1
|
Al Hoque A, Kannaboina P, Abraham Y, Mehedi M, Sibi MP, Quadir M. Furan-rich, biobased transfection agents as potential oligomeric candidates for intracellular plasmid DNA delivery. RSC Adv 2024; 14:32637-32647. [PMID: 39411251 PMCID: PMC11476585 DOI: 10.1039/d4ra05978f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Biobased, DNA delivery vectors have been synthesized with a core motif composed of 2,5-bishydroxymethylfuran (BHMF) readily available from an important biomass feedstock 5-hydroxymethyl furfural (HMF). To generate the product, BHMF was first converted to 2,5-furan bishydroxymethyl diacrylate (2,5-FDA), which was later conjugated with different types of secondary amines. Rich in tertiary nitrogen, these oligomeric FDA-amino esters demonstrated stable electrostatic interactions with negatively charged plasmid DNA in an aqueous environment. We evaluated synthetic routes toward these plasmid DNA-binding amino esters (pFASTs), identified their nanoscale features, and attempted to establish their structure-property relationship in the context of the DNA delivery. Our preliminary studies show that the pFASTs formed stable complexes with the plasmid DNA. Dynamic light scattering indicated that the DNA polyplexes of pFASTs have hydrodynamic diameters within the size range of 100-150 nm with a surface charge (ζ-potential) ranging from -10 to +33 mV, depending on pFAST type. These oligomeric amino esters rich in furan motif were also found to successfully transfect the GFP-expressing plasmid DNA intracellularly. Collectively, this study establishes a new route to produce DNA transfection agents from sustainable resources that can be used for transferring genetic materials for humans, veterinary, and agrochemical purposes.
Collapse
Affiliation(s)
- Ashique Al Hoque
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
- Department of Pharmaceutical Technology, Jadavpur University Kolkata India
| | - Prakash Kannaboina
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Yeabstega Abraham
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Mukund P Sibi
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
| |
Collapse
|
2
|
Pathan S, Jayakannan M. Zwitterionic Strategy to Stabilize Self-Immolative Polymer Nanoarchitecture under Physiological pH for Drug Delivery In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2304599. [PMID: 38574242 DOI: 10.1002/adhm.202304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes. To achieve this goal, biodegradable polycaprolactone (PCL) platform is chosen, and structure-engineered several di- and triblock architectures to arrive the precise macromolecular geometry. The hydrophobic-PCL core and hydrophilic anionic-PCL block at the periphery shield PAEs against autodegradation, thereby ensuring stability under physiological pH in PBS, FBS, cell culture medium and bloodstream. The clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared IR-780 biomarker is encapsulated to study their biological actions by in vitro live cancer cells and in vivo bioimaging in live animals. These zwitterions are biocompatible, nonhemolytic, and real-time in vitro live-cell confocal studies have confirmed their internalization and enzymatic biodegradation in the endo-lysosomal compartments to deliver the payload. In vivo bioimaging establishes their prolonged blood circulation for over 72 h, and the biodistribution analysis reveals the accumulation of nanoparticles predominantly in the excretory organs.
Collapse
Affiliation(s)
- Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
3
|
Reshma G B, Miglani C, Pal A, Ganguli M. Sugar alcohol-modified polyester nanoparticles for gene delivery via selective caveolae-mediated endocytosis. NANOSCALE 2024; 16:4114-4124. [PMID: 38353098 DOI: 10.1039/d3nr05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Nucleic acid-based drugs are changing the scope of emerging medicine in preventing and treating diseases. Nanoparticle systems based on lipids and polymers developed to navigate tissue-level and cellular-level barriers are now emerging as vector systems that can be translated to clinical settings. A class of polymers, poly(β-amino esters) (PBAEs) known for their chemical flexibility and biodegradability, has been explored for gene delivery. These polymers are sensitive to changes in the monomer composition affecting transfection efficiency. Hence to add functionality to these polymers, we partially substituted ligands to an identified effective polymer chemistry. We report here a new series of statistical copolymers based on PBAEs where the backbone is modified with sugar alcohols to selectively facilitate the caveolae-mediated endocytosis pathway of cellular transport. These ligands are grafted at the polymer's backbone, thereby establishing a new strategy of modification in PBAEs. We demonstrate that these polymers form nanoparticles with DNA, show effective complexation and cargo release, enter the cell via selective caveolae-mediated endocytosis, exhibit low cytotoxicity, and increase transfection in neuronal cells.
Collapse
Affiliation(s)
- Betsy Reshma G
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Deng Z, Gao W, Kohram F, Li E, Kalin TV, Shi D, Kalinichenko VV. Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium. Bioact Mater 2024; 31:1-17. [PMID: 37593494 PMCID: PMC10432146 DOI: 10.1016/j.bioactmat.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body. In the present study, we successfully solved this problem by developing non-toxic poly(β-amino) ester (PBAE) nanoparticles with specific structure design and fluorinated modification for high efficiency and specific delivery of nucleic acids to the pulmonary endothelial cells. After intravenous administration, the PBAE nanoparticles were capable of delivering non-integrating DNA plasmids to lung microvascular endothelial cells but not to other lung cell types. IVIS whole body imaging and flow cytometry demonstrated that DNA plasmid were functional in the lung endothelial cells but not in endothelial cells of other organs. Fluorination of PBAE was required for lung endothelial cell-specific targeting. Hematologic analysis and liver and kidney metabolic panels demonstrated the lack of toxicity in experimental mice. Thus, fluorinated PBAE nanoparticles can be an ideal vehicle for gene therapy targeting lung microvascular endothelium in pulmonary vascular disorders.
Collapse
Affiliation(s)
- Zicheng Deng
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Wen Gao
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Fatemeh Kohram
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Enhong Li
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Vladimir V. Kalinichenko
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| |
Collapse
|
5
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
6
|
Sadeqi Nezhad M. Poly (beta-amino ester) as an in vivo nanocarrier for therapeutic nucleic acids. Biotechnol Bioeng 2023; 120:95-113. [PMID: 36266918 DOI: 10.1002/bit.28269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Therapeutic nucleic acids are an emerging class of therapy for treating various diseases through immunomodulation, protein replacement, gene editing, and genetic engineering. However, they need a vector to effectively and safely reach the target cells. Most gene and cell therapies rely on ex vivo gene delivery, which is laborious, time-consuming, and costly; therefore, devising a systematic vector for effective and safe in vivo delivery of therapeutic nucleic acids is required to target the cells of interest in an efficient manner. Synthetic nanoparticle vector poly beta amino ester (PBAE), a class of degradable polymer, is a promising candidate for in vivo gene delivery. PBAE is considered the most potent in vivo vector due to its excellent transfection performance and biodegradability. PBAE nanoparticles showed tunable charge density, diverse structural characteristics, excellent encapsulation capacity, high stability, stimuli-responsive release, site-specific delivery, potent binding to nucleic acids, flexible binding ability to various conjugates, and effective endosomal escape. These unique properties of PBAE are an essential contribution to in vivo gene delivery. The current review discusses each of the components used for PBAE synthesis and the impact of various environmental and physicochemical factors of the body on PBAE nanocarrier.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Clinical and Translational Science Institute, Translational Biomedical Science Department, University of Rochester Medical Center, Rochester, New York, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA.,Department of Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
El-Kharrag R, Berckmueller KE, Madhu R, Cui M, Campoy G, Mack HM, Wolf CB, Perez AM, Humbert O, Kiem HP, Radtke S. Efficient polymer nanoparticle-mediated delivery of gene editing reagents into human hematopoietic stem and progenitor cells. Mol Ther 2022; 30:2186-2198. [DOI: 10.1016/j.ymthe.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022] Open
|
8
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
9
|
Non-adhesive and highly stable biodegradable nanoparticles that provide widespread and safe transgene expression in orthotopic brain tumors. Drug Deliv Transl Res 2021; 10:572-581. [PMID: 32323162 DOI: 10.1007/s13346-020-00759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several generations of poly(β-amino ester) (PBAE) polymers have been developed for efficient cellular transfection. However, PBAE-based gene vectors, similar to other cationic materials, cannot readily provide widespread gene transfer in the brain due to adhesive interactions with the extracellular matrix (ECM). We thus engineered eight vector candidates using previously identified lead PBAE polymer variants but endowed them with non-adhesive surface coatings to facilitate their spread through brain ECM. Specifically, we screened for the ability to provide widespread gene transfer in tumor spheroids and healthy mouse brains. We then confirmed that a lead formulation provided widespread transgene expression in orthotopically established brain tumor models with an excellent in vivo safety profile. Lastly, we developed a method to store it long-term while fully retaining its brain-penetrating property. This new platform provides a broad utility in evaluating novel genetic targets for gene therapy of brain tumors and neurological disorders in preclinical and clinical settings. Graphical abstract We engineered biodegradable DNA-loaded brain-penetrating nanoparticles (DNA-BPN) possessing small particle diameters (< 70 nm) and non-adhesive surface coatings to facilitate their spread through brain tumor extracellular matrix (ECM). These DNA-BPN provide widespread gene transfer in models recapitulating the ECM barrier, including three-dimensional multicellular tumor spheroids and mice with orthotopically established brain tumor.
Collapse
|
10
|
Duran-Mota JA, Yani JQ, Almquist BD, Borrós S, Oliva N. Polyplex-Loaded Hydrogels for Local Gene Delivery to Human Dermal Fibroblasts. ACS Biomater Sci Eng 2021; 7:4347-4361. [PMID: 34081451 DOI: 10.1021/acsbiomaterials.1c00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impaired cutaneous healing leading to chronic wounds affects between 2 and 6% of the total population in most developed countries and it places a substantial burden on healthcare budgets. Current treatments involving antibiotic dressings and mechanical debridement are often not effective, causing severe pain, emotional distress, and social isolation in patients for years or even decades, ultimately resulting in limb amputation. Alternatively, gene therapy (such as mRNA therapies) has emerged as a viable option to promote wound healing through modulation of gene expression. However, protecting the genetic cargo from degradation and efficient transfection into primary cells remain significant challenges in the push to clinical translation. Another limiting aspect of current therapies is the lack of sustained release of drugs to match the therapeutic window. Herein, we have developed an injectable, biodegradable and cytocompatible hydrogel-based wound dressing that delivers poly(β-amino ester)s (pBAEs) nanoparticles in a sustained manner over a range of therapeutic windows. We also demonstrate that pBAE nanoparticles, successfully used in previous in vivo studies, protect the mRNA load and efficiently transfect human dermal fibroblasts upon sustained release from the hydrogel wound dressing. This prototype wound dressing technology can enable the development of novel gene therapies for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Jose Antonio Duran-Mota
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain.,Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Júlia Quintanas Yani
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain.,Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin D Almquist
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Sizikov AA, Kharlamova MV, Nikitin MP, Nikitin PI, Kolychev EL. Nonviral Locally Injected Magnetic Vectors for In Vivo Gene Delivery: A Review of Studies on Magnetofection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1078. [PMID: 33922066 PMCID: PMC8143545 DOI: 10.3390/nano11051078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Magnetic nanoparticles have been widely used in nanobiomedicine for diagnostics and the treatment of diseases, and as carriers for various drugs. The unique magnetic properties of "magnetic" drugs allow their delivery in a targeted tumor or tissue upon application of a magnetic field. The approach of combining magnetic drug targeting and gene delivery is called magnetofection, and it is very promising. This method is simple and efficient for the delivery of genetic material to cells using magnetic nanoparticles controlled by an external magnetic field. However, magnetofection in vivo has been studied insufficiently both for local and systemic routes of magnetic vector injection, and the relevant data available in the literature are often merely descriptive and contradictory. In this review, we collected and systematized the data on the efficiency of the local injections of magnetic nanoparticles that carry genetic information upon application of external magnetic fields. We also investigated the efficiency of magnetofection in vivo, depending on the structure and coverage of magnetic vectors. The perspectives of the development of the method were also considered.
Collapse
Affiliation(s)
- Artem A. Sizikov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Marianna V. Kharlamova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 117942 Moscow, Russia
| | - Eugene L. Kolychev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| |
Collapse
|
12
|
Karlsson J, Rhodes KR, Green JJ, Tzeng SY. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities. Expert Opin Drug Deliv 2020; 17:1395-1410. [PMID: 32700581 PMCID: PMC7658038 DOI: 10.1080/17425247.2020.1796628] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gene delivery technologies are being developed for an increasing number of biomedical applications, with delivery vehicles including viruses and non-viral materials. Among biomaterials used for non-viral gene delivery, poly(beta-amino ester)s (PBAEs), a class of synthetic, biodegradable polymers, have risen as a leading gene delivery vehicle that has been used for multiple applications in vitro and in vivo. AREAS COVERED This review summarizes the key properties of PBAEs and their development, including a discussion of the advantages and disadvantages of PBAEs for gene delivery applications. The use of PBAEs to improve the properties of other drug delivery vehicles is also summarized. EXPERT OPINION PBAEs are designed to have multiple characteristics that are ideal for gene delivery, including their reversible positive charge, which promotes binding to nucleic acids as well as imparting high buffering capacity, and their rapid degradability under mild conditions. Simultaneously, some of their properties also lead to nanoparticle instability and low transfection efficiency in physiological environments. The ease with which PBAEs can be chemically modified as well as non-covalently blended with other materials, however, allows them to be customized specifically to overcome delivery barriers for varied applications.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kelly R. Rhodes
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Materials Science and Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Oncology, Ophthalmology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Wang X, Liang Q, Mao Y, Zhang R, Deng Q, Chen Y, Zhu R, Duan S, Yin L. Bioreducible, branched poly(β-amino ester)s mediate anti-inflammatory ICAM-1 siRNA delivery against myocardial ischemia reperfusion (IR) injury. Biomater Sci 2020; 8:3856-3870. [DOI: 10.1039/d0bm00631a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ICAM-1 siRNA delivery mediated by bioreducible, branched BPAE-SS toward the anti-inflammatory treatment of myocardial IR injury.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| | - Qiujun Liang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| | - Yiming Mao
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
- Department of Thoracic Surgery
| | - Rujing Zhang
- Department of Micro- and Nanotechnology
- DTU Nanotech
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Qiurong Deng
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| | - Yongbing Chen
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
| | - Rongying Zhu
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
| | - Shanzhou Duan
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| |
Collapse
|
14
|
Machado M, Silva GA, Bitoque DB, Ferreira J, Pinto LA, Morgado J, Ferreira Q. Self-Assembled Multilayer Films for Time-Controlled Ocular Drug Delivery. ACS APPLIED BIO MATERIALS 2019; 2:4173-4180. [PMID: 35021432 DOI: 10.1021/acsabm.9b00417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The patient's compliance on the therapeutics to treat glaucoma is significantly low contributing for a fast evolution of the disease. This article presents an autonomous system with controlled release using an alpha2-adrenergic receptor agonist, brimonidine, usually used to treat glaucoma. More specifically, biocompatible and layer-by-layer drug delivery films containing monolayers with brimonidine encapsulated in polymer-β-cyclodextrin were prepared with the objective to obtain a system able to release precise amounts of drug at specific times. To delay the erosion-controlled drug release, we included nanosheets of graphene oxide and layers of a biodegradable polymer (poly-β-aminoester) between the drug-containing monolayers to obtain a time-controlled drug delivery system. An increase in the number of graphene oxide layers is proportional to the brimonidine release delay and its kinetic release can be tuned as a function of the number of layers. Two types of films with brimonidine encapsulated in β-cyclodextrin were analyzed. One of them composed of barrier layers with PBAE and another with two types of barrier layers, PBAE and graphene oxide. The results indicate that one graphene oxide bilayer can delay the brimonidine release for more than 24 h. In vitro assays confirmed that the films have a cell viability of 100%.
Collapse
Affiliation(s)
- Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Gabriela A Silva
- CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal.,NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal
| | - Diogo B Bitoque
- CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Joana Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon 1169-050, Portugal.,NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal
| | - Luís A Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, Lisbon 1649-035, Portugal.,Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Avenida Rovisco Pais, Lisbon 1049-001, Portugal.,Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
15
|
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019; 24:molecules24203744. [PMID: 31627389 PMCID: PMC6832905 DOI: 10.3390/molecules24203744] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular transport process of DNA is hampered by cell membrane barriers, and hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity and cancer formation are among the major limitations of this approach. Cationic polymers, such as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery. Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable polymers for gene delivery by modifying existing polymers and/or using natural biodegradable polymers. This review summarizes mechanistic aspects of gene delivery and the development of biodegradable polymers for gene delivery.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, KTL N102, 675 Hoes Lane, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | - C K S Pillai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
16
|
Cordeiro RA, Serra A, Coelho JF, Faneca H. Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications. J Control Release 2019; 310:155-187. [DOI: 10.1016/j.jconrel.2019.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
|
17
|
Liu S, Gao Y, Zhou D, Zeng M, Alshehri F, Newland B, Lyu J, O'Keeffe-Ahern J, Greiser U, Guo T, Zhang F, Wang W. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nat Commun 2019; 10:3307. [PMID: 31341171 PMCID: PMC6656726 DOI: 10.1038/s41467-019-11190-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Current therapies for most neurodegenerative disorders are only symptomatic in nature and do not change the course of the disease. Gene therapy plays an important role in disease modifying therapeutic strategies. Herein, we have designed and optimized a series of highly branched poly(β-amino ester)s (HPAEs) containing biodegradable disulfide units in the HPAE backbone (HPAESS) and guanidine moieties (HPAESG) at the extremities. The optimized polymers are used to deliver minicircle DNA to multipotent adipose derived stem cells (ADSCs) and astrocytes, and high transfection efficiency is achieved (77% in human ADSCs and 52% in primary astrocytes) whilst preserving over 90% cell viability. Furthermore, the top-performing candidate mediates high levels of nerve growth factor (NGF) secretion from astrocytes, causing neurite outgrowth from a model neuron cell line. This synergistic gene delivery system provides a viable method for highly efficient non-viral transfection of ADSCs and astrocytes.
Collapse
Affiliation(s)
- Shuai Liu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Ming Zeng
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Fatma Alshehri
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103AT, Cardiff, UK
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Jonathan O'Keeffe-Ahern
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Udo Greiser
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Fengzhi Zhang
- School of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
18
|
Zheng N, Xie D, Zhang Z, Kuang J, Zheng Y, Wang Q, Li Y. Thioketal-crosslinked: ROS-degradable polycations for enhanced in vitro and in vivo gene delivery with self-diminished cytotoxicity. J Biomater Appl 2019; 34:326-338. [DOI: 10.1177/0885328219845081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dan Xie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jia Kuang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
19
|
Wilson DR, Rui Y, Siddiq K, Routkevitch D, Green JJ. Differentially Branched Ester Amine Quadpolymers with Amphiphilic and pH-Sensitive Properties for Efficient Plasmid DNA Delivery. Mol Pharm 2019; 16:655-668. [PMID: 30615464 PMCID: PMC7297465 DOI: 10.1021/acs.molpharmaceut.8b00963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Development of highly effective nonviral gene delivery vectors for transfection of diverse cell populations remains a challenge despite utilization of both rational and combinatorial driven approaches to nanoparticle engineering. In this work, multifunctional polyesters are synthesized with well-defined branching structures via A2 + B2/B3 + C1 Michael addition reactions from small molecule acrylate and amine monomers and then end-capped with amine-containing small molecules to assess the influence of polymer branching structure on transfection. These Branched poly(Ester Amine) Quadpolymers (BEAQs) are highly effective for delivery of plasmid DNA to retinal pigment epithelial cells and demonstrate multiple improvements over previously reported leading linear poly(beta-amino ester)s, particularly for volume-limited applications where improved efficiency is required. BEAQs with moderate degrees of branching are demonstrated to be optimal for delivery under high serum conditions and low nanoparticle doses further relevant for therapeutic gene delivery applications. Defined structural properties of each polymer in the series, including tertiary amine content, correlated with cellular transfection efficacy and viability. Trends that can be applied to the rational design of future generations of biodegradable polymers are elucidated.
Collapse
|
20
|
Alford A, Tucker B, Kozlovskaya V, Chen J, Gupta N, Caviedes R, Gearhart J, Graves D, Kharlampieva E. Encapsulation and Ultrasound-Triggered Release of G-Quadruplex DNA in Multilayer Hydrogel Microcapsules. Polymers (Basel) 2018; 10:E1342. [PMID: 30961267 PMCID: PMC6401949 DOI: 10.3390/polym10121342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023] Open
Abstract
Nucleic acid therapeutics have the potential to be the most effective disease treatment strategy due to their intrinsic precision and selectivity for coding highly specific biological processes. However, freely administered nucleic acids of any type are quickly destroyed or rendered inert by a host of defense mechanisms in the body. In this work, we address the challenge of using nucleic acids as drugs by preparing stimuli responsive poly(methacrylic acid)/poly(N-vinylpyrrolidone) (PMAA/PVPON)n multilayer hydrogel capsules loaded with ~7 kDa G-quadruplex DNA. The capsules are shown to release their DNA cargo on demand in response to both enzymatic and ultrasound (US)-triggered degradation. The unique structure adopted by the G-quadruplex is essential to its biological function and we show that the controlled release from the microcapsules preserves the basket conformation of the oligonucleotide used in our studies. We also show that the (PMAA/PVPON) multilayer hydrogel capsules can encapsulate and release ~450 kDa double stranded DNA. The encapsulation and release approaches for both oligonucleotides in multilayer hydrogel microcapsules developed here can be applied to create methodologies for new therapeutic strategies involving the controlled delivery of sensitive biomolecules. Our study provides a promising methodology for the design of effective carriers for DNA vaccines and medicines for a wide range of immunotherapies, cancer therapy and/or tissue regeneration therapies in the future.
Collapse
Affiliation(s)
- Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Brenna Tucker
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jun Chen
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jenna Gearhart
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - David Graves
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Center of Nanoscale Materials and Biointegration, Birmingham, AL 35294, USA.
| |
Collapse
|
21
|
Hobernik D, Bros M. DNA Vaccines-How Far From Clinical Use? Int J Mol Sci 2018; 19:ijms19113605. [PMID: 30445702 PMCID: PMC6274812 DOI: 10.3390/ijms19113605] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Two decades ago successful transfection of antigen presenting cells (APC) in vivo was demonstrated which resulted in the induction of primary adaptive immune responses. Due to the good biocompatibility of plasmid DNA, their cost-efficient production and long shelf life, many researchers aimed to develop DNA vaccine-based immunotherapeutic strategies for treatment of infections and cancer, but also autoimmune diseases and allergies. This review aims to summarize our current knowledge on the course of action of DNA vaccines, and which factors are responsible for the poor immunogenicity in human so far. Important optimization steps that improve DNA transfection efficiency comprise the introduction of DNA-complexing nano-carriers aimed to prevent extracellular DNA degradation, enabling APC targeting, and enhanced endo/lysosomal escape of DNA. Attachment of virus-derived nuclear localization sequences facilitates nuclear entry of DNA. Improvements in DNA vaccine design include the use of APC-specific promotors for transcriptional targeting, the arrangement of multiple antigen sequences, the co-delivery of molecular adjuvants to prevent tolerance induction, and strategies to circumvent potential inhibitory effects of the vector backbone. Successful clinical use of DNA vaccines may require combined employment of all of these parameters, and combination treatment with additional drugs.
Collapse
Affiliation(s)
- Dominika Hobernik
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
22
|
DiStasio N, Arts M, Lehoux S, Tabrizian M. IL-10 Gene Transfection in Primary Endothelial Cells via Linear and Branched Poly(β-amino ester) Nanoparticles Attenuates Inflammation in Stimulated Macrophages. ACS APPLIED BIO MATERIALS 2018; 1:917-927. [DOI: 10.1021/acsabm.8b00342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nicholas DiStasio
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Marloes Arts
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | | |
Collapse
|
23
|
Zhang S, Wang D, Li Y, Li L, Chen H, Xiong Q, Liu Y, Wang Y. pH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly(ß-amino ester) cores for co-delivery of a gene and chemotherapeutic agent. NANOTECHNOLOGY 2018; 29:325101. [PMID: 29761789 DOI: 10.1088/1361-6528/aac4b5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel pH- and redox-responsive nanoparticle system was designed based on a charge-reversible pullulan derivative (CAPL) and disulfide-containing poly(β-amino ester) (ssPBAE) for the co-delivery of a gene and chemotherapeutic agent targeting hepatoma. The end-alkene groups of ssPBAE were reacted with diethylenetriamine to form amino-modified ssPBAE (NH-ssPBAE). Methotrexate (MTX), a chemotherapy agent, was then conjugated to NH-ssPBAE via an amide bond to obtain the polymeric prodrug ssPBAE-MTX. ssPBAE-MTX exhibited a good capability for condensing genes, including plasmid DNA (pDNA) and tetramethyl rhodamine-labeled DNA (TAMRA-DNA), and almost completely condensed pDNA at the weight ratio of 5/1 to form spherical nanocomplexes with a uniform size. In a D,L-dithiothreitol solution, the ssPBAE-MTX/pDNA nanocomplexes showed rapid release of pDNA and MTX, indicating their redox-responsive capability. CAPL, a pullulan derivative containing β-carboxylic amide bond, was efficiently coated on the surfaces of ssPBAE-MTX/pDNA nanocomplexes to form polysaccharide shells, thus realizing co-loading of the gene and chemotherapeutic agent. CAPL/ssPBAE-MTX/pDNA nanoparticles displayed an obvious pH-responsive charge reversal ability due to the rupture of the β-carboxylic amide bond under the weakly acidic condition. In human hepatoma HepG2 cells, CAPL/ssPBAE-MTX/TAMRA-DNA nanoparticles were efficiently internalized via endocytosis and successfully escaped from the endo/lysosomes into the cytoplasm, and CAPL/ssPBAE-MTX/pDNA nanoparticles remarkably inhibited the cell growth. In summary, this nanoparticle system based on CAPL and ssPBAE showed great potential for combined gene/chemotherapy on hepatomas.
Collapse
Affiliation(s)
- Sipei Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); Research Center of Basic Medical Science; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Benner NL, Near KE, Bachmann MH, Contag CH, Waymouth RM, Wender PA. Functional DNA Delivery Enabled by Lipid-Modified Charge-Altering Releasable Transporters (CARTs). Biomacromolecules 2018; 19:2812-2824. [PMID: 29727572 PMCID: PMC6542359 DOI: 10.1021/acs.biomac.8b00401] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Safe and effective DNA delivery systems are required to enable or enhance clinical strategies and research involving gene therapy and DNA vaccinations. To address this delivery problem, a series of charge-altering releasable transporters (CARTs) with varied lipid content were prepared and evaluated for plasmid DNA (pDNA) delivery into cultured cells. These lipid-modified CART co-oligomers were synthesized in only two steps via sequential organocatalytic ring-opening polymerization of lipid-containing cyclic carbonate monomers and morpholinone monomers. Lipid variations of the CARTs substantially impacted the delivery efficiency of pDNA, with oleyl- and linoleyl-based CARTs showing enhanced performance relative to the commercial transfection agent Lipofectamine 2000 (L2000). The best-performing oleyl CART was carried forward to study stable luciferase transfection with a Sleeping Beauty ( SB) transposon system. The oleyl CART outperformed the L2000 positive control with respect to stable transfection efficiency. CART-pDNA complexes represent a new DNA delivery system for research and clinical applications.
Collapse
Affiliation(s)
- Nancy L. Benner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Katherine E. Near
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael H. Bachmann
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
| | - Christopher H. Contag
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Wang H, Zhu W, Liu J, Dong Z, Liu Z. pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined Photodynamic Chemotherapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14475-14482. [PMID: 29648447 DOI: 10.1021/acsami.8b02080] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Covalent organic polymers (COPs) are a promising class of cross-linked polymeric networks and porous structures composed of covalent organic molecules that attract extensive attention. Despite increasing interest in applying COPs for applications in nanomedicine, the pH-sensitive COPs that are able to sensitively respond to the slightly acidic tumor microenvironment for tumor-specific drug delivery and therapy remain to be explored to our best knowledge. Herein, a new style of pH-responsive COPs were prepared using acryloyl meso-tetra( p-hydroxyphenyl) porphine (acryloyl-THPP) to react with 4,4'-trimethylene dipiperidine to form the pH-responsive cross-linked biodegradable β-amino esters (BAEs). Amine-modified poly(ethylene glycol) (PEG) was then introduced to terminate the reaction and form the PEG shell. The formulated pH-responsive THPP-BAE-PEG COPs can be utilized to encapsulate anticancer drug doxorubicin (DOX) due to their porous structure. Upon intravenous injection, such DOX-loaded COPs show a prolonged blood circulation as well as an efficient tumor accumulation. Along with the pH-triggered drug release for chemotherapy, the singlet oxygen produced by THPP under light exposure for photodynamic therapy would further endow us a combined treatment strategy, which offers synergistic antitumor effects in our in vivo tumor model experiments. Our study illustrates that COPs fabricated with tumor microenvironment responsive linkers may be a promising type of materials for applications in cancer nanomedicine.
Collapse
Affiliation(s)
- Hairong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Wenwen Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
26
|
Wu R, Ding X, Qi Y, Zeng Q, Wu YW, Yu B, Xu FJ. Flexible Cationic Nanoparticles with Photosensitizer Cores for Multifunctional Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800201. [PMID: 29717807 DOI: 10.1002/smll.201800201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Indexed: 06/08/2023]
Abstract
One challenge for multimodal therapy is to develop appropriate multifunctional agents to meet the requirements of potential applications. Photodynamic therapy (PDT) is proven to be an effective way to treat cancers. Diverse polycations, such as ethylenediamine-functionalized poly(glycidyl methacrylate) (PGED) with plentiful primary amines, secondary amines, and hydroxyl groups, demonstrate good gene transfection performances. Herein, a series of multifunctional cationic nanoparticles (PRP) consisting of photosensitizer cores and PGED shells are readily developed through simple dopamine-involving processes for versatile bioapplications. A series of experiments demonstrates that PRP nanoparticles are able to effectively mediate gene delivery in different cell lines. PRP nanoparticles are further validated to possess remarkable capability of combined PDT and gene therapy for complementary tumor treatment. In addition, because of their high dispersities in biological matrix, the PRP nanoparticles can also be used for in vitro and in vivo imaging with minimal aggregation-caused quenching. Therefore, such flexible nanoplatforms with photosensitizer cores and polycationic shells are very promising for multimodal tumor therapy with high efficacy.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Qi
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qiang Zeng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 10010, China
| | - Yu-Wei Wu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 10010, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
27
|
Jiang X, Wang C, Fitch S, Yang F. Targeting Tumor Hypoxia Using Nanoparticle-engineered CXCR4-overexpressing Adipose-derived Stem Cells. Am J Cancer Res 2018; 8:1350-1360. [PMID: 29507625 PMCID: PMC5835941 DOI: 10.7150/thno.22736] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
Hypoxia, a hallmark of malignant tumors, often correlates with increasing tumor aggressiveness and poor treatment outcomes. Due to a lack of vasculature, effective drug delivery to hypoxic tumor regions remains challenging. Signaling through the chemokine SDF-1α and its receptor CXCR4 plays a critical role in the homing of stem cells to ischemia for potential use as drug-delivery vehicles. To harness this mechanism for targeting tumor hypoxia, we developed polymeric nanoparticle-induced CXCR4-overexpressing human adipose-derived stem cells (hADSCs). Using glioblastoma multiforme (GBM) as a model tumor, we evaluated the ability of CXCR4-overexpressing hADSCs to target tumor hypoxia in vitro using a 2D migration assay and a 3D collagen hydrogel model. Compared to untransfected hADSCs, CXCR4-overexpressing hADSCs showed enhanced migration in response to hypoxia and penetrated the hypoxic core within tumor spheres. When injected in the contralateral brain in a mouse intracranial GBM xenograft, CXCR4-overexpressing hADSCs exhibited long-range migration toward GBM and preferentially penetrated the hypoxic tumor core. Intravenous injection also led to effective targeting of tumor hypoxia in a subcutaneous tumor model. Together, these results validate polymeric nanoparticle-induced CXCR4-overexpressing hADSCs as a potent cellular vehicle for targeting tumor hypoxia, which may be broadly useful for enhancing drug delivery to various cancer types.
Collapse
|
28
|
Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1703036. [PMID: 29755309 PMCID: PMC5939593 DOI: 10.1002/adfm.201703036] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Due to its simplicity, versatility, and high efficiency, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has emerged as one of the most promising approaches for treatment of a variety of genetic diseases, including human cancers. However, further translation of CRISPR/Cas9 for cancer gene therapy requires development of safe approaches for efficient, highly specific delivery of both Cas9 and single guide RNA to tumors. Here, novel core–shell nanostructure, liposome-templated hydrogel nanoparticles (LHNPs) that are optimized for efficient codelivery of Cas9 protein and nucleic acids is reported. It is demonstrated that, when coupled with the minicircle DNA technology, LHNPs deliver CRISPR/Cas9 with efficiency greater than commercial agent Lipofectamine 2000 in cell culture and can be engineered for targeted inhibition of genes in tumors, including tumors the brain. When CRISPR/Cas9 targeting a model therapeutic gene, polo-like kinase 1 (PLK1), is delivered, LHNPs effectively inhibit tumor growth and improve tumor-bearing mouse survival. The results suggest LHNPs as versatile CRISPR/Cas9-delivery tool that can be adapted for experimentally studying the biology of cancer as well as for clinically translating cancer gene therapy.
Collapse
|
29
|
Levacic AK, Morys S, Kempter S, Lächelt U, Wagner E. Minicircle Versus Plasmid DNA Delivery by Receptor-Targeted Polyplexes. Hum Gene Ther 2017; 28:862-874. [DOI: 10.1089/hum.2017.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Kempter
- Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| |
Collapse
|
30
|
Zheng N, Song Z, Yang J, Liu Y, Li F, Cheng J, Yin L. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. Acta Biomater 2017; 58:146-157. [PMID: 28476586 DOI: 10.1016/j.actbio.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 01/05/2023]
Abstract
The delivery performance of non-viral gene vectors is greatly related to their intracellular kinetics. Cationic helical polypeptides with potent membrane penetration properties and gene transfection efficiencies have been recently developed by us. However, they suffer from severe drawbacks in terms of their membrane penetration mechanisms that mainly include endocytosis and pore formation. The endocytosis mechanism leads to endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes appreciable cytotoxicity at high concentrations. With the attempt to overcome such critical challenges, we incorporated aromatic motifs into the design of helical polypeptides to enhance their membrane activities and more importantly, to manipulate their membrane penetration mechanisms. The aromatically modified polypeptides exhibited higher cellular internalization level than the unmodified analogue by up to 2.5 folds. Such improvement is possibly because aromatic domains promoted the polypeptides to penetrate cell membranes via direct transduction, a non-endocytosis and non-pore formation mechanism. As such, gene cargos were more efficiently delivered into cells by bypassing endocytosis and subsequently avoiding endosomal entrapment, and the material toxicity associated with excessive pore formation was also reduced. The top-performing aromatic polypeptide containing naphthyl side chains at the incorporated content of 20mol% revealed notably higher transfection efficiencies than commercial reagents in melanoma cells in vitro (by 11.7 folds) and in vivo (by 9.1 folds), and thus found potential utilities toward topical gene delivery for cancer therapy. STATEMENT OF SIGNIFICANCE Cationic helical polypeptides, as efficient gene delivery materials, suffer from severe drawbacks in terms of their membrane penetration mechanisms. The main cell penetration mechanisms involved are endocytosis and pore formation. However, the endocytosis mechanism has the limitation of endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes cytotoxicity at high concentrations. To address such critical issues toward the maximization of gene delivery efficiency, we incorporated aromatic domains into helical polypeptides to promote the cell membrane penetrations via direct transduction, which is a non-endocytosis and non-pore formation mechanism. The manipulation of their membrane penetration mechanisms allows gene cargos to be more efficiently delivered by bypassing endocytosis and subsequently avoiding endosomal entrapment.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA; State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA
| | - Jiandong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Yang Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA
| | - Fangfang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA.
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
31
|
Li F, Li Y, Zhou Z, Lv S, Deng Q, Xu X, Yin L. Engineering the Aromaticity of Cationic Helical Polypeptides toward "Self-Activated" DNA/siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23586-23601. [PMID: 28657294 DOI: 10.1021/acsami.7b08534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of potent yet nontoxic membrane-penetrating materials is in high demand for effective intracellular gene delivery. We have recently developed α-helical polypeptides which afford potent membrane activities to facilitate intracellular DNA delivery via both endocytosis and the nonendocytic "pore formation" mechanism. Endocytosis will cause endosomal entrapment of the DNA cargo, while excessive "pore formation" would cause appreciable cytotoxicity. Additionally, helical polypeptides with stiff, rodlike structure suffer from low siRNA binding affinity. To address such critical issues, we herein incorporated various aromatic domains (benzyl, naphthyl, biphenyl, anthryl, and pyrenyl) into the side-chain terminals of guanidine-rich, helical polypeptides, wherein the flat-rigid shape, π-electronic structures of aromatic motifs "self-activated" the membrane-penetrating capabilities of polypeptides to promote intracellular gene delivery. Benzyl (Bn)- and naphthyl (Naph)-modified polypeptides demonstrated the highest DNA uptake level that outperformed the unmodified polypeptide, P2, by ∼4 fold. More importantly, compared with P2, Bn- and Naph-modified polypeptides allowed more DNA cargos to be internalized via the nonendocytic pathway, which significantly bypassed the endosomal entrapment and accordingly enhanced the transfection efficiency by up to 42 fold, outperforming PEI 25k as the commercial reagent by 3-4 orders of magnitude. The aromatic modification also improved the siRNA condensation capability of polypeptides, achieving notably enhanced gene-silencing efficiency against tumor necrosis factor-α to treat acute hepatic inflammation. Furthermore, we revealed that aromaticity-augmented membrane activity was accompanied by comparable or even significantly reduced "pore formation" capability, thus leading to diminished cytotoxicity at high concentrations. This study therefore provides a promising approach to manipulate the membrane activities and penetration mechanisms of polycations, which overcomes the multiple critical barriers preventing effective and safe gene delivery.
Collapse
Affiliation(s)
- Fangfang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Yongjuan Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Zhuchao Zhou
- Department of General Surgery, Huashan Hospital, Fudan University , Shanghai 200040, China
| | - Shixian Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Qiurong Deng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| |
Collapse
|
32
|
Mastorakos P, Zhang C, Song E, Kim YE, Park HW, Berry S, Choi WK, Hanes J, Suk JS. Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors. J Control Release 2017; 262:37-46. [PMID: 28694032 DOI: 10.1016/j.jconrel.2017.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 11/30/2022]
Abstract
The discovery of powerful genetic targets has spurred clinical development of gene therapy approaches to treat patients with malignant brain tumors. However, lack of success in the clinic has been attributed to the inability of conventional gene vectors to achieve gene transfer throughout highly disseminated primary brain tumors. Here, we demonstrate ex vivo that small nanocomplexes composed of DNA condensed by a blend of biodegradable polymer, poly(β-amino ester) (PBAE), with PBAE conjugated with 5kDa polyethylene glycol (PEG) molecules (PBAE-PEG) rapidly penetrate healthy brain parenchyma and orthotopic brain tumor tissues in rats. Rapid diffusion of these DNA-loaded nanocomplexes observed in fresh tissues ex vivo demonstrated that they avoided adhesive trapping in the brain owing to their dense PEG coating, which was critical to achieving widespread transgene expression throughout orthotopic rat brain tumors in vivo following administration by convection enhanced delivery. Transgene expression with the PBAE/PBAE-PEG blended nanocomplexes (DNA-loaded brain-penetrating nanocomplexes, or DNA-BPN) was uniform throughout the tumor core compared to nanocomplexes composed of DNA with PBAE only (DNA-loaded conventional nanocomplexes, or DNA-CN), and transgene expression reached beyond the tumor edge, where infiltrative cancer cells are found, only for the DNA-BPN formulation. Finally, DNA-BPN loaded with anti-cancer plasmid DNA provided significantly enhanced survival compared to the same plasmid DNA loaded in DNA-CN in two aggressive orthotopic brain tumor models in rats. These findings underscore the importance of achieving widespread delivery of therapeutic nucleic acids within brain tumors and provide a promising new delivery platform for localized gene therapy in the brain.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clark Zhang
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric Song
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Young Eun Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hee Won Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sneha Berry
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Won Kyu Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Hanes
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jung Soo Suk
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606628. [PMID: 28234430 DOI: 10.1002/adma.201606628] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Indexed: 05/21/2023]
Abstract
Current cancer nanomedicines can only mitigate adverse effects but fail to enhance therapeutic efficacies of anticancer drugs. Rational design of next-generation cancer nanomedicines should aim to enhance their therapeutic efficacies. Taking this into account, this review first analyzes the typical cancer-drug-delivery process of an intravenously administered nanomedicine and concludes that the delivery involves a five-step CAPIR cascade and that high efficiency at every step is critical to guarantee high overall therapeutic efficiency. Further analysis shows that the nanoproperties needed in each step for a nanomedicine to maximize its efficiency are different and even opposing in different steps, particularly what the authors call the PEG, surface-charge, size and stability dilemmas. To resolve those dilemmas in order to integrate all needed nanoproperties into one nanomedicine, stability, surface and size nanoproperty transitions (3S transitions for short) are proposed and the reported strategies to realize these transitions are comprehensively summarized. Examples of nanomedicines capable of the 3S transitions are discussed, as are future research directions to design high-performance cancer nanomedicines and their clinical translations.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| |
Collapse
|
34
|
Gupta P, Lacerda C, Patil V, Biswal D, Wattamwar P, Hilt JZ, Dziubla TD. Degradation of poly(β-amino ester) gels in alcohols through transesterification: A method to conjugate drugs to polymer matrices. ACTA ACUST UNITED AC 2017; 55:2019-2026. [PMID: 29398778 DOI: 10.1002/pola.28579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Poly(β amino ester) polymers have received growing attention in the literature, owing to their ease of synthesis, versatile co-monomer selection, and highly tunable degradation kinetics. As such, they have shown extensive potential in many biomedical applications as well. In this work, it is demonstrated for the first time that PβAE polymers containing primary and secondary amine groups can undergo degradation by primary alcohols via transesterification mechanism. While this work emphasizes an important aspect of solvent compatibility of these networks, it also represents an interesting, simple mechanism for post synthesis drug incorporation, with riboflavin conjugation being demonstrated as a model compound.
Collapse
Affiliation(s)
- Prachi Gupta
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506
| | - Caroline Lacerda
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506
| | - Vinod Patil
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506
| | - Dipti Biswal
- Virginia State University, Petersburg, VA, 23806
| | - Paritosh Wattamwar
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506
| | - J Zach Hilt
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506
| | - Thomas D Dziubla
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506
| |
Collapse
|
35
|
Andorko JI, Pineault KG, Jewell CM. Impact of molecular weight on the intrinsic immunogenic activity of poly(beta amino esters). J Biomed Mater Res A 2017; 105:1219-1229. [PMID: 27977902 DOI: 10.1002/jbm.a.35970] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023]
Abstract
Polymeric carriers are ubiquitously studied in vaccine and drug delivery to control the encapsulation, kinetics, and targeting of cargo. Recent research reveals many polymers can cause immunostimulatory and inflammatory responses, even in the absence of other immune signals. However, the extent to which this intrinsic immunogenicity evolves during degradation is understudied. Here we synthesized a small library of poly(beta amino esters) (PBAEs) that exhibit different starting molecular weights (MWs), but with similar and rapid degradation rates. Primary dendritic cells (DCs) treated with free PBAEs, either intact or degraded to form low MW fragments, were not activated. In contrast particles formed from PBAEs at different extents of degradation caused differential expression of classical DC activation markers (for example, CD40, CD80, CD86, MHCII), as well as antigen presentation. During degradation, activation levels changed with changing physicochemical properties (for example, MW, concentration, size, charge). Of note, irrespective of starting MW, immunogenicity peaked when the MW of degrading PBAEs decreased to a range of ∼1500-3000 Da. These findings could help inform design of future carriers that exploit the dynamic interactions with the immune system as materials degrade, leading to carriers that deliver cargo but also help direct the immune responses to vaccine or immunotherapy cargo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1219-1229, 2017.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kevin G Pineault
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland.,Biomedical Laboratory Research and Development, United States Department of Veterans Affairs, Baltimore, Maryland
| |
Collapse
|
36
|
Lu XJ, Yang XY, Meng Y, Li SZ. Temperature and pH dually-responsive poly(β-amino ester) nanoparticles for drug delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1916-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Brett E, Zielins ER, Luan A, Ooi CC, Shailendra S, Atashroo D, Menon S, Blackshear C, Flacco J, Quarto N, Wang SX, Longaker MT, Wan DC. Magnetic Nanoparticle-Based Upregulation of B-Cell Lymphoma 2 Enhances Bone Regeneration. Stem Cells Transl Med 2017; 6:151-160. [PMID: 28170185 PMCID: PMC5442739 DOI: 10.5966/sctm.2016-0051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/16/2016] [Indexed: 01/08/2023] Open
Abstract
Clinical translation of cell-based strategies for tissue regeneration remains challenging because survival of implanted cells within hostile, hypoxic wound environments is uncertain. Overexpression of B-cell lymphoma 2 (Bcl-2) has been shown to inhibit apoptosis in implanted cells. The present study describes an "off the shelf" prefabricated scaffold integrated with magnetic nanoparticles (MNPs) used to upregulate Bcl-2 expression in implanted adipose-derived stromal cells for bone regeneration. Iron oxide cores were sequentially coated with branched polyethyleneimine, minicircle plasmid encoding green fluorescent protein and Bcl-2, and poly-β-amino ester. Through in vitro assays, increased osteogenic potential and biological resilience were demonstrated in the magnetofected group over control and nucleofected groups. Similarly, our in vivo calvarial defect study showed that magnetofection had an efficiency rate of 30%, which in turn resulted in significantly more healing compared with control group and nucleofected group. Our novel, prefabricated MNP-integrated scaffold allows for in situ postimplant temporospatial control of cell transfection to augment bone regeneration. Stem Cells Translational Medicine 2017;6:151-160.
Collapse
Affiliation(s)
- Elizabeth Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth R. Zielins
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Chin Chun Ooi
- Department of Material Science Engineering, Stanford University, Stanford, California, USA
| | - Siny Shailendra
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Siddarth Menon
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Charles Blackshear
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - John Flacco
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Shan X. Wang
- Department of Material Science Engineering, Stanford University, Stanford, California, USA
- Electrical Engineering, Stanford University, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
38
|
Hnatiuk AP, Ong SG, Olea FD, Locatelli P, Riegler J, Lee WH, Jen CH, De Lorenzi A, Giménez CS, Laguens R, Wu JC, Crottogini A. Allogeneic Mesenchymal Stromal Cells Overexpressing Mutant Human Hypoxia-Inducible Factor 1-α (HIF1-α) in an Ovine Model of Acute Myocardial Infarction. J Am Heart Assoc 2016; 5:JAHA.116.003714. [PMID: 27385426 PMCID: PMC5015403 DOI: 10.1161/jaha.116.003714] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Bone marrow mesenchymal stromal cells (BMMSCs) are cardioprotective in acute myocardial infarction (AMI) because of release of paracrine angiogenic and prosurvival factors. Hypoxia‐inducible factor 1‐α (HIF1‐α), rapidly degraded during normoxia, is stabilized during ischemia and upregulates various cardioprotective genes. We hypothesized that BMMSCs engineered to overexpress mutant, oxygen‐resistant HIF1‐α would confer greater cardioprotection than nontransfected BMMSCs in sheep with AMI. Methods and Results Allogeneic BMMSCs transfected with a minicircle vector encoding mutant HIF1‐α (BMMSC‐HIF) were injected in the peri‐infarct of sheep (n=6) undergoing coronary occlusion. Over 2 months, infarct volume measured by cardiac magnetic resonance (CMR) imaging decreased by 71.7±1.3% (P<0.001), and left ventricular (LV) percent ejection fraction (%EF) increased near 2‐fold (P<0.001) in the presence of markedly decreased end‐systolic volume. Sheep receiving nontransfected BMMSCs (BMMSC; n=6) displayed less infarct size limitation and percent LVEF improvement, whereas in placebo‐treated animals (n=6), neither parameters changed over time. HIF1‐α‐transfected BMMSCs (BMMSC‐HIF) induced angio‐/arteriogenesis and decreased apoptosis by HIF1‐mediated overexpression of erythropoietin, inducible nitrous oxide synthase, vascular endothelial growth factor, and angiopoietin‐1. Cell tracking using paramagnetic iron nanoparticles in 12 additional sheep revealed enhanced long‐term retention of BMMSC‐HIF. Conclusions Intramyocardial delivery of BMMSC‐HIF reduced infarct size and improved LV systolic performance compared to BMMSC, attributed to increased neovascularization and cardioprotective effects induced by HIF1‐mediated overexpression of paracrine factors and enhanced retention of injected cells. Given the safety of the minicircle vector and the feasibility of BMMSCs for allogeneic application, this treatment may be potentially useful in the clinic.
Collapse
Affiliation(s)
- Anna P Hnatiuk
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina Departamento de Fisiología, Facultad de Ciencias Médicas, Universidad Favaloro, Buenos Aires, Argentina
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Fernanda D Olea
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina Departamento de Fisiología, Facultad de Ciencias Médicas, Universidad Favaloro, Buenos Aires, Argentina
| | - Paola Locatelli
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina Departamento de Fisiología, Facultad de Ciencias Médicas, Universidad Favaloro, Buenos Aires, Argentina
| | - Johannes Riegler
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Won Hee Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | | | - Andrea De Lorenzi
- Departmento de Cardiología, Hospital Universitario de la Foundación Favaloro, Buenos Aires, Argentina
| | - Carlos S Giménez
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina Departamento de Fisiología, Facultad de Ciencias Médicas, Universidad Favaloro, Buenos Aires, Argentina
| | - Rubén Laguens
- Departmento de Patología, Facultad de Ciencias Médicas, Universidad Favaloro, Buenos Aires, Argentina
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Alberto Crottogini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina Departamento de Fisiología, Facultad de Ciencias Médicas, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
39
|
Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater 2016; 37:120-30. [PMID: 27019146 DOI: 10.1016/j.actbio.2016.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Non-viral, biomaterial-mediated gene delivery has the potential to treat many diseases, but is limited by low efficacy. Elucidating the bottlenecks of plasmid mass transfer can enable an improved understanding of biomaterial structure-function relationships, leading to next-generation rationally designed non-viral gene delivery vectors. As proof of principle, we transfected human primary glioblastoma cells using a poly(beta-amino ester) complexed with eGFP plasmid DNA. The polyplexes transfected 70.6±0.6% of the cells with 101±3% viability. The amount of DNA within the cytoplasm, nuclear envelope, and nuclei was assessed at multiple time points using fluorescent dye conjugated plasmid up to 24h post-transfection using a quantitative multi-well plate-based flow cytometry assay. Conversion to plasmid counts and degradation kinetics were accounted for via quantitative PCR (plasmid degradation rate constants were determined to be 0.62h(-1) and 0.084h(-1) for fast and slow phases respectively). Quantitative cellular uptake, nuclear association, and nuclear uptake rate constants were determined by using a four-compartment first order mass-action model. The rate limiting step for these poly(beta-amino ester)/DNA polyplex nanoparticles was determined to be cellular uptake (7.5×10(-4)h(-1)) and only 0.1% of the added dose was taken up by the human brain cancer cells, whereas 12% of internalized DNA successfully entered the nucleus (the rate of nuclear internalization of nuclear associated plasmid was 1.1h(-1)). We describe an efficient new method for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles using flow cytometry to improve understanding and design of polymeric gene delivery nanoparticles. STATEMENT OF SIGNIFICANCE In this work, a quantitative high throughput flow cytometry-based assay and computational modeling approach was developed for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles. This method is significant as it can be used to elucidate structure-function relationships of gene delivery nanoparticles and improve their efficiency. This method was applied to a particular type of biodegradable polymer, a poly(beta-amino ester), that transfected human brain cancer cells with high efficacy and without cytotoxicity. A four-compartment first order mass-action kinetics model was found to model the experimental transport data well without requiring external fitting parameters. Quantitative rate constants were identified for the intracellular transport, including DNA degradation rate from polyplexes, cellular uptake rate, and nuclear uptake rate, with cellular uptake identified as the rate-limiting step.
Collapse
|
40
|
Zhang CY, Chen Q, Wu WS, Guo XD, Cai CZ, Zhang LJ. Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids Surf B Biointerfaces 2016; 142:55-64. [DOI: 10.1016/j.colsurfb.2016.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
|
41
|
Hu Y, Gong X, Zhang J, Chen F, Fu C, Li P, Zou L, Zhao G. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy. Polymers (Basel) 2016; 8:E99. [PMID: 30979214 PMCID: PMC6432516 DOI: 10.3390/polym8040099] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023] Open
Abstract
Various polymeric nanoparticles (NPs) with optimal size, tumor-targeting functionalization, or microenvironment sensitive characteristics have been designed to solve several limitations of conventional chemotherapy. Nano-sized polymeric drug carrier systems have remarkably great advantages in drug delivery and cancer therapy, which are still plagued with severe deficiencies, especially insufficient cellular uptake. Recently, surface charge of medical NPs has been demonstrated to play an important role in cellular uptake. NPs with positive charge show higher affinity to anionic cell membranes such that with more efficient cellular internalization, but otherwise cause severe aggregation and fast clearance in circulation. Thus, surface charge-reversal NPs, specifically activated at the tumor site, have shown to elegantly resolve the enhanced cellular uptake in cancer cells vs. non-specific protein adsorption dilemma. Herein, this review mainly focuses on the effect of tumor-site activated surface charge reversal NPs on tumor treatment, including the activated mechanisms and various applications in suppressing cancer cells, killing cancer stem cell and overcoming multidrug resistance, with the emphasis on recent research in these fields. With the comprehensive and in-depth understanding of the activated surface charge reversal NPs, this approach might arouse great interest of scientific research on enhanced efficient polymeric nano-carriers in cancer therapy.
Collapse
Affiliation(s)
- Yichen Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Fengqian Chen
- Department of Microbiology & Immunology, MCV Campus School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Liang Zou
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
42
|
Li L, He ZY, Wei XW, Wei YQ. Recent advances of biomaterials in biotherapy. Regen Biomater 2016; 3:99-105. [PMID: 27047675 PMCID: PMC4817323 DOI: 10.1093/rb/rbw007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 02/05/2023] Open
Abstract
Biotherapy mainly refers to the intervention and the treatment of major diseases with biotechnologies or bio-drugs, which include gene therapy, immunotherapy (vaccines and antibodies), bone marrow transplantation and stem-cell therapy. In recent years, numerous biomaterials have emerged and were utilized in the field of biotherapy due to their biocompatibility and biodegradability. Generally, biomaterials can be classified into natural or synthetic polymers according to their source, both of which have attracted much attention. Notably, biomaterials-based non-viral gene delivery vectors in gene therapy are undergoing rapid development with the emergence of surface-modified or functionalized materials. In immunotherapy, biomaterials appear to be attractive means for enhancing the delivery efficacy and the potency of vaccines. Additionally, hydrogels and scaffolds are ideal candidates in stem-cell therapy and tissue engineering. In this review, we present an introduction of biomaterials used in above biotherapy, including gene therapy, immunotherapy, stem-cell therapy and tissue engineering. We also highlighted the biomaterials which have already entered the clinical evaluation
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhi-Yao He
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
43
|
Newland B, Wolff P, Zhou D, Wang W, Zhang H, Rosser A, Wang W, Werner C. Synthesis of ROS scavenging microspheres from a dopamine containing poly(β-amino ester) for applications for neurodegenerative disorders. Biomater Sci 2016; 4:400-4. [PMID: 26756041 PMCID: PMC5657472 DOI: 10.1039/c5bm00542f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by a substantial decrease of dopaminergic neurons in the substantia nigra pars compacta. The neurological deterioration during PD can be, in part, attributed to elevated levels of reactive oxygen species (ROS). Radical scavengers have previously been shown to protect dopaminergic cells from toxic effects in vitro. Hence, new approaches need to be investigated to improve the administration of antioxidants in order to provide neuroprotection. Polymers exhibiting catechol structures offer one such approach due to their interesting physicochemical properties. In the present study a photocrosslinkable dopamine-containing poly(β-amino ester) (DPAE) was synthesized from poly(ethylene glycol) diacrylate (PEGDA) and dopamine hydrochloride using Michael type addition. A water-in-oil emulsion technique was used to photo-crosslink the polymer into spherical microparticles. DPAE microspheres featured excellent scavenging properties towards 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals in a dose dependent manner and could even reduce the dissolved oxygen content of physiological solution. Furthermore, the concentrations required for radical scavenging were shown to be non-toxic towards dopaminergic SH-SY5Y cells as well as primary astrocytes and primary embryonic rat ventral midbrain cultures.
Collapse
Affiliation(s)
- Ben Newland
- Leibniz-Institut für Polymerforschung, Hohe Strasse 6, Dresden, Germany. and Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Paul Wolff
- Leibniz-Institut für Polymerforschung, Hohe Strasse 6, Dresden, Germany.
| | - Dezhong Zhou
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland
| | - Wei Wang
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland
| | - Hong Zhang
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Wenxin Wang
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland and School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung, Hohe Strasse 6, Dresden, Germany.
| |
Collapse
|
44
|
Andorko JI, Hess KL, Pineault KG, Jewell CM. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. Acta Biomater 2016; 32:24-34. [PMID: 26708710 DOI: 10.1016/j.actbio.2015.12.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022]
Abstract
Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. STATEMENT OF SIGNIFICANCE Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in immunogenicity. Our results are important as many common biomaterials (e.g., PLGA) are now known to exhibit immune activity that alters how vaccines are processed. Thus, the results of this study could contribute to more rational design of biomaterial carriers that also actively direct the properties of responses generated by vaccines.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Krystina L Hess
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Kevin G Pineault
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United States; Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
45
|
Teo PY, Cheng W, Hedrick JL, Yang YY. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev 2016; 98:41-63. [PMID: 26529199 DOI: 10.1016/j.addr.2015.10.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
Abstract
Cancer is an extremely complex disease involving multiple signaling pathways that enable tumor cells to evade programmed cell death, thus making cancer treatment extremely challenging. The use of combination therapy involving both gene therapy and chemotherapy has resulted in enhanced anti-cancer effects and has become an increasingly important strategy in medicine. This review will cover important design parameters that are incorporated into delivery systems for the co-administration of drug and plasmid-based nucleic acids (pDNA and shRNA), with particular emphasis on polymers as delivery materials. The unique challenges faced by co-delivery systems and the strategies to overcome such barriers will be discussed. In addition, the advantages and disadvantages of combination therapy using separate carrier systems versus the use of a single carrier will be evaluated. Finally, future perspectives in the design of novel platforms for the combined delivery of drugs and genes will be presented.
Collapse
|
46
|
Mastorakos P, Song E, Zhang C, Berry S, Park HW, Kim YE, Park JS, Lee S, Suk JS, Hanes J. Biodegradable DNA Nanoparticles that Provide Widespread Gene Delivery in the Brain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:678-85. [PMID: 26680637 PMCID: PMC4913277 DOI: 10.1002/smll.201502554] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Indexed: 05/26/2023]
Abstract
Successful gene therapy of neurological disorders is predicated on achieving widespread and uniform transgene expression throughout the affected disease area in the brain. However, conventional gene vectors preferentially travel through low-resistance perivascular spaces and/or are confined to the administration site even with the aid of a pressure-driven flow provided by convection-enhanced delivery. Biodegradable DNA nanoparticles offer a safe gene delivery platform devoid of adverse effects associated with virus-based or synthetic nonbiodegradable systems. Using a state-of-the-art biodegradable polymer, poly(β-amino ester), colloidally stable sub-100 nm DNA nanoparticles are engineered with a nonadhesive polyethylene glycol corona that are able to avoid the adhesive and steric hindrances imposed by the extracellular matrix. Following convection enhanced delivery, these brain-penetrating nanoparticles are able to homogeneously distribute throughout the rodent striatum and mediate widespread and high-level transgene expression. These nanoparticles provide a biodegradable DNA nanoparticle platform enabling uniform transgene expression patterns in vivo and hold promise for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21297, USA
| | - Eric Song
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Clark Zhang
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Av., Baltimore, MD 21205, USA
| | - Sneha Berry
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hee Won Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Young Eun Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Jong Sung Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N. Caroline St, Baltimore, MD 21287, USA
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N. Caroline St, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
47
|
Liu Y, Li S, Feng L, Yu H, Qi X, Wei W, Li J, Dong W. Novel Disulfide-Containing Poly(β-amino ester)-Functionalised Magnetic Nanoparticles for Efficient Gene Delivery. Aust J Chem 2016. [DOI: 10.1071/ch15293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Poly(β-amino ester)s (PBAEs) have been proved to effectively transfer DNA to various cell types. However, PBAEs with high molecular weights also show considerable toxicities, partly resulting from inadequate degradation of their polyester backbone. In this study, we created novel poly(β-amino ester)s (SF-1, 2, 3, and 4; notation SFs refers to all the four polymers) which were characterised by the cleavable disulfide bonds. Moreover, a new technique, termed magnetofection that uses magnetic nanoparticles to enhance gene expression, has recently been well developed. The negatively charged magnetic nanoparticles (MNPs) with good biocompatibility in vitro were prepared here to subsequently combine with SFs and DNA via electrostatic interaction, leading to the formation of the magnetic gene complexes MNP/SFs/DNA. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and transfection experiments were performed in A549 cells to investigate all the resulting complexes. Studies indicated that the synthesised PBAEs exhibited good biodegradation and regulated release of DNA as a result of the reductive cleavage of the disulfide bonds, giving higher transfection efficiency along with much lower cytotoxicity compared with commercially available transfection agent polyethylenimine (Mw 25 kDa). Furthermore, when MNP was involved at a MNP/DNA weight ratio of 0.5, the magnetic gene complexes MNP/SFs/DNA showed enhanced levels of gene expression while maintaining low cytotoxicity.
Collapse
|
48
|
Nafissi N, Foldvari M. Neuroprotective therapies in glaucoma: I. Neurotrophic factor delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:240-54. [PMID: 26306832 DOI: 10.1002/wnan.1361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/15/2015] [Accepted: 07/04/2015] [Indexed: 12/11/2022]
Abstract
Glaucoma is a neurodegenerative eye disease that causes permanent blindness at the progressive stage and the number of people affected worldwide is expected to reach over 79 million by 2020. Currently, glaucoma management relies on pharmacological and invasive surgical treatments mainly by reducing the intraocular pressure (IOP), which is the most important risk factor for the progression of the visual field loss. Recent research suggests that neuroprotective or neuroregenerative approaches are necessary to prevent retinal ganglion cells (RGCs) loss and visual impairment over time. Neuroprotection is a new therapeutic strategy that attempts to keep RGCs alive and functional. New gene and cell therapeutics encoding neurotrophic factors (NTFs) are emerging for both neuroprotection and regenerative treatments for retinal diseases. This article briefly reviews the role of NTFs in glaucoma and the potential delivery systems.
Collapse
Affiliation(s)
- Nafiseh Nafissi
- School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
49
|
Cutlar L, Zhou D, Gao Y, Zhao T, Greiser U, Wang W, Wang W. Highly Branched Poly(β-Amino Esters): Synthesis and Application in Gene Delivery. Biomacromolecules 2015; 16:2609-17. [DOI: 10.1021/acs.biomac.5b00966] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lara Cutlar
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dezhong Zhou
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yongsheng Gao
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tianyu Zhao
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Udo Greiser
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wei Wang
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- School
of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- School
of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
50
|
Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: scope and advancement. Nanomedicine (Lond) 2015; 10:2593-612. [PMID: 26295361 DOI: 10.2217/nnm.15.82] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Innovative methods for treating impaired and hard-to-heal wounds are needed. Novel strategies are needed for faster healing by reducing infection, moisturizing the wound, stimulating the healing mechanisms, speeding up the wound closure and reducing scar formation. In the past few years, nanotechnology has been constantly revolutionizing the treatment and management of wound care, by offering novel solutions which include but are not limited to: state-of-the-art materials, so called 'smart' biomaterials and theranostic nanoparticles. Nanotechnology-based therapy has recently announced itself as a possible next-generation therapy that is able to advance wound healing to cure chronic wounds. In this communication, the recent progress in advanced therapy for cutaneous wound healing during last 5 years using a nanotechnology-based approach is summarized.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Nanoscience Technology Center, Advanced Materials Processing & Analysis Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Soumen Das
- Nanoscience Technology Center, Advanced Materials Processing & Analysis Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Sudipta Seal
- Nanoscience Technology Center, Advanced Materials Processing & Analysis Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA.,Materials Science & Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|