1
|
Husted S, Minutello F, Pinna A, Tougaard SL, Møs P, Kopittke PM. What is missing to advance foliar fertilization using nanotechnology? TRENDS IN PLANT SCIENCE 2023; 28:90-105. [PMID: 36153275 DOI: 10.1016/j.tplants.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.
Collapse
Affiliation(s)
- Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark.
| | - Francesco Minutello
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Andrea Pinna
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Stine Le Tougaard
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Pauline Møs
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia 4072, Queensland, Australia
| |
Collapse
|
2
|
Prylutska SV, Franskevych DV, Yemets AI. Cellular Biological and Molecular Genetic Effects of Carbon Nanomaterials in Plants. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Orlanducci S, Fulgenzi G, Margonelli A, Rea G, Antal TK, Lambreva MD. Mapping Single Walled Carbon Nanotubes in Photosynthetic Algae by Single-Cell Confocal Raman Microscopy. MATERIALS 2020; 13:ma13225121. [PMID: 33202863 PMCID: PMC7698160 DOI: 10.3390/ma13225121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) are among the most exploited carbon allotropes in the emerging technologies of molecular sensing and bioengineering. However, the advancement of algal nanobiotechnology and nanobionics is hindered by the lack of methods for the straightforward visualization of the CNTs inside the cell. Herein, we present a handy and label-free experimental strategy based on visible Raman microscopy to assess the internalization of single-walled carbon nanotubes (SWCNTs) using the model photosynthetic alga Chlamydomonas reinhardtii as a recipient. The relationship between the properties of SWCNTs and their biological behavior was demonstrated, along with the occurrence of excitation energy transfer from the excited chlorophyll molecules to the SWCNTs. The non-radiative deactivation of the chlorophyll excitation promoted by the SWCNTs enables the recording of Raman signals originating from cellular compounds located near the nanotubes, such as carotenoids, polyphosphates, and starch. Furthermore, the outcome of this study unveils the possibility to exploit SWCNTs as spectroscopic probes in photosynthetic and non-photosynthetic systems where the fluorescence background hinders the acquisition of Raman scattering signals.
Collapse
Affiliation(s)
- Silvia Orlanducci
- Department of Chemical Science and Technology, University of Rome ‘‘Tor Vergata’’, 00133 Rome, Italy
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
- Correspondence: (S.O.); (M.D.L.)
| | - Gianluca Fulgenzi
- Department of Molecular and Clinical Sciences, Faculty of Medicine and Surgery, Marche Polytechnic University, 60126 Ancona, Italy;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Andrea Margonelli
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
| | - Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
| | - Taras K. Antal
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russian;
- Laboratory of Integrated Environmental Research, Pskov State University, 180000 Pskov, Russian
| | - Maya D. Lambreva
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
- Correspondence: (S.O.); (M.D.L.)
| |
Collapse
|
4
|
Sharma S, Muddassir M, Muthusamy S, Vaishnav PK, Singh M, Sharma D, Kanagarajan S, Shanmugam V. A non-classical route of efficient plant uptake verified with fluorescent nanoparticles and root adhesion forces investigated using AFM. Sci Rep 2020; 10:19233. [PMID: 33159139 PMCID: PMC7648022 DOI: 10.1038/s41598-020-75685-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/19/2020] [Indexed: 11/15/2022] Open
Abstract
Classical plant uptake is limited to hydrophilic or water-dispersible material. Therefore, in order to test the uptake behaviour of hydrophobic particles, here, we tested the fate of hydrophobic particles (oleylamine coated Cu2-xSe NPs (CS@OA)) in comparison to hydrophilic particles (chitosan-coated Cu2-xSe NPs (CS@CH)) by treatment on the plant roots. Surprisingly, hydrophobic CS@OA NPs have been found to be ~ 1.3 times more efficient than hydrophilic CS@CH NPs in tomato plant root penetration. An atomic force microscopy (AFM) adhesion force experiment confirms that hydrophobic NPs experience non-spontaneous yet energetically favorable root trapping and penetration. Further, a relative difference in the hydrophobic vs. hydrophilic NPs movement from roots to shoots has been observed and found related to the change in protein corona as identified by two dimensional-polyacrylamide gel electrophoresis (2D-PAGE) analysis. Finally, the toxicity assays at the give concentration showed that Cu2-xSe NPs lead to non-significant toxicity as compared to control. This technology may find an advantage in fertilizer application.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, Punjab, 160062, India
| | - Mohd Muddassir
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Manish Singh
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, Punjab, 160062, India
| | - Deepak Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, Punjab, 160062, India.
| |
Collapse
|
5
|
Zou W, Xia M, Jiang K, Cao Z, Zhang X, Hu X. Photo-Oxidative Degradation Mitigated the Developmental Toxicity of Polyamide Microplastics to Zebrafish Larvae by Modulating Macrophage-Triggered Proinflammatory Responses and Apoptosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13888-13898. [PMID: 33078945 DOI: 10.1021/acs.est.0c05399] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and pose substantial threats to the water ecosystem. However, the impact of natural aging of MPs on their toxicity has rarely been considered. This study found that visible light irradiation with hydrogen peroxide at environmentally relevant concentration for 90 days significantly altered the physicochemical properties and mitigated the toxicity of polyamide (PA) fragments to infantile zebrafish. The size of PA particles was reduced from ∼8.13 to ∼6.37 μm, and nanoparticles were produced with a maximum yield of 5.03%. The end amino groups were volatilized, and abundant oxygen-containing groups (e.g., hydroxyl and carboxyl) and carbon-centered free radicals were generated, improving the hydrophilicity and colloidal stability of degraded MPs. Compared with pristine PA, the depuration of degraded MPs mediated by multixenobiotics resistance was much quicker, leading to markedly lower bioaccumulation in fish and weaker inhibition on musculoskeletal development. By integrating transcriptomics and transgenic zebrafish [Tg(lyz:EGFP)] tests, differences in macrophages-triggered proinflammatory effects, apoptosis via IL-17 signaling pathway, and antioxidant damages were identified as the underlying mechanisms for the attenuated toxicity of degraded MPs. This work highlights the importance of natural degradation on the toxicity of MPs, which has great implications for risk assessment of MPs.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Mengli Xia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Karupannan SK, Dowlath MJH, Arunachalam KD. Phytonanotechnology: Challenges and future perspectives. PHYTONANOTECHNOLOGY 2020:303-322. [DOI: 10.1016/b978-0-12-822348-2.00015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
7
|
Synergistic antibacterial actions of graphene oxide and antibiotics towards bacteria and the toxicological effects of graphene oxide on human epidermal keratinocytes. Eur J Pharm Sci 2020; 142:105087. [DOI: 10.1016/j.ejps.2019.105087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/24/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
|
8
|
Kesse S, Boakye-Yiadom KO, Ochete BO, Opoku-Damoah Y, Akhtar F, Filli MS, Asim Farooq M, Aquib M, Maviah Mily BJ, Murtaza G, Wang B. Mesoporous Silica Nanomaterials: Versatile Nanocarriers for Cancer Theranostics and Drug and Gene Delivery. Pharmaceutics 2019; 11:E77. [PMID: 30781850 PMCID: PMC6410079 DOI: 10.3390/pharmaceutics11020077] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Mesoporous silica nanomaterials (MSNs) have made remarkable achievements and are being thought of by researchers as materials that can be used to effect great change in cancer therapies, gene delivery, and drug delivery because of their optically transparent properties, flexible size, functional surface, low toxicity profile, and very good drug loading competence. Mesoporous silica nanoparticles (MSNPs) show a very high loading capacity for therapeutic agents. It is well known that cancer is one of the most severe known medical conditions, characterized by cells that grow and spread rapidly. Thus, curtailing cancer is one of the greatest current challenges for scientists. Nanotechnology is an evolving field of study, encompassing medicine, engineering, and science, and it has evolved over the years with respect to cancer therapy. This review outlines the applications of mesoporous nanomaterials in the field of cancer theranostics, as well as drug and gene delivery. MSNs employed as therapeutic agents, as well as their importance and future prospects in the ensuing generation of cancer theranostics and drug and therapeutic gene delivery, are discussed herein. Thus, the use of mesoporous silica nanomaterials can be seen as using one stone to kill three birds.
Collapse
Affiliation(s)
- Samuel Kesse
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kofi Oti Boakye-Yiadom
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Belynda Owoya Ochete
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bazezy Joelle Maviah Mily
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS. Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802086. [PMID: 30191658 DOI: 10.1002/smll.201802086] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Indexed: 05/24/2023]
Abstract
The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
Collapse
Affiliation(s)
- Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Thunugunta T, Channa Reddy A, Kodthalu Seetharamaiah S, Ramanna Hunashikatti L, Gowdra Chandrappa S, Cherukatu Kalathil N, Dhoranapalli Chinnappa Reddy LR. Impact of Zinc oxide nanoparticles on eggplant ( S. melongena): studies on growth and the accumulation of nanoparticles. IET Nanobiotechnol 2018; 12:706-713. [PMID: 30104442 PMCID: PMC8676606 DOI: 10.1049/iet-nbt.2017.0237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/11/2018] [Accepted: 01/28/2018] [Indexed: 09/01/2023] Open
Abstract
The increasing use of nanoparticles and their occurrence in the environment has made it imperative to elucidate their impact on the environment. Although several studies have advanced the authors' understanding of nanoparticle-plant interactions, their knowledge of the exposure of plants to nanoparticles and their effects on edible crop plants remain meager and is often paradoxical. The aim of this study was to increase their knowledge on the effect of zinc oxide (ZnO) nanoparticles on eggplant seed germination and seedling growth. ZnO nanoparticles had a negative effect on the growth of eggplant in plant tissue-culture conditions, as the growth of seedlings decreased with the increase in the concentration of ZnO nanoparticles. In contrast, ZnO nanoparticles enhanced eggplant growth under greenhouse conditions. The accumulation of ZnO nanoparticles in various parts of eggplant was observed through scanning electron microscopy of both plant tissue-culture and greenhouse-raised eggplant seedlings. To the best of their knowledge, this is the first study to report on ZnO nanoparticle accumulation in eggplant and its effect on seed germination and seedling growth.
Collapse
Affiliation(s)
| | - Aswath Channa Reddy
- Division of Floriculture and Medicinal crops, Indian Institute of Horticultural Research, Hesserghatta, Bangalore, India
| | | | - Laxman Ramanna Hunashikatti
- Division of Plant Physiology and Biochemistry, Indian Institute of Horticultural Research, Hesserghatta, Bangalore, India
| | - Satisha Gowdra Chandrappa
- Division of Soil Science, Indian Institute of Horticultural Research, Hesserghatta, Bangalore, India
| | - Narayana Cherukatu Kalathil
- Division of Post Harvest Technology, Indian Institute of Horticultural Research, Hesserghatta, Bangalore, India
| | | |
Collapse
|
11
|
Li X, Ke M, Zhang M, Peijnenburg WJGM, Fan X, Xu J, Zhang Z, Lu T, Fu Z, Qian H. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:212-219. [PMID: 28931464 DOI: 10.1016/j.envpol.2017.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/31/2017] [Accepted: 09/11/2017] [Indexed: 05/15/2023]
Abstract
Diclofop-methyl (DM), a common post-emergence herbicide, is frequently used in agricultural production. Silver nanoparticles (AgNPs) are one of the most widely used nanoparticles, and as such, have been detected and monitored in several environmental systems. Here we investigated the interactive effects of DM and AgNPs on the physiological morphology, photosynthesis and antioxidant system of Arabidopsis thaliana. Our results demonstrated that a 1.0 mg/L DM treatment had no significant effect on the fresh weight of plant shoots and the content of total chlorophyll and anthocyanin. However, a 0.5 mg/L AgNPs treatment was found to significantly inhibit plant growth and chlorophyll synthesis, and was found to cause more severe oxidative damage in plants compared to the effects observed in a hydroponic suspension in which DM and AgNPs were jointly present. Meanwhile, the relative transcript levels of photosynthesis related genes (psbA, rbcL, pgrl1A and pgrl1B) in the combined group were found to be slightly increased compared to transcript levels in the AgNPs group, in order to maintain ATP generation at relatively normal levels in order to repair light damage. One explanation for these observed antagonistic effects was that the existence of DM affects the stability of AgNPs and reduced Ag+ release from AgNPs in the mixed solution. Thereupon, the Ag+-content was found to decrease in shoots and roots in the combined group by 15.2% and 9.4% respectively, compared to the AgNPs group. The coexistence of herbicides and nanomaterials in aquatic environments or soil systems will continue to exist due to their wide usages. Our current study highlights that the antagonistic effects between DM and AgNPs exerted a positive impact on A. thaliana growth.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, The Netherlands
| | - Xiaoji Fan
- College of Biotechnological and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jiahui Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhengwei Fu
- College of Biotechnological and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
12
|
Bhati A, Gunture G, Tripathi KM, Singh A, Sarkar S, Sonkar SK. Exploration of nano carbons in relevance to plant systems. NEW J CHEM 2018. [DOI: 10.1039/c8nj03642j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The potential applications of nano-carbons and biochar towards plant growth are highlighted and discussed in this perspective article.
Collapse
Affiliation(s)
- Anshu Bhati
- Department of Chemistry
- Malaviya National Institute of Technology, Jaipur
- Jaipur-302017
- India
| | - Gunture Gunture
- Department of Chemistry
- Malaviya National Institute of Technology, Jaipur
- Jaipur-302017
- India
| | | | - Anupriya Singh
- Department of Chemistry
- Malaviya National Institute of Technology, Jaipur
- Jaipur-302017
- India
| | - Sabyasachi Sarkar
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Sumit Kumar Sonkar
- Department of Chemistry
- Malaviya National Institute of Technology, Jaipur
- Jaipur-302017
- India
| |
Collapse
|
13
|
Vithanage M, Seneviratne M, Ahmad M, Sarkar B, Ok YS. Contrasting effects of engineered carbon nanotubes on plants: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:1421-1439. [PMID: 28444473 DOI: 10.1007/s10653-017-9957-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Rapid surge of interest for carbon nanotube (CNT) in the last decade has made it an imperative member of nanomaterial family. Because of the distinctive physicochemical properties, CNTs are widely used in a number of scientific applications including plant sciences. This review mainly describes the role of CNT in plant sciences. Contradictory effects of CNT on plants physiology are reported. CNT can act as plant growth inducer causing enhanced plant dry biomass and root/shoot lengths. At the same time, CNT can cause negative effects on plants by forming reactive oxygen species in plant tissues, consequently leading to cell death. Enhanced seed germination with CNT is related to the water uptake process. CNT can be positioned as micro-tubes inside the plant body to enhance the water uptake efficiency. Due to its ability to act as a slow-release fertilizer and plant growth promoter, CNT is transpiring as a novel nano-carbon fertilizer in the field of agricultural sciences. On the other hand, accumulation of CNT in soil can cause deleterious effects on soil microbial diversity, composition and population. It can further modify the balance between plant-toxic metals in soil, thereby enhancing the translocation of heavy metal(loids) into the plant system. The research gaps that need careful attention have been identified in this review.
Collapse
Affiliation(s)
- Meththika Vithanage
- Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka.
- International Centre for Applied Climate Science, University of Southern Queensland, West Street, Toowoomba, QLD, Australia.
| | - Mihiri Seneviratne
- Department of Botany, The Open University of Sri Lanka, Nawala, Sri Lanka
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Geological Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Yong Sik Ok
- Korea Biochar Research Center and Department of Biological Environment, Kangwon National University, Chuncheon, 200-701, Korea.
| |
Collapse
|
14
|
Wang P, Lombi E, Zhao FJ, Kopittke PM. Nanotechnology: A New Opportunity in Plant Sciences. TRENDS IN PLANT SCIENCE 2016; 21:699-712. [PMID: 27130471 DOI: 10.1016/j.tplants.2016.04.005] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 05/21/2023]
Abstract
The agronomic application of nanotechnology in plants (phytonanotechnology) has the potential to alter conventional plant production systems, allowing for the controlled release of agrochemicals (e.g., fertilizers, pesticides, and herbicides) and target-specific delivery of biomolecules (e.g., nucleotides, proteins, and activators). An improved understanding of the interactions between nanoparticles (NPs) and plant responses, including their uptake, localization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Herewith, we review potential applications of phytonanotechnology and the key processes involved in the delivery of NPs to plants. To ensure both the safe use and social acceptance of phytonanotechnology, the adverse effects, including the risks associated with the transfer of NPs through the food chain, are discussed.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD 4072, Australia.
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
Burlaka OM, Pirko YV, Yemets AI, Blume YB. Plant genetic transformation using carbon nanotubes for DNA delivery. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271506002x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Feliu N, Pelaz B, Zhang Q, Del Pino P, Nyström A, Parak WJ. Nanoparticle dosage-a nontrivial task of utmost importance for quantitative nanosafety research. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:479-92. [PMID: 26589577 DOI: 10.1002/wnan.1378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
For a detailed and correct understanding of effects of colloidal nanoparticles exposed to organisms, a correlation of such effects to the physicochemical properties of the nanoparticles is a necessity. Such correlation is complex by the fact that many physicochemical parameters such as size, shape, surface charge, and colloidal stability are interlinked, and nontrivial to experimentally determine. This review aims to give an overview regarding such correlations. Particular focus will be given on the role of determining nanoparticle concentrations, which is the basis for most quantitative toxicity evaluations. A comparison of mass versus particle number concentrations is given, and their respective differences are highlighted. WIREs Nanomed Nanobiotechnol 2016, 8:479-492. doi: 10.1002/wnan.1378 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Neus Feliu
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | | | - Andreas Nyström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.,CIC BiomaGUNE, San Sebastian, Spain
| |
Collapse
|
17
|
Lambreva MD, Lavecchia T, Tyystjärvi E, Antal TK, Orlanducci S, Margonelli A, Rea G. Potential of carbon nanotubes in algal biotechnology. PHOTOSYNTHESIS RESEARCH 2015; 125:451-71. [PMID: 26113435 DOI: 10.1007/s11120-015-0168-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/15/2015] [Indexed: 05/21/2023]
Abstract
A critical mass of knowledge is emerging on the interactions between plant cells and engineered nanomaterials, revealing the potential of plant nanobiotechnology to promote and support novel solutions for the development of a competitive bioeconomy. This knowledge can foster the adoption of new methodological strategies to empower the large-scale production of biomass from commercially important microalgae. The present review focuses on the potential of carbon nanotubes (CNTs) to enhance photosynthetic performance of microalgae by (i) widening the spectral region available for the energy conversion reactions and (ii) increasing the tolerance of microalgae towards unfavourable conditions occurring in mass production. To this end, current understanding on the mechanisms of uptake and localization of CNTs in plant cells is discussed. The available ecotoxicological data were used in an attempt to assess the feasibility of CNT-based applications in algal biotechnology, by critically correlating the experimental conditions with the observed adverse effects. Furthermore, main structural and physicochemical properties of single- and multi-walled CNTs and common approaches for the functionalization and characterization of CNTs in biological environment are presented. Here, we explore the potential that nanotechnology can offer to enhance functions of algae, paving the way for a more efficient use of photosynthetic algal systems in the sustainable production of energy, biomass and high-value compounds.
Collapse
Affiliation(s)
- Maya Dimova Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29.300, 00015, Monterotondo Scalo, RM, Italy,
| | | | | | | | | | | | | |
Collapse
|
18
|
Chichiriccò G, Poma A. Penetration and Toxicity of Nanomaterials in Higher Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:851-873. [PMID: 28347040 PMCID: PMC5312920 DOI: 10.3390/nano5020851] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
Nanomaterials (NMs) comprise either inorganic particles consisting of metals, oxides, and salts that exist in nature and may be also produced in the laboratory, or organic particles originating only from the laboratory, having at least one dimension between 1 and 100 nm in size. According to shape, size, surface area, and charge, NMs have different mechanical, chemical, electrical, and optical properties that make them suitable for technological and biomedical applications and thus they are being increasingly produced and modified. Despite their beneficial potential, their use may be hazardous to health owing to the capacity to enter the animal and plant body and interact with cells. Studies on NMs involve technologists, biologists, physicists, chemists, and ecologists, so there are numerous reports that are significantly raising the level of knowledge, especially in the field of nanotechnology; however, many aspects concerning nanobiology remain undiscovered, including the interactions with plant biomolecules. In this review we examine current knowledge on the ways in which NMs penetrate plant organs and interact with cells, with the aim of shedding light on the reactivity of NMs and toxicity to plants. These points are discussed critically to adjust the balance with regard to the risk to the health of the plants as well as providing some suggestions for new studies on this topic.
Collapse
Affiliation(s)
- Giuseppe Chichiriccò
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, I-67010 Coppito, L'Aquila, Italy.
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, I-67010 Coppito, L'Aquila, Italy.
| |
Collapse
|
19
|
Lu H, Utama RH, Kitiyotsawat U, Babiuch K, Jiang Y, Stenzel MH. Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomater Sci 2015. [DOI: 10.1039/c4bm00323c] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The penetration of HPMA-based micelles into multicellular tumor spheroids depends on transcellular transport from peripheral to inner cells. Stabilisation by crosslinking facilitated the penetration.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Robert H. Utama
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | | | - Krzysztof Babiuch
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Yanyan Jiang
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
20
|
Husen A, Siddiqi KS. Carbon and fullerene nanomaterials in plant system. J Nanobiotechnology 2014; 12:16. [PMID: 24766786 PMCID: PMC4014205 DOI: 10.1186/1477-3155-12-16] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/14/2014] [Indexed: 01/27/2023] Open
Abstract
Both the functionalized and non functionalized carbon nanomaterials influence fruit and crop production in edible plants and vegetables. The fullerene, C60 and carbon nanotubes have been shown to increase the water retaining capacity, biomass and fruit yield in plants up to ~118% which is a remarkable achievement of nanotechnology in recent years. The fullerene treated bitter melon seeds also increase the phytomedicine contents such as cucurbitacin-B (74%), lycopene (82%), charantin (20%) and insulin (91%). Since as little as 50 μg mL-1 of carbon nanotubes increase the tomato production by about 200%, they may be exploited to enhance the agriculture production in future. It has been observed that, in certain cases, non functionalized multi-wall carbon nanotubes are toxic to both plants and animals but the toxicity can be drastically reduced if they are functionalized.
Collapse
Affiliation(s)
- Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P,O, Box 196, Gondar, Ethiopia.
| | | |
Collapse
|
21
|
Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7012-9. [PMID: 23244294 DOI: 10.1021/es304016u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Carbon nanotubes (CNT) are more and more likely to be present in the environment, where they will associate with organic micropollutants due to strong sorption. The toxic effects of these CNT-micropollutant mixtures on aquatic organisms are poorly characterized. Here, we systematically quantified the effects of the herbicide diuron on the photosynthetic activity of the green alga Chlorella vulgaris in presence of different multiwalled CNT (industrial, purified, pristine, and oxidized) or soot. The presence of carbonaceous nanoparticles reduced the adverse effect of diuron maximally by <78% (industrial CNT) and <34% (soot) at 10.0 mg CNT/L, 5.0 mg soot/L, and diuron concentrations in the range 0.73-2990 μg/L. However, taking into account the measured dissolved instead of the nominal diuron concentration, the toxic effect of diuron was equal to or stronger in the presence of CNT by a factor of up to 5. Sorbed diuron consequently remained partially bioavailable. The most pronounced increase in toxicity occurred after a 24 h exposure of algae and CNT. All results point to locally elevated exposure concentration (LEEC) in the proximity of algal cells associated with CNT as the cause for the increase in diuron toxicity.
Collapse
Affiliation(s)
- Fabienne Schwab
- EMPA-Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. JOURNAL OF HAZARDOUS MATERIALS 2013; 246-247:110-8. [PMID: 23291336 DOI: 10.1016/j.jhazmat.2012.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 05/26/2023]
Abstract
The inconsistent impact of nanomaterials on different plant species has been reported, but little is known about this effect at the cellular and genetic levels. Here we report that single-walled carbon nanotubes (SWCNTs) accelerate maize seminal root growth, but display little effect on the primary root growth. In contrast, root hair growth inhibition by SWCNTs is observed. Further gene transcription analysis shows that SWCNTs could increase the expression of seminal root associated genes whereas decrease root hair associated gene expression. Their effect is on both tissue and gene selectiveness since both enhanced and inhibited gene expression and tissue growth are observed during root development. Microscopy images reveal the distribution of SWCNTs inside the root and mainly in the intercellular space in cortex tissues. We also find that SWCNT-treatment dynamically and selectively induces the up-regulation of epigenetic modification enzyme genes, leading to global deacetylation of histone H3, similar to the response of plants to other stress. Our results suggest that the nanoparticle-root cell interaction could cause the change in gene expression, and consequently affect relative root growth and development.
Collapse
Affiliation(s)
- Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y. Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 2013. [DOI: 10.1039/c2ra22766e] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
25
|
Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Hsing YIC, Mou CY. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 2013; 1:5279-5287. [DOI: 10.1039/c3tb20529k] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Serag MF, Braeckmans K, Habuchi S, Kaji N, Bianco A, Baba Y. Spatiotemporal visualization of subcellular dynamics of carbon nanotubes. NANO LETTERS 2012; 12:6145-6151. [PMID: 23170917 DOI: 10.1021/nl3029625] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To date, there is no consensus on the relationship between the physicochemical characteristics of carbon nanotubes (CNTs) and their biological behavior; however, there is growing evidence that the versatile characteristics make their biological fate largely unpredictable and remain an issue of limited knowledge. Here we introduce an experimental methodology for tracking and visualization of postuptake behavior and the intracellular fate of CNTs based on the spatial distribution of diffusion values throughout the plant cell. By using raster scan image correlation spectroscopy (RICS), we were able to generate highly quantitative spatial maps of CNTs diffusion in different cell compartments. The spatial map of diffusion values revealed that the uptake of CNTs is associated with important subcellular events such as carrier-mediated vacuolar transport and autophagy. These results show that RICS is a useful methodology to elucidate the intracellular behavior mechanisms of carbon nanotubes and potentially other fluorescently labeled nanoparticles, which is of relevance for the important issues related to the environmental impact and health hazards.
Collapse
Affiliation(s)
- Maged F Serag
- Chemical and Life Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
27
|
Nagai H, Toyokuni S. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci 2012; 103:1378-90. [PMID: 22568550 DOI: 10.1111/j.1349-7006.2012.02326.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022] Open
Abstract
The emergence of nanotechnology represents an important milestone, as it opens the way to a broad spectrum of applications for nanomaterials in the fields of engineering, industry and medicine. One example of nanomaterials that have the potential for widespread use is carbon nanotubes, which have a tubular structure made of graphene sheets. However, there have been concerns that they may pose a potential health risk due to their similarities to asbestos, namely their high biopersistence and needle-like structure. We recently found that despite these similarities, carbon nanotubes and asbestos differ in certain aspects, such as their mechanism of entry into mesothelial cells. In the study, we showed that non-functionalized, multi-walled carbon nanotubes enter mesothelial cells by directly piercing through the cell membrane in a diameter- and rigidity-dependent manner, whereas asbestos mainly enters these cells through the process of endocytosis, which is independent of fiber diameter. In this review, we discuss the key differences, as well as similarities, between asbestos fibers and carbon nanotubes. We also summarize previous reports regarding the mechanism of carbon nanotube entry into non-phagocytic cells. As the entry of fibers into mesothelial cells is a crucial step in mesothelial carcinogenesis, we believe that a comprehensive study on the differences by which carbon nanotubes and asbestos fibers enter into non-phagocytic cells will provide important clues for the safer manufacture of carbon nanotubes through strict regulation on fiber characteristics, such as diameter, surface properties, length and rigidity.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
28
|
Serag MF, Kaji N, Tokeshi M, Baba Y. Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2012. [DOI: 10.1039/c1ra00760b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Serag MF, Kaji N, Tokeshi M, Bianco A, Baba Y. The plant cell uses carbon nanotubes to build tracheary elements. Integr Biol (Camb) 2012; 4:127-31. [DOI: 10.1039/c2ib00135g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|