1
|
Chathoth NE, S HK, Krishna M, Anjukandi P. Exceptional stability of ultrasmall cubic copper metal nanoclusters - a molecular dynamics study. J Mater Chem B 2024; 12:3908-3916. [PMID: 38567452 DOI: 10.1039/d3tb02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The fabrication of shape-selective coinage metal nanoclusters (MNCs) has promising applications due to their exceptional physical and chemical molecule-like properties. However, the stability of the specific geometry of the nanoclusters, such as their cubic shapes, is unclear and has been unraveled by assessing the nanoclusters' interactions with different environments. In this work, we investigate the morphological stability of cubic structured, coinage metal nanoclusters of varying sizes ranging from 14 to 1099 atoms. The impact of solvent environments like water and the presence of ionic liquids (IL) on the stabilization of the MNCs were assessed using molecular dynamics (MD) simulations. In general, smaller MNCs composed of less than 256 atoms encountered structural distortion easily compared to the larger ones, which preserved their cubic morphology with minimal surface aberrations in water. However, in the presence of 4M 1-butyl-1,1,1-trimethyl ammonium methane sulfonate [N1114][C1SO3] IL solution, the overall cubic shape of the MNCs was successfully preserved. Strikingly, it is observed that in contrast to the noble MNCs like Au and Ag, the cubic morphology for Cu MNCs with sizes less than 256 atoms exhibited significant stability even in the absence of IL.
Collapse
Affiliation(s)
- Nayana Edavan Chathoth
- Department of Chemistry, Indian Institute of Technology, Palakkad-678623, Kerala, India.
| | - Hafila Khairun S
- Department of Chemistry, Indian Institute of Technology, Palakkad-678623, Kerala, India.
| | - Manya Krishna
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, Meghalaya, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad-678623, Kerala, India.
| |
Collapse
|
2
|
Huang QQ, Chen J, Hu MY, Wang YL, Li Y, Fu F, Wei QH. Ionic Liquids-Driven Cluster-to-Cluster Conversion of Polyhydrido Copper(I) Clusters Cu 7H 5 to Cu 8H 6 and Cu 12H 9. Inorg Chem 2023; 62:14998-15005. [PMID: 37655478 DOI: 10.1021/acs.inorgchem.3c01830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although ionic liquids (ILs) are of prime interest for the synthesis of various nanomaterials, they are scarcely utilized for the polyhydrido copper(I) [Cu(I)H] clusters. Herein, two air-stable Cu(I)H clusters, [Cu8H6(dppy)6](NTf2)2 (Cu8H6) and {Cu12H9(dppy)6[N(CN)2]3} (Cu12H9), are synthesized in high yields for the first time from the ILs-driven conversion of an unprecedented cluster [Cu7H5(dppy)6](ClO4)2 (Cu7H5) by a facile three-layers diffusion crystal (TLDC) method, strategically introducing IL-NTf2 and IL-N(CN)2 as two types of unusual interfacial crystallized templates, respectively. Their structures are fully characterized by various spectroscopic methods and X-ray crystallography, which shows that the anion of IL plays an important role as an anion template and an anion ligand in controlling the structural conversion of Cu(I)H clusters. Their photophysical properties are also investigated, and it is found that all reported clusters exhibit red luminescence with λem ranging from 600 to 690 nm.
Collapse
Affiliation(s)
- Qiu-Qin Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jian Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mei-Yue Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu-Ling Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - FengFu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiao-Hua Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
3
|
Rodríguez‐Penedo A, Rioboó‐Legaspi P, González‐López A, Lores‐Padín A, Pereiro R, García‐Suárez MDM, Cima‐Cabal MD, Costa‐Rama E, Fernández B, Fernández‐Abedul MT. Electrocatalytic Palladium Nanoclusters as Versatile Indicators of Bioassays: Rapid Electroanalytical Detection of SARS-CoV-2 by Reverse Transcription Loop-Mediated Isothermal Amplification. Adv Healthc Mater 2023; 12:e2202972. [PMID: 36715339 PMCID: PMC11469307 DOI: 10.1002/adhm.202202972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) is considered the gold standard for pathogen detection. However, improvement is still required, especially regarding the possibilities of decentralization. Apart from other reasons, infectious diseases demand on-site analysis to avoid pathogen spreading and increase treatment efficacy. In this paper, the detection of SARS-CoV-2 is carried out by reverse transcription loop-mediated isothermal amplification, which has the advantage of requiring simple equipment, easily adaptable to decentralized analysis. It is proposed, for the first time, the use of palladium nanoclusters (PdNCs) as indicators of the amplification reaction at end point. The pH of the medium decreases during the reaction and, in turn, a variation in the catalytic activity of PdNCs on the oxygen reduction reaction (ORR) can be electrochemically observed. For the detection, flexible and small-size screen-printed electrodes can be premodified with PdNCs, which together with the use of a simple and small electrochemical equipment would greatly facilitates their integration in field-deployable devices. This would allow a faster detection of SARS-CoV-2 as well as of other future microbial threats after an easy adaptation.
Collapse
Affiliation(s)
| | - Pablo Rioboó‐Legaspi
- Deparment of Physical and Analytical ChemistryUniversity of OviedoOviedo33006Spain
| | | | - Ana Lores‐Padín
- Deparment of Physical and Analytical ChemistryUniversity of OviedoOviedo33006Spain
| | - Rosario Pereiro
- Deparment of Physical and Analytical ChemistryUniversity of OviedoOviedo33006Spain
| | | | | | - Estefanía Costa‐Rama
- Deparment of Physical and Analytical ChemistryUniversity of OviedoOviedo33006Spain
| | - Beatriz Fernández
- Deparment of Physical and Analytical ChemistryUniversity of OviedoOviedo33006Spain
| | | |
Collapse
|
4
|
Li S, Du X, Liu Z, Li Y, Shao Y, Jin R. Size Effects of Atomically Precise Gold Nanoclusters in Catalysis. PRECISION CHEMISTRY 2023; 1:14-28. [PMID: 37025974 PMCID: PMC10069034 DOI: 10.1021/prechem.3c00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
The emergence of ligand-protected, atomically precise gold nanoclusters (NCs) in recent years has attracted broad interest in catalysis due to their well-defined atomic structures and intriguing properties. Especially, the precise formulas of NCs provide an opportunity to study the size effects at the atomic level without complications by the polydispersity in conventional nanoparticles that obscures the relationship between the size/structure and properties. Herein, we summarize the catalytic size effects of atomically precise, thioate-protected gold NCs in the range of tens to hundreds of metal atoms. The catalytic reactions include electrochemical catalysis, photocatalysis, and thermocatalysis. With the precise sizes and structures, the fundamentals underlying the size effects are analyzed, such as the surface area, electronic properties, and active sites. In the catalytic reactions, one or more factors may exert catalytic effects simultaneously, hence leading to different catalytic-activity trends with the size change of NCs. The summary of literature work disentangles the underlying fundamental mechanisms and provides insights into the size effects. Future studies will lead to further understanding of the size effects and shed light on the catalytic active sites and ultimately promote catalyst design at the atomic level.
Collapse
Affiliation(s)
- Site Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yucai Shao
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Swierczewski M, Bürgi T. Langmuir and Langmuir-Blodgett Films of Gold and Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2135-2151. [PMID: 36739536 PMCID: PMC9933884 DOI: 10.1021/acs.langmuir.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Recently the focus of the Langmuir-Blodgett technique as a method of choice to transfer monolayers from the air/water interface onto solid substrates in a controllable fashion has been shifting toward purely hydrophobic gold and silver nanoparticles. The fundamental interactions between particles that become relevant in the absence of polar groups range from dispersive attractions from the metal cores and repulsions between ligand shells to weaker entropic factors. The layer evolution is explored, starting with interfacial self-assembly upon solution spreading and domain and circular island formation, which subsequently merge into a complete monolayer and finally form multilayers or macroscopic wrinkles. Moreover, structural properties such as the core:ligand size ratio are investigated in the context of dispersive forces, whereby the nanoparticles with small cores and long ligands tend not to aggregate sufficiently to produce continuous films, those with large cores and short ligands were found to aggregate irreversibly, and those in between the two extremes were concluded to be able to form highly organized crystalline films. Similarly, the characteristics of the spreading solution such as the concentration and the solvent type crucially influence the film crystallinity, with the deciding factor being the degree of affinity between the capping ligand and the solvent used for spreading. Finally, the most common strategies employed to enhance the mechanical stability of the metal nanoparticle films along with the recent attempts to functionalize the particles in attempts to improve their applicability in the industry are summarized and evaluated in relation to their future prospects. One of the objectives of this feature article is to elucidate the differences between hydrophobic metal nanoparticles and typical amphiphilic molecules that the majority of the literature in the field describes and to familiarize the reader with the knowledge required to design Langmuir-Blodgett nanoparticle systems as well as the strategies to improve existing ones.
Collapse
Affiliation(s)
- Michal Swierczewski
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4CH-1211, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4CH-1211, Switzerland
| |
Collapse
|
6
|
Nanomechanical and structural study of Au38 nanocluster Langmuir-Blodgett films using bimodal atomic force microscopy and X-ray reflectivity. J Colloid Interface Sci 2023; 630:28-36. [DOI: 10.1016/j.jcis.2022.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
7
|
Matsumoto M, Takeuchi K, Inoue Y, Tsunashima K, Yamada H. Molecular Insight into the Ionic Conduction of Quaternary Ammonium and Phosphonium Cation-Based Ionic Liquids Using Dielectric and Spectroscopy Analyses. J Phys Chem B 2022; 126:10490-10499. [PMID: 36417887 DOI: 10.1021/acs.jpcb.2c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We analyzed the primary properties of ionic liquids (ILs) comprising quaternary phosphonium cations and bis(trifluoromethylsulfonyl) amide anions and compared them with those of corresponding quaternary-ammonium-cation-based ILs. Broadband dielectric spectroscopy was used to confirm the coupling between the translational and orientational motions of ions, and our results demonstrated that the high ionic conductivity of the phosphonium-based ILs was attributed to their fast rotational dynamics. The differences between ILs with different cations were further evaluated using vibrational (Raman and terahertz) spectroscopy. The Raman spectroscopy data revealed that the cation structure affected the conformation and flexibility (conformational change) of the anion. Furthermore, terahertz spectroscopy allowed us to evaluate the relationship between ion transport and intermolecular interactions between the cation and anion of ILs.
Collapse
Affiliation(s)
- Mitsuhiro Matsumoto
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara639-1080, Japan
| | - Kazuki Takeuchi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara639-1080, Japan
| | - Yohtaro Inoue
- Research Division of Polymer Functional Materials, Osaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi, Osaka594-1157, Japan
| | - Katsuhiko Tsunashima
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Gobo, Wakayama644-0023, Japan
| | - Hirohisa Yamada
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara639-1080, Japan
| |
Collapse
|
8
|
Zhu M, Yao Q, Liu Z, Zhang B, Lin Y, Liu J, Long M, Xie J. Surface Engineering Assisted Size and Structure Modulation of Gold Nanoclusters by Ionic Liquid Cations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Moshuqi Zhu
- College of Energy Xiamen University Xiamen 361102 China
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Bihan Zhang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Yingzheng Lin
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Jian Liu
- College of Energy Xiamen University Xiamen 361102 China
| | - Minnan Long
- College of Energy Xiamen University Xiamen 361102 China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
9
|
Zhu M, Yao Q, Liu Z, Zhang B, Lin Y, Liu J, Long M, Xie J. Surface Engineering Assisted Size and Structure Modulation of Gold Nanoclusters by Ionic Liquid Cations. Angew Chem Int Ed Engl 2021; 61:e202115647. [PMID: 34918861 DOI: 10.1002/anie.202115647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Surface modification induced core size/structure change is a recent discovery in inorganic nanoparticles research, and has rarely been revealed at the molecular level. Here, we exemplify with atomically precise Au nanoclusters (NCs) that proper surface modification can selectively stabilize the desired Au0 core, conducive to the formation of size/structure-controlled Au NCs. Leveraging π-π enhanced ion-pairing interactions, ionic liquid (IL) cations are bonded to AuI -thiolate complexes. The hydrophobic-hydrophobic interactions between IL cations subsequently provide a good mechanism to prolong the size of the AuI -thiolate complexes, selectively producing small-sized Au NCs upon reduction. Through combined control over the structure and concentration of IL cations, pH and solvent polarity, we are able to produce atomically precise Au NCs with customizable size, atomic packing structure, and surface chemistry. This work also provides a facile means to integrate/synergize the materials functionalities of Au NCs and ILs, increasing their acceptance in diverse fields.
Collapse
Affiliation(s)
- Moshuqi Zhu
- College of Energy, Xiamen University, Xiamen, 361102, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Bihan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yingzheng Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Jian Liu
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Minnan Long
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
10
|
Jo Y, Choi M, Kim M, Yoo JS, Choi W, Lee D. Promotion of alkaline hydrogen production via Ni‐doping of atomically precise Ag nanoclusters. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yongsung Jo
- Department of Chemistry Yonsei University Seoul Republic of Korea
| | - Minji Choi
- Department of Chemical Engineering University of Seoul Seoul Republic of Korea
| | - Minseok Kim
- Department of Chemistry Yonsei University Seoul Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering University of Seoul Seoul Republic of Korea
| | - Woojun Choi
- Department of Chemistry and Medical Chemistry Yonsei University Wonju Gangwon Republic of Korea
| | - Dongil Lee
- Department of Chemistry Yonsei University Seoul Republic of Korea
| |
Collapse
|
11
|
Uca M, Eksin E, Erac Y, Erdem A. Electrochemical Investigation of Curcumin-DNA Interaction by Using Hydroxyapatite Nanoparticles-Ionic Liquids Based Composite Electrodes. MATERIALS 2021; 14:ma14154344. [PMID: 34361538 PMCID: PMC8347690 DOI: 10.3390/ma14154344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.
Collapse
Affiliation(s)
- Merve Uca
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Ece Eksin
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Yasemin Erac
- Pharmacology Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Arzum Erdem
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
- Correspondence: or
| |
Collapse
|
12
|
Wu D, Ma C, Fan GC, Pan F, Tao Y, Kong Y. Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. J Sep Sci 2021; 45:325-337. [PMID: 34117714 DOI: 10.1002/jssc.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| |
Collapse
|
13
|
Dong Y, Laaksonen A, Huo F, Gao Q, Ji X. Hydrated Ionic Liquids Boost the Trace Detection Capacity of Proteins on TiO 2 Support. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5012-5021. [PMID: 33861604 PMCID: PMC8154861 DOI: 10.1021/acs.langmuir.1c00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Indexed: 05/05/2023]
Abstract
Trace detection based on surface-enhanced Raman scattering (SERS) has attracted considerable attention, and exploiting efficient strategies to stretch the limit of detection and understanding the mechanisms on molecular level are of utmost importance. In this work, we use ionic liquids (ILs) as trace additives in a protein-TiO2 system, allowing us to obtain an exceptionally low limit of detection down to 10-9 M. The enhancement factors (EFs) were determined to 2.30 × 104, 6.17 × 104, and 1.19 × 105, for the three systems: one without ILs, one with ILs in solutions, and one with ILs immobilized on the TiO2 substrate, respectively, corresponding to the molecular forces of 1.65, 1.32, and 1.16 nN quantified by the atomic force microscopy. The dissociation and following hydration of ILs, occurring in the SERS system, weakened the molecular forces but instead improved the electron transfer ability of ILs, which is the major contribution for the observed excellent detection. The weaker diffusion of the hydrated IL ions immobilized on the TiO2 substrate did provide a considerably greater EF value, compared to the ILs in the solution. This work clearly demonstrates the importance of the hydration of ions, causing an improved electron transfer ability of ILs and leading to an exceptional SERS performance in the field of trace detection. Our results should stimulate further development to use ILs in SERS and related applications in bioanalysis, medical diagnosis, and environmental science.
Collapse
Affiliation(s)
- Yihui Dong
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Aatto Laaksonen
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-10691, Sweden
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre
of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi 700487, Romania
| | - Feng Huo
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qingwei Gao
- State Key
Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyan Ji
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
14
|
Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:3038. [PMID: 33926034 PMCID: PMC8123588 DOI: 10.3390/s21093038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute for Research and Development in Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13676, USA;
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
15
|
Benjamin M, Manoj D, Karnan M, Saravanakumar D, Thenmozhi K, Ariga K, Sathish M, Senthilkumar S. Switching the solubility of electroactive ionic liquids for designing high energy supercapacitor and low potential biosensor. J Colloid Interface Sci 2021; 588:221-231. [PMID: 33418440 DOI: 10.1016/j.jcis.2020.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Ionic liquids are regarded as one of the most prodigious materials for sustainable technological developments with superior performance and versatility. Hence, in this study, we have reported the design and synthesis of electroactive disubstituted ferrocenyl ionic liquids (Fc-ILs) with two different counter anions and demonstrated the significance of their anion tuneable physicochemical characteristics towards multifunctional electrochemical applications. The Fc-IL synthesized with chloride counter anion (Fc-Cl-IL) displays water-solubility and can be used as a redox additive in the fabrication of supercapacitor. Supercapacitor device with Fc-Cl-IL based redox electrolyte exhibits outstanding energy and power densities of 91 Wh kg-1 and 20.3 kW kg-1, respectively. Meanwhile, ferrocenyl IL synthesized with perchlorate anion (Fc-ClO4-IL) exhibits water-insolubility and can serve as a redox mediator towards construction of a glucose biosensor. The biosensor comprising Fc-ClO4-IL is able to detect glucose at an exceptionally lower potential of 0.2 V, with remarkable sensitivity and selectivity. This study implies that the introduction of electroactive ILs could afford supercapacitor devices with high energy and power densities and biosensors with less detection potential.
Collapse
Affiliation(s)
- Michael Benjamin
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Devaraj Manoj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Manickavasakam Karnan
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Duraisamy Saravanakumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan.
| | - Marappan Sathish
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India; WPI-MANA, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
16
|
An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Mikrochim Acta 2021; 188:163. [PMID: 33839948 DOI: 10.1007/s00604-021-04818-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/27/2021] [Indexed: 02/03/2023]
Abstract
A facile chiral composite (3D-NGMWCNT@(S,S)-CIL) was prepared by integrating three-dimensional N-doped graphene oxide multi-walled carbon nanotubes (3D-NGMWCNT) and chiral ionic liquid ((S,S)-CIL) via electrodeposition. SEM, XRD, XPS, and electrochemical methods were used to characterize this composite and it revealed that the integrated 3D-NGMWCNT@(S,S)-CIL composite showed excellent electrochemical performance. Therefore, a 3D-NGMWCNT@(S,S)-CIL/GCE electrochemical sensor was constructed for enantioselective recognition of Trp enantiomers. The coefficient (IL/ID) of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor was 2.26 by differential pulse voltammograms (DPV), revealing that the synthesized 3D-NGMWCNT@(S,S)-CIL had a higher affinity for L-Trp than D-Trp. Moreover, UV-V is spectroscopy and a water contact angle test also proved this result. The 3D-NGMWCNT@(S,S)-CIL/GCE sensor had a detection limit of 0.024 μM and 0.055 μM, and sensitivity of 62.35 μA·mM-1·cm-2 and 30.40 μA·mM-1·cm-2 for L-Trp and D-Trp, respectively, with a linear response range of 0.01 to 5 mM. In addition, the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor showed excellent stability, and good reproducibility and was applied to detect L-Trp or D-Trp in real samples. The novel 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor provides an efficient and convenient strategy for chiral enantioselective recognition. Schematic construction of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral electrochemical sensors.
Collapse
|
17
|
Murphy M, Theyagarajan K, Thenmozhi K, Senthilkumar S. Direct electrochemistry of covalently immobilized hemoglobin on a naphthylimidazolium butyric acid ionic liquid/MWCNT matrix. Colloids Surf B Biointerfaces 2021; 199:111540. [PMID: 33383549 DOI: 10.1016/j.colsurfb.2020.111540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 01/15/2023]
Abstract
Monitoring the concentration levels of hydrogen peroxide (H2O2) is significant in both clinical and industrial applications. Herein, we develop a facile biosensor for the detection of H2O2 based on direct electron transfer of hemoglobin (Hb), which was covalently immobilized on a hydrophobic naphthylimidazolium butyric acid ionic liquid (NIBA-IL) over a multiwalled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) to obtain an Hb/NIBA-IL/MWCNT/GCE. Highly water-soluble Hb protein was firmly immobilized on NIBA-IL via stable amide bonding between the free NH2 groups of Hb and COOH groups of NIBA-IL via EDC/NHS coupling. Thus fabricated biosensor showed a well resolved redox peak with a cathodic peak potential (Epc) at -0.35 V and anodic peak potential (Epa) at -0.29 V with a formal potential (E°') of -0.32 V, which corresponds to the deeply buried FeIII/FeII redox centre of Hb, thereby direct electrochemistry of Hb was established. Further, the modified electrode demonstrated very good electrocatalytic activity towards H2O2 reduction and showed a wide linear range of detection from 0.01 to 6.3 mM with a limit of detection and sensitivity of 3.2 μM and 111 μA mM-1 cm-2, respectively. Moreover, the developed biosensor displayed high operational stability under dynamic conditions as well as during continuous potential cycles and showed reliable reproducibility. The superior performance of the fabricated biosensor is attributed to the effective covalent immobilization of Hb on the newly developed highly conducting and biocompatible NIBA-IL/MWCNT/GCE platform.
Collapse
Affiliation(s)
- Manoharan Murphy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - K Theyagarajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
18
|
Besharati M, Tabrizi MA, Molaabasi F, Saber R, Shamsipur M, Hamedi J, Hosseinkhani S. Novel enzyme-based electrochemical and colorimetric biosensors for tetracycline monitoring in milk. Biotechnol Appl Biochem 2020; 69:41-50. [PMID: 33226159 DOI: 10.1002/bab.2078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Recently, there has been a growing demand to develop portable devices for the fast detection of contaminants in food safety, healthcare, and environmental fields. Herein, two biosensing methods were designed by the use of nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent TetX2 enzyme activity and thionine as an excellent electrochemical and colorimetric mediator/probe to monitor tetracycline (TC) in milk. The nanoporous glassy carbon electrode (NPGCE) modified with polythionine was first prepared by electrochemically and then TetX2 was immobilized onto the NPGCE using polyethyleneimine. The prepared biosensor provided a high electrocatalytic response toward NAD(P)H by significantly reducing its overpotential. The proposed biosensor exhibited a detection limit of 40 nM with a linear range of 0.1-0.8 μM for TC determination. Besides, the thionine probe was used to develop a novel colorimetric assay using a simple enzymatic color reaction within a few minutes. The limit of detection for TC was experimentally achieved as 60 nM, which was lower than the safety levels established by the World Health Organization (225 nM). The correlation between change in the color of the solution and the concentration of TC was used for quality control of milk samples, as confirmed by the standard high-performance liquid chromatography method. The results show the great potential of the proposed assays as portable instruments for on-site TC measurements.
Collapse
Affiliation(s)
- Maryam Besharati
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| | | | - Fatemeh Molaabasi
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Reza Saber
- Research Center of Medical Science, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Theyagarajan K, Elancheziyan M, Aayushi PS, Thenmozhi K. Facile strategy for immobilizing horseradish peroxidase on a novel acetate functionalized ionic liquid/MWCNT matrix for electrochemical biosensing. Int J Biol Macromol 2020; 163:358-365. [PMID: 32634514 DOI: 10.1016/j.ijbiomac.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Facile yet simple platforms for the immobilization of biomolecules have always been a substantial requirement for the fabrication of proficient biosensors. In this study, we report a naphthyl substituted acetate functionalized ionic liquid (NpAc-IL) for the covalent anchoring of horseradish peroxidase (HRP), using which the direct electrochemistry of HRP was successfully accomplished and a H2O2 biosensor was developed. The naphthyl substitution on the NpAc-IL was utilized for the π-π stacking with the MWCNT modified GCE and the terminal -OCH3 group of NpAc-IL was used for the covalent attachment with the free -NH2 group of HRP via amide bond formation. High conducting nature of the newly designed ionic liquid (NpAc-IL), facilitated an improved communication with the deeply buried redox centre of the HRP, while the covalent bonding provided enhanced stability to the fabricated biosensor by stably holding the water soluble HRP enzyme on the electrode surface. Furthermore, incorporation of MWCNT on the sensor setup synergistically enhanced the sensitivity of the developed biosensor. Under optimized conditions, the fabricated biosensor showed an enhanced electrocatalytic reduction of H2O2 in the range of 0.01 to 2.07 mM with a limit of detection and sensitivity of 2.7 μM and 55.98 μA mM-1 cm-2 respectively. Further, the proposed biosensor was utilized for the sensing of H2O2 spiked in real samples. Moreover, the newly fabricated biosensor demonstrated excellent stability with improved sensitivity and selectivity towards H2O2 reduction. The superior analytical characteristics are attributed to the facile fabrication strategy using this newly developed acetate functionalized ionic liquid platform.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mari Elancheziyan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Prakash Sinha Aayushi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
20
|
Fan J, Qi L, Han H, Ding L. Array-Based Discriminative Optical Biosensors for Identifying Multiple Proteins in Aqueous Solution and Biofluids. Front Chem 2020; 8:572234. [PMID: 33330361 PMCID: PMC7673422 DOI: 10.3389/fchem.2020.572234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Identification of proteins is an important issue both in medical research and in clinical practice as a large number of proteins are closely related to various diseases. Optical sensor arrays with recognition ability have been flourished to apply for distinguishing multiple chemically or structurally similar analytes and analyzing unknown or mixed samples. This review gives an overview of the recent development of array-based discriminative optical biosensors for recognizing proteins and their applications in real samples. Based on the number of sensor elements and the complexity of constructing array-based discriminative systems, these biosensors can be divided into three categories, which include multi-element-based sensor arrays, environment-sensitive sensor arrays and multi-wavelength-based single sensing systems. For each strategy, the construction of sensing platform and detection mechanism are particularly introduced. Meanwhile, the differences and connections between different strategies were discussed. An understanding of these aspects may help to facilitate the development of novel discriminative biosensors and expand their application prospects.
Collapse
Affiliation(s)
- Junmei Fan
- Department of Chemistry, Taiyuan Normal University, Jinzhong, China
| | - Lu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Hongfei Han
- Department of Chemistry, Taiyuan Normal University, Jinzhong, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
21
|
Quaternary Ammonium Based Carboxyl Functionalized Ionic Liquid for Covalent Immobilization of Horseradish Peroxidase and Development of Electrochemical Hydrogen Peroxide Biosensor. ELECTROANAL 2020. [DOI: 10.1002/elan.202060240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Murphy M, Manoj D, Saravanakumar D, Thenmozhi K, Senthilkumar S. Water insoluble, self-binding viologen functionalized ionic liquid for simultaneous electrochemical detection of nitrophenol isomers. Anal Chim Acta 2020; 1138:89-98. [DOI: 10.1016/j.aca.2020.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
|
23
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
24
|
Ebina A, Hossain S, Horihata H, Ozaki S, Kato S, Kawawaki T, Negishi Y. One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1105. [PMID: 32503177 PMCID: PMC7353419 DOI: 10.3390/nano10061105] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Metal nanoclusters (NCs), which consist of several, to about one hundred, metal atoms, have attracted much attention as functional nanomaterials for use in nanotechnology. Because of their fine particle size, metal NCs exhibit physical/chemical properties and functions different from those of the corresponding bulk metal. In recent years, many techniques to precisely synthesize metal NCs have been developed. However, to apply these metal NCs in devices and as next-generation materials, it is necessary to assemble metal NCs to a size that is easy to handle. Recently, multiple techniques have been developed to form one-, two-, and three-dimensional connected structures (CSs) of metal NCs through self-assembly. Further progress of these techniques will promote the development of nanomaterials that take advantage of the characteristics of metal NCs. This review summarizes previous research on the CSs of metal NCs. We hope that this review will allow readers to obtain a general understanding of the formation and functions of CSs and that the obtained knowledge will help to establish clear design guidelines for fabricating new CSs with desired functions in the future.
Collapse
Affiliation(s)
- Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Hikaru Horihata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Shuhei Ozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Shun Kato
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
25
|
Ramadurai M, Rajendran G, Bama TS, Prabhu P, Kathiravan K. Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111845. [PMID: 32172137 DOI: 10.1016/j.jphotobiol.2020.111845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
We report, the one-pot synthesis of water-soluble and biocompatible 3-mercaptopropylsulfonate (MPS) protected novel copper nanoclusters (CuNCs). Interestingly, the TEM image of MPS protected CuNCs exhibits an ultrasmall nanoclusters of particle size <2-nm, similar to its Au and Ag analogue. The hydrophilic and biocompability property of thiolate protected CuNCs. i.e., MPS stabilized CuNCs and its luminescent nature gave rise to maximum quantum yield of 1.5%. Further, as achieved CuNCs was investigated for haemocompatibility, cell viability and fluorescent microscopic analysis with A549 lung cancer cell line. Haemolytic study was examined using human RBCs in the concentration range of 4 to 22 μg/mL for which 7.5% of haemolysis was obtained for an optimum concentration of 22 μg/mL of CuNCs. The cell viability analysis was carried out by MTT assay using A549 lung cancer cells for the minimum (10 μg/mL) and maximum (45 μg/mL) concentration of CuNCs which reports 93.1% and 38.2% cell viability respectively. The inverted light microscopic images from the control and CuNCs treated (20 μg/mL) cells exhibited an excellent biocompatibility with a normal morphology. Upon increasing the concentration of CuNCs upto 45 μg/mL, the cell viability trends to decrease and the cell morphology also denature gradually. Further, the bio-imaging application of CuNCs was analyzed with A549 lung cancer cells. The efficient imaging with CuNCs treated (20 μg/mL) A549 cells resulted in a green colour emission using FITC filter (460- 490 nm). Thereby the obtained results confirm the applicability of CuNCs for the biomedical and cancer diagnosis applications.
Collapse
Affiliation(s)
- Murugan Ramadurai
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Ganapathy Rajendran
- Department of Biotechnology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Thangapandian Sathya Bama
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Pandurangan Prabhu
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India.
| | - Krishnan Kathiravan
- Department of Biotechnology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India.
| |
Collapse
|
26
|
Rationally designed naphthyl substituted amine functionalized ionic liquid platform for covalent immobilization and direct electrochemistry of hemoglobin. Sci Rep 2019; 9:10428. [PMID: 31320717 PMCID: PMC6639313 DOI: 10.1038/s41598-019-46982-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
Herein, we have designed and demonstrated a facile and effective platform for the covalent anchoring of a tetrameric hemoprotein, hemoglobin (Hb). The platform comprises of naphthyl substituted amine functionalized gel type hydrophobic ionic liquid (NpNH2-IL) through which the heme protein was covalently attached over a glassy carbon electrode (Hb-NpNH2-IL/GCE). UV-vis and FT-IR spectral results confirmed that the Hb on NpNH2-IL retains its native structure, even after being covalently immobilized on NpNH2-IL platform. The direct electron transfer of redox protein could be realized at Hb-NpNH2-IL/GCE modified electrode and a well resolved redox peak with a formal potential of −0.30 V and peak separation of 65 mV was observed. This is due to the covalent attachment of highly conducting NpNH2-IL to the Hb, which facilitates rapid shuttling of electrons between the redox site of protein and the electrode. Further, the fabricated biosensor favoured the electrochemical reduction of bromate in neutral pH with linearity ranging from 12 to 228 µM and 0.228 to 4.42 mM with a detection limit and sensitivities of 3 µM, 430.7 µA mM−1 cm−2 and 148.4 µA mM−1 cm−2 respectively. Notably, the fabricated biosensor showed good operational stability under static and dynamic conditions with high selectivity and reproducibility.
Collapse
|
27
|
Du Y, Sheng H, Astruc D, Zhu M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem Rev 2019; 120:526-622. [DOI: 10.1021/acs.chemrev.8b00726] [Citation(s) in RCA: 526] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanxin Du
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
28
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
29
|
Abstract
Thiolate-protected metal nanoparticles containing a few to few hundred metal atoms are interesting materials exhibiting unique physicochemical properties. They encompass the bulk-to-molecule transition region, where discrete electronic states emerge and electronic band energetics yield to quantum confinement effects. Recent progresses in the synthesis and characterization of ultrasmall gold nanoparticles have opened up new avenues for the isolation of extremely monodispersed nanoparticles with atomically precision. These nanoparticles are also called nanoclusters to distinguish them from other regular metal nanoparticles with core diameter >2 nm. These nanoclusters are typically identified by their actual molecular formulas; prominent among these are Au25(SR)18, Au38(SR)24, and Au102(SR)44, where SR is organothiolate. A number of single crystal structures of these nanoclusters have been disclosed. Researchers have effectively utilized density functional theory (DFT) calculations to predict their atomic and electronic structures, as well as their physicochemical properties. The atomically precise metal nanoclusters have been the focus of recent studies owing to their novel size-specific electrochemical, optical, and catalytic properties. In this Account, we highlight recent advances in electrochemistry of atomically precise metal nanoclusters and their applications in electrocatalysis and electrochemical sensing. Compared with gold nanoclusters, much less progress has been made in the electrochemical studies of other metal nanoclusters, and thus, we mainly focus on the electrochemistry and electrochemical applications of gold-based nanoclusters. Voltammetry has been extremely powerful in investigating the electronic structure of metal nanoclusters, especially near HOMO and LUMO levels. A sizable opening of HOMO-LUMO gap observed for Au25(SR)18 gradually decreases with increasing nanocluster size, which is in line with the change in the optical gap. Heteroatom-doping has been a powerful strategy to modify the optical and electrochemical properties of metal nanoclusters at the atomic level. While the superatom theory predicts 8-electron configuration for [Au25(SR)18]- and many doped nanoclusters thereof, Pt- and Pd-doped [PtAu24(SR)18]0 and [PdAu24(SR)18]0 nanoclusters show dramatically different electronic structures, as manifested in their optical spectra and voltammograms, suggesting the occurrence of the Jahn-Teller distortion in these doped nanoclusters. Furthermore, metal-doping may alter their surface binding properties, as well as redox potentials. Metal nanoclusters offer great potential for attaining high activity and selectivity in their electrocatalytic applications. The well-defined core-shell structure of a metal nanocluster is of special advantage because the core and shell can be independently engineered to exhibit suitable binding properties and redox potentials. We discuss recent progress made in electrocatalysis based upon metal nanoclusters tailored for water splitting, CO2 conversion, and electrochemical sensing. A well-defined model nanocatalyst is absolutely necessary to reveal the detailed mechanism of electrocatalysis and thereby to lead to the development of a new efficient electrocatalyst. We envision that atomically controlled metal nanoclusters will enable us to systematically optimize the electrochemical and surface properties suitable for electrocatalysis, thus providing a powerful platform for the discovery of finely tuned nanocatalysts.
Collapse
Affiliation(s)
- Kyuju Kwak
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
30
|
Kundu A, Park B, Ray C, Oh J, Jun SC. Environmentally benign and cost-effective synthesis of water soluble red light emissive gold nanoclusters: selective and ultra-sensitive detection of mercuric ions. NEW J CHEM 2019. [DOI: 10.1039/c8nj02897d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green approach to synthesize red emissive gold nanoclusters for nano-molar detection of mercuric ions.
Collapse
Affiliation(s)
- Aniruddha Kundu
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Byeongho Park
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Chaiti Ray
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Juyeong Oh
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Seong Chan Jun
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| |
Collapse
|
31
|
Choi W, Hu G, Kwak K, Kim M, Jiang DE, Choi JP, Lee D. Effects of Metal-Doping on Hydrogen Evolution Reaction Catalyzed by MAu 24 and M 2Au 36 Nanoclusters (M = Pt, Pd). ACS APPLIED MATERIALS & INTERFACES 2018; 10:44645-44653. [PMID: 30507125 DOI: 10.1021/acsami.8b16178] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper describes the effects of doped metals on hydrogen evolution reaction (HER) electrocatalyzed by atomically controlled MAu24 and M2Au36 nanoclusters, where M = Pt and Pd. HER performances, such as onset potential ( Eonset), catalytic current density, and turnover frequency (TOF), are comparatively examined with respect to the doped metals. Doping Pt or Pd into gold nanoclusters not only changes the electrochemical redox potentials of nanoclusters but also considerably improves the HER activities. Eonset is found to be controlled by the nanocluster's reduction potential matching the reduction potential of H+. The higher catalytic current and TOF are observed with the doped nanoclusters in the order of PtAu24 > PdAu24 > Au25. The same trend is observed with the Au38 group (Pt2Au36 > Pd2Au36> Au38). Density functional theory calculations have revealed that the hydrogen adsorption free energy (Δ GH) is significantly lowered by metal-doping in the order of Au25 > PdAu24 > PtAu24 and Au38 > Pd2Au36 > Pt2Au36, indicating that hydrogen adsorption on the active site of nanocluster is thermodynamically favored by Pd-doping and further by Pt-doping. The doped metals, albeit buried in the core of the nanoclusters, have profound impact on their HER activities by altering their reduction potentials and hydrogen adsorption free energies.
Collapse
Affiliation(s)
- Woojun Choi
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Guoxiang Hu
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Kyuju Kwak
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Minseok Kim
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - De-En Jiang
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Jai-Pil Choi
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
- Department of Chemistry , California State University-Fresno , Fresno , California 93740 , United States
| | - Dongil Lee
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
32
|
Chai J, Yang S, Lv Y, Chen T, Wang S, Yu H, Zhu M. A Unique Pair: Ag40 and Ag46 Nanoclusters with the Same Surface but Different Cores for Structure–Property Correlation. J Am Chem Soc 2018; 140:15582-15585. [DOI: 10.1021/jacs.8b09162] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Tao Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
33
|
Wu D, Tan W, Yu Y, Yang B, Li H, Kong Y. A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Anal Chim Acta 2018; 1033:58-64. [DOI: 10.1016/j.aca.2018.06.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
|
34
|
Chang WT, Sharma S, Liao JH, Kahlal S, Liu YC, Chiang MH, Saillard JY, Liu CW. Heteroatom-Doping Increases Cluster Nuclearity: From an [Ag20
] to an [Au3
Ag18
] Core. Chemistry 2018; 24:14352-14357. [DOI: 10.1002/chem.201802679] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/01/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Wan-Ting Chang
- Department of Chemistry; National Dong Hwa University; No.1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 97401 Taiwan R.O.C
| | - Sachil Sharma
- Department of Chemistry; National Dong Hwa University; No.1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 97401 Taiwan R.O.C
| | - Jian-Hong Liao
- Department of Chemistry; National Dong Hwa University; No.1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 97401 Taiwan R.O.C
| | - Samia Kahlal
- University of Rennes; CNRS, ISCR-UMR 6226; 35000 Rennes France
| | - Yu-Chiao Liu
- Institute of Chemistry; Academia Sinica; Taipei 115 Taiwan R.O.C
| | - Ming-Hsi Chiang
- Institute of Chemistry; Academia Sinica; Taipei 115 Taiwan R.O.C
| | | | - C. W. Liu
- Department of Chemistry; National Dong Hwa University; No.1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 97401 Taiwan R.O.C
| |
Collapse
|
35
|
Rambukwella M, Sakthivel NA, Delcamp JH, Sementa L, Fortunelli A, Dass A. Ligand Structure Determines Nanoparticles' Atomic Structure, Metal-Ligand Interface and Properties. Front Chem 2018; 6:330. [PMID: 30131953 PMCID: PMC6090168 DOI: 10.3389/fchem.2018.00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 12/04/2022] Open
Abstract
The nature of the ligands dictates the composition, molecular formulae, atomic structure and the physical properties of thiolate protected gold nanomolecules, Aun(SR)m. In this review, we describe the ligand effect for three classes of thiols namely, aliphatic, AL or aliphatic-like, aromatic, AR, or bulky, BU thiol ligands. The ligand effect is demonstrated using three experimental setups namely: (1) The nanomolecule series obtained by direct synthesis using AL, AR, and BU ligands; (2) Molecular conversion and interconversion between Au38(S-AL)24, Au36(S-AR)24, and Au30(S-BU)18 nanomolecules; and (3) Synthesis of Au38, Au36, and Au30 nanomolecules from one precursor Aun(S-glutathione)m upon reacting with AL, AR, and BU ligands. These nanomolecules possess unique geometric core structure, metal-ligand staple interface, optical and electrochemical properties. The results unequivocally demonstrate that the ligand structure determines the nanomolecules' atomic structure, metal-ligand interface and properties. The direct synthesis approach reveals that AL, AR, and BU ligands form nanomolecules with unique atomic structure and composition. Similarly, the nature of the ligand plays a pivotal role and has a significant impact on the passivated systems such as metal nanoparticles, quantum dots, magnetic nanoparticles and self-assembled monolayers (SAMs). Computational analysis demonstrates and predicts the thermodynamic stability of gold nanomolecules and the importance of ligand-ligand interactions that clearly stands out as a determining factor, especially for species with AL ligands such as Au38(S-AL)24.
Collapse
Affiliation(s)
- Milan Rambukwella
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, United States
| | - Naga Arjun Sakthivel
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, United States
| | - Luca Sementa
- CNR-ICCOM and IPCF, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
36
|
Nasaruddin RR, Chen T, Yan N, Xie J. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Jagannath B, Muthukumar S, Prasad S. Electrical double layer modulation of hybrid room temperature ionic liquid/aqueous buffer interface for enhanced sweat based biosensing. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Sahiner N, Sagbas S. Polymeric ionic liquid materials derived from natural source for adsorption purpose. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Manoj D, Theyagarajan K, Saravanakumar D, Senthilkumar S, Thenmozhi K. Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens Bioelectron 2018; 103:104-112. [DOI: 10.1016/j.bios.2017.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
|
40
|
Li S, Du XS, Li B, Wang JY, Li GP, Gao GG, Zang SQ. Atom-Precise Modification of Silver(I) Thiolate Cluster by Shell Ligand Substitution: A New Approach to Generation of Cluster Functionality and Chirality. J Am Chem Soc 2018; 140:594-597. [DOI: 10.1021/jacs.7b12136] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Si Li
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang-Sha Du
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Li
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Yin Wang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Ping Li
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Gang Gao
- School
of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Shuang-Quan Zang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
41
|
Kiani S, Taherkhani F. Free energy, configurational and nonextensivity of Tsallis entropy with the size and temperature in colloidal silver nanoparticles in [EMim][PF6] ionic liquid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Rambukwella M, Chang L, Ravishanker A, Fortunelli A, Stener M, Dass A. Au36(SePh)24 nanomolecules: synthesis, optical spectroscopy and theoretical analysis. Phys Chem Chem Phys 2018; 20:13255-13262. [DOI: 10.1039/c8cp01564c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report the synthesis of selenophenol (HSePh) protected Au36(SePh)24 nanomolecules via a ligand-exchange reaction of 4-tert-butylbenzenethiol (HSPh-tBu) protected Au36(SPh-tBu)24 with selenophenol, and its spectroscopic and theoretical analysis.
Collapse
Affiliation(s)
- Milan Rambukwella
- Department of Chemistry and Biochemistry
- University of Mississippi
- Oxford
- USA
| | - Le Chang
- International Research Center for Soft Matter
- Beijing University of Chemical Technology
- Beijing 100029
- People's Republic of China
- State Key Laboratory of Organic–Inorganic Composites
| | - Anish Ravishanker
- Department of Chemistry and Biochemistry
- University of Mississippi
- Oxford
- USA
| | | | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università di Trieste
- Trieste I-34127
- Italy
| | - Amala Dass
- Department of Chemistry and Biochemistry
- University of Mississippi
- Oxford
- USA
| |
Collapse
|
43
|
Ghorbanizamani F, Timur S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal Chem 2017; 90:640-648. [DOI: 10.1021/acs.analchem.7b03596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Faezeh Ghorbanizamani
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
| | - Suna Timur
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
- Ege University, Central Research Testing and Analysis Laboratory Research and Application Center, Bornova, Izmir, Turkey, 35100
| |
Collapse
|
44
|
Zou X, Jin S, Du W, Li Y, Li P, Wang S, Zhu M. Multi-ligand-directed synthesis of chiral silver nanoclusters. NANOSCALE 2017; 9:16800-16805. [PMID: 29072749 DOI: 10.1039/c7nr06338e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Engineering the surface ligands of metal nanoclusters is critical for tuning their sizes, structures and properties at the atomic level. Herein, we report the synthesis and total structure determination of [Ag32(Dppm)5(SAdm)13Cl8]3+ and [Ag45(Dppm)4(S-But)16Br12]3+ (where Dppm = bis(diphenyphosphino)methane, HSAdm = 1-adamantanethiol and HS-But = tert-butyl mercaptan). The compositions of these two silver nanoclusters are determined by single-crystal X-ray diffraction (SC-XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Remarkably, the asymmetric distribution of the three types of ligands (thiolate, phosphine, and halogen) on the cluster surface is responsible for the chirality of the clusters. It is worth noting that these findings demonstrate the key principles of ligand-shell anchoring for the tri-ligand protected silver clusters. Our work will offer further insights into the synthesis of chiral metal clusters by tailoring the surface ligands.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sims CM, Hanna SK, Heller DA, Horoszko CP, Johnson ME, Montoro Bustos AR, Reipa V, Riley KR, Nelson BC. Redox-active nanomaterials for nanomedicine applications. NANOSCALE 2017; 9:15226-15251. [PMID: 28991962 PMCID: PMC5648636 DOI: 10.1039/c7nr05429g] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials.
Collapse
Affiliation(s)
- Christopher M. Sims
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Shannon K. Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, United States
- Weill Cornell Medicine, Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Christopher P. Horoszko
- Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, United States
- Weill Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Monique E. Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Antonio R. Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Kathryn R. Riley
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| |
Collapse
|
46
|
Rambukwella M, Dass A. Synthesis of Au 38(SCH 2CH 2Ph) 24, Au 36(SPh-tBu) 24, and Au 30(S-tBu) 18 Nanomolecules from a Common Precursor Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10958-10964. [PMID: 28972376 DOI: 10.1021/acs.langmuir.7b03080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phenylethanethiol protected nanomolecules such as Au25, Au38, and Au144 are widely studied by a broad range of scientists in the community, owing primarily to the availability of simple synthetic protocols. However, synthetic methods are not available for other ligands, such as aromatic thiol and bulky ligands, impeding progress. Here we report the facile synthesis of three distinct nanomolecules, Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18, exclusively, starting from a common Aun(glutathione)m (where n and m are number of gold atoms and glutathiolate ligands) starting material upon reaction with HSCH2CH2Ph, HSPh-tBu, and HStBu, respectively. The systematic synthetic approach involves two steps: (i) synthesis of kinetically controlled Aun(glutathione)m crude nanocluster mixture with 1:4 gold to thiol molar ratio and (ii) thermochemical treatment of the purified nanocluster mixture with excess thiols to obtain thermodynamically stable nanomolecules. Thermochemical reactions with physicochemically different ligands formed highly monodispersed, exclusively three different core-size nanomolecules, suggesting a ligand induced core-size conversion and structural transformation. The purpose of this work is to make available a facile and simple synthetic method for the preparation of Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18, to nonspecialists and the broader scientific community. The central idea of simple synthetic method was demonstrated with other ligand systems such as cyclopentanethiol (HSC5H9), cyclohexanethiol(HSC6H11), para-methylbenzenethiol(pMBT), 1-pentanethiol(HSC5H11), 1-hexanethiol(HSC6H13), where Au36(SC5H9)24, Au36(SC6H11)24, Au36(pMBT)24, Au38(SC5H11)24, and Au38(SC6H13)24 were obtained, respectively.
Collapse
Affiliation(s)
- Milan Rambukwella
- Department of Chemistry and Biochemistry, University of Mississippi , Oxford, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi , Oxford, Mississippi 38677, United States
| |
Collapse
|
47
|
Kumar-Krishnan S, Guadalupe-Ferreira García M, Prokhorov E, Estevez-González M, Pérez R, Esparza R, Meyyappan M. Synthesis of gold nanoparticles supported on functionalized nanosilica using deep eutectic solvent for an electrochemical enzymatic glucose biosensor. J Mater Chem B 2017; 5:7072-7081. [PMID: 32263898 DOI: 10.1039/c7tb01346a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering of nanoparticle (NP) surfaces offers an effective approach for the development of enzymatic biosensors or microbial fuel cells with a greatly enhanced direct electron transport process. However, lack of control over the surface functionalization process and the operational instability of the immobilized enzymes are serious issues. Herein, we demonstrate a facile and green deep eutectic solvent (DES)-mediated synthetic strategy for efficient amine-surface functionalization of silicon dioxide and to integrate small gold nanoparticles (AuNPs) for a glucose biosensor. Owing to the higher viscosity of the DES, it provides uniform surface functionalization and further coupling of the AuNPs on the SiO2 support with improved stability and dispersion. The amine groups of the functionalized Au-SiO2NPs were covalently linked to the FAD-center of glucose oxidase (GOx) through glutaraldehyde as a bifunctional cross-linker, which promotes formation of "electrical wiring" with the immobilized enzymes. The Au-SiO2NP/GOx/GC electrode exhibits direct electron transfer (DET) for sensing of glucose with a sensitivity of 9.69 μA mM-1, a wide linear range from 0.2 to 7 mM and excellent stability. The present green DES-mediated synthetic approach expands the possibilities to support different metal NPs on SiO2 as a potential platform for biosensor applications.
Collapse
Affiliation(s)
- Siva Kumar-Krishnan
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro., 76230, Mexico.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 186.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
49
|
Xu S, Gao T, Feng X, Fan X, Liu G, Mao Y, Yu X, Lin J, Luo X. Near infrared fluorescent dual ligand functionalized Au NCs based multidimensional sensor array for pattern recognition of multiple proteins and serum discrimination. Biosens Bioelectron 2017; 97:203-207. [PMID: 28599180 DOI: 10.1016/j.bios.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/04/2017] [Accepted: 06/05/2017] [Indexed: 11/19/2022]
Abstract
Here, a multidimensional sensor array capable of analyzing various proteins and discriminating between serums from different stages of breast cancer patients were developed based on six kinds of near infrared fluorescent dual ligand functionalized Au NCs (functionalized with different amino acids) as sensing receptors. These six kinds of different amino acids functionalized Au NCs were synthesized for the first time within 2h due to the direct donation of delocalized electrons of electron-rich atoms or groups of the ligands to the Au core. Based on this, ten proteins could be simultaneously and effectively discriminated by this "chemical nose/tongue" sensor array. Linear discrimination analysis (LDA) of the response patterns showed successful differentiation of the analytes at concentrations as low as 10nM with high identification accuracy. Isothermal titration calorimetry (ITC) experiment illustrates that Au NCs interacted with proteins mainly by hydrogen bonding and van der Waals forces. Furthermore, the greatest highlight of this sensor array is demonstrated by successfully discriminating between serums from different stages of breast cancer patients (early, middle and late) and healthy people, suggesting great potential for auxiliary diagnosis.
Collapse
Affiliation(s)
- Shenghao Xu
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Teng Gao
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiuying Feng
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaojian Fan
- Department of Breast Surgery, The Eighth Peoples' Hospital of Qingdao, Qingdao 266100, China
| | - Gufan Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yaning Mao
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xijuan Yu
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jiehua Lin
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
50
|
Krishnan SK, Prokhorov E, Bahena D, Esparza R, Meyyappan M. Chitosan-Covered Pd@Pt Core-Shell Nanocubes for Direct Electron Transfer in Electrochemical Enzymatic Glucose Biosensor. ACS OMEGA 2017; 2:1896-1904. [PMID: 30023649 PMCID: PMC6044646 DOI: 10.1021/acsomega.7b00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/26/2017] [Indexed: 05/02/2023]
Abstract
Development of biosensors with high sensitivity, high spatial resolution, and low cost has received significant attention for their applications in medical diagnosis, diabetes management, and environment-monitoring. However, achieving a direct electrical contact between redox enzymes and electrode surfaces and enhancing the operational stability still remain as challenges. Inorganic metal nanocrystals (NCs) with precisely controlled shape and surface structure engineered with an appropriate organic coating can help overcome the challenges associated with their stability and aggregation for practical biosensor applications. Herein, we describe a facile, room-temperature, seed-mediated solution-phase route to synthesize monodisperse Pd@Pt core-shell nanocubes with subnanometer-thick platinum (Pt) shells. The enzyme electrode consisting of Pd@Pt core-shell NCs was first covered with a chitosan (CS) polymer and then glucose oxidase (GOx) immobilized by a covalent linkage to the CS. This polymer permits covalent immobilization through active amino (-NH) side groups to improve the stability and preserve the biocatalytic functions while the Pd@Pt NCs facilitate enhanced direct electron transfer (DET) in the biosensor. The resultant biosensor promotes DET and exhibits excellent performance for the detection of glucose, with a sensitivity of 6.82 μA cm-2 mM-1 and a wide linear range of 1-6 mM. Our results demonstrate that sensitive electrochemical glucose detection based on Pd@Pt core-shell NCs provides remarkable opportunities for designing low-cost and sensitive biosensors.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Evgen Prokhorov
- Centro
de Investigación y Estudios Avanzados, Unidad Querétaro, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Daniel Bahena
- Advanced
Laboratory of Electron Nanoscopy, Cinvestav, Av. Instituto Politecnico Nacional,
2508, Col. San Pedro Zacatenco, Delegacion Gustavo A. Madero, Mexico D.F. CP 07360, Mexico
| | - Rodrigo Esparza
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230, Mexico
| | - M. Meyyappan
- Center
for Nanotechnology, NASA Ames Research Center, Moffett Field, Mountain View, California 94035, United States
| |
Collapse
|