1
|
Papait A, Perini G, Palmieri V, Cargnoni A, Vertua E, Pasotti A, Rosa E, De Spirito M, Silini AR, Papi M, Parolini O. Defining the immunological compatibility of graphene oxide-loaded PLGA scaffolds for biomedical applications. BIOMATERIALS ADVANCES 2024; 165:214024. [PMID: 39232353 DOI: 10.1016/j.bioadv.2024.214024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.
Collapse
Affiliation(s)
- Andrea Papait
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy.
| | - Giordano Perini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185 Rome, Italy
| | - Anna Cargnoni
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Anna Pasotti
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Enrico Rosa
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
2
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
3
|
Ayreen Z, Khatoon U, Kirti A, Sinha A, Gupta A, Lenka SS, Yadav A, Mohanty R, Naser SS, Mishra R, Chouhan RS, Samal SK, Kaushik NK, Singh D, Suar M, Verma SK. Perilous paradigm of graphene oxide and its derivatives in biomedical applications: Insight to immunocompatibility. Biomed Pharmacother 2024; 176:116842. [PMID: 38810404 DOI: 10.1016/j.biopha.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
With advancements in nanotechnology and innovative materials, Graphene Oxide nanoparticles (GONP) have attracted lots of attention among the diverse types of nanomaterials owing to their distinctive physicochemical characteristics. However, the usage at scientific and industrial level has also raised concern to their toxicological interaction with biological system. Understanding these interactions is crucial for developing guidelines and recommendations for applications of GONP in various sectors, like biomedicine and environmental technologies. This review offers crucial insights and an in-depth analysis to the biological processes associated with GONP immunotoxicity with multiple cell lines including human whole blood cultures, dendritic cells, macrophages, and multiple cancer cell lines. The complicated interactions between graphene oxide nanoparticles and the immune system, are highlighted in this work, which reveals a range of immunotoxic consequences like inflammation, immunosuppression, immunostimulation, hypersensitivity, autoimmunity, and cellular malfunction. Moreover, the immunotoxic effects are also highlighted with respect to in vivo models like mice and zebrafish, insighting GO Nanoparticles' cytotoxicity. The study provides invaluable review for researchers, policymakers, and industrialist to understand and exploit the beneficial applications of GONP with a controlled measure to human health and the environment.
Collapse
Affiliation(s)
- Zobia Ayreen
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Uzma Khatoon
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Rupali Mohanty
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Richa Mishra
- Parul University, Vadodara, Gujarat 391760, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana 1000, Slovenia
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
4
|
Dalal N, Dandia H, Ingle A, Tayalia P. Surface-modified injectable poly(ethylene-glycol) diacrylate-based cryogels for localized gene delivery. Biomed Phys Eng Express 2024; 10:045039. [PMID: 38772344 DOI: 10.1088/2057-1976/ad4e3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Lentiviral transduction is widely used in research, has shown promise in clinical trials involving gene therapy and has been approved for CAR-T cell immunotherapy. However, most modifications are doneex vivoand rely on systemic administration of large numbers of transduced cells for clinical applications. A novel approach utilizingin situbiomaterial-based gene delivery can reduce off-target side effects while enhancing effectiveness of the manipulation process. In this study, poly(ethylene glycol) diacrylate (PEGDA)-based scaffolds were developed to enablein situlentivirus-mediated transduction. Compared to other widely popular biomaterials, PEGDA stands out due to its robustness and cost-effectiveness. These scaffolds, prepared via cryogelation, are capable of flowing through surgical needles in bothin vitroandin vivoconditions, and promptly regain their original shape. Modification with poly(L-lysine) (PLL) enables lentivirus immobilization while interconnected macroporous structure allows cell infiltration into these matrices, thereby facilitating cell-virus interaction over a large surface area for efficient transduction. Notably, these preformed injectable scaffolds demonstrate hemocompatibility, cell viability and minimally inflammatory response as shown by ourin vitroandin vivostudies involving histology and immunophenotyping of infiltrating cells. This study marks the first instance of using preformed injectable scaffolds for delivery of lentivectors, which offers a non-invasive and localized approach for delivery of factors enablingin situlentiviral transduction suitable for both tissue engineering and immunotherapeutic applications.
Collapse
Affiliation(s)
- Neha Dalal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Hiren Dandia
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arvind Ingle
- Tata Memorial Centre Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India
| | - Prakriti Tayalia
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
5
|
Li M, Gao J, Yao L, Zhang L, Li D, Li Z, Wu Q, Wang S, Ding J, Liu Y, Wang M, Tang G, Qin H, Li J, Yang X, Liu R, Zeng L, Shi J, Qu G, Jiang G. Determining toxicity of europium oxide nanoparticles in immune cell components and hematopoiesis in dominant organs in mice: Role of lysosomal fluid interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173482. [PMID: 38795982 DOI: 10.1016/j.scitotenv.2024.173482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.
Collapse
Affiliation(s)
- Min Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liu Zhang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
6
|
Sau S, Dey A, Pal P, Das B, Maity KK, Dash SK, Tamili DK, Das B. Immunomodulatory and immune-toxicological role of nanoparticles: Potential therapeutic applications. Int Immunopharmacol 2024; 135:112251. [PMID: 38781608 DOI: 10.1016/j.intimp.2024.112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, Nanoparticle-based immunotherapeutic research has invoked global interest due to their unique properties. The immune system is a shielding structure that defends living things from external threats. Before the use of any materials in drug design, it is essential to study the immunological response to avoid triggering undesirable immune responses in the body. This review tries to summarize the properties, various applications, and immunotherapeutic aspects of NP-induced immunomodulation relating to therapeutic development and toxicity in human health. The role of NPs in the immune system and their modulatory functions, resulting in immunosuppression or immunostimulation, exerts benefits or dangers depending on their compositions, sizes, surface chemistry, and so forth. After NPs enter into the body, they can interact with body fluid exposing, them to different body proteins to form protein corona particles and other bio-molecules (DNA, RNA, sugars, etc.), which may alter their bioactivity. Phagocytes are the first immune cells that can interact with foreign materials including nanoparticles. Immunostimulation and immunosuppression operate in two distinct manners. Overall, functionalized nanocarriers optimized various therapeutic implications by stimulating the host immune system and regulating the tranquility of the host immune system. Among others, toxicity and bio-clearance of nanomaterials are always prime concerns at the preclinical and clinical stages before final approval. The interaction of nanoparticles with immune cells causes direct cell damage via apoptosis and necroses as well as immune signaling pathways also become influenced.
Collapse
Affiliation(s)
- Somnath Sau
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Nutrition and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Alo Dey
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Pritam Pal
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Bishal Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Physiology, Debra Thana Sahid Kshudiram Smriti Mahavidyalaya, Debra-721124, Paschim Medinipur, West Bengal, India
| | - Kankan Kumar Maity
- Department of Chemistry and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Dipak Kumar Tamili
- Department of Zoology and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Balaram Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
7
|
Uzdrowska K, Knap N, Gulczynski J, Kuban-Jankowska A, Struck-Lewicka W, Markuszewski MJ, Bączek T, Izycka-Swieszewska E, Gorska-Ponikowska M. Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap? Int J Nanomedicine 2024; 19:3973-3989. [PMID: 38711615 PMCID: PMC11073537 DOI: 10.2147/ijn.s447397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.
Collapse
Affiliation(s)
- Katarzyna Uzdrowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jacek Gulczynski
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | | | | | | - Tomasz Bączek
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, 80-416, Poland
| | - Ewa Izycka-Swieszewska
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | |
Collapse
|
8
|
Iannazzo D, Giofrè SV, Espro C, Celesti C. Graphene-based materials as nanoplatforms for antiviral therapy and prophylaxis. Expert Opin Drug Deliv 2024; 21:751-766. [PMID: 38841752 DOI: 10.1080/17425247.2024.2364652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION The dramatic effects caused by viral diseases have prompted the search for effective therapeutic and preventive agents. In this context, 2D graphene-based nanomaterials (GBNs) have shown great potential for antiviral therapy, enabling the functionalization and/or decoration with biomolecules, metals and polymers, able to improve their interaction with viral nanoparticles. AREAS COVERED This review summarizes the most recent advances of the antiviral research related to 2D GBNs, based on their antiviral mechanism of action. Their ability to inactivate viruses by inhibiting the entry inside cells, or through drug/gene delivery, or by stimulating the host immune response are here discussed. As reported, biological studies performed in vitro and/or in vivo allowed to demonstrate the antiviral activity of the developed GBNs, at different stages of the virus life cycle and the evaluation of their long-term toxicity. Other mechanisms closely related to the physicochemical properties of GBNs are also reported, demonstrating the potential of these materials for antiviral prophylaxis. EXPERT OPINION GBNs represent valuable tools to fight emerging or reemerging viral infections. However, their translation into the clinic requires standardized scale-up procedures leading to the reliable and reproducible synthesis of these nanomaterials with suitable physicochemical properties, as well as more in-depth pharmacological and toxicological investigations. We believe that multidisciplinary approaches will give valuable solutions to overcome the encountered limitations in the application of GBNs in biomedical and clinical field.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Messina, Italy
| | - Salvatore V Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Camacho-Toledano C, Machín-Díaz I, Lebrón-Galán R, González-Mayorga A, Palomares FJ, Serrano MC, Clemente D. Graphene oxide films as a novel tool for the modulation of myeloid-derived suppressor cell activity in the context of multiple sclerosis. NANOSCALE 2024; 16:7515-7531. [PMID: 38498071 DOI: 10.1039/d3nr05351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).
Collapse
Affiliation(s)
- Celia Camacho-Toledano
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Isabel Machín-Díaz
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Rafael Lebrón-Galán
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071- Toledo, Spain
| | - Francisco J Palomares
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - Diego Clemente
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
- Design and development of biomaterials for neural regeneration, HNP, Associated Unit to CSIC through ICMM, Finca La Peraleda s/n, 45071-Toledo, Spain
| |
Collapse
|
10
|
Zhai S, Zhang X, Jiang M, Liu Y, Qu G, Cui X, Hirschbiegel CM, Liu Y, Alves C, Lee YW, Jiang G, Yan B, Rotello VM. Nanoparticles with intermediate hydrophobicity polarize macrophages to plaque-specific Mox phenotype via Nrf2 and HO-1 activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133590. [PMID: 38280324 DOI: 10.1016/j.jhazmat.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Mox macrophages were identified recently and are closely associated with atherosclerosis. Considering the potential health risks and the impact on macrophage modulation, this study investigated the Mox polarization of macrophages induced by nanoparticles (NPs) with tunable hydrophobicity. One nanoparticle (C4NP) with intermediate hydrophobicity efficiently upregulated the mRNA expression of Mox-related genes including HO-1, Srxn1, Txnrd1, Gsr, Vegf and Cox-2 through increased accumulation of Nrf2 at a nontoxic concentration in both resting and LPS-challenged macrophages. Additionally, C4NP impaired phagocytic capacity by 20% and significantly increased the secretion of cytokines, including TNFα, IL-6 and IL-10. Mechanistic studies indicated that intracellular reactive oxygen species (ROS) were elevated by 1.5-fold and 2.6-fold in resting and LPS-challenged macrophages respectively. Phosphorylated p62 was increased by 2.5-fold in resting macrophages and maintained a high level in LPS-challenged ones, both of which partially accounted for the significant accumulation of Nrf2 and HO-1. Notably, C4NP depolarized mitochondrial membrane potential by more than 50% and switched macrophages from oxidative phosphorylation-based aerobic metabolism to glycolysis for energy supply. Overall, this study reveals a novel molecular mechanism potentially involving ROS-Nrf2-p62 signaling in mediating macrophage Mox polarization, holding promise in ensuring safer and more efficient use of nanomaterials.
Collapse
Affiliation(s)
- Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yujia Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | | | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Colby Alves
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
11
|
Mandal P, Ghosh SK. Graphene-Based Nanomaterials and Their Interactions with Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18713-18729. [PMID: 38096427 DOI: 10.1021/acs.langmuir.3c02805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Graphene-based nanomaterials (GNMs) have captured increasing attention in the recent advancement of materials science and nanotechnology owing to their excellent physicochemical properties. Despite having unquestionable advances, the application of GNMs in biological and medical sciences is still limited due to the lack of knowledge and precise control over their interaction with the biological milieu. The cellular membrane is the first barrier with which GNMs interact before entering a cell. Therefore, understanding how they interact with cell membranes is important from the perspective of safe use in biological and biomedical fields. In this review, we systematically summarize the recent efforts in predicting the interactions between GNMs and model cellular membranes. This review provides insights into how GNMs interact with lipid membranes and self-assemble in and around them. Both the computational simulations and experimental observations are summarized. The interactions are classified depending on the physicochemical properties (structure, chemistry, and orientation) of GNMs and various model membranes. The thermodynamic parameters, structural details, and supramolecular forces are listed to understand the interactions which would help circumvent potential risks and provide guidance for safe use in the future. At the end of this review, future prospective and emerging challenges in this research field are discussed.
Collapse
Affiliation(s)
- Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
12
|
Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant. Int Immunopharmacol 2023; 125:111062. [PMID: 37866317 DOI: 10.1016/j.intimp.2023.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
To improve antigen immunogenicity and promote long-lasting immunity, vaccine formulations have been appropriately supplemented with adjuvants. Graphene has been found to enhance the presentation of antigens to CD8+ T cells, as well as stimulating innate immune responses and inflammatory factors. Its properties, such as large surface area, water stability, and high aspect ratio, make it a suitable candidate for delivering biological substances. Graphene-based nanomaterials have recently attracted significant attention as a new type of vaccine adjuvants due to their potential role in the activation of immune responses. Due to the limited functionality of some approved human adjuvants for use, the development of new all-purpose adjuvants is urgently required. Research on the immunological and biomedical use of graphene oxide (GO) indicates that these nanocarriers possess excellent physicochemical properties, acceptable biocompatibility, and a high capacity for drug loading. Graphene-based nanocarriers also could improve the function of some immune cells such as dendritic cells and macrophages through specific signaling pathways. However, GO injection can lead to significant oxidative stress and inflammation. Various surface functionalization protocols have been employed to reduce possible adverse effects of GO, such as aggregation of GO in biological liquids and induce cell death. Furthermore, these modifications enhance the properties of functionalized-GO's qualities, making it an excellent carrier and adjuvant. Shedding light on different physicochemical and structural properties of GO and its derivatives has led to their application in various therapeutic and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of GO.
Collapse
Affiliation(s)
- Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Karami-Darehnaranji
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hosseini
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
14
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
15
|
Zheng G, Zhang J, Zhang X, Zhang Z, Liu S, Zhang S, Zhang C. Implications of ferroptosis in silver nanoparticle-induced cytotoxicity of macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115057. [PMID: 37229872 DOI: 10.1016/j.ecoenv.2023.115057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Metal nanoparticles (NPs) are widely used in daily life and commercial activities owing to their unique physicochemical properties. Consequently, there is an increasing risk of daily and occupational exposure to metal NPs, which raises concerns regarding their health hazards. Programmed cell deaths (PCDs) have been clarified to be involved in metal NP-induced cytotoxicity, including apoptosis, autophagy, and pyroptosis. However, whether and how ferroptosis, a newly recognized PCD, contributes to metal NP-induced cell death remain unclear. In this study, we investigated the ferroptotic effects of two representative metal NPs, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), on macrophages in vitro. Our results revealed that AgNPs, rather than AuNPs, induced non-apoptotic PCD, accompanied by lipid peroxidation and iron homeostasis disorders, which are two hallmarks of ferroptosis, in macrophages. Treatment with a ferroptosis inhibitor (ferrostatin-1) and iron chelator (deferoxamine) reversed AgNP-induced PCD, corroborating the induction of ferroptosis upon exposure to AgNPs. Moreover, our results revealed that smaller AgNPs elicited greater ferroptotic effects on macrophages than larger ones. Importantly, ferroptosis in AgNP-treated macrophages was mainly triggered by AgNPs per se rather than by Ag ions. Overall, our study highlights the ferroptotic effects elicited by AgNPs in macrophages, which will promote the understanding of their cytotoxic effects and facilitate the safer design of metal nanoproducts.
Collapse
Affiliation(s)
- Guangzhe Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xuan Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
16
|
Ma J, Wang S, Zhao C, Yan X, Ren Q, Dong Z, Qiu J, Liu Y, Shan Q, Xu M, Yan B, Liu S. Computer-Aided Discovery of Potent Broad-Spectrum Vaccine Adjuvants. Angew Chem Int Ed Engl 2023; 62:e202301059. [PMID: 36815280 DOI: 10.1002/anie.202301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Adjuvants stimulate the immune system to vigorously respond to a vaccine. While current adjuvants such as aluminum salts and oil-in-water emulsions have been used for decades, they do not generate broad and long-lasting responses in many vaccines. Consequently, more potent adjuvants are needed. Here, using computer-aided molecule design and machine learning, we discovered 2 new, broad-spectrum adjuvants that can boost vaccine responses. Our library containing 46 toll-like receptor (TLR)-targeting agonist ligands were assembled on Au nanoparticles. Comprehensive in vitro, ex vivo and in vivo studies showed both leads promoted dendritic cell activation via multiple TLRs and enhanced antigen presentation to T cells. When used together with tumor-specific antigens to immunize mice against B16-OVA melanoma and 4T1-PD1 breast cancer, both adjuvants unleashed strong immune responses that suppressed tumor growth and lung metastases. Our results show computer-aided design and screening can rapidly uncover potent adjuvants for tackling waning immunity in current vaccines.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shenqing Wang
- Institute of Environmental Research at Greater Bays, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bays, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- Department of toxicology and sanitary chemistry, School of public health, Capital Medical University, Beijing, 100069, P. R. China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 330106, P. R. China
| | - Qing'e Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Yan
- Institute of Environmental Research at Greater Bays, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| |
Collapse
|
17
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
18
|
Liang H, Lykins WR, Seydoux E, Guderian JA, Phan T, Fox CB, Orr MT. Formulated Phospholipids as Non-Canonical TLR4 Agonists. Pharmaceutics 2022; 14:2557. [PMID: 36559051 PMCID: PMC9788208 DOI: 10.3390/pharmaceutics14122557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Immunogenic agents known as adjuvants play a critical role in many vaccine formulations. Adjuvants often signal through Toll-like receptor (TLR) pathways, including formulations in licensed vaccines that target TLR4. While TLR4 is predominantly known for responding to lipopolysaccharide (LPS), a component of Gram-negative bacterial membranes, it has been shown to be a receptor for a number of molecular structures, including phospholipids. Therefore, phospholipid-based pharmaceutical formulations might have off-target effects by signaling through TLR4, confounding interpretation of pharmaceutical bioactivity. In this study we examined the individual components of a clinical stage oil-in-water vaccine adjuvant emulsion (referred to as a stable emulsion or SE) and their ability to signal through murine and human TLR4s. We found that the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) activated TLR4 and elicited many of the same immune phenotypes as canonical TLR4 agonists. This pathway was dependent on the saturation, size, and headgroup of the phospholipid. Interestingly, DMPC effects on human cells were evident but overall appeared less impactful than emulsion oil composition. Considering the prevalence of DMPC and other phospholipids used across the pharmaceutical space, these findings may contextualize off-target innate immune responses that could impact preclinical and clinical development.
Collapse
Affiliation(s)
- Hong Liang
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102, USA
| | - William R. Lykins
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102, USA
| | - Emilie Seydoux
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102, USA
| | - Jeffrey A. Guderian
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102, USA
| | - Tony Phan
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102, USA
| | - Christopher B. Fox
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Mark T. Orr
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Hao F, Yan ZY, Yan XP. Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks. CHEMOSPHERE 2022; 307:135680. [PMID: 35850215 DOI: 10.1016/j.chemosphere.2022.135680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The diverse applications of porphyrin-based nano-sized metal-organic frameworks (NMOFs) lead to great exposure risks to human and environment. Understanding the cellular biological effects (such as toxicity, distribution, and localization) of porphyrinic NMOFs is a prerequisite to the assessment of their health risk. However, the characteristics of distribution, localization, and immune response induced by porphyrinic NMOFs have not been studied yet. Here, we report the size-dependent biological effects of porphyrinic NMOFs under sublethal dose. Various sizes of PCN-224 (30, 90, and 180 nm) were taken as model porphyrinic NMOFs. We found that 30 nm PCN-224 gave the highest uptake content, followed by 90 and 180 nm PCN-224. The mechanism for uptake was clathrin-mediated for 30 and 90 nm PCN-224, but clathrin- and glycosylphosphatidylinositol-mediated for 180 nm PCN-224. All PCN-224 were localized in lysosome with size-dependent velocity of colocalization transport. 30 nm PCN-224 induced the highest released cytokines than 90 and 180 nm PCN-224 accompanied with the activation of NF-κB pathway. This work reveals the mechanisms for the endocytosis of PCN-224 and the release of cytokine induced by PCN-224, which is helpful for the health risk assessment of NMOFs.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhu-Ying Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Self-assembled flagella protein nanofibers induce enhanced mucosal immunity. Biomaterials 2022; 288:121733. [PMID: 36038418 DOI: 10.1016/j.biomaterials.2022.121733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/28/2022]
Abstract
Nanofibers are potential vaccines or adjuvants for vaccination at the mucosal interface. However, how their lengths affect the mucosal immunity is not well understood. Using length-tunable flagella (self-assembled from a protein termed flagellin) as model protein nanofibers, we studied the mechanisms of their interaction with mucosal interface to induce immune responses length-dependently. Briefly, through tuning flagellin assembly, length-controlled protein nanofibers were prepared. The shorter nanofibers exhibited more pronounced toll-like receptor 5 (TLR5) and inflammasomes activation accompanied by pyroptosis, as a result of cellular uptake, lysosomal damage, and mitochondrial reactive oxygen species generation. Accordingly, the shorter nanofibers elevated the IgA level in mucosal secretions and enhanced the serum IgG level in ovalbumin-based intranasal vaccinations. These mucosal and systematic antibody responses were correlated with the mucus penetration capacity of the nanofibers. Intranasal administration of vaccines (human papillomavirus type 16 peptides) adjuvanted with shorter nanofibers significantly elicited cytotoxic T lymphocyte responses, strongly inhibiting tumor growth and improving survival rates in a TC-1 cervical cancer model. This work suggests that length-dependent immune responses of nanofibers can be elucidated for designing nanofibrous vaccines and adjuvants for both infectious diseases and cancer.
Collapse
|
21
|
Hao F, Yan ZY, Yan XP. Size- and shape-dependent cytotoxicity of nano-sized Zr-based porphyrinic metal-organic frameworks to macrophages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155309. [PMID: 35439516 DOI: 10.1016/j.scitotenv.2022.155309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The wide utilization of nano-sized metal-organic frameworks (NMOFs) leads to inevitable health risks to humans. Previous studies on health risks of NMOFs mainly focus on the cytotoxic tests of typical NMOFs,but lack sufficient studies on the effects of physiochemical characteristics of NMOFs on the cytotoxicity and the related mechanisms. Here, four kinds of Zr-based porphyrinic NMOFs (PCNs), including spherical 30, 90, and 180 nm PCN-224 and rod-like 90 nm PCN-222, were taken as a proof of the concept to investigate the effects of the size and shape of NMOFs on the cytotoxicity and related mechanisms to macrophages. The 30 nm spherical PCN-224 induced significant rupture of cell membrane and dissolved in lysosome, leading to the most significant cell necrosis among the studied other nano-sized PCNs. However, other studied PCNs showed insignificant membrane rupture and their dissolution in lysosome. Furthermore, the 90 nm-sized PCN-224 led to much more significant cell necrosis by inducing lysosome damage and inhibiting of autophagy flux than the rod-like 90 nm PCN-222. These findings reveal the size- and shape-dependent cytotoxicity of PCNs and the related mechanisms and are helpful to the assessment of the potential health risks of NMOFs and the safe application of NMOFs.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
Tang X, Song F, Zhao W, Zhang Z, Cao Y. Intratracheal instillation of graphene oxide decreases anti-virus responses and lipid contents via suppressing Toll-like receptor 3 in mouse livers. J Appl Toxicol 2022; 42:1822-1831. [PMID: 35727742 DOI: 10.1002/jat.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Recent studies revealed a causal relationship between Toll-like receptors (TLRs) and lipid droplet biogenesis. Interestingly, it has been reported before that nanomaterials (NMs) were capable to modulate TLRs, but it remains unclear if NMs could affect lipid levels via TLR signaling pathways. In this study, we investigated the influences of airway exposure to graphene oxide (GO) on TLR3 signaling pathways and lipid levels in mouse livers. Intratracheal instillation of GO (0.1, 1, and 5 mg/kg, once a day, totally 5 days) induced inflammatory cell infiltrations as indicated by hematoxylin-eosin (H&E) staining and fibrosis as indicated by Masson staining in lungs, accompanying with decreased TLR3 proteins. Consistently, a TLR3-regulated anti-virus protein, namely interferon induced protein with tetratricopeptide repeats 1 (IFIT1), as well as two TLR3-regulated lipid proteins, namely radical S-adenosyl methionine domain containing 2 (RSAD2) and perilipin 2 (PLIN2), were decreased in lungs. The protein levels of interferon-β in serum were also decreased. In livers, GO exposure induced disorganization of liver cells but not fibrosis. In agreement with the trends observed in lungs, TLR3, IFIT1, RSAD2, and PLIN2 proteins were decreased in livers. As a possible consequence, GO exposure dose-dependently decreased lipid levels in livers as indicated by oil red O and BODIPY 493/503 staining. We concluded that airway exposure to GO decreased anti-virus responses and lipid levels in mouse livers via the suppression of TLR3.
Collapse
Affiliation(s)
- Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhaohui Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
24
|
Frontiñan-Rubio J, Llanos-González E, González VJ, Vázquez E, Durán-Prado M. Subchronic Graphene Exposure Reshapes Skin Cell Metabolism. J Proteome Res 2022; 21:1675-1685. [PMID: 35611947 PMCID: PMC9251767 DOI: 10.1021/acs.jproteome.2c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
In recent years,
the toxicity of graphene-related materials (GRMs)
has been evaluated in diverse models to guarantee their safety. In
most applications, sublethal doses of GRMs contact human barriers
such as skin in a subchronic way. Herein, the subchronic effect (30
day exposure) of three GRMs (GO 1, GO 2, and FLG) with different oxidation
degrees and sizes was studied. The effects of these materials on human
skin cells, HaCaTs, were assayed through high-throughput metabolic-based
readout and other cell-based assays. A differential effect was found
between the different GRMs. GO 2 induced a metabolic remodeling in
epithelial cells, increasing the level of tricarboxylic acid components,
mirrored by increased cell proliferation and changes in cell phenotype.
The oxidation degree, size, and method of manufacture of GRMs dictated
harmful effects on cell metabolism and behavior generated by nontoxic
exposures. Therefore, a “safe by design” procedure is
necessary when working with these nanomaterials.
Collapse
Affiliation(s)
| | | | - Viviana Jehová González
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.,Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.,Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Mario Durán-Prado
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
25
|
Ageing Significantly Alters the Physicochemical Properties and Associated Cytotoxicity Profiles of Ultrafine Particulate Matters towards Macrophages. Antioxidants (Basel) 2022; 11:antiox11040754. [PMID: 35453439 PMCID: PMC9030427 DOI: 10.3390/antiox11040754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
There are still significant concerns about the detrimental effects and health risks of particulate matters (PMs) on the respiratory system. Notably, a largely overlooked knowledge gap is whether the environmental ageing process would change the physicochemical properties of PMs as well as the toxic influences of PMs on macrophages. Here, we applied ambient treatment of model PMs to mimic the real O3-induced ageing process and investigated ageing-determined cytotoxicity profile changes of PMs towards macrophages. The consequent distinct bioreactivity and toxicity towards macrophages are largely attributed to the changes of species of surface O-functional groups. Importantly, we unveiled the specific interactions between aged PMs and macrophages due to the variant contents of the surface carboxyl group, resulting in the divergent inflammatory activations and immune balance in the lung. Collectively, this study unearths the significance of ageing in altering particle cytotoxicity, and also provides additional understandings for consecutive investigations on the adverse effects of air pollution on the respiratory system.
Collapse
|
26
|
Gao YL, Yao Y, Zhang X, Chen F, Meng XL, Chen XS, Wang CL, Liu YC, Tian X, Shou ST, Chai YF. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Front Immunol 2022; 13:829210. [PMID: 35281010 PMCID: PMC8914284 DOI: 10.3389/fimmu.2022.829210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a syndrome characterized by life-threatening organ dysfunction caused by the dysregulated host response to an infection. Sepsis, especially septic shock and multiple organ dysfunction is a medical emergency associated with high morbidity, high mortality, and prolonged after-effects. Over the past 20 years, regulatory T cells (Tregs) have been a key topic of focus in all stages of sepsis research. Tregs play a controversial role in sepsis based on their heterogeneous characteristics, complex organ/tissue-specific patterns in the host, the multi-dimensional heterogeneous syndrome of sepsis, the different types of pathogenic microbiology, and even different types of laboratory research models and clinical research methods. In the context of sepsis, Tregs may be considered both angels and demons. We propose that the symptoms and signs of sepsis can be attenuated by regulating Tregs. This review summarizes the controversial roles and Treg checkpoints in sepsis.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| | - Ying Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People’s Hospital of Shandong Province, Rizhao, China
| | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang-long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin-sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao-lan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| |
Collapse
|
27
|
Povo-Retana A, Mojena M, Boscá A, Pedrós J, Peraza DA, Valenzuela C, Laparra JM, Calle F, Boscá L. Graphene Particles Interfere with Pro-Inflammatory Polarization of Human Macrophages: Functional and Electrophysiological Evidence. Adv Biol (Weinh) 2021; 5:e2100882. [PMID: 34590442 DOI: 10.1002/adbi.202100882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/09/2021] [Indexed: 02/05/2023]
Abstract
The interaction of two types of fragmented graphene particles (30-160 nm) with human macrophages is studied. Since macrophages have significant phagocytic activity, the incorporation of graphene particles into cells has an effect on the response to functional polarization stimuli, favoring an anti-inflammatory profile. Incubation of macrophages with graphene foam particles, prepared by chemical vapor deposition, and commercially available graphene nanoplatelet particles does not affect cell viability when added at concentrations up to 100 µg mL-1 ; macrophages exhibit differential quantitative responses to each type of graphene particles. Although both materials elicit similar increases in the release of reactive oxygen species, the impact on the transcriptional regulation associated with the polarization profile is different; graphene nanoplatelets significantly modify this transcriptomic profile. Moreover, these graphene particles differentially affect the motility and phagocytosis of macrophages. After the incorporation of both graphene types into the macrophages, they exhibit specific responses in terms of the mitochondrial oxygen consumption and electrophysiological potassium currents at the cell plasma membrane. These data support the view that the physical structure of the graphene particles has an impact on human macrophage responses, paving the way for the development of new mechanisms to modulate the activity of the immune system.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
| | - Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
| | - Alberto Boscá
- Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM) and Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jorge Pedrós
- Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM) and Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Diego Alberto Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV, Melchor Fernández Almagro, Madrid, 28029, Spain
| | - José Moisés Laparra
- J. M. Laparra, Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, Madrid, 28049, Spain
| | - Fernando Calle
- Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM) and Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV, Melchor Fernández Almagro, Madrid, 28029, Spain
| |
Collapse
|
28
|
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021; 13:pharmaceutics13101615. [PMID: 34683908 PMCID: PMC8539492 DOI: 10.3390/pharmaceutics13101615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Nanomaterials are now being used in a wide variety of biomedical applications. Medical and health-related issues, however, have raised major concerns, in view of the potential risks of these materials against tissue, cells, and/or organs and these are still poorly understood. These particles are able to interact with the body in countless ways, and they can cause unexpected and hazardous toxicities, especially at cellular levels. Therefore, undertaking in vitro and in vivo experiments is vital to establish their toxicity with natural tissues. In this review, we discuss the underlying mechanisms of nanotoxicity and provide an overview on in vitro characterizations and cytotoxicity assays, as well as in vivo studies that emphasize blood circulation and the in vivo fate of nanomaterials. Our focus is on understanding the role that the physicochemical properties of nanomaterials play in determining their toxicity.
Collapse
Affiliation(s)
- Abraham J. Domb
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Correspondence: (A.J.D.); (H.H.)
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Victoria Nahum
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
- Correspondence: (A.J.D.); (H.H.)
| |
Collapse
|
29
|
Pulingam T, Thong KL, Appaturi JN, Lai CW, Leo BF. Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. CHEMOSPHERE 2021; 281:130739. [PMID: 34004516 DOI: 10.1016/j.chemosphere.2021.130739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Recent advances in the field of nanotechnology contributed to the increasing use of nanomaterials in the engineering, health and biological sectors. Graphene oxide (GO) has great potentials as it could be fine-tuned to be adapted into various applications, especially in the electrical, electronic, industrial and clinical fields. One of the important applications of GO is its use as an antibacterial material due to its promising activity against a broad range of bacteria. However, our understanding of the mechanism of action of GO towards bacteria is still lacking and is often less described. Therefore, a comprehensive overview of bactericidal mechanistic actions of GO and the roles of physicochemical factors including size, aggregation, functionalization and adsorption behavior contributing to its antibacterial activities are described in this review. As the use of GO is expected to increase exponentially in the health sector, the cytotoxicity of GO among the cell lines is also discussed. Thus, this review emphasizes the physicochemical characteristics of GO that can be tailored for optimal antibacterial properties that is of importance to the health industry.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia; Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Jin X, Yu H, Zhang Z, Cui T, Wu Q, Liu X, Gao J, Zhao X, Shi J, Qu G, Jiang G. Surface charge-dependent mitochondrial response to similar intracellular nanoparticle contents at sublethal dosages. Part Fibre Toxicol 2021; 18:36. [PMID: 34565395 PMCID: PMC8474914 DOI: 10.1186/s12989-021-00429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Considering the inevitability for humans to be frequently exposed to nanoparticles (NPs), understanding the biosafety of NPs is important for rational usage. As an important part of the innate immune system, macrophages are widely distributed in vital tissues and are also a dominant cell type that engulfs particles. Mitochondria are one of the most sensitive organelles when macrophages are exposed to NPs. However, previous studies have mainly reported the mitochondrial response upon high-dose NP treatment. Herein, with gold nanoparticles (AuNPs) as a model, we investigated the mitochondrial alterations induced by NPs at a sublethal concentration. Results At a similar internal exposure dose, different AuNPs showed distinct degrees of effects on mitochondrial alterations, including reduced tubular mitochondria, damaged mitochondria, increased reactive oxygen species, and decreased adenosine triphosphate. Cluster analysis, two-way ANOVA, and multiple linear regression suggested that the surface properties of AuNPs were the dominant determinants of the mitochondrial response. Based on the correlation analysis, the mitochondrial response was increased with the change in zeta potential from negative to positive. The alterations in mitochondrial respiratory chain proteins indicated that complex V was an indicator of the mitochondrial response to low-dose NPs. Conclusion Our current study suggests potential hazards of modified AuNPs on mitochondria even under sublethal dose, indicates the possibility of surface modification in biocompatibility improvement, and provides a new way to better evaluation of nanomaterials biosafety. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00429-8.
Collapse
Affiliation(s)
- Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Haiyi Yu
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ze Zhang
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Tenglong Cui
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China
| |
Collapse
|
31
|
In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets. NANOMATERIALS 2021; 11:nano11092210. [PMID: 34578525 PMCID: PMC8470272 DOI: 10.3390/nano11092210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
(1) Background: Graphene is a two-dimensional atomic structure with a wide range of uses, including for biomedical applications. However, knowledge of its hazards is still limited. This work brings new cytotoxic, cytostatic, genotoxic and immunotoxic data concerning the in vitro exposure of human cell line to two types of graphene platelets (GP). It also contributes to the formation of general conclusions about the health risks of GP exposure. (2) Methods: In vitro exposure of a THP-1 cell line to three concentrations of two GP over 40 h. The cytotoxic potential was assessed by the measurement of LDH and glutathione (ROS) and by a trypan blue exclusion assay (TBEA); the cytostatic and genotoxic potential were assessed by the cytokinesis-block micronucleus (CBMN) test; and the immunotoxic potential was assessed by the measurement of IL-6, IL-10 and TNF-α. (3) Results: We found a significant dose-dependent increase in DNA damage (CBMN). The lowest observed genotoxic effect levels (LOGEL) were 5 µg/mL (GP1) and 30 µg/mL (GP2). We found no significant leaking of LDH from cells, increase in dead cells (TBEA), induction of ROS, increased levels of cytostasis, or changes in IL-6, IL-10 and TNF-α levels. (4) Conclusions: The genotoxicity increased during the short-term in vitro exposure of THP-1 to two GP. No increase in cytotoxicity, immunotoxicity, or cytostasis was observed.
Collapse
|
32
|
Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Arch Immunol Ther Exp (Warsz) 2021; 69:20. [PMID: 34327598 DOI: 10.1007/s00005-021-00625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Sole nanomaterials or nanomaterials bound to specific biomolecules have been proposed to regulate the immune system. These materials have now emerged as new tools for eliciting immune-based therapies to treat various cancers. Graphene, graphene oxide (GO) and reduced GO (rGO) are the latest nanomaterials among other carbon nanotubes that have attracted wide interest among medical industry players due to their extraordinary properties, inert-state, non-toxic and stable dispersion in a various solvent. Currently, GO and rGO are utilized in various biomedical application including cancer immunotherapy. This review will highlight studies that have been carried out in elucidating the stimulation of GO and rGO on selected innate and adaptive immune cells and their effect on cancer progression to shed some insights for researchers in the development of various GO- and rGO-based immune therapies against various cancers.
Collapse
|
33
|
Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Song Y, Sun Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00087-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
In the last decade, graphene oxide-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted more and more attention in the field of biomedicine. Due to the versatile surface functionalization, ultra-high surface area, and excellent biocompatibility of graphene oxide-based nanomaterials, which hold better promise for potential applications than among other nanomaterials in biomedical fields including drug/gene delivery, biomolecules detection, tissue engineering, especially in cancer treatment.
Results
Here, we review the recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. A comprehensive and in-depth depiction of unique property of graphene oxide-based multifunctional nanomaterials is first interpreted, with particular descriptions about the suitability for applying in cancer therapy. Afterward, recently emerging representative applications of graphene oxide-based multifunctional nanomaterials in antitumor therapy, including as an ideal carrier for drugs/genes, phototherapy, and bioimaging, are systematically summarized. Then, the biosafety of the graphene oxide-based multifunctional nanomaterials is reviewed.
Conclusions
Finally, the conclusions and perspectives on further advancing the graphene oxide-based multifunctional nanomaterials toward potential and versatile development for fundamental researches and nanomedicine are proposed.
Graphic abstract
Collapse
|
34
|
Ma J, Liu X, Yang Y, Qiu J, Dong Z, Ren Q, Zuo YY, Xia T, Chen W, Liu S. Binding of Benzo[ a]pyrene Alters the Bioreactivity of Fine Biochar Particles toward Macrophages Leading to Deregulated Macrophagic Defense and Autophagy. ACS NANO 2021; 15:9717-9731. [PMID: 34124884 DOI: 10.1021/acsnano.1c00324] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contaminant-bearing fine biochar particles (FBPs) may exert significantly different toxicity profiles from their contaminant-free counterparts. While the role of FBPs in promoting contaminant uptake has been recognized, it is unclear whether the binding of contaminants can modify the biochemical reactivity and toxicological profiles of FBPs. Here, we show that binding of benzo[a]pyrene (B(a)P, a model polycyclic aromatic hydrocarbon) at environmentally relevant exposure concentrations markedly alters the cytotoxicity of FBPs to macrophages, an important line of innate immune defense against airborne particulate matters (PMs). Specifically, B(a)P-bearing FBPs elicit more severe disruption of the phospholipid membrane, endocytosis, oxidative stress, autophagy, and compromised innate immune defense, as evidenced by blunted proinflammatory effects, compared with B(a)P-free FBPs. Notably, the altered cytotoxicity cannot be attributed to the dissolution of B(a)P from the B(a)P-bearing FBPs, but appears to be related to B(a)P adsorption-induced changes of FBPs bioreactivity toward macrophages. Our findings highlight the significance of environmental chemical transformation in altering the bioreactivity and toxicity of PMs and call for further studies on other types of carbonaceous nanoparticles and additional exposure scenarios.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Yi Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, and Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Borandeh S, Alimardani V, Abolmaali SS, Seppälä J. Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and Toxicity. Chem Res Toxicol 2021; 34:1386-1402. [PMID: 34041903 PMCID: PMC8382253 DOI: 10.1021/acs.chemrestox.0c00340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Graphene family nanomaterials (GFNs) are rapidly emerging for ocular applications due to their outstanding physicochemical properties. Since the eyes are very sensitive organs and the contact between the eyes and GFNs in eye drops, contact lenses, intraocular drug delivery systems and biosensors and even the workers handling these nanomaterials is inevitable, it is necessary to investigate their ocular toxicities and physiological interactions with cells as well as their toxicity mechanisms. The toxicity of GFNs can be extremely affected by their physicochemical properties, including composition, size, surface chemistry, and oxidation level as well as dose and the time of exposure. Up to now, there are several studies on the in vitro and in vivo toxicity of GFNs; however, a comprehensive review on ocular toxicity and applications of GFNs is missing, and a knowledge about the health risks of eye exposure to the GFNs is predominantly unspecified. This review highlights the ocular applications of GFNs and systematically covers the most recent advances of GFNs' physicochemical properties, in vitro and in vivo ocular toxicity, and the possible toxicity mechanisms as well as provides some perspectives on the potential risks of GFNs in material development and biomedical applications.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 7146864685 Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 7146864685 Shiraz, Iran
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
36
|
Zhang Y, Zhang G, Wang G, Wu L, Monteiro-Riviere NA, Li Y. The synergistic strategies for the immuno-oncotherapy with photothermal nanoagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1717. [PMID: 33825343 DOI: 10.1002/wnan.1717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Immuno-oncotherapy has shown great promise for the cure of late-stage and metastatic cancer. Great efforts have tried to improve the overall response rate (ORR) and to reduce the immune-related adverse events (irAEs). Antigen presentation, T cell activation and killing are interlocking and distinct steps to initiate effective anti-tumor immune responses. Aiming to overcome the tumor immune evasion whose mechanisms include limited release of neoantigen, suppressed infiltration of antigen-presenting cells (APCs) and T cells, and the expression of immune checkpoints (ICPs), combinational therapeutic strategies have shown great potential by activating the anti-tumor immune responses together with deactivating immunosuppressive conditions simultaneously. In this direction, photothermal therapy (PTT) has attracted attention due to the efficient ablation of tumor cells, of which the released immunogenic tumor debris can activate host immune responses. The combination of immunoadjuvants and/or ICP inhibitors can boost the anti-tumor immune responses, realizing PTT-synergized immuno-oncotherapy. In this regard, numerous multifunctional nanomaterials have been designed with integration of photothermal and immuno-oncotherapeutic agents into one package via well-designed surface modification and functionalization. This review summarizes the recent studies on the synergistic strategies for the immuno-oncotherapy based on photothermal nanoagents and the mechanisms that trigger the systemic anti-tumor immune responses and PTT-synergized immuno-oncotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guocheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, USA
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
37
|
Li J, Wang X, Mei KC, Chang CH, Jiang J, Liu X, Liu Q, Guiney LM, Hersam MC, Liao YP, Meng H, Xia T. Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. NANO TODAY 2021; 37:101061. [PMID: 34055032 PMCID: PMC8153408 DOI: 10.1016/j.nantod.2020.101061] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a representative two-dimensional (2D) nanomaterial, graphene oxide (GO) has shown high potential in many applications due to its large surface area, high flexibility, and excellent dispersibility in aqueous solutions. These properties make GO an ideal candidate for bio-imaging, drug delivery, and cancer therapy. When delivered to the body, GO has been shown to accumulate in the liver, the primary accumulation site of systemic delivery or secondary spread from other uptake sites, and induce liver toxicity. However, the contribution of the GO physicochemical properties and individual liver cell types to this toxicity is unclear due to property variations and diverse cell types in the liver. Herein, we compare the effects of GOs with small (GO-S) and large (GO-L) lateral sizes in three major cell types in liver, Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatocytes. While GOs induced cytotoxicity in KCs, they induced significantly less toxicity in LSECs and hepatocytes. For KCs, we found that GOs were phagocytosed that triggered NADPH oxidase mediated plasma membrane lipid peroxidation, which leads to PLC activation, calcium flux, mitochondrial ROS generation, and NLRP3 inflammasome activation. The subsequent caspase-1 activation induced IL-1β production and GSDMD-mediated pyroptosis. These effects were lateral size-dependent with GO-L showing stronger effects than GO-S. Amongst the liver cell types, decreased cell association and the absence of lipid peroxidation resulted in low cytotoxicity in LSECs and hepatocytes. Using additional GO samples with different lateral sizes, surface functionalities, or thickness, we further confirmed the differential cytotoxic effects in liver cells and the major role of GO lateral size in KUP5 pyroptosis by correlation studies. These findings delineated the GO effects on cellular uptake and cell death pathways in liver cells, and provide valuable information to further evaluate GO effects on the liver for biomedical applications.
Collapse
Affiliation(s)
- Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Linda M. Guiney
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Corresponding Author: Tian Xia, M.D./Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680.
| |
Collapse
|
38
|
Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:333-356. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With wider use of graphene-based materials and other two-dimensional (2 D) materials in various fields, including electronics, composites, biomedicine, etc., 2 D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2 D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2 D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2 D materials research, and the possible risks of ions and molecules used in the production of these promising 2 D materials, or those produced by the degradation and dissolution of 2 D materials.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
39
|
Luo SW, Alimujiang A, Balamurugan S, Zheng JW, Wang X, Yang WD, Cui J, Li HY. Physiological and molecular responses in halotolerant Dunaliella salina exposed to molybdenum disulfide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124014. [PMID: 33069998 DOI: 10.1016/j.jhazmat.2020.124014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide nanoparticles (MoS2 NPs) has emerged as the promising nanomaterial with a wide array of applications in the biomedical, industrial and environmental field. However, the potential effect of MoS2 NPs on marine organisms has yet to be reported. In this study, the effect of MoS2 NPs on the physiological index, subcellular morphology, transcriptomic profiles of the marine microalgae Dunaliella salina was investigated for the first time. exhibited "doping-like" effects on marine microalgae; Growth stimulation was 193.55%, and chlorophyll content increased 1.61-fold upon the addition of 50 μg/L MoS2 NPs. Additionally, exposure to MoS2 NPs significantly increased the protein and carbohydrate content by 2.03- and 1.56-fold, respectively. The antioxidant system was activated as well to eliminate the adverse influence of reactive oxygen species (ROS). Transcriptomic analysis revealed that genes involved in porphyrin synthesis, glycolysis/gluconeogenesis, tricarboxylic acid cycle and DNA replication were upregulated upon MoS2 NPs exposure, which supports the mechanistic role of MoS2 NPs in improving cellular growth and photosynthesis. The "doping-like" effects on marine algae suggest that the low concentration of MoS2 NPs might change the rudimentary ecological composition in the ocean.
Collapse
Affiliation(s)
- Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Yang X, Liang J, Wu Q, Li M, Shan W, Zeng L, Yao L, Liang Y, Wang C, Gao J, Guo Y, Liu Y, Liu R, Luo Q, Zhou Q, Qu G, Jiang G. Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1134-1144. [PMID: 33356192 DOI: 10.1021/acs.est.0c05724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) has extensive applications in various fields. The release of BP into aquatic ecosystems and the potential toxic effects on aquatic organisms are becoming major concerns. Here, we investigated the developmental toxicity of few-layered BP toward the zebrafish. We found that BP could adsorb on the surface of the chorion and could subsequently penetrate within the embryo. After exposure of embryos to 10 mg/L BP, developmental malformations appeared at 96 hpf, especially heart deformities such as pericardial edema and bradycardia, accompanied by severe circulatory system failure. Using transgenic zebrafish larvae, we further characterized cardiovascular defects with cardiac enlargement and impaired cardiac vessels as indicators of damage to the cardiovascular system upon BP exposure. We performed transcriptomic analysis on zebrafish embryos treated with a lower concentration of 2 mg/L. The results showed disruption in genes associated with muscle development, oxygen involved processes, focal adhesion, and VEGF and MAPK signaling pathways. These alterations also indicated that BP carries a risk of developmental perturbation at lower concentrations. This study provides new insights into the effects of BP on aquatic organisms.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Zheng Z, Chen Y, Hong H, Shen Y, Wang Y, Sun J, Wang X. The "Yin and Yang" of Immunomodulatory Magnesium-Enriched Graphene Oxide Nanoscrolls Decorated Biomimetic Scaffolds in Promoting Bone Regeneration. Adv Healthc Mater 2021; 10:e2000631. [PMID: 33166076 DOI: 10.1002/adhm.202000631] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Indexed: 01/23/2023]
Abstract
Tissue regeneration driven by immunomodulatory agents has emerged as a potential solution for repairing bone defects. However, the therapeutic benefits are compromised by disturbances in the pro- and anti-inflammatory balance. Here, using magnesium nanoparticles (MgNPs) as a template, magnesium-enriched graphene oxide nanoscrolls (MgNPs@GNSs) designed for combinational modulation of the inflammatory response are reported. First, the different effects of graphene oxide (GO) and magnesium ions (Mg2+ ) on Raw264.7 macrophage phenotype transformation are screened. The results reveal that GO activates inflammatory M1 macrophages, and that Mg2+ facilitates repolarization of M1 macrophages to the pro-healing M2 phenotype. With sustained release of Mg2+ , the MgNPs@GNS nanoplatform can orchestrate harmonious type 1 and type 2 inflammatory responses. Mg2+ decrease the internalization of GO and downregulate the nuclear factor kappa-B pathway, which is profoundly involved in the inflammatory process. A series of experiments show that the ordered inflammatory response induced by MgNPs@GNSs stimulates in vitro angiogenesis and osteogenesis through chemotactic, mitogenic, and morphogenic actions. Obvious vascularized bone regeneration is achieved in a rat cranial bone defect model via MgNPs@GNS deposited decellularized bone matrix scaffold. Therefore, the potential of using inherently therapeutic nanomedicine to modulate biomaterial-induced immune responses and thus enhance bone regeneration is demonstrated.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Oral and Maxillofacial Head & Neck Oncology Shanghai Key Laboratory Stomatology Shanghai Research Institute of Stomatology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Yahong Chen
- Department of Plastic and Reconstructive Surgery Shanghai Key Laboratory of Tissue Engineering Ninth People's Hospital Shanghai Jiao Tong University School of Medicine National Tissue Engineering Center of China 639 Zhizaoju Road Shanghai 200011 China
| | - Hao Hong
- Medical School of Nanjing University 22 Hankou Road Nanjing Jiangsu 210093 China
| | - Yi Shen
- Department of Oral and Maxillofacial Head & Neck Oncology Shanghai Key Laboratory Stomatology Shanghai Research Institute of Stomatology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Yun Wang
- Department of Plastic and Reconstructive Surgery Shanghai Key Laboratory of Tissue Engineering Ninth People's Hospital Shanghai Jiao Tong University School of Medicine National Tissue Engineering Center of China 639 Zhizaoju Road Shanghai 200011 China
| | - Jian Sun
- Department of Oral and Maxillofacial Head & Neck Oncology Shanghai Key Laboratory Stomatology Shanghai Research Institute of Stomatology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery Shanghai Key Laboratory of Tissue Engineering Ninth People's Hospital Shanghai Jiao Tong University School of Medicine National Tissue Engineering Center of China 639 Zhizaoju Road Shanghai 200011 China
| |
Collapse
|
42
|
Graphene oxide-modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111603. [PMID: 33321647 DOI: 10.1016/j.msec.2020.111603] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
Articular cartilage regeneration is a challenge in orthopedics and tissue engineering. This study prepared a graphene oxide (GO)-modified 3D acellular cartilage extracellular matrix (ACM) scaffold for cartilage repair. Cartilage slices were decellularized using a combination of physical and chemical methods of fabricating ACM particles. GO was crosslinked with the ACM by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy succinimide to prepare a composite scaffold. GO modification improved the internal structure and mechanical properties of the scaffold. The GO-modified (2 mg/mL) composite scaffold promoted cell adhesion, cell proliferation, and chondrogenic differentiation in vitro. Experiments on subcutaneous implantation in rats demonstrated that the composite scaffold had good biocompatibility and mild inflammatory response. After 12 weeks of implantation, the composite scaffold loaded with bone marrow mesenchymal stem cells completely bridged the cartilage defects in the rabbit knee with hyaline cartilage. Results indicated that the GO-modified 3D ACM composite scaffold can provide a powerful platform for cartilage tissue engineering and articular cartilage injury treatment.
Collapse
|
43
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Lu P, Zehtab Yazdi A, Han XX, Al Husaini K, Haime J, Waye N, Chen P. Mechanistic Insights into the Cytotoxicity of Graphene Oxide Derivatives in Mammalian Cells. Chem Res Toxicol 2020; 33:2247-2260. [PMID: 32786550 DOI: 10.1021/acs.chemrestox.9b00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Graphene oxide derivatives (GODs) have superb physical/chemical properties with promise for applications in biomedicine. Shape, size, and chemistry of the GODs are identified as the key parameters that impact any biological system. In this work, the GODs with a wide range of shapes (sheets, helical/longitudinal ribbons, caps, dots), sizes (10 nm to 20 μm), and chemistry (partially to fully oxidized) are synthesized, and their cytotoxicity in normal cells (NIH3T3) and colon cancer cells (HCT116) are evaluated. The mechanisms by which the GODs induce cytotoxicity are comprehensively investigated, and the toxic effects of the GODs on the NIH3T3 and the HCT116 cells are compared. While the GODs show no toxicity under the size of 50 nm, they impose moderate toxic effects at the sizes of 100 nm to 20 μm (max viability >57%). For the GODs with the similar size (100-200 nm), the helical ribbon-like structure is found to be much less toxic than the longitudinal ribbon structure (max viability 83% vs 18%) and the tubular structure (0% viability for the oxidized carbon nanotubes). It is also evident that the level of oxidation of the GOD is inversely related to the toxicity. Although the extent of GOD-induced cytotoxicity (reduction of cell viability) to the two cell lines is similar, their toxicity mechanisms are interestingly found to be substantially different. In the HCT116 cancer cells, cell membrane leakage leads to DNA damage followed by cell death, whereas in the NIH3T3 normal cells, increases in oxidative stress and physical interference between the GODs and the cells are identified as the main toxicity sources.
Collapse
Affiliation(s)
- Phillip Lu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Alireza Zehtab Yazdi
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Xiao Xia Han
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Khalsa Al Husaini
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Jessica Haime
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Naomi Waye
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
45
|
Banstola A, Jeong JH, Yook S. Immunoadjuvants for cancer immunotherapy: A review of recent developments. Acta Biomater 2020; 114:16-30. [PMID: 32777293 DOI: 10.1016/j.actbio.2020.07.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy evolved as a new treatment modality to eradicate tumor cells and has gained in popularity after its successful clinical transition. By activating antigen-presenting cells (APCs), and thus, inducing innate or adaptive immune responses, immunoadjuvants have become promising tools for cancer immunotherapy. Different types of immunoadjuvants such as toll-like receptor (TLR) agonists, exosomes, and metallic and plant-derived immunoadjuvants have been studied for their immunological effects. However, the clinical use of immunoadjuvants is limited by short response rates and various side-effects. The rapid progress made in the development of nanoparticle systems as immunoadjuvant carrier vehicles has provided potential carriers for cancer immunotherapy. In this review article, we describe different types of immunoadjuvants, their limitations, modes of action, and the reasons for their clinical adoption. In addition, we review recent progress made in the nanoparticle-based immunoadjuvant field and on the combined use of nanoparticle-based immunoadjuvants and chemotherapy, phototherapy, radiation therapy, and immune checkpoint inhibitor-based therapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy emerged as a new hope for treating malignant tumors. Different types of immunoadjuvants serve as an important tool for cancer immunotherapy by activating an innate or adaptive immune response. Limitation of free immunoadjuvant has paved the path for the development of nanoparticle-based immunoadjuvant therapy with the hope of prolonging the therapeutic efficacy. This review highlights the recent advancement made in nanoparticle-based immunoadjuvant therapy in modulating the adaptive and innate immune system. The application of the combinatorial approach of chemotherapy, phototherapy, radiation therapy adds synergy in nanoparticle-based immunoadjuvant therapy. It will broaden the reader's understanding on the recent progress made in immunotherapy with the aid of immunoadjuvant-based nanosystem.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
46
|
Liu Z, He J, Zhu T, Hu C, Bo R, Wusiman A, Hu Y, Wang D. Lentinan-Functionalized Graphene Oxide Is an Effective Antigen Delivery System That Modulates Innate Immunity and Improves Adaptive Immunity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39014-39023. [PMID: 32805921 DOI: 10.1021/acsami.0c12078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) and lentinan have received great attention because of their utility in biomedical applications. Graphene oxide is utilized in drug- and vaccine-delivery systems due to its biocompatibility, large surface area, and outstanding adsorption capability, while lentinan has immunity-enhancing effects. In this study, we synthesized and characterized GO grafted with lentinan (LNT) as an adjuvant and investigated how to impact the immune responses. Lentinan-modified GO (GO-LNT) facilitated antigen uptake in macrophages and improved the efficiency of antigen application in vitro. Furthermore, in vivo, compared with GO/OVA, GO-LNT/OVA decreased the release rate of ovalbumin (OVA) to sustain long-term immune responses and boost the levels of IgG and IgG subtypes. Hence, we can infer that the effects of GO-LNT were a result of the increased amounts of antigen uptake by cells. Overall, our studies demonstrated that GO-LNT could suffice for a safe and effective vaccine-delivery system as well as an excellent adjuvant that both elicits a long-term immune memory response and potentiates cellular and humoral immunity.
Collapse
Affiliation(s)
- Zhenguang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Cong Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruonan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuanliang Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
47
|
Lin H, Ji DK, Lucherelli MA, Reina G, Ippolito S, Samorì P, Bianco A. Comparative Effects of Graphene and Molybdenum Disulfide on Human Macrophage Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002194. [PMID: 32743979 DOI: 10.1002/smll.202002194] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Graphene and other 2D materials, such as molybdenum disulfide, have been increasingly used in electronics, composites, and biomedicine. In particular, MoS2 and graphene hybrids have attracted a great interest for applications in the biomedical research, therefore stimulating a pertinent investigation on their safety in immune cells like macrophages, which commonly engulf these materials. In this study, M1 and M2 macrophage viability and activation are mainly found to be unaffected by few-layer graphene (FLG) and MoS2 at doses up to 50 µg mL-1 . The uptake of both materials is confirmed by transmission electron microscopy, inductively coupled plasma mass spectrometry, and inductively coupled plasma atomic emission spectroscopy. Notably, both 2D materials increase the secretion of inflammatory cytokines in M1 macrophages. At the highest dose, FLG decreases CD206 expression while MoS2 decreases CD80 expression. CathB and CathL gene expressions are dose-dependently increased by both materials. Despite a minimal impact on the autophagic pathway, FLG is found to increase the expression of Atg5 and autophagic flux, as observed by Western blotting of LC3-II, in M1 macrophages. Overall, FLG and MoS2 are of little toxicity in human macrophages even though they are found to trigger cell stress and inflammatory responses.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | | | - Paolo Samorì
- CNRS, Université de Strasbourg, ISIS, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
- CNRS, Université de Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
48
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
49
|
Rodrigues AF, Newman L, Jasim D, Mukherjee SP, Wang J, Vacchi IA, Ménard‐Moyon C, Bianco A, Fadeel B, Kostarelos K, Bussy C. Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safe-by-Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903200. [PMID: 32596109 PMCID: PMC7312279 DOI: 10.1002/advs.201903200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Indexed: 05/17/2023]
Abstract
Safety assessment of graphene-based materials (GBMs) including graphene oxide (GO) is essential for their safe use across many sectors of society. In particular, the link between specific material properties and biological effects needs to be further elucidated. Here, the effects of lateral dimensions of GO sheets in acute and chronic pulmonary responses after single intranasal instillation in mice are compared. Micrometer-sized GO induces stronger pulmonary inflammation than nanometer-sized GO, despite reduced translocation to the lungs. Genome-wide RNA sequencing also reveals distinct size-dependent effects of GO, in agreement with the histopathological results. Although large GO, but not the smallest GO, triggers the formation of granulomas that persists for up to 90 days, no pulmonary fibrosis is observed. These latter results can be partly explained by Raman imaging, which evidences the progressive biotransformation of GO into less graphitic structures. The findings demonstrate that lateral dimensions play a fundamental role in the pulmonary response to GO, and suggest that airborne exposure to micrometer-sized GO should be avoided in the production plant or applications, where aerosolized dispersions are likely to occur. These results are important toward the implementation of a safer-by-design approach for GBM products and applications, for the benefit of workers and end-users.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Nanomedicine LabFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteUniversity of ManchesterManchesterM13 9PTUK
- Lydia Becker Institute of Immunology and InflammationSchool of Health SciencesUniversity of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Leon Newman
- Nanomedicine LabFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteUniversity of ManchesterManchesterM13 9PTUK
| | - Dhifaf Jasim
- Nanomedicine LabFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteUniversity of ManchesterManchesterM13 9PTUK
| | - Sourav P. Mukherjee
- Nanosafety & Nanomedicine LaboratoryInstitute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Jun Wang
- Science for Life LaboratoryDepartment of Biochemistry and BiophysicsStockholm UniversityStockholm171 65Sweden
| | - Isabella A. Vacchi
- University of StrasbourgCNRSImmunology, Immunopathology and Therapeutic ChemistryUPR 3572Strasbourg67 084France
| | - Cécilia Ménard‐Moyon
- University of StrasbourgCNRSImmunology, Immunopathology and Therapeutic ChemistryUPR 3572Strasbourg67 084France
| | - Alberto Bianco
- University of StrasbourgCNRSImmunology, Immunopathology and Therapeutic ChemistryUPR 3572Strasbourg67 084France
| | - Bengt Fadeel
- Nanosafety & Nanomedicine LaboratoryInstitute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteUniversity of ManchesterManchesterM13 9PTUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UABBellaterraBarcelona08193Spain
| | - Cyrill Bussy
- Nanomedicine LabFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteUniversity of ManchesterManchesterM13 9PTUK
- Lydia Becker Institute of Immunology and InflammationSchool of Health SciencesUniversity of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| |
Collapse
|
50
|
Fu L, Liao K, Tang B, Jiang L, Huang W. Applications of Graphene and Its Derivatives in the Upstream Oil and Gas Industry: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1013. [PMID: 32466513 PMCID: PMC7353333 DOI: 10.3390/nano10061013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Graphene and its derivatives, with their unique two-dimensional structures and excellent physical and chemical properties, have been an international research hotspot both in the research community and industry. However, in application-oriented research in the oil and gas industry they have only drawn attention in the past several years. Their excellent optical, electrical, thermal and mechanical performance make them great candidates for use in oil and gas exploration, drilling, production, and transportation. Combined with the actual requirements for well working fluids, chemical enhanced oil recovery, heavy oil recovery, profile control and water shutoff, tracers, oily wastewater treatment, pipeline corrosion prevention treatment, and tools and apparatus, etc., this paper introduces the behavior in water and toxicity to organisms of graphene and its derivatives in detail, and comprehensively reviews the research progress of graphene materials in the upstream oil and gas industry. Based on this, suggestions were put forward for the future research. This work is useful to the in-depth mechanism research and application scope broadening research in the upstream oil and gas industry.
Collapse
Affiliation(s)
| | - Kaili Liao
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| | | | | | - Weiqiu Huang
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| |
Collapse
|