1
|
Takemi M, Tia B, Kosugi A, Castagnola E, Ansaldo A, Ricci D, Fadiga L, Ushiba J, Iriki A. Posture-dependent modulation of marmoset cortical motor maps detected via rapid multichannel epidural stimulation. Neuroscience 2024; 560:263-271. [PMID: 39368606 DOI: 10.1016/j.neuroscience.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Recent neuroimaging and electrophysiological studies have suggested substantial short-term plasticity in the topographic maps of the primary motor cortex (M1). However, previous methods lack the temporal resolution to detect rapid modulation of these maps, particularly in naturalistic conditions. To address this limitation, we previously developed a rapid stimulation mapping procedure with implanted cortical surface electrodes. In this study, employing our previously established procedure, we examined rapid topographical changes in forelimb M1 motor maps in three awake male marmoset monkeys. The results revealed that although the hotspot (the location in M1 that elicited a forelimb muscle twitch with the lowest stimulus intensity) remained constant across postures, the stimulus intensity required to elicit the forelimb muscle twitch in the perihotspot region and the size of motor representations were posture-dependent. Hindlimb posture was particularly effective in inducing these modulations. The angle of the body axis relative to the gravitational vertical line did not alter the motor maps. These results provide a proof of concept that a rapid stimulation mapping system with chronically implanted cortical electrodes can capture the dynamic regulation of forelimb motor maps in natural conditions. Moreover, they suggest that posture is a crucial variable to be controlled in future studies of motor control and cortical plasticity. Further exploration is warranted into the neural mechanisms regulating forelimb muscle representations in M1 by the hindlimb sensorimotor state.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Japan Science and Technology Agency, PRESTO, Saitama, Japan
| | - Banty Tia
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Akito Kosugi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
2
|
Shin Y, Ryu J, Bai T, Qiang Y, Qi Y, Li G, Huang Y, Seo KJ, Fang H. Array-wide uniform PEDOT:PSS electroplating from potentiostatic deposition. Biosens Bioelectron 2024; 261:116418. [PMID: 38875864 PMCID: PMC11214878 DOI: 10.1016/j.bios.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Electroplating of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is important in many neuroelectronic applications but is challenging to achieve uniformity on large-scale microelectrode arrays (MEA) using conventional galvanostatic methods. In this study, we address this challenge through a potentiostatic method and demonstrate highly uniform electroplating of PEDOT:PSS on MEA with more than one hundred electrodes, all at cellular sizes. The validation of this approach involves comparisons with galvanostatic deposition methods, showcasing unparalleled deposition yield and uniformity. Systematic electrochemical characterizations reveal similarities in structure and stability from potentiostatic deposited coatings. The advances developed here establish the potentiostatic method and detailed process to achieve a uniform coating of PEDOT:PSS on large-scale MEA, with broad utility in neuroelectronics.
Collapse
Affiliation(s)
- Yieljae Shin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Kim M, Lee H, Nam S, Kim DH, Cha GD. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering. Acc Chem Res 2024; 57:1633-1647. [PMID: 38752397 DOI: 10.1021/acs.accounts.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The identification of neural networks for large areas and the regulation of neuronal activity at the single-neuron scale have garnered considerable attention in neuroscience. In addition, detecting biochemical molecules and electrically, optically, and chemically controlling neural functions are key research issues. However, conventional rigid and bulky bioelectronics face challenges for neural applications, including mechanical mismatch, unsatisfactory signal-to-noise ratio, and poor integration of multifunctional components, thereby degrading the sensing and modulation performance, long-term stability and biocompatibility, and diagnosis and therapy efficacy. Implantable bioelectronics have been developed to be mechanically compatible with the brain environment by adopting advanced geometric designs and utilizing intrinsically stretchable materials, but such advances have not been able to address all of the aforementioned challenges.Recently, the exploration of nanomaterial synthesis and nanoscale fabrication strategies has facilitated the design of unconventional soft bioelectronics with mechanical properties similar to those of neural tissues and submicrometer-scale resolution comparable to typical neuron sizes. The introduction of nanotechnology has provided bioelectronics with improved spatial resolution, selectivity, single neuron targeting, and even multifunctionality. As a result, this state-of-the-art nanotechnology has been integrated with bioelectronics in two main types, i.e., bioelectronics integrated with synthesized nanomaterials and bioelectronics with nanoscale structures. The functional nanomaterials can be synthesized and assembled to compose bioelectronics, allowing easy customization of their functionality to meet specific requirements. The unique nanoscale structures implemented with the bioelectronics could maximize the performance in terms of sensing and stimulation. Such soft nanobioelectronics have demonstrated their applicability for neuronal recording and modulation over a long period at the intracellular level and incorporation of multiple functions, such as electrical, optical, and chemical sensing and stimulation functions.In this Account, we will discuss the technical pathways in soft bioelectronics integrated with nanomaterials and implementing nanostructures for application to neuroengineering. We traced the historical development of bioelectronics from rigid and bulky structures to soft and deformable devices to conform to neuroengineering requirements. Recent approaches that introduced nanotechnology into neural devices enhanced the spatiotemporal resolution and endowed various device functions. These soft nanobioelectronic technologies are discussed in two categories: bioelectronics with synthesized nanomaterials and bioelectronics with nanoscale structures. We describe nanomaterial-integrated soft bioelectronics exhibiting various functionalities and modalities depending on the integrated nanomaterials. Meanwhile, soft bioelectronics with nanoscale structures are explained with their superior resolution and unique administration methods. We also exemplified the neural sensing and stimulation applications of soft nanobioelectronics across various modalities, showcasing their clinical applications in the treatment of neurological diseases, such as brain tumors, epilepsy, and Parkinson's disease. Finally, we discussed the challenges and direction of next-generation technologies.
Collapse
Affiliation(s)
- Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
4
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
5
|
Yang S, Xu K, Guan S, Zou L, Gao L, Wang J, Tian H, Li H, Fang Y, Li H. Polymer nanofiber network reinforced gold electrode array for neural activity recording. Biomed Eng Lett 2023; 13:111-118. [PMID: 37124105 PMCID: PMC10130319 DOI: 10.1007/s13534-022-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-022-00257-5.
Collapse
Affiliation(s)
- Siting Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shouliang Guan
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Gao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinfen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Hui Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Hongbian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| |
Collapse
|
6
|
Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021; 22:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022]
Abstract
Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided.
Collapse
Affiliation(s)
- Zerin M Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Emily Wilts
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy E Long
- Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85287, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
7
|
Rocha I, Cerqueira G, Varella Penteado F, Córdoba de Torresi SI. Electrical Stimulation and Conductive Polymers as a Powerful Toolbox for Tailoring Cell Behaviour in vitro. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:670274. [PMID: 35047926 PMCID: PMC8757900 DOI: 10.3389/fmedt.2021.670274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Electrical stimulation (ES) is a well-known method for guiding the behaviour of nerve cells in in vitro systems based on the response of these cells to an electric field. From this perspective, understanding how the electrochemical stimulus can be tuned for the design of a desired cell response is of great importance. Most biomedical studies propose the application of an electrical potential to cell culture arrays while examining the cell response regarding viability, morphology, and gene expression. Conversely, various studies failed to evaluate how the fine physicochemical properties of the materials used for cell culture influence the observed behaviours. Among the various materials used for culturing cells under ES, conductive polymers (CPs) are widely used either in pristine form or in addition to other polymers. CPs themselves do not possess the optimal surface for cell compatibility because of their hydrophobic nature, which leads to poor protein adhesion and, hence, poor bioactivity. Therefore, understanding how to tailor the chemical properties on the material surface will determine the obtention of improved ES platforms. Moreover, the structure of the material, either in a thin film or in porous electrospun scaffolds, also affects the biochemical response and needs to be considered. In this review, we examine how materials based on CPs influence cell behaviour under ES, and we compile the various ES setups and physicochemical properties that affect cell behaviour. This review concerns the culture of various cell types, such as neurons, fibroblasts, osteoblasts, and Schwann cells, and it also covers studies on stem cells prone to ES. To understand the mechanistic behaviour of these devices, we also examine studies presenting a more detailed biomolecular level of interaction. This review aims to guide the design of future ES setups regarding the influence of material properties and electrochemical conditions on the behaviour of in vitro cell studies.
Collapse
Affiliation(s)
- Igor Rocha
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
8
|
Delfino E, Pastore A, Zucchini E, Cruz MFP, Ius T, Vomero M, D'Ausilio A, Casile A, Skrap M, Stieglitz T, Fadiga L. Prediction of Speech Onset by Micro-Electrocorticography of the Human Brain. Int J Neural Syst 2021; 31:2150025. [PMID: 34130614 DOI: 10.1142/s0129065721500258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent technological advances show the feasibility of offline decoding speech from neuronal signals, paving the way to the development of chronically implanted speech brain computer interfaces (sBCI). Two key steps that still need to be addressed for the online deployment of sBCI are, on the one hand, the definition of relevant design parameters of the recording arrays, on the other hand, the identification of robust physiological markers of the patient's intention to speak, which can be used to online trigger the decoding process. To address these issues, we acutely recorded speech-related signals from the frontal cortex of two human patients undergoing awake neurosurgery for brain tumors using three different micro-electrocorticographic ([Formula: see text]ECoG) devices. First, we observed that, at the smallest investigated pitch (600[Formula: see text][Formula: see text]m), neighboring channels are highly correlated, suggesting that more closely spaced electrodes would provide some redundant information. Second, we trained a classifier to recognize speech-related motor preparation from high-gamma oscillations (70-150[Formula: see text]Hz), demonstrating that these neuronal signals can be used to reliably predict speech onset. Notably, our model generalized both across subjects and recording devices showing the robustness of its performance. These findings provide crucial information for the design of future online sBCI.
Collapse
Affiliation(s)
- Emanuela Delfino
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Aldo Pastore
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Elena Zucchini
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Maria Francisca Porto Cruz
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 102, Freiburg im Breisgau 79110, Germany
| | - Tamara Ius
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria, della Misericordia, Piazzale Santa Maria, della Misericordia 15, Udine 33100, Italy
| | - Maria Vomero
- Bioelectronic Systems Laboratory, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Antonino Casile
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Miran Skrap
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria, della Misericordia, Piazzale Santa Maria, della Misericordia 15, Udine 33100, Italy
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 102, Freiburg im Breisgau 79110, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 80, Freiburg im Breisgau 79110, Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| |
Collapse
|
9
|
Zheng XS, Tan C, Castagnola E, Cui XT. Electrode Materials for Chronic Electrical Microstimulation. Adv Healthc Mater 2021; 10:e2100119. [PMID: 34029008 PMCID: PMC8257249 DOI: 10.1002/adhm.202100119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents. Meanwhile, prolonged stimulation may lead to electrode material degradation., which can be accelerated by the hostile inflammatory environment. Both material degradation and adverse tissue reactions can compromise stimulation performance over time. For stable chronic electrical stimulation, an ideal microelectrode must present 1) high charge injection limit, to efficiently deliver charge without exceeding safety limits for both tissue and electrodes, 2) small size, to gain high spatial selectivity, 3) excellent biocompatibility that ensures tissue health immediately next to the device, and 4) stable in vivo electrochemical properties over the application period. In this review, the challenges in chronic microstimulation are described in detail. To aid material scientists interested in neural stimulation research, the in vitro and in vivo testing methods are introduced for assessing stimulation functionality and longevity and a detailed overview of recent advances in electrode material research and device fabrication for improving chronic microstimulation performance is provided.
Collapse
Affiliation(s)
- Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chao Tan
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
10
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|
11
|
Liu S, Zhao Y, Hao W, Zhang XD, Ming D. Micro- and nanotechnology for neural electrode-tissue interfaces. Biosens Bioelectron 2020; 170:112645. [DOI: 10.1016/j.bios.2020.112645] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/14/2023]
|
12
|
Tia B, Takemi M, Kosugi A, Castagnola E, Ricci D, Ushiba J, Fadiga L, Iriki A. Spectral Power in Marmoset Frontal Motor Cortex during Natural Locomotor Behavior. Cereb Cortex 2020; 31:1077-1089. [PMID: 33068002 PMCID: PMC7786367 DOI: 10.1093/cercor/bhaa275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
During primate arboreal locomotion, substrate orientation modifies body axis orientation and biomechanical contribution of fore- and hindlimbs. To characterize the role of cortical oscillations in integrating these locomotor demands, we recorded electrocorticographic activity from left dorsal premotor, primary motor, and supplementary motor cortices of three common marmosets moving across a branch-like small-diameter pole, fixed horizontally or vertically. Animals displayed behavioral adjustments to the task, namely, the horizontal condition mainly induced quadrupedal walk with pronated/neutral forelimb postures, whereas the vertical condition induced walk and bound gaits with supinated/neutral postures. Examination of cortical activity suggests that β (16–35 Hz) and γ (75–100 Hz) oscillations could reflect different processes in locomotor adjustments. During task, modulation of γ ERS by substrate orientation (horizontal/vertical) and epoch (preparation/execution) suggests close tuning to movement dynamics and biomechanical demands. β ERD was essentially modulated by gait (walk/bound), which could illustrate contribution to movement sequence and coordination. At rest, modulation of β power by substrate orientation underlines its role in sensorimotor processes for postural maintenance.
Collapse
Affiliation(s)
- Banty Tia
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.,Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, 44121, Italy
| | - Mitsuaki Takemi
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.,Graduate School of Science and Technology, Keio University, Yokohama, 223-8522, Japan.,Graduate School of Education, The University of Tokyo, Tokyo, 113-8654, Japan.,Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan
| | - Akito Kosugi
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.,Graduate School of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, 44121, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, 44121, Italy
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, 44121, Italy.,Section of Physiology, University of Ferrara, Ferrara, 44121, Italy
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| |
Collapse
|
13
|
Chen N, Luo B, Patil AC, Wang J, Gammad GGL, Yi Z, Liu X, Yen SC, Ramakrishna S, Thakor NV. Nanotunnels within Poly(3,4-ethylenedioxythiophene)-Carbon Nanotube Composite for Highly Sensitive Neural Interfacing. ACS NANO 2020; 14:8059-8073. [PMID: 32579337 DOI: 10.1021/acsnano.0c00672] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Neural electrodes are developed for direct communication with neural tissues for theranostics. Although various strategies have been employed to improve performance, creating an intimate electrode-tissue interface with high electrical fidelity remains a great challenge. Here, we report the rational design of a tunnel-like electrode coating comprising poly(3,4-ethylenedioxythiophene) (PEDOT) and carbon nanotubes (CNTs) for highly sensitive neural recording. The coated electrode shows a 50-fold reduction in electrochemical impedance at the biologically relevant frequency of 1 kHz, compared to the bare gold electrode. The incorporation of CNT significantly reinforces the nanotunnel structure and improves coating adhesion by ∼1.5 fold. In vitro primary neuron culture confirms an intimate contact between neurons and the PEDOT-CNT nanotunnel. During acute in vivo nerve recording, the coated electrode enables the capture of high-fidelity neural signals with low susceptibility to electrical noise and reveals the potential for precisely decoding sensory information through mechanical and thermal stimulation. These findings indicate that the PEDOT-CNT nanotunnel composite serves as an active interfacing material for neural electrodes, contributing to neural prosthesis and brain-machine interface.
Collapse
Affiliation(s)
- Nuan Chen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
- SINAPSE Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Baiwen Luo
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Anoop C Patil
- SINAPSE Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Jiahui Wang
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | | | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shih-Cheng Yen
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Nitish V Thakor
- SINAPSE Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Saracino E, Maiolo L, Polese D, Semprini M, Borrachero-Conejo AI, Gasparetto J, Murtagh S, Sola M, Tomasi L, Valle F, Pazzini L, Formaggio F, Chiappalone M, Hussain S, Caprini M, Muccini M, Ambrosio L, Fortunato G, Zamboni R, Convertino A, Benfenati V. A Glial-Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. ACTA ACUST UNITED AC 2020; 4:e1900264. [PMID: 32293156 DOI: 10.1002/adbi.201900264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Indexed: 01/02/2023]
Abstract
The correct human brain function is dependent on the activity of non-neuronal cells called astrocytes. The bioelectrical properties of astrocytes in vitro do not closely resemble those displayed in vivo and the former are incapable of generating action potential; thus, reliable approaches in vitro for noninvasive electrophysiological recording of astrocytes remain challenging for biomedical engineering. Here it is found that primary astrocytes grown on a device formed by a forest of randomly oriented gold coated-silicon nanowires, resembling the complex structural and functional phenotype expressed by astrocytes in vivo. The device enables noninvasive extracellular recording of the slow-frequency oscillations generated by differentiated astrocytes, while flat electrodes failed on recording signals from undifferentiated cells. Pathophysiological concentrations of extracellular potassium, occurring during epilepsy and spreading depression, modulate the power of slow oscillations generated by astrocytes. A reliable approach to study the role of astrocytes function in brain physiology and pathologies is presented.
Collapse
Affiliation(s)
- Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Luca Maiolo
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Davide Polese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - M Semprini
- Fondazione Istituto Italiano di Tecnologia (IIT), Rehab Technologies IIT-INAIL Lab, Via Morego 30, 16163, Genova, Italy
| | - Ana Isabel Borrachero-Conejo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Jacopo Gasparetto
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Stefano Murtagh
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Margherita Sola
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Lorenzo Tomasi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Luca Pazzini
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Francesco Formaggio
- Università di Bologna, Dipartimento di Farmacia e Biotecnologie FaBit, University of Bologna, via San Donato 19/2, 40127, Bologna, Italy
| | - Michela Chiappalone
- Fondazione Istituto Italiano di Tecnologia (IIT), Rehab Technologies IIT-INAIL Lab, Via Morego 30, 16163, Genova, Italy
| | - Saber Hussain
- US Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Marco Caprini
- Università di Bologna, Dipartimento di Farmacia e Biotecnologie FaBit, University of Bologna, via San Donato 19/2, 40127, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Luigi Ambrosio
- Istituto per i Polimeri Composti e i Biomateriali, Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20, 80125, Napoli, Italy
| | - Guglielmo Fortunato
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Annalisa Convertino
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
15
|
Carli S, Bianchi M, Zucchini E, Di Lauro M, Prato M, Murgia M, Fadiga L, Biscarini F. Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Adv Healthc Mater 2019; 8:e1900765. [PMID: 31489795 DOI: 10.1002/adhm.201900765] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/09/2019] [Indexed: 01/12/2023]
Abstract
Microelectrode arrays are used for recording and stimulation in neurosciences both in vitro and in vivo. The electrodeposition of conductive polymers, such as poly(3,4-ethylene dioxythiophene) (PEDOT), is widely adopted to improve both the in vivo recording and the charge injection limit of metallic microelectrodes. The workhorse of conductive polymers in the neurosciences is PEDOT:PSS, where PSS represents polystyrene-sulfonate. In this paper, the counterion is the fluorinated polymer Nafion, so the composite PEDOT:Nafion is deposited onto a flexible neural microelectrode array. PEDOT:Nafion coated electrodes exhibit comparable in vivo recording capability to the reference PEDOT:PSS, providing a large signal-to-noise ratio in a murine animal model. Importantly, PEDOT:Nafion exhibits a minimized polarization during electrical stimulation, thereby resulting in an improved charge injection limit equal to 4.4 mC cm-2 , almost 80% larger than the 2.5 mC cm-2 that is observed for PEDOT:PSS.
Collapse
Affiliation(s)
- Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
| | - Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
| | - Elena Zucchini
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
- Section of Human PhysiologyUniversity of Ferrara 44121 Ferrara Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
| | - Mirko Prato
- Materials Characterization FacilityIstituto Italiano di Tecnologia 16163 Genova Italy
| | - Mauro Murgia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)CNR 40129 Bologna Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
- Section of Human PhysiologyUniversity of Ferrara 44121 Ferrara Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
- Department of Life SciencesUniversity of Modena and Reggio Emilia 41125 Modena Italy
| |
Collapse
|
16
|
Kosugi A, Castagnola E, Carli S, Ricci D, Fadiga L, Taoka M, Iriki A, Ushiba J. Fast Electrophysiological Mapping of Rat Cortical Motor Representation on a Time Scale of Minutes during Skin Stimulation. Neuroscience 2019; 414:245-254. [PMID: 31301365 DOI: 10.1016/j.neuroscience.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
The topographic map of motor cortical representation, called the motor map, is not invariant, but can be altered by motor learning, neurological injury, and functional recovery from injury. Although much attention has been paid to short-term changes of the motor map, robust measures have not been established. The existing mapping methods are time-consuming, and the obtained maps are confounded by time preference. The purpose of this study was to examine the dynamics of the motor map on a timescale of minutes during transient somatosensory input by a fast motor mapping technique. We applied 32-channel micro-electrocorticographic electrode arrays to the rat sensorimotor cortex for cortical stimulation, and the topographic profile of motor thresholds in forelimb muscle was identified by fast motor mapping. Sequential motor maps were obtained every few minutes before, during, and just after skin stimulation to the dorsal forearm using a wool buff. During skin stimulation, the motor map expanded and the center of gravity of the map was shifted caudally. The expansion of the map persisted for at least a few minutes after the end of skin stimulation. Although the motor threshold of the hotspot was not changed, the area in which it was decreased appeared caudally to the hotspot, which may be in the somatosensory cortex. The present study demonstrated rapid enlargement of the forelimb motor map in the order of a few minutes induced by skin stimulation. This helps to understand the spatial dynamism of motor cortical representation that is modulated rapidly by somatosensory input.
Collapse
Affiliation(s)
- Akito Kosugi
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Center for Sensorimotor Neural Engineering, San Diego State University, San Diego, CA, United States
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Junichi Ushiba
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Keio Institute of Pure and Applied Sciences, Keio University, Kanagawa, Japan.
| |
Collapse
|
17
|
Goding J, Vallejo-Giraldo C, Syed O, Green R. Considerations for hydrogel applications to neural bioelectronics. J Mater Chem B 2019; 7:1625-1636. [DOI: 10.1039/c8tb02763c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels have garnered interest as materials in bioelectronics due to the capacity to tailor their properties. Appropriate selection and design of hydrogel systems for this application requires an understanding of the physical, chemical and biological properties as well as their structure–property relationships.
Collapse
Affiliation(s)
- Josef Goding
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | | | - Omaer Syed
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | - Rylie Green
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| |
Collapse
|
18
|
Xiao Y, Chen X, Wang T, Yang X, Mitchell J. Nitrogen-doped graphene combined with bioactive conducting polymer: An ideal platform for neural interface. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yinghong Xiao
- Department of Polymeric Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Material Science; Nanjing Normal University; Nanjing 210046 People's Republic of China
- Nanomaterials Center, College of Dentistry and College of Engineering; Howard University; Washington DC 20059
| | - Xue Chen
- Department of Polymeric Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Material Science; Nanjing Normal University; Nanjing 210046 People's Republic of China
| | - Tongxin Wang
- Nanomaterials Center, College of Dentistry and College of Engineering; Howard University; Washington DC 20059
| | - Xiaodi Yang
- Department of Polymeric Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Material Science; Nanjing Normal University; Nanjing 210046 People's Republic of China
| | - James Mitchell
- Nanomaterials Center, College of Dentistry and College of Engineering; Howard University; Washington DC 20059
| |
Collapse
|
19
|
A novel neural electrode with micro-motion-attenuation capability based on compliant mechanisms—physical design concepts and evaluations. Med Biol Eng Comput 2018; 56:1911-1923. [DOI: 10.1007/s11517-018-1826-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
|
20
|
Belu A, Yilmaz M, Neumann E, Offenhäusser A, Demirel G, Mayer D. Asymmetric, nano-textured surfaces influence neuron viability and polarity. J Biomed Mater Res A 2018; 106:1634-1645. [PMID: 29427541 DOI: 10.1002/jbm.a.36363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Three dimensional, nanostructured surfaces have attracted considerable attention in biomedical research since they have proven to represent a powerful platform to influence cell fate. In particular, nanorods and nanopillars possess great potential for the control of cell adhesion and differentiation, gene and biomolecule delivery, optical and electrical stimulation and recording, as well as cell patterning. Here, we investigate the influence of asymmetric poly(dichloro-p-xylene) (PPX) columnar films on the adhesion and maturation of cortical neurons. We show that nanostructured films with dense, inclined polymer columns can support viable primary neuronal culture. The cell-nanostructure interface is characterized showing a minimal cell penetration but strong adhesion on the surface. Moreover, we quantify the influence of the nano-textured surface on the neural development (soma size, neuritogenesis, and polarity) in comparison to a planar PPX sample. We demonstrate that the nanostructures facilitates an enhancement in neurite branching as well as elongation of axons and growth cones. Furthermore, we show for the first time that the asymmetric orientation of polymeric nanocolumns strongly influences the initiation direction of the axon formation. These results evidence that 3D nano-topographies can significantly change neural development and can be used to engineer axon elongation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1634-1645, 2018.
Collapse
Affiliation(s)
- Andreea Belu
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| | - Mehmet Yilmaz
- Bio-inspired Materials Research Laboratory (BIMREL), Gazi University, Ankara, Turkey
| | - Elmar Neumann
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| | - Gokhan Demirel
- Bio-inspired Materials Research Laboratory (BIMREL), Gazi University, Ankara, Turkey
| | - Dirk Mayer
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| |
Collapse
|
21
|
Takemi M, Castagnola E, Ansaldo A, Ricci D, Fadiga L, Taoka M, Iriki A, Ushiba J. Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm. Front Neurosci 2017; 11:580. [PMID: 29089866 PMCID: PMC5651028 DOI: 10.3389/fnins.2017.00580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/03/2017] [Indexed: 12/03/2022] Open
Abstract
Cortical stimulation mapping is a valuable tool to test the functional organization of the motor cortex in both basic neurophysiology (e.g., elucidating the process of motor plasticity) and clinical practice (e.g., before resecting brain tumors involving the motor cortex). However, compilation of motor maps based on the motor threshold (MT) requires a large number of cortical stimulations and is therefore time consuming. Shortening the time for mapping may reduce stress on the subjects and unveil short-term plasticity mechanisms. In this study, we aimed to establish a cortical stimulation mapping procedure in which the time needed to identify a motor area is reduced to the order of minutes without compromising reliability. We developed an automatic motor mapping system that applies epidural cortical surface stimulations (CSSs) through one-by-one of 32 micro-electrocorticographic electrodes while examining the muscles represented in a cortical region. The next stimulus intensity was selected according to previously evoked electromyographic responses in a closed-loop fashion. CSS was repeated at 4 Hz and electromyographic responses were submitted to a newly proposed algorithm estimating the MT with smaller number of stimuli with respect to traditional approaches. The results showed that in all tested rats (n = 12) the motor area maps identified by our novel mapping procedure (novel MT algorithm and 4-Hz CSS) significantly correlated with the maps achieved by the conventional MT algorithm with 1-Hz CSS. The reliability of the both mapping methods was very high (intraclass correlation coefficients ≧0.8), while the time needed for the mapping was one-twelfth shorter with the novel method. Furthermore, the motor maps assessed by intracortical microstimulation and the novel CSS mapping procedure in two rats were compared and were also significantly correlated. Our novel mapping procedure that determined a cortical motor area within a few minutes could help to study the functional significance of short-term plasticity in motor learning and recovery from brain injuries. Besides this advantage, particularly in the case of human patients or experimental animals that are less trained to remain at rest, shorter mapping time is physically and mentally less demanding and might allow the evaluation of motor maps in awake individuals as well.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy.,Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.,Keio Institute of Pure and Applied Sciences, Keio University, Kanagawa, Japan
| |
Collapse
|
22
|
Tia B, Takemi M, Kosugi A, Castagnola E, Ansaldo A, Nakamura T, Ricci D, Ushiba J, Fadiga L, Iriki A. Cortical control of object-specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study. J Physiol 2017; 595:7203-7221. [PMID: 28791721 PMCID: PMC5709338 DOI: 10.1113/jp274629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Key points The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase‐slope index). Analyses were performed in beta (16–35 Hz) and gamma (75–100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch‐related modulation. Strength and direction of inter‐area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms.
Abstract The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp‐and‐pull three objects eliciting different hand configurations: whole‐hand, finger and scissor grips. The animals were then chronically implanted with 64‐channel electrocorticogram arrays positioned over the left premotor, primary motor and somatosensory cortex. Power spectra, reflecting predominantly cortical activity, and phase‐slope index, reflecting the direction of information flux, were studied in beta (16–35 Hz) and gamma (75–100 Hz) bands. Differences related to grip type, epoch (reach, grasp) and cortical area were statistically assessed. Results showed that whole‐hand and scissor grips triggered stronger beta desynchronization than finger grip. Task epochs clearly modulated gamma power, especially for finger and scissor grips. Considering effective connectivity, finger and scissor grips evoked stronger outflow from primary motor to premotor cortex, whereas whole‐hand grip displayed the opposite pattern. These findings suggest that fundamental control mechanisms, relying on adjustments of cortical activity and connectivity, are conserved across primates. Consistently, marmosets could represent a good model to investigate primate brain mechanisms. The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase‐slope index). Analyses were performed in beta (16–35 Hz) and gamma (75–100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch‐related modulation. Strength and direction of inter‐area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms.
Collapse
Affiliation(s)
- Banty Tia
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Mitsuaki Takemi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Akito Kosugi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Takafumi Nakamura
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.,Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, Kanagawa, Japan
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
23
|
Kondyurin A, Tsoutas K, Latour QX, Higgins MJ, Moulton SE, McKenzie DR, Bilek MMM. Structural Analysis and Protein Functionalization of Electroconductive Polypyrrole Films Modified by Plasma Immersion Ion Implantation. ACS Biomater Sci Eng 2017; 3:2247-2258. [DOI: 10.1021/acsbiomaterials.7b00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexey Kondyurin
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Kostadinos Tsoutas
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Quentin-Xavier Latour
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Michael J. Higgins
- ARC
Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Simon E. Moulton
- ARC
Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David R. McKenzie
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Marcela M. M. Bilek
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| |
Collapse
|
24
|
Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release. Biointerphases 2017; 12:031002. [PMID: 28704999 DOI: 10.1116/1.4993140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 106 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.
Collapse
|
25
|
Chen R, Canales A, Anikeeva P. Neural Recording and Modulation Technologies. NATURE REVIEWS. MATERIALS 2017; 2:16093. [PMID: 31448131 PMCID: PMC6707077 DOI: 10.1038/natrevmats.2016.93] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Within the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the tools capable of probing the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not address the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices capable of simultaneous recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes, and look at emergent directions inspired by the principles of neural transduction.
Collapse
Affiliation(s)
- Ritchie Chen
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Sci Rep 2017; 7:40332. [PMID: 28084398 PMCID: PMC5234039 DOI: 10.1038/srep40332] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/05/2016] [Indexed: 12/02/2022] Open
Abstract
We report on the superior electrochemical properties, in-vivo performance and long term stability under electrical stimulation of a new electrode material fabricated from lithographically patterned glassy carbon. For a direct comparison with conventional metal electrodes, similar ultra-flexible, micro-electrocorticography (μ-ECoG) arrays with platinum (Pt) or glassy carbon (GC) electrodes were manufactured. The GC microelectrodes have more than 70% wider electrochemical window and 70% higher CTC (charge transfer capacity) than Pt microelectrodes of similar geometry. Moreover, we demonstrate that the GC microelectrodes can withstand at least 5 million pulses at 0.45 mC/cm2 charge density with less than 7.5% impedance change, while the Pt microelectrodes delaminated after 1 million pulses. Additionally, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was selectively electrodeposited on both sets of devices to specifically reduce their impedances for smaller diameters (<60 μm). We observed that PEDOT-PSS adhered significantly better to GC than Pt, and allowed drastic reduction of electrode size while maintaining same amount of delivered current. The electrode arrays biocompatibility was demonstrated through in-vitro cell viability experiments, while acute in vivo characterization was performed in rats and showed that GC microelectrode arrays recorded somatosensory evoked potentials (SEP) with an almost twice SNR (signal-to-noise ratio) when compared to the Pt ones.
Collapse
|
27
|
Rembado I, Castagnola E, Turella L, Ius T, Budai R, Ansaldo A, Angotzi GN, Debertoldi F, Ricci D, Skrap M, Fadiga L. Independent Component Decomposition of Human Somatosensory Evoked Potentials Recorded by Micro-Electrocorticography. Int J Neural Syst 2016; 27:1650052. [PMID: 27712455 DOI: 10.1142/s0129065716500520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-density surface microelectrodes for electrocorticography (ECoG) have become more common in recent years for recording electrical signals from the cortex. With an acceptable invasiveness/signal fidelity trade-off and high spatial resolution, micro-ECoG is a promising tool to resolve fine task-related spatial-temporal dynamics. However, volume conduction - not a negligible phenomenon - is likely to frustrate efforts to obtain reliable and resolved signals from a sub-millimeter electrode array. To address this issue, we performed an independent component analysis (ICA) on micro-ECoG recordings of somatosensory-evoked potentials (SEPs) elicited by median nerve stimulation in three human patients undergoing brain surgery for tumor resection. Using well-described cortical responses in SEPs, we were able to validate our results showing that the array could segregate different functional units possessing unique, highly localized spatial distributions. The representation of signals through the root-mean-square (rms) maps and the signal-to-noise ratio (SNR) analysis emphasizes the advantages of adopting a source analysis approach on micro-ECoG recordings in order to obtain a clear picture of cortical activity. The implications are twofold: while on one side ICA may be used as a spatial-temporal filter extracting micro-signal components relevant to tasks for brain-computer interface (BCI) applications, it could also be adopted to accurately identify the sites of nonfunctional regions for clinical purposes.
Collapse
Affiliation(s)
- Irene Rembado
- 1 Center for Translational Neurophysiology IIT@Unife, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Elisa Castagnola
- 1 Center for Translational Neurophysiology IIT@Unife, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Luca Turella
- 2 University of Trento, Center for Mind/Brain Sciences (CIMeC), Via delle Regole, 101, 38123 Trento, Italy
| | - Tamara Ius
- 3 Struttura complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Riccardo Budai
- 3 Struttura complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Alberto Ansaldo
- 4 Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Gian Nicola Angotzi
- 5 Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Debertoldi
- 6 Department of Neurosciences and Mental Health, Psychiatric Clinic, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Davide Ricci
- 1 Center for Translational Neurophysiology IIT@Unife, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Miran Skrap
- 3 Struttura complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Luciano Fadiga
- 1 Center for Translational Neurophysiology IIT@Unife, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.,7 Section of Human Physiology, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| |
Collapse
|
28
|
Castagnola E, Maggiolini E, Ceseracciu L, Ciarpella F, Zucchini E, De Faveri S, Fadiga L, Ricci D. pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Front Neurosci 2016; 10:151. [PMID: 27147944 PMCID: PMC4834343 DOI: 10.3389/fnins.2016.00151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
The long-term reliability of neural interfaces and stability of high-quality recordings are still unsolved issues in neuroscience research. High surface area PEDOT-PSS-CNT composites are able to greatly improve the performance of recording and stimulation for traditional intracortical metal microelectrodes by decreasing their impedance and increasing their charge transfer capability. This enhancement significantly reduces the size of the implantable device though preserving excellent electrical performances. On the other hand, the presence of nanomaterials often rises concerns regarding possible health hazards, especially when considering a clinical application of the devices. For this reason, we decided to explore the problem from a new perspective by designing and testing an innovative device based on nanostructured microspheres grown on a thin tether, integrating PEDOT-PSS-CNT nanocomposites with a soft synthetic permanent biocompatible hydrogel. The pHEMA hydrogel preserves the electrochemical performance and high quality recording ability of PEDOT-PSS-CNT coated devices, reduces the mechanical mismatch between soft brain tissue and stiff devices and also avoids direct contact between the neural tissue and the nanocomposite, by acting as a biocompatible protective barrier against potential nanomaterial detachment. Moreover, the spherical shape of the electrode together with the surface area increase provided by the nanocomposite deposited on it, maximize the electrical contact and may improve recording stability over time. These results have a good potential to contribute to fulfill the grand challenge of obtaining stable neural interfaces for long-term applications.
Collapse
Affiliation(s)
- Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di TecnologiaFerrara, Italy
| | - Emma Maggiolini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di TecnologiaFerrara, Italy
| | - Luca Ceseracciu
- Department of Smart Materials, Istituto Italiano di TecnologiaGenova, Italy
| | | | - Elena Zucchini
- Section of Human Physiology, University of FerraraFerrara, Italy
| | - Sara De Faveri
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di TecnologiaFerrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di TecnologiaFerrara, Italy
- Section of Human Physiology, University of FerraraFerrara, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di TecnologiaFerrara, Italy
| |
Collapse
|
29
|
Park AH, Lee SH, Lee C, Kim J, Lee HE, Paik SB, Lee KJ, Kim D. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. ACS NANO 2016; 10:2791-802. [PMID: 26735496 DOI: 10.1021/acsnano.5b07889] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spatiotemporal mapping of neural interactions through electrocorticography (ECoG) is the key to understanding brain functions and disorders. For the entire brain cortical areas, this approach has been challenging, especially in freely moving states, owing to the need for extensive craniotomy. Here, we introduce a flexible microelectrode array system, termed iWEBS, which can be inserted through a small cranial slit and stably wrap onto the curved cortical surface. Using iWEBS, we measured dynamic changes of signals across major cortical domains, namely, somatosensory, motor, visual and retrosplenial areas, in freely moving mice. iWEBS robustly displayed somatosensory evoked potentials (SEPs) in corresponding cortical areas to specific somatosensory stimuli. We also used iWEBS for mapping functional interactions between cortical areas in the propagation of spike-and-wave discharges (SWDs), the neurological marker of absence seizures, triggered by optogenetic inhibition of a specific thalamic nucleus. This demonstrates that iWEBS represents a significant improvement over conventional ECoG recording methodologies and, therefore, is a competitive recording system for mapping wide-range brain connectivity under various behavioral conditions.
Collapse
Affiliation(s)
- Ah Hyung Park
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Hyun Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changju Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Han Eol Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
30
|
Surface-mediated delivery of siRNA from fibrin hydrogels for knockdown of the BMP-2 binding antagonist noggin. Acta Biomater 2015; 25:109-20. [PMID: 26234488 DOI: 10.1016/j.actbio.2015.07.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/28/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022]
Abstract
Antagonists and inhibitory molecules responsible for maintaining tissue homeostasis can present a significant barrier to healing when tissue engineering/regenerative medicine strategies are employed. One example of this situation is the up-regulation of antagonists such as noggin in response to increasing concentrations of bone morphogenetic protein-2 (BMP-2) present from endogenous bone repair processes or delivered exogenously from biomaterials (synthetic bone grafts). While recombinant human (rh)BMP-2 delivered from synthetic bone grafts has been shown to be an effective alternative to autografts and allografts, the supraphysiological doses of rhBMP-2 have led to clinically-adverse side effects. The high rhBMP-2 dosage may be required, in part, to overcome the presence of antagonists such as noggin. Small interfering RNA (siRNA) is an appealing approach to overcome this problem because it can knock-down antagonists or inhibitory molecules in a temporary manner. Here, we conducted fundamental studies on the delivery of siRNA from material surfaces as a means to knock-down antagonists like noggin. Non-viral cationic lipid (Lipofectamine)-siRNA complexes were delivered from a fibrin hydrogel surface to MC3T3-E1 preosteoblasts that were treated with a supraphysiological dose of rhBMP-2 to achieve noggin mRNA expression levels higher than cells naïve to rhBMP-2. Confocal microscopy and flow cytometry showed intracellular uptake of siRNA in over 98% of MC3T3-E1 cells after 48 h. Doses of 0.5 and 1 μg noggin siRNA were able to significantly reduce noggin mRNA to levels equivalent to those in MC3T3-E1 cells not exposed to rhBMP-2 with no effects on cell viability. STATEMENT OF SIGNIFICANCE Small interfering RNA (siRNA) has been considered for treatment of diseases ranging from Alzheimer's to cancer. However, the ability to use siRNA in conjunction with biomaterials to direct tissue regeneration processes has received relatively little attention. Using the bone morphogenetic protein 2 antagonist, noggin, as a model, this research describes an approach to knock-down molecules that are inhibitory to desired regenerative pathways at the mRNA level via siRNA delivery from a hydrogel surface. Interactions between the material (fibrin) surface and polycation-siRNA complexes, release of the siRNA from the material surface, high levels of cellular uptake/internalization of siRNA, and significant knockdown of the targeting (noggin) mRNA are demonstrated. Broader future applications include those to nerve regeneration, cardiovascular tissue engineering, directing (stem) cell behavior, and mitigating inflammatory responses to materials.
Collapse
|
31
|
Castagnola E, Maiolo L, Maggiolini E, Minotti A, Marrani M, Maita F, Pecora A, Angotzi GN, Ansaldo A, Boffini M, Fadiga L, Fortunato G, Ricci D. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. IEEE Trans Neural Syst Rehabil Eng 2015; 23:342-50. [DOI: 10.1109/tnsre.2014.2342880] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Castagnola E, Ansaldo A, Maggiolini E, Ius T, Skrap M, Ricci D, Fadiga L. Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. FRONTIERS IN NEUROENGINEERING 2014; 7:8. [PMID: 24795621 PMCID: PMC3997015 DOI: 10.3389/fneng.2014.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/29/2014] [Indexed: 12/19/2022]
Abstract
Finding the most appropriate technology for building electrodes to be used for long term implants in humans is a challenging issue. What are the most appropriate technologies? How could one achieve robustness, stability, compatibility, efficacy, and versatility, for both recording and stimulation? There are no easy answers to these questions as even the most fundamental and apparently obvious factors to be taken into account, such as the necessary mechanical, electrical and biological properties, and their interplay, are under debate. We present here our approach along three fundamental parallel pathways: we reduced electrode invasiveness and size without impairing signal-to-noise ratio, we increased electrode active surface area by depositing nanostructured materials, and we protected the brain from direct contact with the electrode without compromising performance. Altogether, these results converge toward high-resolution ECoG arrays that are soft and adaptable to cortical folds, and have been proven to provide high spatial and temporal resolution. This method provides a piece of work which, in our view, makes several steps ahead in bringing such novel devices into clinical settings, opening new avenues in diagnostics of brain diseases, and neuroprosthetic applications.
Collapse
Affiliation(s)
- Elisa Castagnola
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Alberto Ansaldo
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Emma Maggiolini
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Tamara Ius
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia Udine, Italy
| | - Miran Skrap
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia Udine, Italy
| | - Davide Ricci
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Luciano Fadiga
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy ; Section of Human Physiology, Department of Biomedical Sciences, University of Ferrara Ferrara, Italy
| |
Collapse
|
33
|
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1846-85. [PMID: 24677434 PMCID: PMC4373558 DOI: 10.1002/adma.201304496] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Collapse
Affiliation(s)
- Pouria Fattahi
- Biomedical Engineering Department and Chemical Engineering Departments, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guang Yang
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria Kim
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|