1
|
Han NT, Vo KD, Le Manh T, Le OK, Van DT. Electronic, magnetic, and optical properties of Np and Pu decorated armchair graphene nanoribbons: a DFT study. NANOSCALE ADVANCES 2024; 6:3878-3886. [PMID: 39050953 PMCID: PMC11265566 DOI: 10.1039/d3na01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/20/2024] [Indexed: 07/27/2024]
Abstract
We employed Density Functional Theory (DFT) to investigate the electronic, magnetic, and optical characteristics of armchair graphene nanoribbons (AGNRs) decorated with neptunium (Np) and plutonium (Pu). Our analysis delves deeply into the intricate orbital hybridizations associated with C-Np, C-Pu, C-C, Np-Np, and Pu-Pu chemical bonds. Through this approach, we explore the electronic band structure, band-decomposed charge densities, spin-charge distributions, and Van Hove singularities in the density of states. Furthermore, our examination successfully correlates optical excitation with electronic band energy. Our results indicated that these rare-earth atoms are strongly bound to the edge structure of AGNRs, significantly altering their electronic, magnetic, and optical properties. Theoretical exploration not only reveals the intriguing physical and chemical properties of rare-earth (Np/Pu) decorated AGNRs but also presents a practical pathway for synthesizing novel materials.
Collapse
Affiliation(s)
- Nguyen Thi Han
- Faculty of Materials Science and Engineering, Phenikaa University Yen Nghia, Ha Dong Hanoi 12116 Vietnam
| | - K Dien Vo
- Division of Applied Physics, Dong Nai Technology University Bien Hoa City Vietnam
- Faculty of Engineering, Dong Nai Technology University Bien Hoa City Vietnam
| | - Tu Le Manh
- Faculty of Materials Science and Engineering, Phenikaa University Yen Nghia, Ha Dong Hanoi 12116 Vietnam
| | - Ong Kim Le
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 70000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang City 50000 Vietnam
| | - Dinh Thuy Van
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen, Quang Trung Thai Nguyen City Vietnam
| |
Collapse
|
2
|
Guo M, Liu XY, Li T, Duan Q, Dong XZ, Liu J, Jin F, Zheng ML. Cross-Scale Topography Achieved by MOPL with Positive Photoresist to Regulate the Cell Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303572. [PMID: 37592111 DOI: 10.1002/smll.202303572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Cross-scale micro-nano structures play an important role in semiconductors, MEMS, chemistry, and cell biology. Positive photoresist is widely used in lithography due to the advantages of high resolution and environmental friendliness. However, cross-scale micro-nano structures of positive photoresist are difficult to flexibly pattern, and the feature resolution is limited by the optical diffraction. Here, cross-scale patterned micro-nano structures are achieved using the positive photoresist based on the femtosecond laser maskless optical projection lithography (MOPL) technique. The dependence between exposure dose and groove width is comprehensively analyzed, and a feature size of 112 nm is obtained at 110 µW. Furthermore, large-area topography considering cell size is efficiently fabricated by the MOPL technique, which enables the regulation of cell behavior. The proposed protocol of achieving cross-scale structures with the exact size by MOPL of positive photoresist would provide new avenues for potential applications in nanoelectronics and tissue engineering.
Collapse
Affiliation(s)
- Min Guo
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Xiang-Yang Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Ramò L, Giordano MC, Ferrando G, Canepa P, Telesio F, Repetto L, Buatier de Mongeot F, Canepa M, Bisio F. Thermal Scanning-Probe Lithography for Broad-Band On-Demand Plasmonic Nanostructures on Transparent Substrates. ACS APPLIED NANO MATERIALS 2023; 6:18623-18631. [PMID: 37854851 PMCID: PMC10580238 DOI: 10.1021/acsanm.3c04398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Thermal scanning-probe lithography (t-SPL) is a high-resolution nanolithography technique that enables the nanopatterning of thermosensitive materials by means of a heated silicon tip. It does not require alignment markers and gives the possibility to assess the morphology of the sample in a noninvasive way before, during, and after the patterning. In order to exploit t-SPL at its peak performances, the writing process requires applying an electric bias between the scanning hot tip and the sample, thereby restricting its application to conductive, optically opaque, substrates. In this work, we show a t-SPL-based method, enabling the noninvasive high-resolution nanolithography of photonic nanostructures onto optically transparent substrates across a broad-band visible and near-infrared spectral range. This was possible by intercalating an ultrathin transparent conductive oxide film between the dielectric substrate and the sacrificial patterning layer. This way, nanolithography performances comparable with those typically observed on conventional semiconductor substrates are achieved without significant changes of the optical response of the final sample. We validated this innovative nanolithography approach by engineering periodic arrays of plasmonic nanoantennas and showing the capability to tune their plasmonic response over a broad-band visible and near-infrared spectral range. The optical properties of the obtained systems make them promising candidates for the fabrication of hybrid plasmonic metasurfaces supported onto fragile low-dimensional materials, thus enabling a variety of applications in nanophotonics, sensing, and thermoplasmonics.
Collapse
Affiliation(s)
- Lorenzo Ramò
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
| | - Maria Caterina Giordano
- LabNano,
Dipartimento di Fisica, Università
di Genova, Via Dodecaneso
33, I-16146 Genova, Italy
| | - Giulio Ferrando
- LabNano,
Dipartimento di Fisica, Università
di Genova, Via Dodecaneso
33, I-16146 Genova, Italy
| | - Paolo Canepa
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
| | - Francesca Telesio
- Dipartimento
di Fisica, Università di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
| | - Luca Repetto
- Nanomed
Laboratories, Dipartimento di Fisica, Università
di Genova, Via Dodecaneso
33, I-16146 Genova, Italy
| | | | - Maurizio Canepa
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
| | | |
Collapse
|
4
|
Hsu TC, Wu BX, Lin RT, Chien CJ, Yeh CY, Chang TH. Electron-phonon interaction toward engineering carrier mobility of periodic edge structured graphene nanoribbons. Sci Rep 2023; 13:5781. [PMID: 37031224 PMCID: PMC10082836 DOI: 10.1038/s41598-023-32655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Graphene nanoribbons have many extraordinary electrical properties and are the candidates for semiconductor industry. In this research, we propose a design of Coved GNRs with periodic structure ranged from 4 to 8 nm or more, of which the size is within practical feature sizes by advanced lithography tools. The carrier transport properties of Coved GNRs with the periodic coved shape are designed to break the localized electronic state and reducing electron-phonon scattering. In this way, the mobility of Coved GNRs can be enhanced by orders compared with the zigzag GNRs in same width. Moreover, in contrast to occasional zero bandgap transition of armchair and zigzag GNRs without precision control in atomic level, the Coved GNRs with periodic edge structures can exclude the zero bandgap conditions, which makes practical the mass production process. The designed Coved-GNRs is fabricated over the Germanium (110) substrate where the graphene can be prepared in the single-crystalline and single-oriented formants and the edge of GNRs is later repaired under "balanced condition growth" and we demonstrate that the propose coved structures are compatible to current fabrication facility.
Collapse
Affiliation(s)
- Teng-Chin Hsu
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Bi-Xian Wu
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Rong-Teng Lin
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Chia-Jen Chien
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Yeh
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsuan Chang
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Li M, Yin B, Gao C, Guo J, Zhao C, Jia C, Guo X. Graphene: Preparation, tailoring, and modification. EXPLORATION (BEIJING, CHINA) 2023; 3:20210233. [PMID: 37323621 PMCID: PMC10190957 DOI: 10.1002/exp.20210233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/05/2022] [Indexed: 06/17/2023]
Abstract
Graphene is a 2D material with fruitful electrical properties, which can be efficiently prepared, tailored, and modified for a variety of applications, particularly in the field of optoelectronic devices thanks to its planar hexagonal lattice structure. To date, graphene has been prepared using a variety of bottom-up growth and top-down exfoliation techniques. To prepare high-quality graphene with high yield, a variety of physical exfoliation methods, such as mechanical exfoliation, anode bonding exfoliation, and metal-assisted exfoliation, have been developed. To adjust the properties of graphene, different tailoring processes have been emerged to precisely pattern graphene, such as gas etching and electron beam lithography. Due to the differences in reactivity and thermal stability of different regions, anisotropic tailoring of graphene can be achieved by using gases as the etchant. To meet practical requirements, further chemical functionalization at the edge and basal plane of graphene has been extensively utilized to modify its properties. The integration and application of graphene devices is facilitated by the combination of graphene preparation, tailoring, and modification. This review focuses on several important strategies for graphene preparation, tailoring, and modification that have recently been developed, providing a foundation for its potential applications.
Collapse
Affiliation(s)
- Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Bing Yin
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Chunyan Gao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Jie Guo
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Cong Zhao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| |
Collapse
|
6
|
Wang TW, Dong XZ, Jin F, Zhao YY, Liu XY, Zheng ML, Duan XM. Consistent pattern printing of the gap structure in femtosecond laser DMD projection lithography. OPTICS EXPRESS 2022; 30:36791-36801. [PMID: 36258601 DOI: 10.1364/oe.471315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Maskless lithography technologies have been developed and played an important role in the fabrication of functional micronano devices for microelectronics, biochips and photonics. Optical projection lithography based on digital micromirror device (DMD) is an efficient maskless lithography technology that can rapidly fabricate complex structures. The precise modulation of gap width by DMD maskless optical projection lithography (MOPL) using femtosecond laser becomes important for achieving micronano structures. Herein, we have investigated the relationship between the structure morphology and the light intensity distribution at the image plane by multi-slit diffraction model and Abbe imaging principle, and optimized the gap width more accurately by modulating exposure energy. The aperture diameter of the objective lens has a substantial effect on the pattern consistency. The continuously adjustable structural gap widths of 2144 nm, 2158 nm and 1703 nm corresponding to 6, 12, 24 pixels are obtained by varying the exposure energy in the home-built MOPL system. However, the ideal gap structure cannot be obtained only by adjusting the exposure energy when the gap width is small, such as 1 or 2 pixels. Furthermore, we have proposed an alternative way to achieve fine gap structures through the structural decomposition design and precise control of exposure energy in different regions without changing the MOPL optical system. This study would provide a promising protocol for fabricating gap microstructures with controllable configuration using MOPL technique.
Collapse
|
7
|
Wen X, Zhang L, Tian F, Xu Y, Hu H. Versatile Approach of Silicon Nanofabrication without Resists: Helium Ion-Bombardment Enhanced Etching. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3269. [PMID: 36234396 PMCID: PMC9565762 DOI: 10.3390/nano12193269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report a helium ion-bombardment enhanced etching method for silicon nanofabrication without the use of resists; furthermore, we demonstrate its unique advantages for straightforward fabrication on irregular surfaces and prototyping nano-electro-mechanical system devices, such as self-enclosed Si nanofluidic channels and mechanical nano-resonators. This method employs focused helium ions to selectively irradiate single-crystal Si to disrupt the crystal lattice and transform it into an amorphous phase that can be etched at a rate 200 times higher than that of the non-irradiated Si. Due to the unique raindrop shape of the interaction volumes between helium ions and Si, buried Si nanofluidic channels can be constructed using only one dosing step, followed by one step of conventional chemical etching. Moreover, suspended Si nanobeams can be fabricated without an additional undercut step for release owing to the unique raindrop shape. In addition, we demonstrate nanofabrication directly on 3D micro/nano surfaces, such as an atomic force microscopic probe, which is challenging for conventional nanofabrication due to the requirement of photoresist spin coating. Finally, this approach can also be extended to assist in the etching of other materials that are difficult to etch, such as silicon carbide (SiC).
Collapse
Affiliation(s)
- Xiaolei Wen
- Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Lansheng Zhang
- ZJUI Institute, Zhejiang University, Haining 314400, China
| | - Feng Tian
- ZJUI Institute, Zhejiang University, Haining 314400, China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
| | - Yang Xu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
| | - Huan Hu
- ZJUI Institute, Zhejiang University, Haining 314400, China
- State Key Laboratory of Fluidic Power & Mechanical Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
9
|
Han D, Wei Y. Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch. OPTICS EXPRESS 2022; 30:20589-20604. [PMID: 36224800 DOI: 10.1364/oe.457995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/15/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic lithography, which exploits a bowtie nanoaperture (BNA) for the purpose of subwavelength near-field focusing, has the capability of high-resolution patterning. However, the ultra-small feature size is achieved at the price of sharply decay of the surface plasmon waves (SPWs) in the photoresist (PR) layer, which directly leads to some unfavorable patterning issues, such as non-uniformity and shallow pattern depth even over small exposure areas. In this work, a special hybrid plasmonic waveguide (HPW) patterning system, which is composed of the plasmonic BNA-PR layer-silver reflector, is designed to facilitate high spatial frequency selection and amplify the evanescent field in the PR layer. Theoretical calculations indicate that the antisymmetric coupled SPWs and plasmonic waveguide modes excited by the HPW structure can remove the exponential decay and ensure uniform exposure over the entire depth of the PR layer. Importantly, the hyperbolic decaying characteristic of the SPWs in the PR layer plays a noticeable role in the improvement of achievable resolution, depth-of-field, and line array pattern profile. It is worth to note that the uniform periodic patterns in sub-20 nm feature can be achieved with high aspect ratio. Additionally, further numerical simulation results are presented to demonstrate the achievement of spatial frequency selection of high-k mode in HPW structure by controlling the PR thickness and gap size. Our findings may provide a new perspective on the manufacture of surface nanostructures and broaden the potential promising applications of plasmonic lithography in nanoscale patterning.
Collapse
|
10
|
Singh SU, Chatterjee S, Lone SA, Ho HH, Kaswan K, Peringeth K, Khan A, Chiang YW, Lee S, Lin ZH. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochim Acta 2022; 189:236. [PMID: 35633385 PMCID: PMC9146825 DOI: 10.1007/s00604-022-05317-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
Given the huge economic burden caused by chronic and acute diseases on human beings, it is an urgent requirement of a cost-effective diagnosis and monitoring process to treat and cure the disease in their preliminary stage to avoid severe complications. Wearable biosensors have been developed by using numerous materials for non-invasive, wireless, and consistent human health monitoring. Graphene, a 2D nanomaterial, has received considerable attention for the development of wearable biosensors due to its outstanding physical, chemical, and structural properties. Moreover, the extremely flexible, foldable, and biocompatible nature of graphene provide a wide scope for developing wearable biosensor devices. Therefore, graphene and its derivatives could be trending materials to fabricate wearable biosensor devices for remote human health management in the near future. Various biofluids and exhaled breath contain many relevant biomarkers which can be exploited by wearable biosensors non-invasively to identify diseases. In this article, we have discussed various methodologies and strategies for synthesizing and pattering graphene. Furthermore, general sensing mechanism of biosensors, and graphene-based biosensing devices for tear, sweat, interstitial fluid (ISF), saliva, and exhaled breath have also been explored and discussed thoroughly. Finally, current challenges and future prospective of graphene-based wearable biosensors have been evaluated with conclusion. Graphene is a promising 2D material for the development of wearable sensors. Various biofluids (sweat, tears, saliva and ISF) and exhaled breath contains many relevant biomarkers which facilitate in identify diseases. Biosensor is made up of biological recognition element such as enzyme, antibody, nucleic acid, hormone, organelle, or complete cell and physical (transducer, amplifier), provide fast response without causing organ harm.
Collapse
Affiliation(s)
- Santoshi U Singh
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Subhodeep Chatterjee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shahbaz Ahmad Lone
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Hsuan Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kiran Peringeth
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arshad Khan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
11
|
Kang S, Jang WS, Morozovska AN, Kwon O, Jin Y, Kim YH, Bae H, Wang C, Yang SH, Belianinov A, Randolph S, Eliseev EA, Collins L, Park Y, Jo S, Jung MH, Go KJ, Cho HW, Choi SY, Jang JH, Kim S, Jeong HY, Lee J, Ovchinnikova OS, Heo J, Kalinin SV, Kim YM, Kim Y. Highly enhanced ferroelectricity in HfO 2-based ferroelectric thin film by light ion bombardment. Science 2022; 376:731-738. [PMID: 35549417 DOI: 10.1126/science.abk3195] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Continuous advancement in nonvolatile and morphotropic beyond-Moore electronic devices requires integration of ferroelectric and semiconductor materials. The emergence of hafnium oxide (HfO2)-based ferroelectrics that are compatible with atomic-layer deposition has opened interesting and promising avenues of research. However, the origins of ferroelectricity and pathways to controlling it in HfO2 are still mysterious. We demonstrate that local helium (He) implantation can activate ferroelectricity in these materials. The possible competing mechanisms, including He ion-induced molar volume changes, vacancy redistribution, vacancy generation, and activation of vacancy mobility, are analyzed. These findings both reveal the origins of ferroelectricity in this system and open pathways for nanoengineered binary ferroelectrics.
Collapse
Affiliation(s)
- Seunghun Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woo-Sung Jang
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Anna N Morozovska
- Institute of Physics, National Academy of Sciences of Ukraine, 46, Prospekt. Nauky, 03028 Kyiv, Ukraine
| | - Owoong Kwon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yeongrok Jin
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Hoon Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hagyoul Bae
- Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Chenxi Wang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang-Hyeok Yang
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Steven Randolph
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eugene A Eliseev
- Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krjijanovskogo 3, 03142 Kyiv, Ukraine
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yeehyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sanghyun Jo
- Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Min-Hyoung Jung
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hae Won Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jae Hyuck Jang
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Olga S Ovchinnikova
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jinseong Heo
- Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37920, USA
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yunseok Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Majhi J, Maiti SK, Ganguly S. Enhanced current rectification in graphene nanoribbons: effects of geometries and orientations of nanopores. NANOTECHNOLOGY 2022; 33:255704. [PMID: 35294939 DOI: 10.1088/1361-6528/ac5e6f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
We discuss the possibility of getting rectification operation in graphene nanoribbon (GNR). For a system to be a rectifier, it must be physically asymmetric and we induce the asymmetry in GNR by introducing nanopores. The rectification properties are discussed for differently structured nanopores. We find that shape and orientation of the nanopores are critical and sensitive to the degree of current rectification. As the choice of Fermi energy is crucial for obtaining significant current rectification, explicit dependence of Fermi energy on the degree of current rectification is also studied for a particular shape of the nanopore. Finally, the role of nanopore size and different spatial distributions of the electrostatic potential profile across the GNR are explored. The stability of the nanopores is also discussed with a possible solution. Given the simplicity of the proposed method and promising results, the present proposition may lead to a new route of getting current rectification in different kinds of materials where nanopores can be formed selectively.
Collapse
Affiliation(s)
- Joydeep Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | - Santanu K Maiti
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | - Sudin Ganguly
- Department of Physics, School of Applied Sciences, University of Science and Technology, Techno City, Kiling Road, Baridua 9th Mile, Ri-Bhoi, Meghalaya-793 101, India
| |
Collapse
|
13
|
Yang D, Chen X, He D, Frommhold A, Shi X, Boden SA, Lebedeva MA, Ershova OV, Palmer RE, Li Z, Shi H, Gao J, Pan M, Khlobystov AN, Chamberlain TW, Robinson APG. A Fullerene-Platinum Complex for Direct Functional Patterning of Single Metal Atom-Embedded Carbon Nanostructures. J Phys Chem Lett 2022; 13:1578-1586. [PMID: 35138106 DOI: 10.1021/acs.jpclett.1c03877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of patterning materials ("resists") at the nanoscale involves two distinct trends: one is toward high sensitivity and resolution for miniaturization, the other aims at functionalization of the resists to realize bottom-up construction of distinct nanoarchitectures. Patterning of carbon nanostructures, a seemingly ideal application for organic functional resists, has been highly reliant on complicated pattern transfer processes because of a lack of patternable precursors. Herein, we present a fullerene-metal coordination complex as a fabrication material for direct functional patterning of sub-10 nm metal-containing carbon structures. The attachment of one platinum atom per fullerene molecule not only leads to significant improvement of sensitivity and resolution but also enables stable atomic dispersion of the platinum ions within the carbon matrix, which may gain fundamentally new interest in functional patterning of hierarchical carbon nanostructures.
Collapse
Affiliation(s)
- Dongxu Yang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, P.R. China
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Xiangyi Chen
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Dongsheng He
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Andreas Frommhold
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Xiaoqing Shi
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K
| | - Stuart A Boden
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K
| | - Maria A Lebedeva
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Olga V Ershova
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Richard E Palmer
- Nanomaterials Laboratory, Mechanical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, U.K
| | - Ziyou Li
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Haofei Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Minghu Pan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | | | - Thomas W Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Alex P G Robinson
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
14
|
Gao Y, Chen J, Chen G, Fan C, Liu X. Recent Progress in the Transfer of Graphene Films and Nanostructures. SMALL METHODS 2021; 5:e2100771. [PMID: 34928026 DOI: 10.1002/smtd.202100771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Indexed: 06/14/2023]
Abstract
The one-atom-thick graphene has excellent electronic, optical, thermal, and mechanical properties. Currently, chemical vapor deposition (CVD) graphene has received a great deal of attention because it provides access to large-area and uniform films with high-quality. This allows the fabrication of graphene based-electronics, sensors, photonics, and optoelectronics for practical applications. Zero bandgap, however, limits the application of a graphene film as electronic transistor. The most commonly used bottom-up approaches have achieved efficient tuning of the electronic bandgap by customizing well-defined graphene nanostructures. The postgrowth transfer of graphene films/nanostructures to a certain substrate is crucial in utilizing graphene in applicable devices. In this review, the basic growth mechanism of CVD graphene is first introduced. Then, recent advances in various transfer methods of as-grown graphene to target substrates are presented. The fabrication and transfer methods of graphene nanostructures are also provided, and then the transfer-related applications are summarized. At last, the challenging issues and the potential transfer-free approaches are discussed.
Collapse
Affiliation(s)
- Yanjing Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Wei T, Hauke F, Hirsch A. Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104060. [PMID: 34569112 PMCID: PMC11468719 DOI: 10.1002/adma.202104060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Indexed: 05/26/2023]
Abstract
The realization that nanostructured graphene featuring nanoscale width can confine electrons to open its bandgap has aroused scientists' attention to the regulation of graphene structures, where the concept of graphene patterns emerged. Exploring various effective methods for creating graphene patterns has led to the birth of a new field termed graphene patterning, which has evolved into the most vigorous and intriguing branch of graphene research during the past decade. The efforts in this field have resulted in the development of numerous strategies to structure graphene, affording a variety of graphene patterns with tailored shapes and sizes. The established patterning approaches combined with graphene chemistry yields a novel chemical patterning route via molecular engineering, which opens up a new era in graphene research. In this review, the currently developed graphene patterning strategies is systematically outlined, with emphasis on the chemical patterning. In addition to introducing the basic concepts and the important progress of traditional methods, which are generally categorized into top-down, bottom-up technologies, an exhaustive review of established protocols for emerging chemical patterning is presented. At the end, an outlook for future development and challenges is proposed.
Collapse
Affiliation(s)
- Tao Wei
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Frank Hauke
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| |
Collapse
|
16
|
Danielsen DR, Lyksborg-Andersen A, Nielsen KES, Jessen BS, Booth TJ, Doan MH, Zhou Y, Bøggild P, Gammelgaard L. Super-Resolution Nanolithography of Two-Dimensional Materials by Anisotropic Etching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41886-41894. [PMID: 34431654 DOI: 10.1021/acsami.1c09923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructuring allows altering of the electronic and photonic properties of two-dimensional (2D) materials. The efficiency, flexibility, and convenience of top-down lithography processes are, however, compromised by nanometer-scale edge roughness and resolution variability issues, which especially affect the performance of 2D materials. Here, we study how dry anisotropic etching of multilayer 2D materials with sulfur hexafluoride (SF6) may overcome some of these issues, showing results for hexagonal boron nitride (hBN), tungsten disulfide (WS2), tungsten diselenide (WSe2), molybdenum disulfide (MoS2), and molybdenum ditelluride (MoTe2). Scanning electron microscopy and transmission electron microscopy reveal that etching leads to anisotropic hexagonal features in the studied transition metal dichalcogenides, with the relative degree of anisotropy ranked as: WS2 > WSe2 > MoTe2 ∼ MoS2. Etched holes are terminated by zigzag edges while etched dots (protrusions) are terminated by armchair edges. This can be explained by Wulff constructions, taking the relative stabilities of the edges and the AA' stacking order into account. Patterns in WS2 are transferred to an underlying graphite layer, demonstrating a possible use for creating sub-10 nm features. In contrast, multilayer hBN exhibits no lateral anisotropy but shows consistent vertical etch angles, independent of crystal orientation. Using an hBN crystal as the base, ultrasharp corners can be created in lithographic patterns, which are then transferred to a graphite crystal underneath. We find that the anisotropic SF6 reactive ion etching process makes it possible to downsize nanostructures and obtain smooth edges, sharp corners, and feature sizes significantly below the resolution limit of electron beam lithography. The nanostructured 2D materials can be used themselves or as etch masks to pattern other nanomaterials.
Collapse
Affiliation(s)
- Dorte R Danielsen
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Anton Lyksborg-Andersen
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
- DTU Nanolab - National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
| | - Kirstine E S Nielsen
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Timothy J Booth
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Manh-Ha Doan
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Yingqiu Zhou
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Peter Bøggild
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Lene Gammelgaard
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
17
|
Zhang R, You B, Wang S, Han K, Shen X, Wang W. Broadband and switchable terahertz polarization converter based on graphene metasurfaces. OPTICS EXPRESS 2021; 29:24804-24815. [PMID: 34614828 DOI: 10.1364/oe.432601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
In this work, we propose broadband and switchable terahertz (THz) polarization converters based on either graphene patch metasurface (GPMS) or its complementary structure (graphene hole metasurface, GHMS). The patch and hole are simply cross-shaped, composed of two orthogonal arms, along which plasmonic resonances mediated by Fabry-Perot cavity play a key role in polarization conversion (PC). An incidence of linear polarization will be converted to its cross-polarization (LTL) or circular polarization (LTC), as the reflected wave in the direction of two arms owning the same amplitude and π phase difference (LTL), or ±π/2 phase difference (LTC). Such requirements can be met by optimizing the width and length of two arms, thickness of dielectric layer, and Fermi level EF of graphene. By using GPMS, LTL PC of polarization conversion ratio (PCR) over 90% is achieved in the frequency range of 2.92 THz to 6.26 THz, and by using GHMS, LTC PC of ellipticity χ ≤ -0.9 at the frequencies from 4.45 THz to 6.47 THz. By varying the Fermi level, the operating frequency can be actively tuned, and the functionality can be switched without structural modulation; for instance, GPMS supports LTL PC as EF = 0.6 eV and LTC PC of χ ≥ 0.9 as EF = 1.0 eV, in the frequency range of 2.69 THz to 4.19 THz. Moreover, GHMS can be optimized to sustain LTL PC and LTC PC of |χ| ≥ 0.9, in the frequency range of 4.96 THz to 6.52 THz, which indicates that the handedness of circular polarization can be further specified. The proposed polarization converters of broad bandwidth, active tunability, and switchable functionality will essentially make a significant progress in THz technology and device applications, and can be widely utilized in THz communications, sensing and spectroscopy.
Collapse
|
18
|
Allen FI. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:633-664. [PMID: 34285866 PMCID: PMC8261528 DOI: 10.3762/bjnano.12.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/30/2021] [Indexed: 05/28/2023]
Abstract
The helium ion microscope has emerged as a multifaceted instrument enabling a broad range of applications beyond imaging in which the finely focused helium ion beam is used for a variety of defect engineering, ion implantation, and nanofabrication tasks. Operation of the ion source with neon has extended the reach of this technology even further. This paper reviews the materials modification research that has been enabled by the helium ion microscope since its commercialization in 2007, ranging from fundamental studies of beam-sample effects, to the prototyping of new devices with features in the sub-10 nm domain.
Collapse
Affiliation(s)
- Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Johnson AP, Sabu C, Swamy NK, Anto A, Gangadharappa H, Pramod K. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing. Biosens Bioelectron 2021; 184:113245. [DOI: 10.1016/j.bios.2021.113245] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
|
20
|
Fu Y, Wang Y, Yang G, Qiao Q, Liu Y. Tunable reflective dual-band line-to-circular polarization convertor with opposite handedness based on graphene metasurfaces. OPTICS EXPRESS 2021; 29:13373-13387. [PMID: 33985072 DOI: 10.1364/oe.423017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
In this letter, we propose a dual-band tunable reflective linear-to-circular (LTC) polarization converter, which is composed of a graphene sheet etched with an I-shaped carved-hollow array. In the mid-infrared region, two LTC bands with opposite handedness are simultaneously realized due to the excitation of the three graphene surface plasmon (GSP) modes. The band of line-to-right-circular-polarization (LTRCP) ranges from 9.87 to 11.03THz with ellipticity χ <-0.95, and from 9.69 to 11.36 THz with an axial ratio of less than 3 dB; the band of line-to-left-circular-polarization (LTLCP) ranges from 13.16 to 14.43THz with χ >0.95, and from 12.79 to 14.61 THz with an axial ratio of less than 3 dB. The tunable responses of the reflective polarizer with Fermi energy (Ef) and electron scattering time (τ) are discussed, and especially the perfect LTLCP can be changed to LTRCP with increasing Ef. Also, the influences of geometric parameters, incident angle, and polarization angle on the performances of the dual-band LTC are also investigated, and it is found that our polarizer converter shows angle insensitivity. All simulation results are conducted by the finite element method. Our design enriches the research of tunable LTC polarizers and has potential applications in integrated terahertz systems.
Collapse
|
21
|
Pavel E, Marinescu V, Lungulescu M. Nanopatterning of monolayer graphene by quantum optical lithography. APPLIED OPTICS 2021; 60:1674-1677. [PMID: 33690504 DOI: 10.1364/ao.419831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Quantum optical lithography, a diffraction-unlimited method, was applied to pattern monolayer graphene at 10 nm resolution. In our tests with chemical vapor deposition monolayer graphene samples, we have succeeded in producing flat surfaces of a sandwich of monolayer graphene-resist on Si, Si3N4, or glass substrates. Complex patterns have been written on monolayer graphene samples by a nanoablation process. The method could be used to realize monolayer graphene nanodevices.
Collapse
|
22
|
Abstract
Structured covalent two-dimensional patterning of graphene with different chemical functionalities constitutes a major challenge in nanotechnology. At the same time, it opens enormous opportunities towards tailoring of physical and chemical properties with limitless combinations of spatially defined surface functionalities. However, such highly integrated carbon-based architectures (graphene embroidery) are so far elusive. Here, we report a practical realization of molecular graphene embroidery by generating regular multiply functionalized patterns consisting of concentric regions of covalent addend binding. These spatially resolved hetero-architectures are generated by repetitive electron-beam lithography/reduction/covalent-binding sequences starting with polymethyl methacrylate covered graphene deposited on a Si/SiO2 substrate. The corresponding functionalization zones carry bromobenzene-, deutero-, and chloro-addends. We employ statistical Raman spectroscopy together with scanning electron microscopy/energy dispersive X-ray spectroscopy for an unambiguous characterization. The exquisitely ordered nanoarchitectures of these covalently multi-patterned graphene sheets are clearly visualized. Covalently 2D-patterning graphene with different chemical functionalities is an attractive way to tailor its physical and chemical properties. Here, the authors realize spatially defined 2D-hetereoarchitectures of graphene via a strategy of molecular embroidering.
Collapse
|
23
|
Zhang H, Liu Y, Liu Z, Liu X, Liu G, Fu G, Wang J, Shen Y. Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors. OPTICS EXPRESS 2021; 29:70-81. [PMID: 33362102 DOI: 10.1364/oe.412925] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
In this work, we present an efficient polarization conversion device via using a hollow graphene metasurface. The platform can simultaneously realize a series of excellent performances, including the broadband x-to-y cross polarization conversion (CPC) function with near unity polarization conversion ratio (PCR), dual-frequency linear-to-circular polarization conversion (LTC-PC) function, and highly sensitive polarization conversion function manipulation under wide oblique incidence angle range. For instance, the proposed device obtains an x-to-y CPC function with the bandwidth up to 1.83 THz (χPCR ≥98.8%). Moreover, the x-to-y CPC function can be switched to LTC-PC function via artificially tuning the Fermi energy of graphene. The maximal frequency shift sensitivity (S) of polarization conversion function reaches 23.09 THz/eV, suggesting a frequency shift of 2.309 THz for the LTC-PC function when the chemical potential is changed by 0.1 eV. Based on these superior performances, the polarization converter can hold potential applications in integrated and compact devices, such as polarization sensor, switches and other optical polarization control components.
Collapse
|
24
|
Xu W, Huang Y, Zhao X, Jiang X, Yang T, Zhu H. Patterning of graphene for highly sensitive strain sensing on various curved surfaces. NANO SELECT 2021. [DOI: 10.1002/nano.202000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Wei Xu
- Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
- Microsystem and Terahertz Research Center Institute of Electronic Engineering China Academy of Engineering Physics Mianyang 621900 China
| | - Yuehua Huang
- College of Engineering and Technology Southwest University Chongqing 400715 China
| | - Xuanliang Zhao
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Xin Jiang
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Tingting Yang
- Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
25
|
Manoccio M, Esposito M, Passaseo A, Cuscunà M, Tasco V. Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures. MICROMACHINES 2020; 12:6. [PMID: 33374782 PMCID: PMC7823276 DOI: 10.3390/mi12010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
The focused ion beam (FIB) is a powerful piece of technology which has enabled scientific and technological advances in the realization and study of micro- and nano-systems in many research areas, such as nanotechnology, material science, and the microelectronic industry. Recently, its applications have been extended to the photonics field, owing to the possibility of developing systems with complex shapes, including 3D chiral shapes. Indeed, micro-/nano-structured elements with precise geometrical features at the nanoscale can be realized by FIB processing, with sizes that can be tailored in order to tune optical responses over a broad spectral region. In this review, we give an overview of recent efforts in this field which have involved FIB processing as a nanofabrication tool for photonics applications. In particular, we focus on FIB-induced deposition and FIB milling, employed to build 3D nanostructures and metasurfaces exhibiting intrinsic chirality. We describe the fabrication strategies present in the literature and the chiro-optical behavior of the developed structures. The achieved results pave the way for the creation of novel and advanced nanophotonic devices for many fields of application, ranging from polarization control to integration in photonic circuits to subwavelength imaging.
Collapse
Affiliation(s)
- Mariachiara Manoccio
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Marco Esposito
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Adriana Passaseo
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Massimo Cuscunà
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Vittorianna Tasco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| |
Collapse
|
26
|
Chowdhury T, Sadler EC, Kempa TJ. Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chem Rev 2020; 120:12563-12591. [DOI: 10.1021/acs.chemrev.0c00505] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tomojit Chowdhury
- Department of Chemistry, Johns Hopkins University, Baltimore 21218, United States
| | - Erick C. Sadler
- Department of Chemistry, Johns Hopkins University, Baltimore 21218, United States
| | - Thomas J. Kempa
- Department of Chemistry, Johns Hopkins University, Baltimore 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore 21218, United States
| |
Collapse
|
27
|
Seo MH, Yoo JY, Jo MS, Yoon JB. Geometrically Structured Nanomaterials for Nanosensors, NEMS, and Nanosieves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907082. [PMID: 32253800 DOI: 10.1002/adma.201907082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Indexed: 06/11/2023]
Abstract
Recently, geometrically structured nanomaterials have received great attention due to their unique physical and chemical properties, which originate from the geometric variation in such materials. Indeed, the use of various geometrically structured nanomaterials has been actively reported in enhanced-performance devices in a wide range of applications. Recent significant progress in the development of geometrically structured nanomaterials and associated devices is summarized. First, a brief introduction of advanced nanofabrication methods that enable the fabrication of various geometrically structured nanomaterials is given, and then the performance enhancements achieved in devices utilizing these nanomaterials, namely, i) physical and gas nanosensors, ii) nanoelectromechanical devices, and iii) nanosieves are described. For the device applications, a systematic summary of their structures, working mechanisms, fabrication methods, and output performance is provided. Particular focus is given to how device performance can be enhanced through the geometric structures of the nanomaterials. Finally, perspectives on the development of novel nanomaterial structures and associated devices are presented.
Collapse
Affiliation(s)
- Min-Ho Seo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jae-Young Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min-Seung Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun-Bo Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
28
|
Wei T, Bao L, Hauke F, Hirsch A. Recent Advances in Graphene Patterning. Chempluschem 2020; 85:1655-1668. [PMID: 32757359 DOI: 10.1002/cplu.202000419] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Indexed: 02/04/2023]
Abstract
As an emerging field of research, graphene patterning has received considerable attention because of its ability to tailor the structure of graphene and the respective properties, aiming at practical applications such as electronic devices, catalysts, and sensors. Recent efforts in this field have led to the development of a variety of different approaches to pattern graphene sheets, providing a multitude of graphene patterns with different shapes and sizes. These established patterning techniques in combination with graphene chemistry have paved the road towards highly attractive chemical patterning approaches, establishing a very promising and vigorously developing research topic. In this review, an overview of commonly used strategies is presented that are categorized into top-down and bottom-up routes for graphene patterning, focusing mainly on new advances. Other than the introduction of basic concepts of each method, the advantages/disadvantages are compared as well. In addition, for the first time, an overview of chemical patterning techniques is outlined. At the end, the challenges and future perspectives in the field are envisioned.
Collapse
Affiliation(s)
- Tao Wei
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Lipiao Bao
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Frank Hauke
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| |
Collapse
|
29
|
Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, McLamore ES, Claussen JC, Gomes CL. Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Salmonella enterica in Chicken Broth. ACS Sens 2020; 5:1900-1911. [PMID: 32348124 DOI: 10.1021/acssensors.9b02345] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Food-borne illnesses are a growing concern for the food industry and consumers, with millions of cases reported every year. Consequently, there is a critical need to develop rapid, sensitive, and inexpensive techniques for pathogen detection in order to mitigate this problem. However, current pathogen detection strategies mainly include time-consuming laboratory methods and highly trained personnel. Electrochemical in-field biosensors offer a rapid, low-cost alternative to laboratory techniques, but the electrodes used in these biosensors require expensive nanomaterials to increase their sensitivity, such as noble metals (e.g., platinum, gold) or carbon nanomaterials (e.g., carbon nanotubes, or graphene). Herein, we report the fabrication of a highly sensitive and label-free laser-induced graphene (LIG) electrode that is subsequently functionalized with antibodies to electrochemically quantify the food-borne pathogen Salmonella enterica serovar Typhimurium. The LIG electrodes were produced by laser induction on the polyimide film in ambient conditions and, hence, circumvent the need for high-temperature, vacuum environment, and metal seed catalysts commonly associated with graphene-based electrodes fabricated via chemical vapor deposition processes. After functionalization with Salmonella antibodies, the LIG biosensors were able to detect live Salmonella in chicken broth across a wide linear range (25 to 105 CFU mL-1) and with a low detection limit (13 ± 7 CFU mL-1; n = 3, mean ± standard deviation). These results were acquired with an average response time of 22 min without the need for sample preconcentration or redox labeling techniques. Moreover, these LIG immunosensors displayed high selectivity as demonstrated by nonsignificant response to other bacteria strains. These results demonstrate how LIG-based electrodes can be used for electrochemical immunosensing in general and, more specifically, could be used as a viable option for rapid and low-cost pathogen detection in food processing facilities before contaminated foods reach the consumer.
Collapse
Affiliation(s)
- Raquel R. A. Soares
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Robert G. Hjort
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Cicero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Kshama Parate
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Efraim L. Reis
- Department of Chemistry, Federal University of Vicosa, Viçosa 36570-900, Brazil
| | - Nilda F. F. Soares
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Eric S. McLamore
- Agricultural & Biological Engineering, University of Florida, Gainesville 32611, Florida, United States
| | - Jonathan C. Claussen
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| |
Collapse
|
30
|
Song H, Liu J, Lu H, Chen C, Ba L. High sensitive gas sensor based on vertical graphene field effect transistor. NANOTECHNOLOGY 2020; 31:165503. [PMID: 31891925 DOI: 10.1088/1361-6528/ab668a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A gas sensor made from graphene vertical field effect transistor (VGr-FET) has been fabricated using graphene as the source electrode, C60 thin film as the semiconductor layer and aluminum thin film as the drain electrode. The on/off ratio of transistor gated by bottom electrode with ionic liquid gel as dielectric layer is derived to be 103 from measured source-drain current I ds. The apparent energy barrier height between the graphene and polycrystalline fullerene was calculated from the model of heterojunction diode I-V response curves. The barrier height φ BH was altered by the gating potential vertically applied on graphene sheet, resulting the large on/off ratio of the transistor. The effect of surface adsorption of water vapor, oxygen, ammonia and isoprene gas phase molecules on the I ds was measured. The lower limit of detection (LOD) for ammonia (86 ppb) than that of isoprene (420 ppb) is attributed to the donor nature of ammonia contact with p-type graphene, and the adsorbed donor leads to a corresponding positive gating effect to the VGr-FET. This facile, low cost and quick responsive device shows promise for early diagnose of severe human respiratory diseases.
Collapse
Affiliation(s)
- Hang Song
- State Key Laboratory of Bioelectronics, School of Biology and Biomedical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Xu X, Müllen K, Narita A. Syntheses and Characterizations of Functional Polycyclic Aromatic Hydrocarbons and Graphene Nanoribbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190368] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiushang Xu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Physical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
32
|
Lebioda M, Pawlak R, Szymański W, Kaczorowski W, Jeziorna A. Laser Patterning a Graphene Layer on a Ceramic Substrate for Sensor Applications. SENSORS 2020; 20:s20072134. [PMID: 32290089 PMCID: PMC7181160 DOI: 10.3390/s20072134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
This paper describes a method for patterning the graphene layer and gold electrodes on a ceramic substrate using a Nd:YAG nanosecond fiber laser. The technique enables the processing of both layers and trimming of the sensor parameters. The main aim was to develop a technique for the effective and efficient shaping of both the sensory layer and the metallic electrodes. The laser shaping method is characterized by high speed and very good shape mapping, regardless of the complexity of the processing. Importantly, the technique enables the simultaneous shaping of both the graphene layer and Au electrodes in a direct process that does not require a complex and expensive masking process, and without damaging the ceramic substrate. Our results confirmed the effectiveness of the developed laser technology for shaping a graphene layer and Au electrodes. The ceramic substrate can be used in the construction of various types of sensors operating in a wide temperature range, especially the cryogenic range.
Collapse
Affiliation(s)
- Marcin Lebioda
- Institute of Electrical Engineering Systems, Lodz University of Technology, 90-924 Lodz, Poland;
- Correspondence: ; Tel.: +48-426-312-537
| | - Ryszard Pawlak
- Institute of Electrical Engineering Systems, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Witold Szymański
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; (W.S.); (W.K.); (A.J.)
| | - Witold Kaczorowski
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; (W.S.); (W.K.); (A.J.)
| | - Agata Jeziorna
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; (W.S.); (W.K.); (A.J.)
| |
Collapse
|
33
|
Chen J, Ryu GH, Zhang Q, Wen Y, Tai KL, Lu Y, Warner JH. Spatially Controlled Fabrication and Mechanisms of Atomically Thin Nanowell Patterns in Bilayer WS 2 Using in Situ High Temperature Electron Microscopy. ACS NANO 2019; 13:14486-14499. [PMID: 31794193 DOI: 10.1021/acsnano.9b08220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We show controlled production of atomically thin nanowells in bilayer WS2 using an in situ heating holder combined with a focused electron beam in a scanning transmission electron microscope (STEM). We systematically study the formation and evolvement mechanism involved in removing a single layer of WS2 within a bilayer region with 2 nm accuracy in location and without punching through to the other layer to create a hole. Best results are found when using a high temperature of 800 °C, because it enables thermally activated atomic migration and eliminates the interference from surface carbon contamination. We demonstrate precise control over spatial distributions with 5 nm accuracy of patterning and the width of nanowells adjustable by dose-dependent parameters. The mechanism of removing a monolayer of WS2 within a bilayer region is different than removing equivalent sections in a monolayer film due to the van der Waals interaction of the underlying remaining layer in the bilayer system that stabilizes the excess W atom stoichiometry within the edges of the nanowell structure and facilitates expansion. This study offers insights for the nanoengineering of nanowells in two-dimensional (2D) transitional metal dichalcogenides (TMDs), which could hold potential as selective traps to localize 2D reactions in molecules and ions, underpinning the broader utilization of 2D material membranes.
Collapse
Affiliation(s)
- Jun Chen
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Gyeong Hee Ryu
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Qianyang Zhang
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Yi Wen
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Kuo-Lun Tai
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Yang Lu
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jamie H Warner
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| |
Collapse
|
34
|
Oh DK, Lee S, Lee SH, Lee W, Yeon G, Lee N, Han KS, Jung S, Kim DH, Lee DY, Lee SH, Park HJ, Ok JG. Tailored Nanopatterning by Controlled Continuous Nanoinscribing with Tunable Shape, Depth, and Dimension. ACS NANO 2019; 13:11194-11202. [PMID: 31593432 DOI: 10.1021/acsnano.9b04221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present that the tailored nanopatterning with tunable shape, depth, and dimension for diverse application-specific designs can be realized by utilizing controlled dynamic nanoinscribing (DNI), which can generate bur-free plastic deformation on various flexible substrates via continuous mechanical inscription of a small sliced edge of a nanopatterned mold in a compact and vacuum-free system. Systematic controlling of prime DNI processing parameters including inscribing force, temperature, and substrate feed rate can determine the nanopattern depths and their specific profiles from rounded to angular shapes as a summation of the force-driven plastic deformation and heat-driven thermal deformation. More complex nanopatterns with gradient depths and/or multidimensional profiles can also be readily created by modulating the horizontal mold edge alignment and/or combining sequential DNI strokes, which otherwise demand laborious and costly procedures. Many practical user-specific applications may benefit from this study by tailor-making the desired nanopattern structures within desired areas, including precision machine and optics components, transparent electronics and photonics, flexible sensors, and reattachable and wearable devices. We demonstrate one vivid example in which the light diffusion direction of a light-emitting diode can be tuned by application of specifically designed DNI nanopatterns.
Collapse
Affiliation(s)
- Dong Kyo Oh
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Seungjo Lee
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Seung Hu Lee
- Department of Energy Systems Research , Ajou University , Suwon 16499 , Korea
| | - Wonseok Lee
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Gyubeom Yeon
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Nayeong Lee
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
- Research Center for Electrical and Information Technology , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Kang-Soo Han
- Display Research Center , Samsung Display, Co., Ltd. , Gyeonggi-do 17113 , Korea
| | - Sunmin Jung
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Dong Ha Kim
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Dae-Young Lee
- Display Research Center , Samsung Display, Co., Ltd. , Gyeonggi-do 17113 , Korea
| | - Sang Hoon Lee
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
- Research Center for Electrical and Information Technology , Seoul National University of Science and Technology , Seoul 01811 , Korea
| | - Hui Joon Park
- Department of Organic and Nano Engineering , Hanyang University , Seoul 04763 , Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering , Seoul National University of Science and Technology , Seoul 01811 , Korea
| |
Collapse
|
35
|
Lee HJ, Lim J, Cho SY, Kim H, Lee C, Lee GY, Sasikala SP, Yun T, Choi DS, Jeong MS, Jung HT, Hong S, Kim SO. Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38006-38015. [PMID: 31544452 DOI: 10.1021/acsami.9b08876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unzipping carbon nanotubes (CNTs) may offer a valuable route to synthesize graphene nanoribbon (GNR) structures with semiconducting properties. Unfortunately, currently available unzipping methods commonly rely on a random harsh chemical reaction and thereby cause significant degradation of the crystalline structure and electrical properties of GNRs. Herein, crystalline semiconducting GNRs are achieved by a synergistic, judiciously designed two-step unzipping method for N-doped CNTs (NCNTs). NCNTs are effectively unzipped by damage-minimized, dopant-specific electrochemical unzipping and subsequent sonochemical treatment into long ribbon-like nanostructures with crystalline basal planes. Owing to the nanoscale dimension originating from the dense nucleation of the unzipping reaction at highly NCNTs, the resultant GNRs demonstrate semiconducting properties, which can be exploited for chemiresistor-type gas-sensing devices and many other applications.
Collapse
Affiliation(s)
| | | | - Soo-Yeon Cho
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | - Chanwoo Lee
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
| | | | | | | | | | - Mun Seok Jeong
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
| | | | | | | |
Collapse
|
36
|
Li W, Zhan X, Song X, Si S, Chen R, Liu J, Wang Z, He J, Xiao X. A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901820. [PMID: 31166661 DOI: 10.1002/smll.201901820] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/13/2019] [Indexed: 05/23/2023]
Abstract
Nanomaterials have gained plenty of research interest because of their excellent performance, which is derived from their small size and special structure. In practical applications, to acquire nanomaterials with high performance, many methods have been used to modulate the structure and components of materials. To date, ion beam techniques have extensively been applied for modulating the performance of various nanomaterials. Energetic ion beams can modulate the surface morphology and chemical components of nanomaterials. In addition, ion beam techniques have also been used to fabricate nanomaterials, including 2D materials, nanoparticles, and nanowires. Compared with conventional methods, ion beam techniques, including ion implantation, ion irradiation, and focused ion beam, are all pure physical processes; these processes do not introduce any impurities into the target materials. In addition, ion beam techniques exhibit high controllability and repeatability. Here, recent progress in ion beam techniques for nanomaterial surface modification is systematically summarized and existing challenges and potential solutions are presented.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan, 430072, P. R. China
| | - Xueying Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xianyin Song
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan, 430072, P. R. China
| | - Shuyao Si
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Chen
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Liu
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jun He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiangheng Xiao
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
37
|
Laible F, Dreser C, Kern DP, Fleischer M. Time-effective strategies for the fabrication of poly- and single-crystalline gold nano-structures by focused helium ion beam milling. NANOTECHNOLOGY 2019; 30:235302. [PMID: 30907377 DOI: 10.1088/1361-6528/ab0506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Milling with the focused helium ion beam of a helium ion microscope is one of the most accurate ways to produce nano-structures such as plasmonic nanoantennas. In addition to good and immediate control of the dimensions, features in the sub-10 nm regime are achievable. Especially small gaps and sharp tips in this regime may lead to very high field enhancement under excitation. However, the milling rate of 30 keV helium ions is rather low, making it time-consuming to cut nano-structures out of a gold film. We present two processes to work around the low milling rate to obtain arrays of nano-structures with maximum precision within a reasonable time. These strategies can both be adapted to either poly-crystalline gold films or single-crystalline gold flakes. Using single crystals from a fabrication point of view enables even higher precision due to constant etch rates over the whole crystal as well as straight edges and vertical side-walls due to the uniform crystalline structure.
Collapse
Affiliation(s)
- Florian Laible
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany. Center for Light-Matter-Interaction, Sensors and Analytics LISA+, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
38
|
Kausar A. Graphene nanoribbon: fundamental aspects in polymeric nanocomposite. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ayesha Kausar
- School of Natural Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
39
|
Hirota K, Hara S, Wada H, Shimojima A, Kuroda K. Fabrication of Uniaxially Aligned Silica Nanogrooves with Sub-5 nm Periodicity on Centimeter-Scale Si Substrate Using Poly(dimethylsiloxane) Stamps. ACS NANO 2019; 13:2795-2803. [PMID: 30626184 DOI: 10.1021/acsnano.8b07714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large-area fabrication of aligned nanopatterns with sub-5 nm feature size is crucial for developing nanodevices. Highly ordered nanostructures fabricated through molecular self-assembly exhibit substantial potential for sub-5 nm patterning techniques. Previously, we had reported the fabrication of silica nanogrooves with sub-5 nm periodicity on a Si substrate by using the outermost surfaces of cylindrical surfactant micelles as a template. However, uniaxial alignment of nanogrooves on the entire substrate surface has not yet been achieved. In this study, uniaxially aligned silica nanogrooves were prepared on the entire surface of a Si substrate (2 cm × 2 cm) by utilizing a poly(dimethylsiloxane) (PDMS) stamp with a striped pattern. The PDMS stamp was placed on the surface of a surfactant thin film precoated on the substrate, although the stamp was not in direct contact with the substrate as in the case of the soft nanoimprint technique. The substrate was then exposed to water vapor, during which cylindrical micelles were aligned in the direction of the guide. Subsequently, by exposing the substrate to an NH3-water vapor mixture, the outermost surfaces of the aligned micelles facing the substrate were replicated with soluble silicate species. The formation of uniaxially aligned nanogrooves on the entire surface of the centimeter-scale substrate was verified by scanning electron microscopy observations and grazing-incidence small-angle X-ray scattering analysis. Thus, herein we provide a simple large-area fabrication method for uniaxially aligned nanopatterns with ultrafine pitch.
Collapse
Affiliation(s)
| | | | | | | | - Kazuyuki Kuroda
- Kagami Memorial Research Institute for Materials Science and Technology , Waseda University , 2-8-26 Nishiwaseda , Shinjuku-ku, Tokyo 169-0051 , Japan
| |
Collapse
|
40
|
Li L, Wu S, Li L, Zhou Z, Ding H, Xiao C, Li X. Gap-mode excitation, manipulation, and refractive-index sensing application by gold nanocube arrays. NANOSCALE 2019; 11:5467-5473. [PMID: 30855617 DOI: 10.1039/c8nr09073d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The challenges in fabricating two-dimensional metallic nanostructures over large areas, which normally involve expensive and time-consuming nanofabrication techniques, have severely limited the exploration of the related applications based on plasmon-induced effects. Here, we cost-efficiently prepared large-area Au nanocube arrays (NCAs) using only the electrostatic forces between colloidal Au nanocubes and polyelectrolyte layers. This method provides a flexible way for obtaining controlled Au NCAs with various fill fractions and single-cube sizes. When the Au NCAs were arranged to be coupled with a continuous Au film, the plasmonic gap mode could be excited and manipulated, leading to significant and tunable light absorbance from the visible to the near-infrared parts of the spectrum. Besides, the as-prepared Au NCAs were used to construct a prototype refractive-index (RI) sensor, which exhibited excellent stability and sensitivity over 560 nm per RI unit.
Collapse
Affiliation(s)
- Liang Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Xia D, McVey S, Huynh C, Kuehn W. Defect Localization and Nanofabrication for Conductive Structures with Voltage Contrast in Helium Ion Microscopy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5509-5516. [PMID: 30644713 DOI: 10.1021/acsami.8b18083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the dimensions of feature sizes in electronic devices decrease to nanoscale, an easy method for failure analysis and evaluation of processing steps is required. Gallium-focused ion beam (Ga-FIB) or scanning electron microscope is an efficient approach to detect voltage contrast for addressing failure analysis in semiconductor devices and processing. However, Ga-FIB may cause damage or implantation to the surface of the analyzed area, and its resolution is low. Helium ion microscopy (HIM) uses a light ion beam (helium or neon) for imaging and fabrication at nanoscale. With passive voltage contrast (PVC) in HIM images, the defect localization for failure of conductive structures can be rapidly and easily detected with a sufficient voltage contrast. Furthermore, a defect gap as narrow as sub-10 nm can be investigated with HIM imaging. PVC with HIM is an efficient method for defect localization at nanoscale with a minimal damage to the analyzed area. For circuit edit and failure analysis, it may be necessary to intentionally cut the conductive connection. In this circumstance, final results can be easily verified using PVC imaging with HIM. With XeF2 gas assistance, both helium and neon ion beams can be used to perform nanofabrication for metal disconnection. XeF2 gas plays an important role in preventing deposition of conductive materials on etching region and enhancing material removal rates to achieve electrically isolated structures. The etching rate with a neon ion beam is much faster than that of a helium ion beam. PVC in HIM images with controllable operation and dimensions using a helium ion beam with XeF2 gas assistance could also be used to localize a hidden defect for a single-location-defect situation. With neon ion beam irradiation on a defective location, PVC can be used to find the defect locations in the case of a series of defects.
Collapse
Affiliation(s)
- Deying Xia
- Carl Zeiss SMT Inc, PCS Integration Center , One Corporation Way , Peabody , Massachusetts 01960 , United States
| | - Shawn McVey
- Carl Zeiss SMT Inc, PCS Integration Center , One Corporation Way , Peabody , Massachusetts 01960 , United States
| | - Chuong Huynh
- Carl Zeiss SMT Inc, PCS Integration Center , One Corporation Way , Peabody , Massachusetts 01960 , United States
| | - Wilhelm Kuehn
- Carl Zeiss SMT Inc, PCS Integration Center , One Corporation Way , Peabody , Massachusetts 01960 , United States
| |
Collapse
|
42
|
Narita A, Chen Z, Chen Q, Müllen K. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chem Sci 2019; 10:964-975. [PMID: 30774890 PMCID: PMC6349060 DOI: 10.1039/c8sc03780a] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/29/2018] [Indexed: 11/25/2022] Open
Abstract
Graphene nanoribbons (GNRs) are quasi-one-dimensional subunits of graphene and have open bandgaps in contrast to the zero-bandgap graphene. The high potential of GNRs as a new family of carbon-based semiconductors, e.g. for nanoelectronic and optoelectronic applications, has boosted the research attempts towards fabrication of GNRs. The predominant top-down methods such as lithographical patterning of graphene and unzipping of carbon nanotubes cannot prevent defect formation. In contrast, bottom-up chemical synthesis, starting from tailor-made molecular precursors, can achieve atomically precise GNRs. In this account, we summarize our recent research progress in the bottom-up synthesis of GNRs through three different methods, namely (1) in solution, (2) on-surface under ultrahigh vacuum (UHV) conditions, and (3) on-surface through chemical vapour deposition (CVD). The solution synthesis allows fabrication of long (>600 nm) and liquid-phase-processable GNRs that can also be functionalized at the edges. On the other hand, the on-surface synthesis under UHV enables formation of zigzag GNRs and in situ visualization of their chemical structures by atomic-resolution scanning probe microscopy. While the on-surface synthesis under UHV is typically costly and has limited scalability, the industrially viable CVD method can allow lower-cost production of large GNR films. We compare the three methods in terms of the affordable GNR structures and the resulting control of their electronic and optical properties together with post-processing for device integration. Further, we provide our views on future perspectives in the field of bottom-up GNRs.
Collapse
Affiliation(s)
- Akimitsu Narita
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany . ;
| | - Zongping Chen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany . ;
| | - Qiang Chen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany . ;
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany . ;
- Institute of Physical Chemistry , Johannes Gutenberg-University Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| |
Collapse
|
43
|
Allen FI, Velez NR, Thayer RC, Patel NH, Jones MA, Meyers GF, Minor AM. Gallium, neon and helium focused ion beam milling of thin films demonstrated for polymeric materials: study of implantation artifacts. NANOSCALE 2019; 11:1403-1409. [PMID: 30604814 DOI: 10.1039/c8nr08224c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Focused ion beam milling of ∼200 nm polymer thin films is investigated using a multibeam ion microscope equipped with a gallium liquid metal ion source and a helium/neon gas field-ionization source. The quality of gallium, neon, and helium ion milled edges in terms of ion implantation artifacts is analyzed using a combination of helium ion microscopy, transmission electron microscopy and light microscopy. Results for a synthetic polymer thin film, in the form of cryo-ultramicrotomed sections from a co-extruded polymer multilayer, and a biological polymer thin film, in the form of the base layer of a butterfly wing scale, are presented. While gallium and neon ion milling result in the implantation of ions up to tens of nanometers from the milled edge and local thinning near the edge, helium ion milling produces much sharper edges with dramatically reduced implantation. These effects can be understood in terms of the minimal lateral scatter and larger stopping distance of helium compared with the heavier ions, whereby due to the thin film geometry, most of the incident helium ions will pass straight through the material. The basic result demonstrated here for polymer thin films is also expected for thin films of hard materials such as metals and ceramics.
Collapse
Affiliation(s)
- Frances I Allen
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Cho KM, Cho SY, Chong S, Koh HJ, Kim DW, Kim J, Jung HT. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42905-42914. [PMID: 30421906 DOI: 10.1021/acsami.8b16688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With growing focus on the use of carbon nanomaterials in chemical sensors, one-dimensional graphene nanoribbon (GNR) has become one of the most attractive channel materials, owing to its enhanced conductance fluctuation by quantum confinement effects and dense, abundant edge sites. Due to the narrow width of a basal plane with one-dimensional morphology, chemical modification of edge sites would greatly affect the electrical channel properties of a GNR. Here, we demonstrate for the first time that chemically functionalizing the edge sites with aminopropylsilane (APS) molecules can significantly enhance the sensing performance of the GNR sensor. The resulting APS-functionalized GNR has a sensitivity ((Δ R/ Rb)max) of ∼30% at 0.125 ppm nitrogen dioxide (NO2) and an ultrafast response time (∼6 s), which are, respectively, 7- and 15-fold enhancements compared to a pristine GNR sensor. This is the fastest and most sensitive gas-sensing performance of all GNR sensors reported. To demonstrate the superiority of the GNR-APS sensor, we compare its sensing performance with that of APS-functionalized carbon nanotube (CNT) and reduced graphene oxide (rGO) sensors prepared in identical synthesis conditions. Very interestingly, the GNR-APS sensor exhibited 30- and 93-fold enhanced sensitivity compared to the CNT-APS and rGO-APS sensors. This might be attributed to highly active edge sites with superior chemical reactivity, which are not present in CNT and rGO materials. Density functional theory clearly shows that the greatly enhanced gas response of GNR with edge functionalization can be attributed to the higher electron densities in the highest occupied molecular orbital levels of GNR-APS and incorporation of additional adsorption sites. This finding is the first demonstration of the importance of edge functionalization of GNR for chemical sensors.
Collapse
Affiliation(s)
- Kyeong Min Cho
- Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , Daejeon 34141 , Korea
| | - Soo-Yeon Cho
- Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , Daejeon 34141 , Korea
| | - Sanggyu Chong
- Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
| | - Hyeong-Jun Koh
- Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , Daejeon 34141 , Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , Daejeon 34141 , Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , Daejeon 34141 , Korea
| |
Collapse
|
45
|
Terse-Thakoor T, Ramnani P, Villarreal C, Yan D, Tran TT, Pham T, Mulchandani A. Graphene nanogap electrodes in electrical biosensing. Biosens Bioelectron 2018; 126:838-844. [PMID: 30602266 DOI: 10.1016/j.bios.2018.11.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
Graphene nanogap electrodes are reported here for the first time in an electrical biosensor for the detection of biomolecular interactions. Streptavidin-biotin was chosen as a model system for evaluating the sensor's performance. High-affinity interactions of streptavidin-gold nanoparticles (strep-AuNPs) to the biotin-functionalized nanogap localizes AuNPs, thereby bridging the gap and resulting in changes in device conductance. Biosensing performance was optimized by varying the gap size, AuNP diameter, and streptavidin coverage on AuNPs. The sensitivity and limit of detection (LOD) of streptavidin detection with the optimized parameters were determined to be 0.3 µA/nM and 0.25 pM, respectively. The proposed platform suggests high potential as a portable point-of-use biosensor for the detection of other affinity-based biomolecular interactions, such as antigen-antibody, nucleic acid, or chemo-selective interactions.
Collapse
Affiliation(s)
- Trupti Terse-Thakoor
- Department of Bioengineering, University of California, Riverside, CA 92521, United States.
| | - Pankaj Ramnani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Claudia Villarreal
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, United States
| | - Dong Yan
- Center for Nanoscale Science and Engineering (CNSE), University of California, Riverside, CA 92521, United States
| | - Thien-Toan Tran
- Department of Bioengineering, University of California, Riverside, CA 92521, United States; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Tung Pham
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Materials Science and Engineering Program, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
46
|
Sartipi Z, Hayati A, Vahedi J. Thermoelectric efficiency in three-terminal graphene nano-junctions. J Chem Phys 2018; 149:114103. [DOI: 10.1063/1.5044660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zahra Sartipi
- Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran
| | - Amir Hayati
- Faculty of Mazandaran Technical and Vocational University, Technical and Vocational University, Iran
| | - Javad Vahedi
- Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, Université de Cergy-Pontoise, F-95302 Cergy-Pontoise Cedex, France
| |
Collapse
|
47
|
Jiang X, Cai W, Luo W, Xiang Y, Zhang N, Ren M, Zhang X, Xu J. Near-field imaging of graphene triangles patterned by helium ion lithography. NANOTECHNOLOGY 2018; 29:385205. [PMID: 29968574 DOI: 10.1088/1361-6528/aad0b4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmon nanoresonators in graphene have many applications in biosensing, photodetectors and modulators. As a result, an efficient and precise patterning technique for graphene is required. Helium ion lithography (HIL) emerges as a promising tool for direct writing fabrication because it owns improved fabrication precision compared to electron beam lithography and conventional gallium focused ion beam technique. In this paper, utilizing HIL, a set of graphene triangles are patterned and excellent plasmon response is detected. Particularly, the evolution of breathing mode in these structures is unveiled by scattering-type scanning near-field optical microscopy. Besides, the plasmon response of graphene structures can be efficiently tuned by adjusting the irradiated ion dose during the etching process, which can be explained by the phenomenal simulation model. Our work demonstrates that HIL is a feasible way for precise plasmonic nanostructure fabrication, and can be applied to graphene plasmon control at the nanoscale as well.
Collapse
Affiliation(s)
- Xiaojie Jiang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhao C, Zhu Y, Chen L, Zhou S, Su Y, Ji X, Chen A, Gui X, Tang Z, Liu Z. Multi-layer nanoarrays sandwiched by anodized aluminium oxide membranes: an approach to an inexpensive, reproducible, highly sensitive SERS substrate. NANOSCALE 2018; 10:16278-16283. [PMID: 30128448 DOI: 10.1039/c8nr05875j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A large-scale sub-5 nm nanofabrication technique is developed based on double layer anodized aluminium oxide (AAO) porous membrane masking. This technique also provides a facile route to form multilayer nano-arrays (metal nanoarrays sandwiched by AAO membranes), which is very challenging for other techniques. Normally the AAO mask has to be sacrificed, yet in this work it is preserved as a part of the nanostructure. The preserved AAO layers as the support for the second/third layer of the metal arrays provide a high-refractive index background for the multilayer metal arrays. This background concentrates the local E-field more significantly and results in a much higher Surface-Enhanced Raman Spectroscopy (SERS) signal than single layer metal arrays. This technique may lead to the advent of an inexpensive, reproducible, highly sensitive SERS substrate. Moreover, the physical essence of the plasmonic enhancement is unveiled by finite element method based numerical simulations. Enhancements from the gaps and the multilayer nanostructure agree very well with the experiments. The calculated layer-by-layer electric field distribution determines the contribution from different layers and provides more insights into the 3D textured structure.
Collapse
Affiliation(s)
- Chengchun Zhao
- College of Innovation and Entrepreneurship, Southern University of Science and technology, Shenzhen 518055, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu G, Chen L, Liu J, Qiu M, Xie Z, Chang J, Zhang Y, Li P, Lei DY, Zheng Z. Scanning Nanowelding Lithography for Rewritable One-Step Patterning of Sub-50 nm High-Aspect-Ratio Metal Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801772. [PMID: 30024062 DOI: 10.1002/adma.201801772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/09/2018] [Indexed: 05/28/2023]
Abstract
The development of a new nanolithographic strategy, named scanning nanowelding lithography (SNWL), for the one-step fabrication of arbitrary high-aspect-ratio nanostructures of metal is reported in this study. Different from conventional pattern transfer and additive printing strategies which require subtraction or addition of materials, SNWL makes use of a sharp scanning tip to reshape metal thin films or existing nanostructures into desirable high-aspect-ratio patterns, through a cold-welding effect of metal at the nanoscale. As a consequence, SNWL can easily fabricate, in one step and at ambient conditions, sub-50 nm metal nanowalls with remarkable aspect ratio >5, which are found to be strong waveguide of light. More importantly, SNWL outweighs the existing strategies in terms of the unique ability to erase the as-made nanostructures and rewrite them into other shapes and orientations on-demand. Taking advantages of the serial and rewriting capabilities of SNWL, the smart information storage-erasure of Morse codes is demonstrated. SNWL is a promising method to construct arbitrary high-aspect-ratio nanostructure arrays that are highly desirable for biological, medical, optical, electronic, and information applications.
Collapse
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Lina Chen
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Meng Qiu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhuang Xie
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Chang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Peng Li
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dang Yuan Lei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
50
|
Flatabø R, Agarwal A, Hobbs R, Greve MM, Holst B, Berggren KK. Exploring proximity effects and large depth of field in helium ion beam lithography: large-area dense patterns and tilted surface exposure. NANOTECHNOLOGY 2018; 29:275301. [PMID: 29652671 DOI: 10.1088/1361-6528/aabe22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Helium ion beam lithography (HIL) is an emerging nanofabrication technique. It benefits from a reduced interaction volume compared to that of an electron beam of similar energy, and hence reduced long-range scattering (proximity effect), higher resist sensitivity and potentially higher resolution. Furthermore, the small angular spread of the helium ion beam gives rise to a large depth of field. This should enable patterning on tilted and curved surfaces without the need of any additional adjustments, such as laser-auto focus. So far, most work on HIL has been focused on exploiting the reduced proximity effect to reach single-digit nanometer resolution, and has thus been concentrated on single-pixel exposures over small areas. Here we explore two new areas of application. Firstly, we investigate the proximity effect in large-area exposures and demonstrate HIL's capabilities in fabricating precise high-density gratings on large planar surfaces (100 μm × 100 μm, with pitch down to 35 nm) using an area dose for exposure. Secondly, we exploit the large depth of field by making the first HIL patterns on tilted surfaces (sample stage tilted 45°). We demonstrate a depth of field greater than 100 μm for a resolution of about 20 nm.
Collapse
Affiliation(s)
- Ranveig Flatabø
- University of Bergen, Department of Physics and Technology, Allégaten 55, NO-5007 Bergen, Norway. Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, United States of America
| | | | | | | | | | | |
Collapse
|