLGA/Fe3O4-FA) has been designed and fabricated for efficient ultrasound/magnetic resonance dual-modality imaging-guided HIFU/chemo synergistic therapy. Especially, the folate was conjugated onto the surface of the nanoplatform for achieving active targeting to hepatoma cells by receptor-ligand interaction, which facilitates accumulation of the nanoplatforms into the tumor site. The integrated superparamagnetic iron oxide nanoparticles could generate the contrast enhancement in T2-weighted magnetic resonance imaging. By virtue of the thermal effect as generated by HIFU, liquid-gas phase transition of perfluorohexane (PFH) in nanocomposites was induced to generate PFH microbubbles, which achieved the contrast-enhanced ultrasound imaging and significantly improved the HIFU ablation efficacy. The loaded anticancer drugs could be released from the nanocomposites in a controllable manner (both pH and HIFU responsiveness). These multifunctional nanocomposites have been demonstrated to efficiently suppress the tumor growth based on the enhanced and synergistic chemotherapy and HIFU ablation, providing an efficient theranostic nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Hailin Tang
- Department of Ultrasound , Tongde Hospital of Zhejiang Province , Hangzhou 310012 , P. R. China
| | - Yuan Guo
- Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , P. R. China
| | - Li Peng
- Department of Ultrasound , Tongde Hospital of Zhejiang Province , Hangzhou 310012 , P. R. China
| | - Hui Fang
- Department of Ultrasound , Tongde Hospital of Zhejiang Province , Hangzhou 310012 , P. R. China
| | - Zhigang Wang
- Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital , Shanghai 200233 , P. R. China
| | - Haitao Ran
- Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| |
Collapse
|
46
|
Efficient Active Oxygen Free Radical Generated in Tumor Cell by Loading-(HCONH₂)·H₂O₂ Delivery Nanosystem with Soft-X-ray Radiotherapy. MATERIALS 2018; 11:ma11040596. [PMID: 29649155 PMCID: PMC5951480 DOI: 10.3390/ma11040596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Tumor hypoxia is known to result in radiotherapy resistance and traditional radiotherapy using super-hard X-ray irradiation can cause considerable damage to normal tissue. Therefore, formamide peroxide (FPO) with high reactive oxygen content was employed to enhance the oxygen concentration in tumor cells and increase the radio-sensitivity of low-energy soft-X-ray. To improve stability of FPO, FPO is encapsulated into polyacrylic acid (PAA)-coated hollow mesoporous silica nanoparticles (FPO@HMSNs-PAA). On account of the pH-responsiveness of PAA, FPO@HMSNs-PAA will release more FPO in simulated acidic tumor microenvironment (pH 6.50) and subcellular endosomes (pH 5.0) than in simulated normal tissue media (pH 7.40). When exposed to soft-X-ray irradiation, the released FPO decomposes into oxygen and the generated oxygen further formed many reactive oxygen species (ROS), leading to significant tumor cell death. The ROS-mediated cytotoxicity of FPO@HMSNs-PAA was confirmed by ROS-induced green fluorescence in tumor cells. The presented FPO delivery system with soft-X-ray irradiation paves a way for developing the next opportunities of radiotherapy toward efficient tumor prognosis.
Collapse
|
47
|
Wang L, Huo M, Chen Y, Shi J. Tumor Microenvironment-Enabled Nanotherapy. Adv Healthc Mater 2018; 7:e1701156. [PMID: 29283221 DOI: 10.1002/adhm.201701156] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Cancer is now one of the world's leading threats to human health. With the development of oncology in both biology and biomedicine, it has been demonstrated that abnormal physiochemical conditions and dysregulated biosynthetic intermediates in tumor microenvironment (TME) play a pivotal role in enabling tumor cells to defend or evade the damage by traditional clinical tumor therapeutics including surgery, chemotherapy, radiotherapy, etc. The fast advances of TME-enabled theranostic nanomedicine have offered promising perspectives, strategies, and approaches for combating cancer based on the novel concept of TME-enabled nanotherapy. In this comprehensive review, the origins of TME (e.g., enhanced permeability and retention effect, overexpressed biosynthetic intermediates, mild acidic nature, redox potentials, hypoxia) are initially introduced and discussed, followed by detailed discussion and overview on the state-of-the-art progresses in TME-enabled antitumor nanotherapies (e.g., chemo/chemodynamic therapy, photodynamic therapy, radiotherapy). Finally, the obstacles and challenges of future development on TME-enabled nanotherapies for further clinical translation are outlooked.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 P. R. China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
48
|
Wang Y, Cai D, Wu H, Fu Y, Cao Y, Zhang Y, Wu D, Tian Q, Yang S. Functionalized Cu 3BiS 3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. NANOSCALE 2018; 10:4452-4462. [PMID: 29451575 DOI: 10.1039/c7nr07458a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multifunctional nano-biomaterials with the integration of diagnostic and therapeutic functions have shown great promise in improving the efficacy of cancer therapy. Herein, a new nanoplatform based on functionalized Cu3BiS3 nanoparticles (NPs) is fabricated for tumour-targeted combination phototherapy. The as-synthesized hydrophobic Cu3BiS3 NPs are modified with DSPE-PEG/DSPE-PEG-NH2, followed by the conjugation of the photosensitizer chlorin e6 (Ce6) and the target ligand folic acid (FA). The introduced Ce6 can further form a chelate complex with Gd3+. The rationally designed Cu3BiS3-PEG-(Ce6-Gd3+)-FA NPs, which have high physiological stability and good biocompatibility, can specifically target FA-receptor over-expressed tumour cells. The Cu3BiS3-PEG-(Ce6-Gd3+)-FA NPs exhibit effective dual-modal CT and MR imaging in the xenografted HeLa tumours. Importantly, excellent in vivo anti-tumour effects have been achieved by synergistic photothermal/photodynamic therapy using the multifunctional NPs. We expect that this versatile nanoplatform will play a role in exploring precise cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yanke Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of the Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu Z, Zhang S, Lin H, Zhao M, Yao H, Zhang L, Peng W, Chen Y. Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. Biomaterials 2018; 155:54-63. [DOI: 10.1016/j.biomaterials.2017.11.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/05/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023]
|
50
|
Maritim S, Coman D, Huang Y, Rao JU, Walsh JJ, Hyder F. Mapping Extracellular pH of Gliomas in Presence of Superparamagnetic Nanoparticles: Towards Imaging the Distribution of Drug-Containing Nanoparticles and Their Curative Effect on the Tumor Microenvironment. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3849373. [PMID: 29362558 PMCID: PMC5736903 DOI: 10.1155/2017/3849373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Since brain's microvasculature is compromised in gliomas, intravenous injection of tumor-targeting nanoparticles containing drugs (D-NPs) and superparamagnetic iron oxide (SPIO-NPs) can deliver high payloads of drugs while allowing MRI to track drug distribution. However, therapeutic effect of D-NPs remains poorly investigated because superparamagnetic fields generated by SPIO-NPs perturb conventional MRI readouts. Because extracellular pH (pHe) is a tumor hallmark, mapping pHe is critical. Brain pHe is measured by biosensor imaging of redundant deviation in shifts (BIRDS) with lanthanide agents, by detecting paramagnetically shifted resonances of nonexchangeable protons on the agent. To test the hypothesis that BIRDS-based pHe readout remains uncompromised by presence of SPIO-NPs, we mapped pHe in glioma-bearing rats before and after SPIO-NPs infusion. While SPIO-NPs accumulation in the tumor enhanced MRI contrast, the pHe inside and outside the MRI-defined tumor boundary remained unchanged after SPIO-NPs infusion, regardless of the tumor type (9L versus RG2) or agent injection method (renal ligation versus coinfusion with probenecid). These results demonstrate that we can simultaneously and noninvasively image the specific location and the healing efficacy of D-NPs, where MRI contrast from SPIO-NPs can track their distribution and BIRDS-based pHe can map their therapeutic impact.
Collapse
Affiliation(s)
- Samuel Maritim
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yuegao Huang
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jyotsna U. Rao
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - John J. Walsh
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|