1
|
Hekmat A, Kostova I, Saboury AA. Application of metallic nanoparticles-amyloid protein supramolecular materials in tissue engineering and drug delivery: Recent progress and perspectives. Colloids Surf B Biointerfaces 2024; 244:114185. [PMID: 39226848 DOI: 10.1016/j.colsurfb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Supramolecular medicine refers to the formulation of therapeutic and diagnostic agents through supramolecular techniques, amid treating, diagnosing, and preventing disease. Recently, there has been growing interest in developing metal nanoparticles (MNPs)-amyloid hybrid materials, which have the potential to revolutionize medical applications. Furthermore, the development of MNPs-amyloid hydrogel/scaffold supramolecules represents a promising new direction in amyloid nanotechnology, with potential applications in tissue engineering and biomedicine. This review first provides a brief introduction to the formation process of protein amyloid aggregates and their unique nanostructures. Subsequently, we focused on recent investigations into the use of MNPs-amyloid hybrid materials in tissue engineering and biomedicine. We anticipate that MNPs-amyloid supramolecular materials will pave the way for new functional materials in medical science, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Irena Kostova
- Faculty of Pharmacy, Medical University Sofia, Bulgaria
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Feng Y, Li R, Zhang H, Ren F, Liu J, Wang J. Formation, structural characteristics and specific peptide identification of gluten amyloid fibrils. Food Chem 2024; 445:138648. [PMID: 38354639 DOI: 10.1016/j.foodchem.2024.138648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
This research investigates the formation of amyloid fibrils using enzymatically hydrolyzed peptides from gluten, including its components glutenin and gliadin. After completing the fibrillation incubation, the gluten group demonstrated the most significant average particle size (908.67 nm) and conversion ratio (57.64 %), with a 19.21 % increase in thioflavin T fluorescence intensity due to self-assembly. The results indicated increased levels of β-sheet structures after fibrillation. The gliadin group exhibited the highest zeta potential (∼13 mV) and surface hydrophobicity (H0 = 809.70). Around 71.15 % of predicted amyloidogenic regions within gliadin peptides showed heightened hydrophobicity. These findings emphasize the collaborative influence of both glutenin and gliadin in the formation of gluten fibrils, influenced by hydrogen bonding, hydrophobic, and electrostatic interactions. They also highlight the crucial role played by gliadin with amyloidogenic fragments such as ILQQIL and SLVLQTL, aiming to provide a theoretical basis for understanding the utilization of gluten proteins.
Collapse
Affiliation(s)
- Yulin Feng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Ren Li
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Jie Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| |
Collapse
|
3
|
Rathod G, Amamcharla J. Milk Whey Protein Fibrils-Effect of Stirring and Heating Time. Foods 2024; 13:466. [PMID: 38338601 PMCID: PMC10855560 DOI: 10.3390/foods13030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Milk whey proteins, which are derived from skim milk through membrane filtration, exhibit valuable functional properties when transformed into a fibrillar form. This conversion enhances their suitability for various applications, including thickening, gelling, emulsification, and foaming. However, reported fibrillation methods have longer heating times, which may not be economical for the dairy industry. To address these challenges, the current study was undertaken with the objective of reducing the time required for fibril formation. In this study, 2% milk whey protein isolate (mWPI) solution at pH 2 was heated with static and stirring heating conditions at 80 °C for 20 h to convert milk whey proteins into fibrils. Fibrils were observed using the thioflavin T value, transmission electron microscopy, Tricine SDS-PAGE, rheology, and protein oxidation. Results suggest that stirring heating conditions with 14 h heating time produced fibrils with good morphology compared to static heating, showing a 6 h reduction compared to an earlier reported 80 °C for 20 h heating time. Also, stirring heating produced a uniform and homogeneous fibril solution compared to the static heating method. Gentle stirring during heating can also help to scale up fibril production in an industrial setup. The fibrillation method with processing intervention will help to produce fibrils with enhanced functionality at the pilot and industrial scales.
Collapse
Affiliation(s)
- Gunvantsinh Rathod
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA;
- Idaho Milk Products, Jerome, ID 83338, USA
| | - Jayendra Amamcharla
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA;
- Midwest Dairy Foods Research Center, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
4
|
Sunda AP, Sharma AK. Molecular Insights into Cu/Zn Metal Response to the Amyloid β-Peptide (1-42). ACS PHYSICAL CHEMISTRY AU 2024; 4:57-66. [PMID: 38283784 PMCID: PMC10811771 DOI: 10.1021/acsphyschemau.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 01/30/2024]
Abstract
Aβ1-40 peptide and Aβ1-42 peptide are the building units of beta-amyloid plaques present in Alzheimer's disease (AD)-affected brain. The binding affinity of various divalent metal ions such as Cu and Zn present in AD-affected brain with different amino acids available in Aβ-peptide became the focus to explore their role in soluble neurotoxic oligomer formation. Cu2+ metal ions are known to enhance the neurotoxicity of the Aβ1-42 peptide by catalyzing the formation of soluble neurotoxic oligomers. The competitive preference of both Cu2+ and Zn2+ simultaneously to interact with the Aβ-peptide is unknown. The divalent Cu and Zn ions were inserted in explicit aqueous Aβ1-42 peptide configurations to get insights into the binding competence of these metal ions with peptides using classical molecular dynamics (MD) simulations. The metal-ion interactions reveal that competitive binding preferences of various peptide sites become metal-ion-specific and differ significantly. For Cu2+, interactions are found to be more significant with respect to those of Asp-7, His-6, Glu-11, and His-14. Asp-1, Glu-3, Asp-7, His-6, Glu-11, and His-13 amino acid residues show higher affinity toward Zn2+ ions. MD simulations show notable variation in the solvent-accessible surface area in the hydrophobic region of the peptide. Infinitesimal mobility was obtained for Zn2+ compared to Cu2+ in an aqueous solution and Cu2+ diffusivity deviated significantly at different time scales, proving its labile features in aqueous Aβ1-42 peptides.
Collapse
Affiliation(s)
- Anurag Prakash Sunda
- Department
of Chemistry, J. C. Bose University of Science
and Technology, YMCA, Faridabad 121006, India
| | - Anuj Kumar Sharma
- Department
of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
5
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
6
|
Zhang H, Lv S, Jin C, Ren F, Wang J. Wheat gluten amyloid fibrils: Conditions, mechanism, characterization, application, and future perspectives. Int J Biol Macromol 2023; 253:126435. [PMID: 37611682 DOI: 10.1016/j.ijbiomac.2023.126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Amyloid fibrils have excellent structural characteristics, such as a high aspect ratio, excellent stiffness, and a wide availability of functional groups on the surface. More studies are now focusing on the formation of amyloid fibrils using food proteins. Protein fibrillation is now becoming recognized as a promising strategy for enhancing the function of food proteins and expanding their range of applications. Wheat gluten is rich in glutamine (Q), hydrophobic amino acids, and the α-helix structure with high β-sheet tendency. These characteristics make it very easy for wheat gluten to form amyloid fibrils. The conditions, formation mechanism, characterization methods, and application of amyloid fibrils formed by wheat gluten are summarized in this review. Further exploration of amyloid fibrils formed by wheat gluten will reveal how they can play a significant role in food, biology, and other fields, especially in medicine.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Shihao Lv
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chengming Jin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
7
|
Pitocchi R, Stanzione I, Illiano A, Amoresano A, Tarallo O, Cicatiello P, Piscitelli A, Giardina P. Evidence of Small Fungal Cysteine-Rich Proteins Acting as Biosurfactants and Self-Assembling into Large Fibers. Int J Mol Sci 2023; 24:13843. [PMID: 37762146 PMCID: PMC10531366 DOI: 10.3390/ijms241813843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Fungi produce surface-active proteins, among which hydrophobins are the most characterized and attractive also for their ability to form functional amyloids. Our most recent findings show that these abilities are shared with other classes of fungal proteins. Indeed, in this paper, we compared the characteristics of a class I hydrophobin (Vmh2 from Pleurotus ostreatus) and an unknown protein (named PAC3), extracted from the marine fungal strain Acremonium sclerotigenum, which does not belong to the same protein family based on its sequence features. They both proved to be good biosurfactants, stabilizing emulsions in several conditions (concentration, pH, and salinity) and decreasing surface tension to a comparable value to that of some synthetic surfactants. After that, we observed for both Vmh2 and PAC3 the formation of giant fibers without the need for harsh conditions or long incubation time, a remarkable ability herein reported for the first time.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (R.P.); (I.S.); (A.I.); (A.A.); (O.T.); (A.P.); (P.G.)
| | | | | |
Collapse
|
8
|
Zhang H, Lv S, Ren F, Liu J, Wang J. Degree of Hydrolysis Regulated by Enzyme Mediation of Wheat Gluten Fibrillation: Structural Characterization and Analysis of the Mechanism of Action. Int J Mol Sci 2023; 24:13529. [PMID: 37686349 PMCID: PMC10488075 DOI: 10.3390/ijms241713529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The impact of different degrees of hydrolysis (DHs) on fibrillation when trypsin mediates wheat gluten (WG) fibrillation has not been thoroughly investigated. This study discussed the differences in amyloid fibrils (AFs) formed from wheat gluten peptides (WGPs) at various DH values. The results from Thioflavin T (ThT) fluorescence analysis indicated that WGPs with DH6 were able to form the most AFs. Changes in Fourier Transform Infrared (FTIR) absorption spectra and secondary structure also suggested a higher degree of fibrillation in DH6 WGPs. Analysis of surface hydrophobicity and ζ-potential showed that DH6 AFs had the highest surface hydrophobicity and the most stable water solutions. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images revealed the best overall morphology of DH6 AFs. These findings can offer valuable insights into the development of a standardized method for preparing wheat gluten amyloid fibrils.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Shihao Lv
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| |
Collapse
|
9
|
van Dalen M, Karperien M, Claessens MM, Post JN. Choice of Protein, Not Its Amyloid-Fold, Determines the Success of Amyloid-Based Scaffolds for Cartilage Tissue Regeneration. ACS OMEGA 2023; 8:24198-24209. [PMID: 37457450 PMCID: PMC10339334 DOI: 10.1021/acsomega.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023]
Abstract
The formation of fibrocartilage during articular cartilage regeneration remains a clinical problem affecting adequate restoration of articular cartilage in joints. To stimulate chondrocytes to form articular cartilage, we investigated the use of amyloid fibril-based scaffolds. The proteins α-synuclein, β-lactoglobulin, and lysozyme were induced to self-assemble into amyloid fibrils and, during dialysis, formed micrometer scale amyloid networks that resemble the cartilage extracellular matrix. Our results show that lysozyme amyloid micronetworks supported chondrocyte viability and extracellular matrix deposition, while α-synuclein and β-lactoglobulin maintained cell viability. With this study, we not only confirm the possible use of amyloid materials for tissue regeneration but also demonstrate that the choice of protein, rather than its amyloid-fold per se, affects the cellular response and tissue formation.
Collapse
Affiliation(s)
- Maurice
C.E. van Dalen
- Developmental
BioEngineering, TechMed Centre, University
of Twente, Enschede, Overijssel 7500 AE, The Netherlands
- Nanobiophysics,
Mesa+, University of Twente, Enschede 7500AE, The Netherlands
| | - Marcel Karperien
- Developmental
BioEngineering, TechMed Centre, University
of Twente, Enschede, Overijssel 7500 AE, The Netherlands
| | | | - Janine N. Post
- Developmental
BioEngineering, TechMed Centre, University
of Twente, Enschede, Overijssel 7500 AE, The Netherlands
| |
Collapse
|
10
|
Chen D, Jones OG, Campanella OH. Plant protein-based fibers: Fabrication, characterization, and potential food applications. Crit Rev Food Sci Nutr 2021:1-25. [PMID: 34904477 DOI: 10.1080/10408398.2021.2004991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proteins from plants have been considered as safer, healthier, and more sustainable resources than their animal counterparts. However, incomplete amino acid composition and relatively poor functionality limit their applications in foods. Structuring plant proteins to fibrous architectures enhances their physicochemical properties, which can favor various food applications. This review primarily focuses on fabrication of fibers from plant proteins via self-assembly, electrospinning, solution blow spinning, wet spinning, and high-temperature shear, as well as on several applications where such fibrous proteins assemble in quality foods. The changes of protein structure and protein-protein interactions during fiber production are discussed in detail, along with the effects of fabrication conditions and protein sources on the morphology and function of the fibers. Self-assembly requires proteolysis and subsequent peptide aggregation under specific conditions, which can be influenced by pH, salt and protein type. The spinning strategy is more scalable and produces uniformed fibers with larger length scales suitable for encapsulation, food packaging and sensor substrates. Significant progress has been made on high-temperature shear (including extrusion)-induced fibers responsible for desirable texture in meat analogues. Structuring plant proteins adds values for broadened food applications, but it remains challenging to keep processes cost-effective and environmentally friendly using food grade solvents.
Collapse
Affiliation(s)
- Da Chen
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Owen Griffith Jones
- Whistler Centre for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA.,Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Osvaldo H Campanella
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA.,Whistler Centre for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Liu R, Zhang R, Li L, Kochovski Z, Yao L, Nieh MP, Lu Y, Shi T, Chen G. A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides. J Am Chem Soc 2021; 143:6622-6633. [PMID: 33900761 DOI: 10.1021/jacs.1c01951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nature provides us a panorama of fibrils with tremendous structural polymorphism from molecular building blocks to hierarchical association behaviors. Despite recent achievements in creating artificial systems with individual building blocks through self-assembly, molecularly encoding the relationship from model building blocks to fibril association, resulting in controlled macroscopic properties, has remained an elusive goal. In this paper, by employing a designed set of glycopeptide building blocks and combining experimental and computational tools, we report a library of controlled fibril polymorphism with elucidation from molecular packing to fibril association and the related macroscopic properties. The growth of the fibril either axially or radially with right- or left-handed twisting is determined by the subtle trade-off of oligosaccharide and oligopeptide components. Meanwhile, visible evidence for the association process of double-strand fibrils has been experimentally and theoretically proposed. Finally the fibril polymorphs demonstrated significant different macroscopic properties on hydrogel formation and cellular migration control.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Lintong Yao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany.,Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
12
|
Khalifa I, Sobhy R, Nawaz A, Xiaoou W, Li Z, Zou X. Cyanidin 3-rutinoside defibrillated bovine serum albumin under the glycation-promoting conditions: A study with multispectral, microstructural, and computational analysis. Int J Biol Macromol 2020; 162:1195-1203. [DOI: 10.1016/j.ijbiomac.2020.06.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
|
13
|
De Leon Rodriguez LM, Hemar Y. Prospecting the applications and discovery of peptide hydrogels in food. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Phytosterols disaggregate bovine serum albumin under the glycation conditions through interacting with its glycation sites and altering its secondary structure elements. Bioorg Chem 2020; 101:104047. [DOI: 10.1016/j.bioorg.2020.104047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022]
|
15
|
Cao Y, Mezzenga R. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Adv Colloid Interface Sci 2019; 269:334-356. [PMID: 31128463 DOI: 10.1016/j.cis.2019.05.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/27/2023]
Abstract
Amyloid fibrils have traditionally been considered only as pathological aggregates in human neurodegenerative diseases, but it is increasingly becoming clear that the propensity to form amyloid fibrils is a generic property for all proteins, including food proteins. Differently from the pathological amyloid fibrils, those derived from food proteins can be used as advanced materials in biomedicine, tissue engineering, environmental science, nanotechnology, material science as well as in food science, owing to a combination of highly desirable feature such as extreme aspect ratios, outstanding stiffness and a broad availability of functional groups on their surfaces. In food science, protein fibrillization is progressively recognized as an appealing strategy to broaden and improve food protein functionality. This review article discusses the various classes of reported food protein amyloid fibrils and their formation conditions. It furthermore considers amyloid fibrils in a broad context, from their structural characterization to their forming mechanisms and ensued physical properties, emphasizing their applications in food-related fields. Finally, the biological fate and the potential toxicity mechanisms of food amyloid fibrils are discussed, and an experimental protocol for their health safety validation is proposed in the concluding part of the review.
Collapse
Affiliation(s)
- Yiping Cao
- Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| |
Collapse
|
16
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
17
|
La Manna S, Roviello V, Scognamiglio PL, Diaferia C, Giannini C, Sibillano T, Morelli G, Novellino E, Marasco D. Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. Int J Biol Macromol 2019; 122:517-525. [DOI: 10.1016/j.ijbiomac.2018.10.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
18
|
Jansens KJA, Rombouts I, Grootaert C, Brijs K, Van Camp J, Van der Meeren P, Rousseau F, Schymkowitz J, Delcour JA. Rational Design of Amyloid-Like Fibrillary Structures for Tailoring Food Protein Techno-Functionality and Their Potential Health Implications. Compr Rev Food Sci Food Saf 2018; 18:84-105. [PMID: 33337021 DOI: 10.1111/1541-4337.12404] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
To control and enhance protein functionality is a major challenge for food scientists. In this context, research on food protein fibril formation, especially amyloid fibril formation, holds much promise. We here first provide a concise overview of conditions, which affect amyloid formation in food proteins. Particular attention is directed towards amyloid core regions because these sequences promote ordered aggregation. Better understanding of this process will be key to tailor the fibril formation process. Especially seeding, that is, adding preformed protein fibrils to protein solutions to accelerate fibril formation holds promise to tailor aggregation and fibril techno-functionality. Some studies have already indicated that food protein fibrillation indeed improves their techno-functionality. However, much more research is necessary to establish whether protein fibrils are useful in complex food systems and whether and to what extent they resist food processing unit operations. In this review the effect of amyloid formation on gelation, interfacial properties, foaming, and emulsification is discussed. Despite their prevalent role as functional structures, amyloids also receive a lot of attention due to their association with protein deposition diseases, prompting us to thoroughly investigate the potential health impact of amyloid-like aggregates in food. A literature review on the effect of the different stages of the human digestive process on amyloid toxicity leads us to conclude that food-derived amyloid fibrils (even those with potential pathogenic properties) very likely have minimal impact on human health. Nevertheless, prior to wide-spread application of the technology, it is highly advisable to further verify the lack of toxicity of food-derived amyloid fibrils.
Collapse
Affiliation(s)
- Koen J A Jansens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Ghent Univ., Coupure Links 653, B-9000, Ghent, Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Ghent Univ., Coupure Links 653, B-9000, Ghent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Ghent Univ., Coupure Links 653, B- 9000, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, B-3000 Leuven, Belgium. Authors Rousseau and Schymkowitz are also with Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, B-3000 Leuven, Belgium. Authors Rousseau and Schymkowitz are also with Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
19
|
Humenik M, Lang G, Scheibel T. Silk nanofibril self-assembly versus electrospinning. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1509. [PMID: 29393590 DOI: 10.1002/wnan.1509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Natural silk fibers represent one of the most advanced blueprints for (bio)polymer scientists, displaying highly optimized mechanical properties due to their hierarchical structures. Biotechnological production of silk proteins and implementation of advanced processing methods enabled harnessing the potential of these biopolymer not just based on the mechanical properties. In addition to fibers, diverse morphologies can be produced, such as nonwoven meshes, films, hydrogels, foams, capsules and particles. Among them, nanoscale fibrils and fibers are particularly interesting concerning medical and technical applications due to their biocompatibility, environmental and mechanical robustness as well as high surface-to-volume ratio. Therefore, we introduce here self-assembly of silk proteins into hierarchically organized structures such as supramolecular nanofibrils and fabricated materials based thereon. As an alternative to self-assembly, we also present electrospinning a technique to produce nanofibers and nanofibrous mats. Accordingly, we introduce a broad range of silk-based dopes, used in self-assembly and electrospinning: natural silk proteins originating from natural spinning glands, natural silk protein solutions reconstituted from fibers, engineered recombinant silk proteins designed from natural blueprints, genetic fusions of recombinant silk proteins with other structural or functional peptides and moieties, as well as hybrids of recombinant silk proteins chemically conjugated with nonproteinaceous biotic or abiotic molecules. We highlight the advantages but also point out drawbacks of each particular production route. The scope includes studies of the natural self-assembly mechanism during natural silk spinning, production of silk fibrils as new nanostructured non-native scaffolds allowing dynamic morphological switches, as well as studying potential applications. This article is categorized under: Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Martin Humenik
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Gregor Lang
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Research Center Bio-Macromolecules (BIOmac), Bayreuth Center for Molecular Biosciences (BZMB), Bayreuth Center for Material Science (BayMAT), Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
20
|
Ohashi T, Sato T, Nakajima T, Junkong P, Ikeda Y. Necessity of two-dimensional visualization of validity in the nanomechanical mapping of atomic force microscopy for sulphur cross-linked rubber. RSC Adv 2018; 8:32930-32941. [PMID: 35547720 PMCID: PMC9086381 DOI: 10.1039/c8ra06669h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022] Open
Abstract
The importance of the two-dimensional (2D) visualization of validity for nanomechanical mapping in atomic force microscopy (AFM) for sulphur cross-linked rubber is emphasized for accurately interpreting the nanoscale physical properties on the surface of the soft material. The “R-factor,” evaluated to be the difference between the experimental and theoretical force–deformation curves, was considered to be the reliability index of the AFM analysis for all data points on the sample surface. A small R-factor corresponds to high accuracy. The advantage of the R-factor mapping method is demonstrated using nanomechanical mapping data of the inhomogeneous isoprene rubber network by the Johnson–Kendall–Roberts and the Derjaguin, Muller, and Toporov contact mechanics models. The 2D R-factor mapping clearly and correctly supported the roles of sulphur cross-linking reagents to control the network morphology of vulcanizates. Additionally, the blanket effect, which is induced by the rubber layer on the hard part and influences experimental force–deformation curves, is firstly proposed in this study. Nanomechanical mapping with 2D reliability indexes is expected to contribute to an advance in AFM studies on soft matter such as rubber materials, leading to a more accurate understanding of the structural characteristics of the rubber networks. Thus, this validity confirmation method is necessary for developing rubber science and technology. The two-dimensional visualization of validity for nanomechanical mapping in atomic force microscopy for sulphur cross-linked rubber is emphasized for accurately interpreting the nanoscale physical properties on the surface of the soft material.![]()
Collapse
Affiliation(s)
- Takumi Ohashi
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
- Center for Rubber Science and Technology
| | - Tomoyuki Sato
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Taichi Nakajima
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Preeyanuch Junkong
- Center for Rubber Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
- Research Strategy Promotion Center
| | - Yuko Ikeda
- Center for Rubber Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
- Faculty of Molecular Chemistry and Engineering
| |
Collapse
|
21
|
Affiliation(s)
- Barbara L. DeButts
- Macromolecular Science and Engineering and Macromolecules Innovation InstituteVirginia TechBlacksburg Virginia 24061
- Biological Systems EngineeringVirginia Tech, 301 Human and Agricultural Biosciences Building 1, 1230 Washington St. SWBlacksburg Virginia 24061
| | - Laura E. Hanzly
- Biological Systems EngineeringVirginia Tech, 301 Human and Agricultural Biosciences Building 1, 1230 Washington St. SWBlacksburg Virginia 24061
| | - Justin R. Barone
- Macromolecular Science and Engineering and Macromolecules Innovation InstituteVirginia TechBlacksburg Virginia 24061
- Biological Systems EngineeringVirginia Tech, 301 Human and Agricultural Biosciences Building 1, 1230 Washington St. SWBlacksburg Virginia 24061
- Center for Soft Matter and Biological PhysicsVirginia TechBlacksburg Virginia 24061
| |
Collapse
|
22
|
Intrinsic property of phenylalanine to trigger protein aggregation and hemolysis has a direct relevance to phenylketonuria. Sci Rep 2017; 7:11146. [PMID: 28894147 PMCID: PMC5593866 DOI: 10.1038/s41598-017-10911-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/15/2017] [Indexed: 01/31/2023] Open
Abstract
Excess accumulation of phenylalanine is the characteristic of untreated Phenylketonuria (PKU), a well-known genetic abnormality, which triggers several neurological, physical and developmental severities. However, the fundamental mechanism behind the origin of such diverse health problems, particularly the issue of how they are related to the build-up of phenylalanine molecules in the body, is largely unknown. Here, we show cross-seeding ability of phenylalanine fibrils that can effectively initiate an aggregation process in proteins under physiological conditions, converting native protein structures to β-sheet assembly. The resultant fibrils were found to cause severe hemolysis, yielding a plethora of deformed erythrocytes that is highly relevant to phenylketonuria. Unique arrangement of zwitterionic phenylalanine molecules in their amyloid-like higher order entities is predicted to promote both hydrophobic and electrostatic interaction, sufficient enough to trap proteins and to preferentially interact with the membrane components of RBCs. Since the prevalence of hemolysis and amyloid related psychoneurological severities are mostly observed in PKU patients, we propose that the inherent property of phenylalanine fibrils to trigger hemolysis and to induce protein aggregation may have direct relevance to the disease mechanism of PKU.
Collapse
|
23
|
Lamour G, Nassar R, Chan PHW, Bozkurt G, Li J, Bui JM, Yip CK, Mayor T, Li H, Wu H, Gsponer JA. Mapping the Broad Structural and Mechanical Properties of Amyloid Fibrils. Biophys J 2017; 112:584-594. [PMID: 28256219 DOI: 10.1016/j.bpj.2016.12.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022] Open
Abstract
Amyloids are fibrillar nanostructures of proteins that are assembled in several physiological processes in human cells (e.g., hormone storage) but also during the course of infectious (prion) and noninfectious (nonprion) diseases such as Creutzfeldt-Jakob and Alzheimer's diseases, respectively. How the amyloid state, a state accessible to all proteins and peptides, can be exploited for functional purposes but also have detrimental effects remains to be determined. Here, we measure the nanomechanical properties of different amyloids and link them to features found in their structure models. Specifically, we use shape fluctuation analysis and sonication-induced scission in combination with full-atom molecular dynamics simulations to reveal that the amyloid fibrils of the mammalian prion protein PrP are mechanically unstable, most likely due to a very low hydrogen bond density in the fibril structure. Interestingly, amyloid fibrils formed by HET-s, a fungal protein that can confer functional prion behavior, have a much higher Young's modulus and tensile strength than those of PrP, i.e., they are much stiffer and stronger due to a tighter packing in the fibril structure. By contrast, amyloids of the proteins RIP1/RIP3 that have been shown to be of functional use in human cells are significantly stiffer than PrP fibrils but have comparable tensile strength. Our study demonstrates that amyloids are biomaterials with a broad range of nanomechanical properties, and we provide further support for the strong link between nanomechanics and β-sheet characteristics in the amyloid core.
Collapse
Affiliation(s)
- Guillaume Lamour
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roy Nassar
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick H W Chan
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gunes Bozkurt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Jixi Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jennifer M Bui
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thibault Mayor
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Jörg A Gsponer
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Cicatiello P, Dardano P, Pirozzi M, Gravagnuolo AM, De Stefano L, Giardina P. Self-assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnol Bioeng 2017; 114:2173-2186. [PMID: 28543036 DOI: 10.1002/bit.26344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 01/09/2023]
Abstract
Hydrophobins are amphiphilic fungal proteins endowed with peculiar characteristics, such as a high surface activity and an interface triggered self-assembly. Several applications of these proteins have been proposed in the food, cosmetics and biomedical fields. Moreover, their use as proteinaceous coatings can be effective for materials and nanomaterials applications. The discovery of novel hydrophobins with diverse properties may be advantageous from both the scientific and industrial points of view. Stressful environmental conditions of fungal growth may induce the production of proteins with peculiar features. Two Class I hydrophobins from fungi isolated from marine environment have been recently purified. Herein, their propensity to aggregate forming nanometric fibrillar structures has been compared, using different techniques, such as circular dichroism, dynamic light scattering and Thioflavin T fluorescence assay. Furthermore, TEM and AFM images indicate that the interaction of these proteins with specific surfaces, are crucial in the formation of amyloid fibrils and in the assembly morphologies. These self-assembling proteins show promising properties as bio-coating for different materials via a green process. Biotechnol. Bioeng. 2017;114: 2173-2186. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, Naples, I-80126, Italy
| | - Principia Dardano
- Institute for Microelectronics and Microsystems, Unit of Naples-National Research Council, Naples, Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry, Unit of Naples-National Research Council, Naples, Italy
| | - Alfredo M Gravagnuolo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, Naples, I-80126, Italy.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems, Unit of Naples-National Research Council, Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, Naples, I-80126, Italy
| |
Collapse
|
25
|
Venanzi M, Gatto E, Formaggio F, Toniolo C. The importance of being Aib. Aggregation and self-assembly studies on conformationally constrained oligopeptides. J Pept Sci 2017; 23:104-116. [DOI: 10.1002/psc.2956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Mariano Venanzi
- Department of Chemical Sciences and Technologies and Centre for Nanoscience, Nanotechnology and Advanced Instrumentation; University of Rome ‘Tor Vergata’; 00133 Rome Italy
| | - Emanuela Gatto
- Department of Chemical Sciences and Technologies and Centre for Nanoscience, Nanotechnology and Advanced Instrumentation; University of Rome ‘Tor Vergata’; 00133 Rome Italy
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; 35131 Padova Italy
| |
Collapse
|
26
|
Zhao R, So M, Maat H, Ray NJ, Arisaka F, Goto Y, Carver JA, Hall D. Measurement of amyloid formation by turbidity assay-seeing through the cloud. Biophys Rev 2016; 8:445-471. [PMID: 28003859 PMCID: PMC5135725 DOI: 10.1007/s12551-016-0233-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
Detection of amyloid growth is commonly carried out by measurement of solution turbidity, a low-cost assay procedure based on the intrinsic light scattering properties of the protein aggregate. Here, we review the biophysical chemistry associated with the turbidimetric assay methodology, exploring the reviewed literature using a series of pedagogical kinetic simulations. In turn, these simulations are used to interrogate the literature concerned with in vitro drug screening and the assessment of amyloid aggregation mechanisms.
Collapse
Affiliation(s)
- Ran Zhao
- Research School of Chemistry, Australian National University, Acton ACT, 2601, Australia
| | - Masatomo So
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hendrik Maat
- Research School of Chemistry, Australian National University, Acton ACT, 2601, Australia
| | - Nicholas J Ray
- Research School of Chemistry, Australian National University, Acton ACT, 2601, Australia
| | - Fumio Arisaka
- College of Bio-resource Sciences, Nihon University, Chiyoda-ku, Tokyo, 102-8275, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - John A Carver
- Research School of Chemistry, Australian National University, Acton ACT, 2601, Australia
| | - Damien Hall
- Research School of Chemistry, Australian National University, Acton ACT, 2601, Australia. .,Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
An B, Wu X, Li M, Chen Y, Li F, Yan X, Wang J, Li C, Brennan C. Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13248] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baozhen An
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
- Bioengineering Department; College of Chemical Engineering; Qingdao University of Science & Technology; Zhengzhou Road 53 Qingdao 266042 China
| | - Xiaochen Wu
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Mingjie Li
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Yijun Chen
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
- College of Textiles and Fashion; Qingdao University; Ningxia Road 308 Qingdao 266071 China
| | - Fei Li
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Xiaofei Yan
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Jialin Wang
- Bioengineering Department; College of Chemical Engineering; Qingdao University of Science & Technology; Zhengzhou Road 53 Qingdao 266042 China
| | - Chaoxu Li
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Charles Brennan
- Department of Wine, Food and Molecular Biosciences; Lincoln University; Lincoln 7647 New Zealand
| |
Collapse
|
28
|
Affiliation(s)
- Gregory M. Grason
- Department of Polymer Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
29
|
Hall DM, Bruss IR, Barone JR, Grason GM. Morphology selection via geometric frustration in chiral filament bundles. NATURE MATERIALS 2016; 15:727-732. [PMID: 26998916 DOI: 10.1038/nmat4598] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
In assemblies, the geometric frustration of a locally preferred packing motif leads to anomalous behaviours, from self-limiting growth to defects in the ground state. Here, we demonstrate that geometric frustration selects the equilibrium morphology of cohesive bundles of chiral filaments, an assembly motif critical to a broad range of biological and synthetic nanomaterials. Frustration of inter-filament spacing leads to optimal shapes of self-twisting bundles that break the symmetries of packing and of the underlying inter-filament forces, paralleling a morphological instability in spherical two-dimensional crystals. Equilibrium bundle morphology is controlled by a parameter that characterizes the relative costs of filament bending and the straining of cohesive bonds between filaments. This parameter delineates the boundaries between stable, isotropic cylindrical bundles and anisotropic, twisted-tape bundles. We also show how the mechanical and interaction properties of constituent amyloid fibrils may be extracted from the mesoscale dimensions of the anisotropic bundles that they form.
Collapse
Affiliation(s)
- Douglas M Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Isaac R Bruss
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Justin R Barone
- Department of Biological Systems Engineering and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
30
|
Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat Commun 2015. [PMID: 26215704 PMCID: PMC4525161 DOI: 10.1038/ncomms8831] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Amyloids are insoluble protein fibrillar aggregates. The importance of characterizing their aggregation has steadily increased because of their link to human diseases and material science applications. In particular, misfolding and aggregation of the Josephin domain of ataxin-3 is implicated in spinocerebellar ataxia-3. Infrared nanospectroscopy, simultaneously exploiting atomic force microscopy and infrared spectroscopy, can characterize at the nanoscale the conformational rearrangements of proteins during their aggregation. Here we demonstrate that we can individually characterize the oligomeric and fibrillar species formed along the amyloid aggregation. We describe their secondary structure, monitoring at the nanoscale an α-to-β transition, and couple these studies with an independent measurement of the evolution of their intrinsic stiffness. These results suggest that the aggregation of Josephin proceeds from the monomer state to the formation of spheroidal intermediates with a native structure. Only successively, these intermediates evolve into misfolded aggregates and into the final fibrils. The onset of neurodegenerative disorders is associated at the molecular level with insoluble protein aggregates, named amyloids. Here, the authors characterize by infrared nanospectroscopy and nanomechanical studies, the amyloid aggregation at the individual species scale.
Collapse
|
31
|
|
32
|
Anantharaj S, Jayakannan M. Amyloid-Like Hierarchical Helical Fibrils and Conformational Reversibility in Functional Polyesters Based on l-Amino Acids. Biomacromolecules 2015; 16:1009-20. [DOI: 10.1021/bm501903t] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Santhanaraj Anantharaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune − 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune − 411008, Maharashtra, India
| |
Collapse
|
33
|
Humenik M, Scheibel T. Self-assembly of nucleic acids, silk and hybrid materials thereof. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:503102. [PMID: 25419786 DOI: 10.1088/0953-8984/26/50/503102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here,we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.
Collapse
|
34
|
Humenik M, Drechsler M, Scheibel T. Controlled hierarchical assembly of spider silk-DNA chimeras into ribbons and raft-like morphologies. NANO LETTERS 2014; 14:3999-4004. [PMID: 24924514 DOI: 10.1021/nl501412k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Spider silk-DNA conjugates comprising the recombinant spider silk protein eADF4(C16) and short oligonucleotides were arranged in a linear antiparallel and parallel as well as in a branched manner via designed complementarity of the DNA moieties. After cross-β fibril self-assembly, temperature-induced annealing of the DNA moieties triggered fibril association into ribbons, composed of aligned nanofibrils, and rafts composed of ribbons ordered into sharply bordered, squared fibrous microstructures. The formation of the superstructures was clearly dependent on the individual silk-DNA conjugate. A combination of 5'-conjugated silk moieties via complementary nucleic acids enhanced fibril association, whereas mixing complementary 5'- and 3'-silk conjugates inhibited the formation of higher-order structures.
Collapse
Affiliation(s)
- Martin Humenik
- Biomaterials, Faculty of Engineering Science, ‡Bayreuth Institute of Macromolecular Research (BIMF) - Soft Matter Electron Microscopy, and §Bayreuth Center for Colloids and Interfaces (BZKG), Research Center Bio-Macromolecules (BIOmac), Bayreuth Center for Molecular Biosciences (BZMB), and Bayreuth Center for Material Science (BayMAT), University of Bayreuth , D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
35
|
Lamour G, Yip CK, Li H, Gsponer J. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young's moduli. ACS NANO 2014; 8:3851-61. [PMID: 24588725 DOI: 10.1021/nn5007013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-templated protein aggregation and intracerebral deposition of aggregates, sometimes in the form of amyloid fibrils, is a hallmark of mammalian prion diseases. What distinguishes amyloid fibrils formed by prions from those formed by other proteins is not clear. On the basis of previous studies on yeast prions that correlated high intrinsic fragmentation rates of fibrils with prion propagation efficiency, it has been hypothesized that the nanomechanical properties of prion amyloid such as strength and elastic modulus may be the distinguishing feature. Here, we reveal that fibrils formed by mammalian prions are relatively soft and clearly in a different class of rigidities when compared to nanofibrils formed by nonprions. We found that amyloid fibrils made of both wild-type and mutant mouse recombinant PrP(23-231) have remarkably low axial elastic moduli of 0.1-1.4 GPa. We demonstrate that even the proteinase K resistant core of these fibrils has similarly low intrinsic rigidities. Using a new mode of atomic force microscopy called AM-FM mode, we estimated the radial modulus of PrP fibrils at ∼0.6 GPa, consistent with the axial moduli derived by using an ensemble method. Our results have far-reaching implications for the understanding of protein-based infectivity and the design of amyloid biomaterials.
Collapse
Affiliation(s)
- Guillaume Lamour
- Centre for High-Throughput Biology, University of British Colombia , Vancouver, BC, Canada V6T 1Z4
| | | | | | | |
Collapse
|
36
|
Caruso M, Gatto E, Placidi E, Ballano G, Formaggio F, Toniolo C, Zanuy D, Alemán C, Venanzi M. A single-residue substitution inhibits fibrillization of Ala-based pentapeptides. A spectroscopic and molecular dynamics investigation. SOFT MATTER 2014; 10:2508-2519. [PMID: 24647758 DOI: 10.1039/c3sm52831f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aggregation properties of two Ala-based pentapeptides were investigated by spectroscopic techniques and molecular dynamics (MD) simulations. The two peptides, both functionalized at the N-terminus with a pyrenyl group, differ in the insertion of an α-aminoisobutyric acid residue at position 4. We showed that this single modification of the homo-peptide sequence inhibits the aggregation of the pentapeptide in aqueous solutions. Atomic force microscopy imaging revealed that the two peptides form mesoscopic aggregates of very different morphologies when deposited on mica. MD experiments showed that the two peptides have a very different propensity to form β-pleated sheet structures, as confirmed by our spectroscopic measurements. The implications of these findings for our understanding of the mechanism leading to the formation of amyloid structures, primary responsible for numerous neurodegenerative diseases, are also discussed.
Collapse
Affiliation(s)
- Mario Caruso
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ridgley DM, Claunch EC, Lee PW, Barone JR. The Role of Protein Hydrophobicity in Conformation Change and Self-Assembly into Large Amyloid Fibers. Biomacromolecules 2014; 15:1240-7. [DOI: 10.1021/bm401815u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Devin M. Ridgley
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Elizabeth C. Claunch
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Parker W. Lee
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Justin R. Barone
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| |
Collapse
|
38
|
Borana MS, Mishra P, Pissurlenkar RR, Hosur RV, Ahmad B. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:670-80. [DOI: 10.1016/j.bbapap.2014.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/01/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
39
|
Humenik M, Scheibel T. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates. ACS NANO 2014; 8:1342-1349. [PMID: 24405063 DOI: 10.1021/nn404916f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-assembling protein nanofibrils are promising structures for the "bottom-up" fabrication of bionanomaterials. Here, the recombinant protein eADF4(C16), a variant of Araneus diadematus dragline silk ADF4, which self-assembles into nanofibrils, and short oligonucleotides were modified for site-specific azide-alkyne coupling. Corresponding oligonuleotide-eADF4(C16) "click" conjugates were hybridized in linear or branched fashion according to the designed complementarities of the DNA moieties. Self-assembly properties of higher ordered structures of the spider silk-DNA conjugates were dominated by the silk component. Assembled β-sheet rich conjugate fibrils were similar in appearance to fibrils of unmodified eADF4(C16) but enabled the specific attachment of neutravidin-modified gold nanoparticles on their surface directed by complementary biotin-oligonucleotides, providing the basis for functionalization of such conjugates.
Collapse
Affiliation(s)
- Martin Humenik
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30, 95440 Bayreuth, Germany
| | | |
Collapse
|
40
|
Drolle E, Hane F, Lee B, Leonenko Z. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease. Drug Metab Rev 2014; 46:207-23. [PMID: 24495298 DOI: 10.3109/03602532.2014.882354] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer's patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers - insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.
Collapse
Affiliation(s)
- Elizabeth Drolle
- Department of Biology, University of Waterloo , Waterloo, ON , Canada
| | | | | | | |
Collapse
|
41
|
Ridgley DM, Freedman BG, Lee PW, Barone JR. Genetically encoded self-assembly of large amyloid fibers. Biomater Sci 2014; 2:560-566. [DOI: 10.1039/c3bm60223k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Experimental results demonstrate that large amyloid fibers can be engineered at the DNA level, spanning four orders of magnitude.
Collapse
Affiliation(s)
- D. M. Ridgley
- Biological Systems Engineering
- Virginia Tech
- Blacksburg, USA
| | - B. G. Freedman
- Biological Systems Engineering
- Virginia Tech
- Blacksburg, USA
| | - P. W. Lee
- Biological Systems Engineering
- Virginia Tech
- Blacksburg, USA
| | - J. R. Barone
- Biological Systems Engineering
- Virginia Tech
- Blacksburg, USA
| |
Collapse
|
42
|
Ridgley DM, Claunch EC, Barone JR. Characterization of large amyloid fibers and tapes with Fourier transform infrared (FT-IR) and Raman spectroscopy. APPLIED SPECTROSCOPY 2013; 67:1417-1426. [PMID: 24359656 DOI: 10.1366/13-07059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Amyloids are self-assembled protein structures implicated in a host of neurodegenerative diseases. Organisms can also produce "functional amyloids" to perpetuate life, and these materials serve as models for robust biomaterials. Amyloids are typically studied using fluorescent dyes, Fourier transform infrared (FT-IR), or Raman spectroscopy analysis of the protein amide I region, and X-ray diffraction (XRD) because the self-assembled β-sheet secondary structure of the amyloid can be easily identified with these techniques. Here, FT-IR and Raman spectroscopy analyses are described to characterize amyloid structures beyond just identification of the β-sheet structure. It has been shown that peptide mixtures can self-assemble into nanometer-sized amyloid structures that then continue to self-assemble to the micrometer scale. The resulting structures are flat tapes of low rigidity or cylinders of high rigidity depending on the peptides in the mixture. By monitoring the aggregation of peptides in solution using FT-IR spectroscopy, it is possible to identify specific amino acids implicated in β-sheet formation and higher order self-assembly. It is also possible to predict the final tape or cylinder morphology and gain insight into the structure's physical properties based on observed intermolecular interactions during the self-assembly process. Tapes and cylinders are shown to both have a similar core self-assembled β-sheet structure. Soft tapes also have weak hydrophobic interactions between alanine, isoleucine, leucine, and valine that facilitate self-assembly. Rigid cylinders have similar hydrophobic interactions that facilitate self-assembly and also have extensive hydrogen bonding between glutamines. Raman spectroscopy performed on the dried tapes and fibers shows the persistence of these interactions. The spectroscopic analyses described could be generalized to other self-assembling amyloid systems to explain property and morphological differences.
Collapse
Affiliation(s)
- Devin M Ridgley
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, VA 24061 USA
| | - Elizabeth C Claunch
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, VA 24061 USA
| | - Justin R Barone
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, VA 24061 USA
| |
Collapse
|
43
|
Abstract
PET with "β-amyloid-specific" molecular imaging probes is proposed for the measurement of brain β-amyloid protein amyloidosis in the new guidelines for diagnosis of Alzheimer disease (AD) at different levels of disease progression. This article discusses limitations of this proposed use pointing to unresolved issues and inconsistencies between PET scan results and correlation with other biomarkers, and with postmortem histopathological studies. These unresolved issues do not warrant the conclusion that PET imaging with "β-amyloid-specific" molecular imaging probes can be used as a biomarker in AD or in the various stages of disease progression.
Collapse
Affiliation(s)
- Vladimir Kepe
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, CHS B2-086B, Los Angeles, CA 90095-6948, USA.
| |
Collapse
|
44
|
ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2328-38. [DOI: 10.1016/j.bbamem.2013.04.012] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
|
45
|
Usov I, Adamcik J, Mezzenga R. Polymorphism in bovine serum albumin fibrils: morphology and statistical analysis. Faraday Discuss 2013; 166:151-62. [DOI: 10.1039/c3fd00083d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|