1
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Grolman E, Sirianni QEA, Dunmore-Buyze J, Cruje C, Drangova M, Gillies ER. Depolymerizing self-immolative polymeric lanthanide chelates for vascular imaging. Acta Biomater 2023; 169:530-541. [PMID: 37507034 DOI: 10.1016/j.actbio.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Medical imaging is widely used clinically and in research to understand disease progression and monitor responses to therapies. Vascular imaging enables the study of vascular disease and therapy, but exogenous contrast agents are generally needed to distinguish the vasculature from surrounding soft tissues. Lanthanide-based agents are commonly employed in MRI, but are also of growing interest for micro-CT, as the position of their k-edges allows them to provide enhanced contrast and also to be employed in dual-energy micro-CT, a technique that can distinguish contrast-enhanced blood vessels from tissues such as bone. Small molecule Gd3+ chelates are available, but are excreted too rapidly. At the same time, a lack of rapid clearance from the body for long-circulating agents presents toxicity concerns. To address these challenges, we describe here the use of self-immolative polymers for the development of new degradable chelates that depolymerize completely from end-to-end following the cleavage of a single end-cap from the polymer terminus. We demonstrate that tuning the end-cap allows the rate of depolymerization to be controlled, while tuning the polymer length enables the polymer to exhibit long circulation times in the blood of mice. After successfully providing one hour of blood contrast, depolymerization led to excretion of the resulting small molecule chelates into the bladder. Despite the high doses required for micro-CT, the agents were well tolerated in mice. Thus, these self-immolative polymeric chelates provide a new platform for the development of medical imaging contrast agents. STATEMENT OF SIGNIFICANCE: Vascular imaging is used clinically to diagnose and monitor vascular disease and in research to understand the progression of disease and study responses to new therapies. For techniques such as magnetic resonance imaging and x-ray computed tomography (CT), long circulating contrast agents are needed to differentiate the vasculature from surrounding tissues. However, if these agents are not rapidly excreted from the body, they can lead to toxicity. We present here a new polymeric system that can chelate hundreds of lanthanide ions for imaging contrast and can circulate for one hour in the blood, but then after end-cap cleavage breaks down completely into small molecules for excretion. The successful application of this system in micro-CT in mice is demonstrated.
Collapse
Affiliation(s)
- Eric Grolman
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Quinton E A Sirianni
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Joy Dunmore-Buyze
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Charmainne Cruje
- Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Maria Drangova
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.
| | - Elizabeth R Gillies
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
3
|
Kumar D, Moghiseh M, Chitcholtan K, Mutreja I, Lowe C, Kaushik A, Butler A, Sykes P, Anderson N, Raja A. LHRH conjugated gold nanoparticles assisted efficient ovarian cancer targeting evaluated via spectral photon-counting CT imaging: a proof-of-concept research. J Mater Chem B 2023; 11:1916-1928. [PMID: 36744575 DOI: 10.1039/d2tb02416k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Emerging multifunctional nanoparticulate formulations take advantage of nano-meter scale size and surface chemistry to work as a therapeutic delivery agent and a diagnostic tool for non-invasive real-time monitoring using imaging technologies. Here, we evaluate the selective uptake of 18 nm and 80 nm sized gold nanoparticles (AuNPs) by SKOV3 (4 times higher) ovarian cancer (OC) cells (compared to OVCAR5) in vitro, quantified by inductively coupled plasma (ICP) and MARS spectral photon-counting CT imaging (MARS SPCCT). Based on in vitro analysis, pristine AuNPs (18 nm) and surface modified AuNPs (18 nm) were chosen as a contrast agent for MARS SPCCT. The chemical analysis by FTIR spectroscopy confirmed the luteinizing hormone-releasing hormone (LHRH) conjugation to the AuNPs surface. For the first time, LHRH conjugated AuNPs were used for in vitro and selective in vivo OC targeting. The ICP-MS analysis confirmed preferential uptake of LHRH modified AuNPs by organs residing in the abdominal cavity with OC nodules (pancreas: 0.46 ng mg-1, mesentery: 0.89 ng mg-1, ovary: 1.43 ng mg-1, and abdominal wall: 2.12 ng mg-1) whereas the MARS SPCCT analysis suggested scattered accumulation of metal around the abdominal cavity. Therefore, the study showed the exciting potential of LHRH conjugated AuNPs to target ovarian cancer and also as a potential contrast agent for novel SPCCT imaging technology.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Division of Pediatrics Dentistry, School of Dentistry, University of Minnesota, 515 Delaware St SE, Minneapolis, Minnesota, 55455, USA. .,Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Mahdieh Moghiseh
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, 515 Delaware St SE, Minneapolis, Minnesota, 55455, USA
| | - Chiara Lowe
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Ajeet Kaushik
- NanoBiotech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, FL, 33805, USA
| | - Anthony Butler
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Nigel Anderson
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Aamir Raja
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Lu J, Xu Z, Fu H, Lin Y, Wang H, Lu H. Room-Temperature Grafting from Synthesis of Protein-Polydisulfide Conjugates via Aggregation-Induced Polymerization. J Am Chem Soc 2022; 144:15709-15717. [PMID: 35976716 DOI: 10.1021/jacs.2c05997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reversible modification of proteins with lipoic acid (LPA)-derived polydisulfides (PDS) is an important approach toward the transient regulation and on-demand recovery of protein functions. The in situ growth of PDS from the cysteine (Cys) residue of a protein, however, has been challenging due to the near-equilibrium thermodynamics of the ring-opening polymerization of LPA. Here, we report the protein-mediated, aggregation-induced polymerization (AIP) of amphiphilic LPA-derived monomers at room temperature, which can be performed at a concentration as low as ∼2% of the equilibrium monomer concentration normally needed. The aggregation of monomers increases the effective monomer concentration in aqueous solutions to the degree that the polymerizations behave similarly to those in bulk. The PDS conjugation enhances the thermostability, protease resistance, and tolerance to freeze-thaw treatments of the target proteins. Moreover, the PDS conjugation allows rapid and convenient purification of Cys-bearing proteins by taking advantage of the liquid-liquid phase separation of the protein-PDS conjugates and the full recovery of native proteins under mild reducing conditions. This AIP effect may shed light on facilitating other polymerizations with a similar near-equilibrium character. The PDS conjugation can open up new avenues to protein delivery, dynamic and reversible protein engineering, enzyme preservation, and recycling.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhun Xu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hailin Fu
- Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Lu X, Zhou H, Liang Z, Feng J, Lu Y, Huang L, Qiu X, Xu Y, Shen Z. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging of tumors. J Nanobiotechnology 2022; 20:350. [PMID: 35908057 PMCID: PMC9338602 DOI: 10.1186/s12951-022-01562-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has been widely using in clinical diagnosis, and contrast agents (CAs) can improve the sensitivity MRI. To overcome the problems of commercial Gd chelates-based T1 CAs, commercial magnetic iron oxide nanoparticles (MIONs)-based T2 CAs, and reported exceedingly small MIONs (ES-MIONs)-based T1 CAs, in this study, a facile co-precipitation method was developed to synthesize biodegradable and biocompatible ES-MIONs with excellent water-dispersibility using poly (aspartic acid) (PASP) as a stabilizer for T1-weighted MRI of tumors. After optimization of the synthesis conditions, the final obtained ES-MION9 with 3.7 nm of diameter has a high r1 value (7.0 ± 0.4 mM-1 s-1) and a low r2/r1 ratio (4.9 ± 0.6) at 3.0 T. The ES-MION9 has excellent water dispersibility because of the excessive -COOH from the stabilizer PASP. The pharmacokinetics and biodistribution of ES-MION9 in vivo demonstrate the better tumor targetability and MRI time window of ES-MION9 than commercial Gd chelates. T1-weighted MR images of aqueous solutions, cells and tumor-bearing mice at 3.0 T or 7.0 T demonstrate that our ES-MION9 has a stronger capability of enhancing the MRI contrast comparing with the commercial Gd chelates. The MTT assay, live/dead staining of cells, and H&E-staining indicate the non-toxicity and biosafety of our ES-MION9. Consequently, the biodegradable and biocompatible ES-MION9 with excellent water-dispersibility is an ideal T1-weighted CAs with promising translational possibility to compete with the commercial Gd chelates.
Collapse
Affiliation(s)
- Xuanyi Lu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Huimin Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Zhiyu Liang
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Yudie Lu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Lin Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
| | - Zheyu Shen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
6
|
Xu L, Zhang Q, Lu L, Shi Y, Liu L, Shen J, Chen Y. Unimolecular Nano-contrast Agent with Ultrahigh Relaxivity and Very Long Retention for Magnetic Resonance Lymphography. NANO LETTERS 2022; 22:4090-4096. [PMID: 35549497 DOI: 10.1021/acs.nanolett.2c00796] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic resonance (MR) imaging is very important for noninvasive lymphography. However, the present MR contrast agents still cannot supply strong enough tissue contrast and long observation window. To improve the performance of contrast agents, we introduce one-dimensional unimolecular nanoparticles with a confined and compact poly(acrylic acid) core as nanoparticulate chelates of gadolinium ions. Thus, obtained nanoparticulate T1 contrast agents give r1 relaxivity as high as 136.3 mM-1·s-1 under 3.0 T. By injection at the footpad of mice, the contrast agents provide excellent contrast enhancement of lymphatic drainage and they may arrive at popliteal lymph nodes within 30 min and reside for more than 80 h. High performance of the present contrast agent is attributed to the confined and compact core of materials that increase hydration number, intershell water diffusion, and decrease rotational motion.
Collapse
Affiliation(s)
- Lu Xu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
| | - Qinyuan Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
- Third Affiliated Hospital, Sun Yat-sen University, 510630 Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Application of Dendrimers in Anticancer Diagnostics and Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103237. [PMID: 35630713 PMCID: PMC9144149 DOI: 10.3390/molecules27103237] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
The application of dendrimeric constructs in medical diagnostics and therapeutics is increasing. Dendrimers have attracted attention due to their compact, spherical three-dimensional structures with surfaces that can be modified by the attachment of various drugs, hydrophilic or hydrophobic groups, or reporter molecules. In the literature, many modified dendrimer systems with various applications have been reported, including drug and gene delivery systems, biosensors, bioimaging contrast agents, tissue engineering, and therapeutic agents. Dendrimers are used for the delivery of macromolecules, miRNAs, siRNAs, and many other various biomedical applications, and they are ideal carriers for bioactive molecules. In addition, the conjugation of dendrimers with antibodies, proteins, and peptides allows for the design of vaccines with highly specific and predictable properties, and the role of dendrimers as carrier systems for vaccine antigens is increasing. In this work, we will focus on a review of the use of dendrimers in cancer diagnostics and therapy. Dendrimer-based nanosystems for drug delivery are commonly based on polyamidoamine dendrimers (PAMAM) that can be modified with drugs and contrast agents. Moreover, dendrimers can be successfully used as conjugates that deliver several substances simultaneously. The potential to develop dendrimers with multifunctional abilities has served as an impetus for the design of new molecular platforms for medical diagnostics and therapeutics.
Collapse
|
8
|
Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19679-19694. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a promising tumor therapy strategy; however, heterogeneous heat distribution over the tumor often exists, resulting in insufficient photothermal ablation and potential risk of cancer metastasis, which has been demonstrated to be associate with platelets. Herein, a near-infrared (NIR) photothermal agent of IR780 was conjugated with MRI agent of Gd-DOTA via a disulfide linkage (ICD-Gd), which was coassembly with lipid connecting tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) (DSPE-PEG-CREKA) to encapsulate a platelet inhibitor of ticagrelor (Tic), affording a multistimuli-responsive nanosystem (DPC@ICD-Gd-Tic). The nanosystem with completely quenching fluorescence could specifically target the tumor-associated platelets and showed pH/reduction/NIR light-responsive drug release, which simultaneously resulting in dis-assembly of nanoparticle and fluorescence recovery, enabling the drug delivery visualization in tumor in situ via activatable NIR fluorescence/MR bimodal imaging. Finally, DPC@ICD-Gd-Tic further integrated the photoinduced hyperthermia and platelet function inhibitor to achieve synergistic anticancer therapy, leading to ablation of primary tumor cells and effectively suppressed their distant metastasis. The number of lung metastases in 4T1 tumor bearing mice was reduced by about 90%, and the size of tumor was reduced by about 70%, while half of the mouse was completely cured by this smart nanosystem.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoda Li
- School of Basic Medical Sciences, Peking University, Beijing 100190, P. R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaotu Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Rui Hou
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
9
|
Caminade AM, Hameau A, Turrin CO, Laurent R, Majoral JP. Dendritic metal complexes for bioimaging. Recent advances. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Kaup R, ten Hove JB, Velders AH. Dendroids, Discrete Covalently Cross-Linked Dendrimer Superstructures. ACS NANO 2021; 15:1666-1674. [PMID: 33411511 PMCID: PMC7844878 DOI: 10.1021/acsnano.0c09322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
A versatile method is presented to form dendrimer superstructures by exploiting coacervate-core micelles as a template to confine and organize the hyperbranched macromolecules. First, complex coacervate-core micelles are formed from negative-neutral block copolymers and positively charged polyamidoamine dendrimers. The dendrimers inside the micellar core are then covalently cross-linked with each other upon addition of glutaraldehyde. After removal of the block copolymer from the assembly by increasing the salt concentration, consecutively, the formed Schiff bases cross-linking the dendrimers are reduced to amines, followed by a final dialysis step. This leads to well-defined covalently cross-linked nanostructures, coined dendroids, with a size of around 30 nm in diameter and a molecular weight of approximately 2.5 MDa. By incorporating dendrimer-encapsulated gold nanoparticles (AuDENs) into the micelle template strategy, the aggregation number of dendrimers inside the dendroids is determined by counting the nanoparticles in TEM micrographs. Furthermore, TEM performed at different tilt angles and AFM analysis corroborate formation of stable, covalently linked three-dimensional structures. Reconstruction of the TEM tilt series results in a tomogram further illustrating the 3D distribution of the gold nanoparticles, and hence the individual dendrimers, in the nanostructure. These dendroids appear to have a hard, poorly compressible core and a relatively soft outside. The versatility of the hierarchical building up of the supermolecules is illustrated by the controlled and synchronous incorporation of empty dendrimers and AuDENs into a single hybrid dendroid structure. The presented strategy allows for the preparation of a variety of classes of supermolecules, depending on the type of micellar-core macromolecule, e.g., dendrimer, cross-linker, and nanoparticles, used. Considering the broad interest in dendrimers as well as micelles in a plethora of research areas, e.g., (targeted) drug delivery, biomedical imaging, theragnostics, and catalysis, there is a great potential for dendroids and related classes of covalently linked macromolecules, viz., supermolecules.
Collapse
Affiliation(s)
- Rebecca Kaup
- Laboratory
of BioNanoTechnology, Wageningen University
& Research, AXIS Building, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Jan Bart ten Hove
- Laboratory
of BioNanoTechnology, Wageningen University
& Research, AXIS Building, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Aldrik H. Velders
- Laboratory
of BioNanoTechnology, Wageningen University
& Research, AXIS Building, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Instituto
Regional de Investigacion Cientifica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
11
|
Song C, Shen M, Rodrigues J, Mignani S, Majoral JP, Shi X. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213463] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E656. [PMID: 32244653 PMCID: PMC7221794 DOI: 10.3390/nano10040656] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanomedicine is a field of science that uses nanoscale materials for the diagnosis and treatment of human disease. It has emerged as an important aspect of the therapeutics, but at the same time, also raises concerns regarding the safety of the nanomaterials involved. Recent applications of functionalized biodegradable nanomaterials have significantly improved the safety profile of nanomedicine. OBJECTIVE Our goal is to evaluate different types of biodegradable nanomaterials that have been functionalized for their biomedical applications. METHOD In this review, we used PubMed as our literature source and selected recently published studies on biodegradable nanomaterials and their applications in nanomedicine. RESULTS We found that biodegradable polymers are commonly functionalized for various purposes. Their property of being naturally degraded under biological conditions allows these biodegradable nanomaterials to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering. The degradability of these nanoparticles can be utilized to control cargo release, by allowing efficient degradation of the nanomaterials at the target site while maintaining nanoparticle integrity at off-target sites. CONCLUSION While each biodegradable nanomaterial has its advantages and disadvantages, with careful design and functionalization, biodegradable nanoparticles hold great future in nanomedicine.
Collapse
Affiliation(s)
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA;
| |
Collapse
|
13
|
Kim J, Silva AB, Hsu JC, Maidment PSN, Shapira N, Noël PB, Cormode DP. Radioprotective garment-inspired biodegradable polymetal nanoparticles for enhanced CT contrast production. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:381-391. [PMID: 33005071 PMCID: PMC7523649 DOI: 10.1021/acs.chemmater.9b03931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Numerous formulations of nanoparticle-based X-ray computed tomography (CT) contrast agents made of heavy metal elements are under investigation for their ability to provide improved CT imaging. Thus far, most experimental nanoparticle-based CT contrast agents have been developed with atoms of a single element. However, inspired by the composites formed from multiple elements used in radioprotective garments, we hypothesized that contrast agents made of several elements whose K-edge energies are spaced out in the high photon flux region could achieve high, broadband X-ray attenuation across the energies used in X-ray source spectra. Herein, we synthesized sub-5 nm core inorganic nanoparticles containing gold, tantalum, and cerium, and encapsulated them in polymeric nanoparticles to form polymetal nanoparticles (PMNP). We found that PMNP with multiple payload elements generate higher and more stable CT contrast than contrast agents made from a single contrast generating material, demonstrating the potential benefits of incorporating multiple suitable elements as CT contrast payloads.
Collapse
Affiliation(s)
- Johoon Kim
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Alexander B. Silva
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Portia S. N. Maidment
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Nadav Shapira
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Peter B. Noël
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Hu H, Yang Q, Baroni S, Yang H, Aime S, Steinmetz NF. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy. NANOSCALE 2019; 11:9760-9768. [PMID: 31066418 PMCID: PMC6679940 DOI: 10.1039/c9nr02065a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanotheranostic reagents that integrate magnetic resonance imaging (MRI) and photothermal therapy (PTT) offer a promising strategy for the treatment of human disease. However, classic gadolinium (Gd)-based T1-MRI contrast agents are limited by their low relaxivity. To address this, we produced Gd-loaded Tobacco mosaic virus (TMV) particles coated with the mussel-inspired biopolymer polydopamine (PDA). Such biocompatible nanotheranostic reagents can be used to facilitate PTT, guided by multimodal magnetic resonance/photoacoustic imaging. The r1-relaxivity of the Gd-TMV-PDA particles at 60 MHz was ∼80 mM-1 s-1, compared to 13.63 mM-1 s-1 for the uncoated Gd-TMV particles. The Gd-TMV-PDA particles also promoted strong near-infrared absorption with high photothermal conversion efficiency (28.9%) and demonstrated excellent photoacoustic contrast. Multimodal imaging and PTT resulted in the effective killing of PC-3 prostate cancer cells. Gd-TMV-PDA nanoparticles therefore offer a promising theranostic approach that can now be tested in vivo in cancer models.
Collapse
Affiliation(s)
- He Hu
- Department of NanoEngineering, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Corresponding authors: Prof. Nicole F. Steinmetz: , Dr. He Hu:
| | - Qi Yang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai, China
| | - Simona Baroni
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy
| | - Hong Yang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai, China
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Radiology, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Corresponding authors: Prof. Nicole F. Steinmetz: , Dr. He Hu:
| |
Collapse
|
15
|
Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019; 18:273-294. [PMID: 30542076 DOI: 10.1038/s41573-018-0005-0] [Citation(s) in RCA: 518] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymer-drug conjugates have long been a mainstay of the drug delivery field, with several conjugates successfully translated into clinical practice. The conjugation of therapeutic agents to polymeric carriers, such as polyethylene glycol, offers several advantages, including improved drug solubilization, prolonged circulation, reduced immunogenicity, controlled release and enhanced safety. In this Review, we discuss the rational design, physicochemical characteristics and recent advances in the development of different classes of polymer-drug conjugates, including polymer-protein and polymer-small-molecule drug conjugates, dendrimers, polymer nanoparticles and multifunctional systems. Current obstacles hampering the clinical translation of polymer-drug conjugate therapeutics and future prospects are also presented.
Collapse
Affiliation(s)
- Iriny Ekladious
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
16
|
Harris M, Laskaratou D, Elst LV, Mizuno H, Parac-Vogt TN. Amphiphilic Nanoaggregates with Bimodal MRI and Optical Properties Exhibiting Magnetic Field Dependent Switching from Positive to Negative Contrast Enhancement. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5752-5761. [PMID: 30640430 DOI: 10.1021/acsami.8b18456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed micelles based on amphiphilic gadolinium(III)-DOTA and europium(III)-DTPA complexes were synthesized and evaluated for their paramagnetic and optical properties as potential bimodal contrast agents. Amphiphilic folate molecule for targeting the folate receptor protein, which is commonly expressed on the surface of many human cancer cells, was used in the self-assembly process in order to create nanoaggregates with targeting properties. Both targeted and nontargeted nanoaggregates formed monodisperse micelles having distribution maxima of 10 nm. The micelles show characteristic europium(III) emission with quantum yields of 2% and 1.1% for the nontargeted and targeted micelles, respectively. Fluorescence microscopy using excitation at 405 nm and emission at 575-675 nm was employed to visualize the nanoaggregates in cultured HeLa cells. The uptake of folate-targeted and nontargeted micelles is already visible after 5 h of incubation and was characterized with the europium(III) emission, which is clearly observable in the cytoplasm of the cells. The very fast longitudinal relaxivity r1 of ca. 26 s-1 mM-1 per gadolinium(III) ion was observed for both micelles at 60 MHz and 310 K. Upon increasing the magnetic field to 300 MHz, the nanoaggregates exhibited a large switching to transversal relaxivity with r2 value of ca. 52 s-1 mM-1 at 310 K. Theoretical fitting of the 1H NMRD profiles indicate that the efficient T1 and T2 relaxations are sustained by the favorable magnetic and electron-configuration properties of the gadolinium(III) ion, rotational correlation time, and coordinated water molecule. These nanoaggregates could have versatile application as a positive contrast agent at the currently used magnetic imaging field strengths and a negative contrast agent in higher field applications, while at the same time offering the possibility for the loading of hydrophobic therapeutics or targeting molecules.
Collapse
Affiliation(s)
- Michael Harris
- Department of Chemistry , KU Leuven , 3001 Leuven , Belgium
| | - Danai Laskaratou
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section, Laboratory of Biomolecular Network Dynamics , KU Leuven , 3001 Leuven , Belgium
| | - Luce Vander Elst
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , 7000 Mons , Belgium
| | - Hideaki Mizuno
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section, Laboratory of Biomolecular Network Dynamics , KU Leuven , 3001 Leuven , Belgium
| | | |
Collapse
|
17
|
Lakes AL, Puleo DA, Hilt JZ, Dziubla TD. Highly Thiolated Poly (Beta-Amino Ester) Nanoparticles for Acute Redox Applications. Gels 2018; 4:gels4040080. [PMID: 30674856 PMCID: PMC6318580 DOI: 10.3390/gels4040080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 12/20/2022] Open
Abstract
Disulfides are used extensively in reversible cross-linking because of the ease of reduction into click-reactive thiols. However, the free-radical scavenging properties upon reduction are often under-considered. The free thiols produced upon reduction of this disulfide material mimic the cellular reducing chemistry (glutathione) that serves as a buffer against acute oxidative stress. A nanoparticle formulation producing biologically relevant concentrations of thiols may not only provide ample chemical conjugation sites, but potentially be useful against severe acute oxidative stress exposure, such as in targeted radioprotection. In this work, we describe the synthesis and characterization of highly thiolated poly (β-amino ester) (PBAE) nanoparticles formed from the reduction of bulk disulfide cross-linked PBAE hydrogels. Degradation-tunable PBAE hydrogels were initially synthesized containing up to 26 wt % cystamine, which were reduced into soluble thiolated oligomers and formulated into nanoparticles upon single emulsion. These thiolated nanoparticles were size-stable in phosphate buffered saline consisting of up to 11.0 ± 1.1 mM (3.7 ± 0.3 mmol thiol/g, n = 3 M ± SD), which is an antioxidant concentration within the order of magnitude of cellular glutathione (1–10 mM).
Collapse
Affiliation(s)
- Andrew L Lakes
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - David A Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
18
|
Feng J, Luo Q, Chen Y, Li B, Luo K, Lan J, Yu Y, Zhang S. DOTA Functionalized Cross-Linked Small-Molecule Micelles for Theranostics Combining Magnetic Resonance Imaging and Chemotherapy. Bioconjug Chem 2018; 29:3402-3410. [PMID: 30200761 DOI: 10.1021/acs.bioconjchem.8b00565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
19
|
Xu W, Sun J, Li L, Peng X, Zhang R, Wang B. Melanin-manganese nanoparticles with ultrahigh efficient clearance in vivo for tumor-targeting T 1 magnetic resonance imaging contrast agent. Biomater Sci 2018; 6:207-215. [PMID: 29210372 DOI: 10.1039/c7bm00635g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endogenous biomaterials in organisms, with native biocompatibility and biodegradability, appear more advantageous in the development of nanoscale diagnostic and therapeutic systems for future clinical translation. Herein, a novel tumor-targeting Magnetic Resonance Imaging (MRI) contrast agent was developed based on Mn2+-chelating ultrasmall water-soluble melanin nanoparticles (MNP-PEG-Mn). The nanoparticles, with a size of about 5.6 nm, presented high chelation stability and showed negligible cytotoxicity as estimated by MTT assay. Moreover, the r1 longitudinal relaxivity (20.56 mM-1 s-1) of MNP-PEG-Mn was much higher than that of Gadodiamide (6.00 mM-1 s-1), which is a clinically approved MRI contrast agent. In vivo MRI experiments revealed excellent tumor-targeting specificity after tumor-bearing mice were intravenously injected with MNP-PEG-Mn. Additionally, MNP-PEG-Mn could be excreted via renal and hepatobiliary pathways with negligible toxicity to body tissues. These preliminary results indicated the clinically translatable potential of MNP-PEG-Mn as a T1 MRI contrast agent for tumor-targeted imaging.
Collapse
Affiliation(s)
- Wen Xu
- Department of imaging of Shanxi Provincial Cancer Hospital, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Platform of Shanxi Scientific and Technological Innovation, Taiyuan 030001, China
| | | | | | | | | | | |
Collapse
|
20
|
Cao Y, Zu G, Kuang Y, He Y, Mao Z, Liu M, Xiong D, Pei R. Biodegradable Nanoglobular Magnetic Resonance Imaging Contrast Agent Constructed with Host-Guest Self-Assembly for Tumor-Targeted Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26906-26916. [PMID: 30028584 DOI: 10.1021/acsami.8b08021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gadolinium-based macromolecular magnetic resonance imaging (MRI) contrast agents (CAs) have attracted increasing interest in tumor diagnosis. However, their practical application is potentially limited because the long-term retention of gadolinium ion in vivo will induce toxicity. Here, a nanoglobular MRI contrast agent (CA) PAMAM-PG- g-s-s-DOTA(Gd) + FA was designed and synthesized on the basis of the facile host-guest interaction between β-cyclodextrin and adamantane, which initiated the self-assembly of poly(glycerol) (PG) separately conjugated with gadolinium chelates by disulfide bonds and folic acid (FA) molecule onto the surface of poly(amidoamine) (PAMAM) dendrimer, finally realizing the biodegradability and targeting specificity. The nanoglobular CA has a higher longitudinal relaxivity ( r1) than commercial gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), showing a value of 8.39 mM-1 s-1 at 0.5 T, and presents favorable biocompatibility on the observations of cytotoxicity and tissue toxicity. Furthermore, MRI on cells and tumor-bearing mice both demonstrate the obvious targeting specificity, on the basis of which the effective contrast enhancement at tumor location was obtained. In addition, this CA exhibits the ability of cleavage to form free small-molecule gadolinium chelates and can realize minimal gadolinium retention in main organs and tissues after tumor detection. These results suggest that the biodegradable nanoglobular PAMAM-PG- g-s-s-DOTA(Gd) + FA can be a safe and efficient MRI CA for tumor diagnosis.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Yilin He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Zheng Mao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Dangsheng Xiong
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| |
Collapse
|
21
|
Men Y, Peng S, Yang P, Jiang Q, Zhang Y, Shen B, Dong P, Pang Z, Yang W. Biodegradable Zwitterionic Nanogels with Long Circulation for Antitumor Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23509-23521. [PMID: 29947223 DOI: 10.1021/acsami.8b03943] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Zwitterionic nanocarriers have emerged as a new class of biocompatible nanomaterials with outstanding stealth capability in blood circulation. In this work, a novel biodegradable zwitterionic nanogel based on poly(sulfobetaine methacrylate) (PSBMA) was developed for reduction-responsive drug delivery to tumors. PSBMA nanogels were facilely fabricated by one-step reflux precipitation polymerization with the advantage of being surfactant-free and time-saving. The disulfide bond not only endowed the nanogels degradability in a reduction environment but also be modified with a fluorescent group after partial reduction. In vitro release experiments disclosed that doxorubicin (DOX)-loaded PSBMA nanogels could hold the drugs firmly in physiological conditions (only 7% release in 24 h) and release the drugs rapidly and sufficiently in 10 mM glutathione (85% in 8 h). More interestingly, PSBMA nanogels displayed long circulation in blood after intravenous injection, and small change was found in half-life of nanogels between the first (34.1 h) and the second injection (30.5 h), indicating that there was no accelerated blood clearance phenomenon for these nanogels. Meanwhile, no obvious immunogenic response was detected after PSBMA nanogels were injected into BALB/c mice. Furthermore, PSBMA nanogels showed a high accumulation of 9.5 and 10.7% of injected dose per gram of tissue in tumors at 24 and 48 h post intravenous injection, respectively. With outstanding long circulation time, high tumor accumulation, and sufficient drug release in a reduction environment, DOX-loaded PSBMA nanogels demonstrated the strongest tumor growth inhibition effect among all of the treatment groups in human hypopharyngeal carcinoma-bearing mouse models. Therefore, our study provided a facile drug delivery platform based on biodegradable zwitterionic nanogels and may have great potential in tumor drug delivery.
Collapse
Affiliation(s)
- Yongzhi Men
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Shaojun Peng
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| | - Peng Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| | - Qin Jiang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| | - Yanhui Zhang
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Bin Shen
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Pin Dong
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
22
|
Sun J, Xu W, Li L, Fan B, Peng X, Qu B, Wang L, Li T, Li S, Zhang R. Ultrasmall endogenous biopolymer nanoparticles for magnetic resonance/photoacoustic dual-modal imaging-guided photothermal therapy. NANOSCALE 2018; 10:10584-10595. [PMID: 29808892 DOI: 10.1039/c8nr01215f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multi-modal imaging-guided photothermal therapy (PTT) has aroused extensive attention in biomedical research recently because it can provide more comprehensive information for accurate diagnosis and treatment. In this research, the manganese ion chelated endogenous biopolymer melanin nanoparticles were successfully prepared for magnetic resonance (MR)/photoacoustic (PA) dual-modal imaging-guided PTT. The obtained nanoparticles with an ultrasmall size of about 3.2 nm exhibited negligible cytotoxicity, high relaxivity for MRI, an excellent photothermal effect and PA activity. Moreover, in vivo MRI and PAI results all demonstrated that the nanoparticles began to diffuse in the blood after intratumoral injection into tumor-bearing mice and could spread throughout the whole tumor region at 3 h, indicating the optimal treatment time. The subsequent photothermal therapy of cancer cells in vivo was carried out and the result showed that tumor growth could be effectively inhibited without inducing any observed side effects. Besides, melanin as an endogenous biopolymer has native biocompatibility and biodegradability, and it can be excreted through both renal and hepatobiliary pathways after treatment. Therefore, the melanin-Mn nanoparticles may assist in better indicating the optimal treatment time, monitoring the therapeutic process and enhancing the therapeutic effect and showed great clinical translation potential for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jinghua Sun
- Center for Translational Medicine Research, Shanxi Medical University, Taiyuan 030001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yan Y, Sun X, Shen B. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging. Oncotarget 2018; 8:43491-43505. [PMID: 28415647 PMCID: PMC5522164 DOI: 10.18632/oncotarget.16482] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method.
Collapse
Affiliation(s)
- Yuling Yan
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
24
|
Huang D, Wu D. Biodegradable dendrimers for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:713-727. [PMID: 29853143 DOI: 10.1016/j.msec.2018.03.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 01/09/2023]
Abstract
Dendrimers, as a type of artificial polymers with unique structural features, have been extensively explored for their applications in biomedical fields, especially in drug delivery. However, one important concern about the most commonly used dendrimers exists - the nondegradability, which may cause side effects induced by the accumulation of synthetic polymers in cells or tissues. Therefore, biodegradable dendrimers incorporating biodegradability with merits of dendrimers such as well-defined architectures, copious internal cavities and surface functionalities, are much more promising for developing novel nontoxic drug carriers. Herein, we review the recent advances in design and synthesis of biodegradable dendrimers, as well as their applications in fabricating drug delivery systems, with the aim to provide researchers in the related fields a good understanding of biodegradable dendrimers for drug delivery.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
25
|
Zhang Z, Zhou Y, Zhou Z, Piao Y, Kalva N, Liu X, Tang J, Shen Y. Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. Polym Chem 2018. [DOI: 10.1039/c7py01492a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enzyme-responsive phosphoramidate dendrimers were successfully synthesized and their surfaces were modified with zwitterionic groups for cancer drug delivery.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yongcun Zhou
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhuxian Zhou
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ying Piao
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Nagendra Kalva
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jianbin Tang
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
26
|
Harris M, Henoumont C, Peeters W, Toyouchi S, Vander Elst L, Parac-Vogt TN. Amphiphilic complexes of Ho(iii), Dy(iii), Tb(iii) and Eu(iii) for optical and high field magnetic resonance imaging. Dalton Trans 2018; 47:10646-10653. [DOI: 10.1039/c8dt01227j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic lanthanide(iii) complexes self-assemble into monodisperse micelles with favourable properties for optical and high field magnetic resonance imaging.
Collapse
Affiliation(s)
| | - Céline Henoumont
- General, Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
- Belgium
| | | | | | - Luce Vander Elst
- General, Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
- Belgium
| | | |
Collapse
|
27
|
Hu H, Zhang Y, Shukla S, Gu Y, Yu X, Steinmetz NF. Dysprosium-Modified Tobacco Mosaic Virus Nanoparticles for Ultra-High-Field Magnetic Resonance and Near-Infrared Fluorescence Imaging of Prostate Cancer. ACS NANO 2017; 11:9249-9258. [PMID: 28858475 PMCID: PMC5747565 DOI: 10.1021/acsnano.7b04472] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The increasing prevalence of ultra-high-field magnetic resonance imaging (UHFMRI) in biomedical research and clinical settings will improve the resolution and diagnostic accuracy of MRI scans. However, better contrast agents are needed to achieve a satisfactory signal-to-noise ratio. Here, we report the synthesis of a bimodal contrast agent prepared by loading the internal cavity of tobacco mosaic virus (TMV) nanoparticles with a dysprosium (Dy3+) complex and the near-infrared fluorescence (NIRF) dye Cy7.5. The external surface of TMV was conjugated with an Asp-Gly-Glu-Ala (DGEA) peptide via a polyethylene glycol linker to target integrin α2β1. The resulting nanoparticle (Dy-Cy7.5-TMV-DGEA) was stable and achieved a high transverse relaxivity in ultra-high-strength magnetic fields (326 and 399 mM-1 s-1 at 7 and 9.4 T, respectively). The contrast agent was also biocompatible (low cytotoxicity) and targeted PC-3 prostate cancer cells and tumors in vitro and in vivo as confirmed by bimodal NIRF imaging and T2-mapping UHFMRI. Our results show that Dy-Cy7.5-TMV-DGEA is suitable for multiscale MRI scanning from the cellular level to the whole body, particularly in the context of UHFMRI applications.
Collapse
Affiliation(s)
- He Hu
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Yifan Zhang
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Radiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Materials Science and Engineering, Case Western Reserve University School of Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Division of General Medical Sciences-Oncology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Corresponding Author:
| |
Collapse
|
28
|
Yu B, Wang M, Cong H, Li G. A covalent capillary coating of diazoresin and polyglycerol dendrimer for protein analysis using capillary electrophoresis. Electrophoresis 2017; 38:3104-3110. [DOI: 10.1002/elps.201700249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering; College of Chemistry and Chemical Engineering, Qingdao University; Qingdao P. R. China
- Laboratory for New Fiber Materials and Modern Textile; Growing Base for State Key Laboratory; College of Materials Science and Engineering, Qingdao University; Qingdao P. R. China
| | - Minghong Wang
- Institute of Biomedical Materials and Engineering; College of Chemistry and Chemical Engineering, Qingdao University; Qingdao P. R. China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering; College of Chemistry and Chemical Engineering, Qingdao University; Qingdao P. R. China
- Laboratory for New Fiber Materials and Modern Textile; Growing Base for State Key Laboratory; College of Materials Science and Engineering, Qingdao University; Qingdao P. R. China
| | - Guoling Li
- Institute of Biomedical Materials and Engineering; College of Chemistry and Chemical Engineering, Qingdao University; Qingdao P. R. China
| |
Collapse
|
29
|
Zhong D, Tu Z, Zhang X, Li Y, Xu X, Gu Z. Bioreducible Peptide-Dendrimeric Nanogels with Abundant Expanded Voids for Efficient Drug Entrapment and Delivery. Biomacromolecules 2017; 18:3498-3505. [DOI: 10.1021/acs.biomac.7b00649] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dan Zhong
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zhaoxu Tu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Xiao Zhang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Yachao Li
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Xianghui Xu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- College
of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhongwei Gu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- College
of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
30
|
Fabrication of Low-Generation Dendrimers into Nanostructures for Efficient and Nontoxic Gene Delivery. Top Curr Chem (Cham) 2017; 375:62. [DOI: 10.1007/s41061-017-0151-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/18/2017] [Indexed: 01/12/2023]
|
31
|
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2017; 4:375-90. [PMID: 26806314 DOI: 10.1039/c5bm00532a] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China. and Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
32
|
Zhang T, Zhang C, Xing J, Xu J, Li C, Wang PC, Liang XJ. Multifunctional Dendrimers for Drug Nanocarriers. MATERIALS SCIENCE AND ENGINEERING 2017:439-470. [DOI: 10.4018/978-1-5225-1798-6.ch018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dendrimers are nanosized, monodisperse, highly branched polymers with well-defined topological structure which have attracted much attention for drug delivery recently. To further improve the performance of dendrimers in drug delivery, various functional dendrimers are developed by decorating the dendrimers with targeting agents, imaging agents, or stimuli-sensitive moieties. They show good biocompatibility, visibility, tumor targeting and stimuli-sensitive properties for drug or gene delivery. This chapter will focus on the design of multifunctional nanocarriers based on the dendrimers. Therefore, the chapter will provide the ideas for designing the dendrimers based nanocarriers for controllable drug delivery and let more people know the development of dendrimers for drug delivery in recent years.
Collapse
Affiliation(s)
- Tingbin Zhang
- National Center for Nanoscience and Technology, China & Tianjin University, China
| | - Chunqiu Zhang
- National Center for Nanoscience and Technology, China
| | | | - Jing Xu
- National Center for Nanoscience and Technology, China
| | - Chan Li
- National Center for Nanoscience and Technology, China
| | | | | |
Collapse
|
33
|
Zhang S, Zheng Y, Fu DY, Li W, Wu Y, Li B, Wu L. Biocompatible supramolecular dendrimers bearing a gadolinium-substituted polyanionic core for MRI contrast agents. J Mater Chem B 2017; 5:4035-4043. [DOI: 10.1039/c6tb03263j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two hybrid supramolecular complexes comprising magnetic core and dendritic periphery were prepared, which exhibited uniform size, definite molecular weight and chemical composition, and were applicable as enhanced contrast agents.
Collapse
Affiliation(s)
- Simin Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yanmei Zheng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| |
Collapse
|
34
|
Li X, Sun L, Wei X, Luo Q, Cai H, Xiao X, Zhu H, Luo K. Stimuli-responsive biodegradable and gadolinium-based poly[N-(2-hydroxypropyl) methacrylamide] copolymers: their potential as targeting and safe magnetic resonance imaging probes. J Mater Chem B 2017; 5:2763-2774. [PMID: 32264163 DOI: 10.1039/c6tb03253b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Functionalized and biodegradable block pHPMA copolymer–gadolinium conjugates demonstrated good biocompatibility, high T1 relaxivity, and enhanced tumor signal intensity for MRI.
Collapse
Affiliation(s)
- Xue Li
- Laboratory of Stem Cell Biology
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu
| | - Ling Sun
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Xiaoli Wei
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Hao Cai
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Xueyang Xiao
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| |
Collapse
|
35
|
Russo M, Bevilacqua P, Netti PA, Torino E. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI. Sci Rep 2016; 6:37906. [PMID: 27901092 PMCID: PMC5128828 DOI: 10.1038/srep37906] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.
Collapse
Affiliation(s)
- Maria Russo
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy
| | - Paolo Bevilacqua
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,IRCCS Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy
| | - Enza Torino
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy
| |
Collapse
|
36
|
Diaferia C, Gianolio E, Accardo A, Morelli G. Gadolinium containing telechelic PEG-polymers end-capped by di-phenylalanine motives as potential supramolecular MRI contrast agents. J Pept Sci 2016; 23:122-130. [DOI: 10.1002/psc.2942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB); University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science; University of Turin; Via Nizza 52 10125 Turin Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB); University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB); University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| |
Collapse
|
37
|
Johnson NJJ, He S, Nguyen Huu VA, Almutairi A. Compact Micellization: A Strategy for Ultrahigh T1 Magnetic Resonance Contrast with Gadolinium-Based Nanocrystals. ACS NANO 2016; 10:8299-8307. [PMID: 27588579 DOI: 10.1021/acsnano.6b02559] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Paramagnetic gadolinium (Gd(3+))-based nanocrystals (NCs) with a large number of confined gadolinium ions can be expected to heavily enhance the longitudinal (T1) relaxation of water protons compared to clinical gadolinium complexes with only a single paramagnetic center. However, paramagnetic Gd(3+)-NCs reported to date show only a modest T1 relaxivity of ∼10 mM(-1) s(-1) per Gd(3+) at 1.5 T, only about 3-times higher than clinical Gd(3+) complexes. Here we demonstrate a strategy that achieves ultrahigh T1 relaxivity that is about 25-times higher than clinical Gd(3+) complexes by controlling the proximity of water protons to a paramagnetic NC surface. Using NaGdF4 NCs (∼3 nm) coated with PEG-ylated phospholipid (DSPE-PEG) micelles, we show that the distance of water protons to the NCs surface can be tuned by controlling the NC-micelle sizes. Increasing the ratio of DSPE-PEG to NCs during micellization decreases the size of NC-micelles, enhancing the proximity of water to the NC surface. Using this strategy, we have achieved compact NC-micelles (hydrodynamic diameter, HD ∼ 5 nm) with ultrahigh T1 relaxivity of ∼80 mM(-1) s(-1) per Gd(3+) at 1.41 T. The findings reported here demonstrate a nanostructured Gd(3+)-contrast agent (CA) that simultaneously achieves an ultrahigh T1 relaxivity approaching theoretical predictions, extremely compact size (HD < 5 nm), and a biocompatible surface. Our results show the hitherto unknown ultrahigh T1 relaxation enhancement of water protons in close proximity to a colloidal gadolinium-NC surface that is achievable by precise control of their surface structure.
Collapse
Affiliation(s)
- Noah J J Johnson
- Skaggs School of Pharmacy and Pharmaceutical Sciences and ‡Department of NanoEngineering, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sha He
- Skaggs School of Pharmacy and Pharmaceutical Sciences and ‡Department of NanoEngineering, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Viet Anh Nguyen Huu
- Skaggs School of Pharmacy and Pharmaceutical Sciences and ‡Department of NanoEngineering, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences and ‡Department of NanoEngineering, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
38
|
Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016; 8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.
Collapse
|
39
|
Sun L, Li X, Wei X, Luo Q, Guan P, Wu M, Zhu H, Luo K, Gong Q. Stimuli-Responsive Biodegradable Hyperbranched Polymer–Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10499-512. [PMID: 27043102 DOI: 10.1021/acsami.6b00980] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Sun
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue Li
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoli Wei
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Luo
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pujun Guan
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Wu
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kui Luo
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
40
|
Lesniak WG, Oskolkov N, Song X, Lal B, Yang X, Pomper M, Laterra J, Nimmagadda S, McMahon MT. Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform. NANO LETTERS 2016; 16:2248-53. [PMID: 26910126 PMCID: PMC4890470 DOI: 10.1021/acs.nanolett.5b04517] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a novel MRI contrast mechanism that is well suited for imaging, however, existing small molecule CEST agents suffer from low sensitivity. We have developed salicylic acid conjugated dendrimers as a versatile, high performance nanoplatform. In particular, we have prepared nanocarriers based on generation 5-poly(amidoamine) (PAMAM) dendrimers with salicylic acid covalently attached to their surface. The resulting conjugates produce strong CEST contrast 9.4 ppm from water with the proton exchange tunable from ∼1000 s(-1) to ∼4500 s(-1) making these dendrimers well suited for sensitive detection. Furthermore, we demonstrate that these conjugates can be used for monitoring convection enhanced delivery into U87 glioblastoma bearing mice, with the contrast produced by these nanoparticles persisting for over 1.5 h and distributed over ∼50% of the tumors. Our results demonstrate that SA modified dendrimers present a promising new nanoplatform for medical applications.
Collapse
Affiliation(s)
- Wojciech G. Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Nikita Oskolkov
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Xiaolei Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Bachchu Lal
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Xing Yang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Martin Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - John Laterra
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21287, United States
| |
Collapse
|
41
|
Hu H, Arena F, Gianolio E, Boffa C, Di Gregorio E, Stefania R, Orio L, Baroni S, Aime S. Mesoporous silica nanoparticles functionalized with fluorescent and MRI reporters for the visualization of murine tumors overexpressing αvβ3 receptors. NANOSCALE 2016; 8:7094-7104. [PMID: 26960989 DOI: 10.1039/c5nr08878j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (∼30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM(-1) s(-1) at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.
Collapse
Affiliation(s)
- He Hu
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Francesca Arena
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Cinzia Boffa
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Rachele Stefania
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Laura Orio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Simona Baroni
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.
| |
Collapse
|
42
|
Mao X, Xu J, Cui H. Functional nanoparticles for magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:814-841. [PMID: 27040463 DOI: 10.1002/wnan.1400] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/01/2016] [Accepted: 02/15/2016] [Indexed: 12/16/2022]
Abstract
Nanoparticle-based magnetic resonance imaging (MRI) contrast agents have received much attention over the past decade. By virtue of a high payload of magnetic moieties, enhanced accumulation at disease sites, and a large surface area for additional modification with targeting ligands, nanoparticle-based contrast agents offer promising new platforms to further enhance the high resolution and sensitivity of MRI for various biomedical applications. T 2 * superparamagnetic iron oxide nanoparticles (SPIONs) first demonstrated superior improvement on MRI sensitivity. The prevailing SPION attracted growing interest in the development of refined nanoscale versions of MRI contrast agents. Afterwards, T 1 -based contrast agents were developed, and became the most studied subject in MRI due to the positive contrast they provide that avoids the susceptibility associated with MRI signal reduction. Recently, chemical exchange saturation transfer (CEST) contrast agents have emerged and rapidly gained popularity. The unique aspect of CEST contrast agents is that their contrast can be selectively turned 'on' and 'off' by radiofrequency saturation. Their performance can be further enhanced by incorporating a large number of exchangeable protons into well-defined nanostructures. Besides activatable CEST contrast agents, there is growing interest in developing nanoparticle-based activatable MRI contrast agents responsive to stimuli (pH, enzyme, etc.), which improves sensitivity and specificity. In this review, we summarize the recent development of various types of nanoparticle-based MRI contrast agents, and have focused our discussions on the key advantages of introducing nanoparticles in MRI. WIREs Nanomed Nanobiotechnol 2016, 8:814-841. doi: 10.1002/wnan.1400 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xinpei Mao
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA. .,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA. .,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Doppalapudi S, Jain A, Domb AJ, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv 2016; 13:891-909. [DOI: 10.1517/17425247.2016.1156671] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sindhu Doppalapudi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anjali Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Abraham J. Domb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
44
|
Harris M, Vander Elst L, Laurent S, Parac-Vogt TN. Magnetofluorescent micelles incorporating Dy(III)-DOTA as potential bimodal agents for optical and high field magnetic resonance imaging. Dalton Trans 2016; 45:4791-801. [PMID: 26865457 DOI: 10.1039/c5dt04801j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dysprosium(iii) was coordinated to four 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) bisamide derivatives functionalized with amphiphilic p-dodecylaniline and p-tetradecylaniline in a differing cis- and trans-orientation. The complexes were assembled into mono-disperse micelles having size distribution maxima ranging from 10 to 15 nm and the magnetic and optical properties of the micelles were examined in detail. The micelles show characteristic Dy(iii) emission with quantum yields reaching 0.8%. The transverse relaxivity r2 per Dy(iii) ion at 500 MHz and 310 K reaches maximum values of ca. 20 s(-1) mM(-1) which is a large increase when compared to a value of 0.8 s(-1) mM(-1) observed for Dy(III)-DTPA. The micelles were stable in water when incubated at 37 °C for 1 week and showed no relaxivity decrease when measured in the presence of 4% (w/v) human serum albumin. The efficient T2 relaxation, especially at strong magnetic fields, is sustained by the high magnetic moment of the dysprosium(iii) ion, the coordination of water molecules and long rotational correlation times.
Collapse
Affiliation(s)
- Michael Harris
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
45
|
Anbazhagan R, Su YA, Tsai HC, Jeng RJ. MoS2-Gd Chelate Magnetic Nanomaterials with Core-Shell Structure Used as Contrast Agents in in Vivo Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1827-1835. [PMID: 26714060 DOI: 10.1021/acsami.5b09722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite their frequent usages as contrast agents for in vivo MRI imaging, paramagnetic molecules continue to suffer from low resolution, physicochemical instability, and high toxicity. Herein, we present a molybdenum disulfide and gadolinium complex, as an alternative core-shell magnetic nanomaterial that exhibits enhanced paramagnetic property; 4.5-times longer water proton spin-lattice relaxation time (T1) when compared to commercial gadolinium contrast agents; as well as lowered toxicity, extended blood circulation time, increased stability, and desirable excretion characteristic. Transmission electron microscopy (TEM) revealed smooth core-shell nanoparticles 100 nm in size with a shell width of approximately 10 nm. These findings suggest that the synthesized nanomaterial possesses high potential as a positive contrast agent for the enhancement of MRI imaging.
Collapse
Affiliation(s)
- Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan
| | - Yu-An Su
- Institute Polymer Science and Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan
| | - Ru-Jong Jeng
- Institute Polymer Science and Engineering, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
46
|
Guo C, Sun L, She W, Li N, Jiang L, Luo K, Gong Q, Gu Z. A dendronized heparin–gadolinium polymer self-assembled into a nanoscale system as a potential magnetic resonance imaging contrast agent. Polym Chem 2016. [DOI: 10.1039/c6py00059b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An amphiphilic dendronized heparin–gadolinium conjugate self-assembles into a nanoscale system by a combination of the features of the nanoparticle, dendrimer and heparin. The nanoscale system demonstrates great potential as an efficient and safe MRI contrast agent.
Collapse
Affiliation(s)
- Chunhua Guo
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Ling Sun
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Wenchuan She
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Ning Li
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Lei Jiang
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Kui Luo
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Qiyong Gong
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
47
|
Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/978-3-662-48544-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Han Y, Qian Y, Zhou X, Hu H, Liu X, Zhou Z, Tang J, Shen Y. Facile synthesis of zwitterionic polyglycerol dendrimers with a β-cyclodextrin core as MRI contrast agent carriers. Polym Chem 2016. [DOI: 10.1039/c6py01404f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile synthesis method of a zwitterionic polyglycerol dendrimer was developed, providing an ideal carrier for drug and imaging probe delivery.
Collapse
Affiliation(s)
- Yuxin Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Yue Qian
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Xiaoxuan Zhou
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Hongjie Hu
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| |
Collapse
|
49
|
Chen R, Ling D, Zhao L, Wang S, Liu Y, Bai R, Baik S, Zhao Y, Chen C, Hyeon T. Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents. ACS NANO 2015; 9:12425-12435. [PMID: 26567968 DOI: 10.1021/acsnano.5b05783] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Magnetic resonance imaging (MRI) contrast agents with high relaxivity are highly desirable because they can significantly increase the accuracy of diagnosis. However, they can be potentially toxic to the patients. In this study, using a mouse model, we investigate the toxic effects and subsequent tissue damage induced by three T1 MRI contrast agents: gadopentetate dimeglumine injection (GDI), a clinically used gadolinium (Gd)-based contrast agent (GBCAs), and oxide nanoparticle (NP)-based contrast agents, extremely small-sized iron oxide NPs (ESIONs) and manganese oxide (MnO) NPs. Biodistribution, hematological and histopathological changes, inflammation, and the endoplasmic reticulum (ER) stress responses are evaluated for 24 h after intravenous injection. These thorough assessments of the toxic and stress responses of these agents provide a panoramic description of safety concerns and underlying mechanisms of the toxicity of contrast agents in the body. We demonstrate that ESIONs exhibit fewer adverse effects than the MnO NPs and the clinically used GDI GBCAs, providing useful information on future applications of ESIONs as potentially safe MRI contrast agents.
Collapse
Affiliation(s)
- Rui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, P. R. China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, Zhejiang University , Hangzhou 310058, P. R. China
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Lin Zhao
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, P. R. China
| | - Shuaifei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Ying Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, P. R. China
| | - Ru Bai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, P. R. China
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Yuliang Zhao
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, P. R. China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, P. R. China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| |
Collapse
|
50
|
Dong J, Liu M, Zhang K, Cao Y, Jiang B, Zu G, Pei R. Biocleavable Oligolysine-Grafted Poly(disulfide amine)s as Magnetic Resonance Imaging Probes. Bioconjug Chem 2015; 27:151-8. [DOI: 10.1021/acs.bioconjchem.5b00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingjin Dong
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano
Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Min Liu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kunchi Zhang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Jiang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangyue Zu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|