1
|
Zhu C, Wang E, Li Z, Ouyang H. Advances in Symbiotic Bioabsorbable Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410289. [PMID: 39846424 DOI: 10.1002/advs.202410289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Indexed: 01/24/2025]
Abstract
Symbiotic bioabsorbable devices are ideal for temporary treatment. This eliminates the boundaries between the device and organism and develops a symbiotic relationship by degrading nutrients that directly enter the cells, tissues, and body to avoid the hazards of device retention. Symbiotic bioresorbable electronics show great promise for sensing, diagnostics, therapy, and rehabilitation, as underpinned by innovations in materials, devices, and systems. This review focuses on recent advances in bioabsorbable devices. Innovation is focused on the material, device, and system levels. Significant advances in biomedical applications are reviewed, including integrated diagnostics, tissue repair, cardiac pacing, and neurostimulation. In addition to the material, device, and system issues, the challenges and trends in symbiotic bioresorbable electronics are discussed.
Collapse
Affiliation(s)
- Chang Zhu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Han Ouyang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
2
|
Wu Y, Zhang X, Ma Z, Hong W, You C, Zhu H, Zong Y, Hu Y, Xu B, Huang G, Di Z, Mei Y. Nanomembrane on Graphene: Delamination Dynamics and 3D Construction. ACS NANO 2025; 19:331-344. [PMID: 39748669 DOI: 10.1021/acsnano.4c07589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes. This fragile adhesion allows for precise delamination under stimulations, such as surface tension, thermal treatment, and mechanical bending. This strategy is compatible with various inorganic materials, including oxides, semiconductors, and metals, and allows for precise control of rolling and folding into 3D microstructures. Demonstrations include tubular microrobots with diverse locomotion and biodegradable nerve scaffolds based on facile delamination. Our nanomembrane-on-graphene strategy offers a versatile platform for the fabrication of functionalized microstructures.
Collapse
Affiliation(s)
- Yue Wu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Xinyuan Zhang
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Zhe Ma
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Weida Hong
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Chunyu You
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Hong Zhu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Yang Zong
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Yuhang Hu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Borui Xu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Zengfeng Di
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Yongfeng Mei
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
3
|
Hu B, Xu D, Shao Y, Nie Z, Liu P, Li J, Zhou L, Wang P, Huang N, Liu J, Lu Y, Wu Z, Wang B, Mei Y, Han M, Li R, Song E. Ultrathin crystalline silicon-based omnidirectional strain gauges for implantable/wearable characterization of soft tissue biomechanics. SCIENCE ADVANCES 2024; 10:eadp8804. [PMID: 39383239 PMCID: PMC11463283 DOI: 10.1126/sciadv.adp8804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Monitoring soft-tissue biomechanics is of interest in biomedical research and clinical treatment of diseases. An important focus is biointegrated strain gauges that track time-dependent mechanics of targeted tissues with deforming surfaces over multidirections. Existing methods provide limited gauge factors, tailored for sensing within specific directions under quasi-static conditions. We present development and applicability of implantable/wearable strain gauges that integrate multiple ultrathin monocrystalline silicon-based sensors aligned with different directions, in stretchable formats for dynamically monitoring direction angle-sensitive strain. We experimentally and computationally establish operational principles, with theoretical systems that enable determination of intensities and direction of applied strains at an omnidirectional scale. Wearable evaluations range from cardiac pulse to intraocular pressure monitoring of eyeballs. The device can evaluate cardiac disorders of myocardial infarction and hypoxia of living rats and locate the pathological orientation associated with infarction, in designs with possibilities as biodegradable implants for stable operation. These findings create clinical significance of the devices for monitoring complex dynamic biomechanics.
Collapse
Affiliation(s)
- Bofan Hu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Dian Xu
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yuting Shao
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhongyi Nie
- Department of Biomedical Engineering, College of Future technology, Peking University, Beijing 100871, China
| | - Pengchuan Liu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Jinbao Li
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Lianjie Zhou
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Pei Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Ningge Huang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Junhan Liu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Yifei Lu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Zhongyuan Wu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bo Wang
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yongfeng Mei
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future technology, Peking University, Beijing 100871, China
| | - Rui Li
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
5
|
Pourshaban E, Karkhanis MU, Deshpande A, Banerjee A, Hasan MR, Nikeghbal A, Ghosh C, Kim H, Mastrangelo CH. Power Scavenging Microsystem for Smart Contact Lenses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401068. [PMID: 38477701 DOI: 10.1002/smll.202401068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/02/2024] [Indexed: 03/14/2024]
Abstract
On-the-eye microsystems such as smart contacts for vision correction, health monitoring, drug delivery, and displaying information represent a new emerging class of low-profile (≤ 1 mm) wireless microsystems that conform to the curvature of the eyeball surface. The implementation of suitable low-profile power sources for eye-based microsystems on curved substrates is a major technical challenge addressed in this paper. The fabrication and characterization of a hybrid energy generation unit composed of a flexible silicon solar cell and eye-blinking activated Mg-O2 metal-air harvester capable of sustainably supplying electrical power to smart ocular devices are reported. The encapsulated photovoltaic device provides a DC output with a power density of 42.4 µW cm-2 and 2.5 mW cm-2 under indoor and outdoor lighting conditions, respectively. The eye-blinking activated Mg-air harvester delivers pulsed power output with a maximum power density of 1.3 mW cm-2. A power management circuit with an integrated 11 mF supercapacitor is used to convert the harvesters' pulsed voltages to DC, boost up the voltages, and continuously deliver ≈150 µW at a stable 3.3 V DC output. Uniquely, in contrast to wireless power transfer, the power pack continuously generates electric power and does not require any type of external accessories for operation.
Collapse
Affiliation(s)
- Erfan Pourshaban
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mohit U Karkhanis
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Adwait Deshpande
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwaryadev Banerjee
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Md Rabiul Hasan
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Amirali Nikeghbal
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chayanjit Ghosh
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hanseup Kim
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Carlos H Mastrangelo
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
6
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
7
|
Zhao H, Liu M, Guo Q. Silicon-based transient electronics: principles, devices and applications. NANOTECHNOLOGY 2024; 35:292002. [PMID: 38599177 DOI: 10.1088/1361-6528/ad3ce1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Recent advances in materials science, device designs and advanced fabrication technologies have enabled the rapid development of transient electronics, which represents a class of devices or systems that their functionalities and constitutions can be partially/completely degraded via chemical reaction or physical disintegration over a stable operation. Therefore, numerous potentials, including zero/reduced waste electronics, bioresorbable electronic implants, hardware security, and others, are expected. In particular, transient electronics with biocompatible and bioresorbable properties could completely eliminate the secondary retrieval surgical procedure after their in-body operation, thus offering significant potentials for biomedical applications. In terms of material strategies for the manufacturing of transient electronics, silicon nanomembranes (SiNMs) are of great interest because of their good physical/chemical properties, modest mechanical flexibility (depending on their dimensions), robust and outstanding device performances, and state-of-the-art manufacturing technologies. As a result, continuous efforts have been made to develop silicon-based transient electronics, mainly focusing on designing manufacturing strategies, fabricating various devices with different functionalities, investigating degradation or failure mechanisms, and exploring their applications. In this review, we will summarize the recent progresses of silicon-based transient electronics, with an emphasis on the manufacturing of SiNMs, devices, as well as their applications. After a brief introduction, strategies and basics for utilizing SiNMs for transient electronics will be discussed. Then, various silicon-based transient electronic devices with different functionalities are described. After that, several examples regarding on the applications, with an emphasis on the biomedical engineering, of silicon-based transient electronics are presented. Finally, summary and perspectives on transient electronics are exhibited.
Collapse
Affiliation(s)
- Haonan Zhao
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Min Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Qinglei Guo
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
8
|
Alam F, Ashfaq Ahmed M, Jalal AH, Siddiquee I, Adury RZ, Hossain GMM, Pala N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. MICROMACHINES 2024; 15:475. [PMID: 38675286 PMCID: PMC11051912 DOI: 10.3390/mi15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Implantable biosensors have evolved to the cutting-edge technology of personalized health care and provide promise for future directions in precision medicine. This is the reason why these devices stand to revolutionize our approach to health and disease management and offer insights into our bodily functions in ways that have never been possible before. This review article tries to delve into the important developments, new materials, and multifarious applications of these biosensors, along with a frank discussion on the challenges that the devices will face in their clinical deployment. In addition, techniques that have been employed for the improvement of the sensitivity and specificity of the biosensors alike are focused on in this article, like new biomarkers and advanced computational and data communicational models. A significant challenge of miniaturized in situ implants is that they need to be removed after serving their purpose. Surgical expulsion provokes discomfort to patients, potentially leading to post-operative complications. Therefore, the biodegradability of implants is an alternative method for removal through natural biological processes. This includes biocompatible materials to develop sensors that remain in the body over longer periods with a much-reduced immune response and better device longevity. However, the biodegradability of implantable sensors is still in its infancy compared to conventional non-biodegradable ones. Sensor design, morphology, fabrication, power, electronics, and data transmission all play a pivotal role in developing medically approved implantable biodegradable biosensors. Advanced material science and nanotechnology extended the capacity of different research groups to implement novel courses of action to design implantable and biodegradable sensor components. But the actualization of such potential for the transformative nature of the health sector, in the first place, will have to surmount the challenges related to biofouling, managing power, guaranteeing data security, and meeting today's rules and regulations. Solving these problems will, therefore, not only enhance the performance and reliability of implantable biodegradable biosensors but also facilitate the translation of laboratory development into clinics, serving patients worldwide in their better disease management and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Ishrak Siddiquee
- Institute of Microsystems Technology, University of South-Eastern Norway, Horten, 3184 Vestfold, Norway;
| | - Rabeya Zinnat Adury
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL 32611, USA;
| | - G M Mehedi Hossain
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| |
Collapse
|
9
|
Istif E, Ali M, Ozuaciksoz EY, Morova Y, Beker L. Near-Infrared Triggered Degradation for Transient Electronics. ACS OMEGA 2024; 9:2528-2535. [PMID: 38250408 PMCID: PMC10795112 DOI: 10.1021/acsomega.3c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Electronics that disintegrate after stable operation present exciting opportunities for niche medical implant and consumer electronics applications. The disintegration of these devices can be initiated due to their medium conditions or triggered by external stimuli, which enables on-demand transition. An external stimulation method that can penetrate deep inside the body could revolutionize the use of transient electronics as implantable medical devices (IMDs), eliminating the need for secondary surgery to remove the IMDs. We report near-infrared (NIR) light-triggered transition of metastable cyclic poly(phthalaldehyde) (cPPA) polymers. The transition of the encapsulation layer is achieved through the conversion of NIR light to heat, facilitated by bioresorbable metals, such as molybdenum (Mo). We reported a rapid degradation of cPPA encapsulation layer about 1 min, and the rate of degradation can be controlled by laser power and exposure time. This study offers a new approach for light triggerable transient electronics for IMDs due to the deep penetration depth of NIR light through to organs and tissues.
Collapse
Affiliation(s)
- Emin Istif
- Department
of Molecular Biology and Genetics, Faculty of Engineering and Natural
Science, Kadir Has University, Istanbul 34083, Turkey
| | - Mohsin Ali
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Elif Yaren Ozuaciksoz
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Yagız Morova
- Koç
University Surface Science and Technology Center (KUYTAM), Rumelifeneri, Istanbul 34450, Turkey
| | - Levent Beker
- Department
of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
- Nanofabrication
and Nanocharacterization Centre for Scientific and Technological Advanced
Research, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| |
Collapse
|
10
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. [PMID: 37731959 PMCID: PMC10507164 DOI: 10.1016/j.mtbio.2023.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.
Collapse
Affiliation(s)
- Elena Abyzova
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | - Elizaveta Dogadina
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | | | - Mo Zhou
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | |
Collapse
|
12
|
Ahnood A, Chambers A, Gelmi A, Yong KT, Kavehei O. Semiconducting electrodes for neural interfacing: a review. Chem Soc Rev 2023; 52:1491-1518. [PMID: 36734845 DOI: 10.1039/d2cs00830k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 50 years, the advent of electronic technology to directly interface with neural tissue has transformed the fields of medicine and biology. Devices that restore or even replace impaired bodily functions, such as deep brain stimulators and cochlear implants, have ushered in a new treatment era for previously intractable conditions. Meanwhile, electrodes for recording and stimulating neural activity have allowed researchers to unravel the vast complexities of the human nervous system. Recent advances in semiconducting materials have allowed effective interfaces between electrodes and neuronal tissue through novel devices and structures. Often these are unattainable using conventional metallic electrodes. These have translated into advances in research and treatment. The development of semiconducting materials opens new avenues in neural interfacing. This review considers this emerging class of electrodes and how it can facilitate electrical, optical, and chemical sensing and modulation with high spatial and temporal precision. Semiconducting electrodes have advanced electrically based neural interfacing technologies owing to their unique electrochemical and photo-electrochemical attributes. Key operation modalities, namely sensing and stimulation in electrical, biochemical, and optical domains, are discussed, highlighting their contrast to metallic electrodes from the application and characterization perspective.
Collapse
Affiliation(s)
- Arman Ahnood
- School of Engineering, RMIT University, VIC 3000, Australia
| | - Andre Chambers
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Amy Gelmi
- School of Science, RMIT University, VIC 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| | - Omid Kavehei
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Wang H, Tian J, Jiang Y, Liu S, Zheng J, Li N, Wang G, Dong F, Chen J, Xie Y, Huang Y, Cai X, Wang X, Xiong W, Qi H, Yin L, Wang Y, Sheng X. A 3D biomimetic optoelectronic scaffold repairs cranial defects. SCIENCE ADVANCES 2023; 9:eabq7750. [PMID: 36791200 PMCID: PMC9931229 DOI: 10.1126/sciadv.abq7750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Bone fractures and defects pose serious health-related issues on patients. For clinical therapeutics, synthetic scaffolds have been actively explored to promote critical-sized bone regeneration, and electrical stimulations are recognized as an effective auxiliary to facilitate the process. Here, we develop a three-dimensional (3D) biomimetic scaffold integrated with thin-film silicon (Si)-based microstructures. This Si-based hybrid scaffold not only provides a 3D hierarchical structure for guiding cell growth but also regulates cell behaviors via photo-induced electrical signals. Remotely controlled by infrared illumination, these Si structures electrically modulate membrane potentials and intracellular calcium dynamics of stem cells and potentiate cell proliferation and differentiation. In a rodent model, the Si-integrated scaffold demonstrates improved osteogenesis under optical stimulations. Such a wirelessly powered optoelectronic scaffold eliminates tethered electrical implants and fully degrades in a biological environment. The Si-based 3D scaffold combines topographical and optoelectronic stimuli for effective biological modulations, offering broad potential for biomedicine.
Collapse
Affiliation(s)
- Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Jingjing Tian
- Department of Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuxi Jiang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingchuan Zheng
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ningyu Li
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Guiyan Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Fan Dong
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xue Cai
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lan Yin
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Lechuga Y, Kandel G, Miguel JA, Martinez M. Development of an Automated Design Tool for FEM-Based Characterization of Solid and Hollow Microneedles. MICROMACHINES 2023; 14:133. [PMID: 36677194 PMCID: PMC9861112 DOI: 10.3390/mi14010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microneedle design for biomedical applications, such as transdermal drug delivery, vaccination and transdermal biosensing, has lately become a rapidly growing research field. In this sense, finite element analysis has been extendedly used by microneedle designers to determine the most suitable structural parameters for their prototypes, and also to predict their mechanical response and efficiency during the insertion process. Although many proposals include computer-aided tools to build geometrical models for mechanical analysis, there is a lack of software utilities intended to automate the design process encompassing geometrical modeling, simulation setup and postprocessing of results. This work proposes a novel MATLAB-based design tool for microneedle arrays that permits personalized selection of the basic characteristics of a mechanical model. The tool automatically exports the selected options to an ANSYS batch file, including instructions to run a static and a linear buckling analysis. Later, the subsequent simulation results can be retrieved for on-screen display and potential postprocessing. In addition, this work reviews recent proposals (2018-2022) about finite element model characterization of microneedles to establish the minimum set of features that any tool intended for automating a design process should provide.
Collapse
Affiliation(s)
- Yolanda Lechuga
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
| | - Gregoire Kandel
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
- ENSEIRB-MATMECA, Bordeaux INP, CEDEX, 33402 Talence, France
| | - Jose Angel Miguel
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
| | - Mar Martinez
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
| |
Collapse
|
15
|
Dulal M, Afroj S, Ahn J, Cho Y, Carr C, Kim ID, Karim N. Toward Sustainable Wearable Electronic Textiles. ACS NANO 2022; 16:19755-19788. [PMID: 36449447 PMCID: PMC9798870 DOI: 10.1021/acsnano.2c07723] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023]
Abstract
Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great value for personalized healthcare applications. However, material performance and sustainability, complicated and difficult e-textile fabrication methods, and their limited end-of-life processability are major challenges to wide adoption of e-textiles. In this review, we explore the potential for sustainable materials, manufacturing techniques, and their end-of-the-life processes for developing eco-friendly e-textiles. In addition, we survey the current state-of-the-art for sustainable fibers and electronic materials (i.e., conductors, semiconductors, and dielectrics) to serve as different components in wearable e-textiles and then provide an overview of environmentally friendly digital manufacturing techniques for such textiles which involve less or no water utilization, combined with a reduction in both material waste and energy consumption. Furthermore, standardized parameters for evaluating the sustainability of e-textiles are established, such as life cycle analysis, biodegradability, and recyclability. Finally, we discuss the current development trends, as well as the future research directions for wearable e-textiles which include an integrated product design approach based on the use of eco-friendly materials, the development of sustainable manufacturing processes, and an effective end-of-the-life strategy to manufacture next generation smart and sustainable wearable e-textiles that can be either recycled to value-added products or decomposed in the landfill without any negative environmental impacts.
Collapse
Affiliation(s)
- Marzia Dulal
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| |
Collapse
|
16
|
Lee S, M Silva S, Caballero Aguilar LM, Eom T, Moulton SE, Shim BS. Biodegradable bioelectronics for biomedical applications. J Mater Chem B 2022; 10:8575-8595. [PMID: 36214325 DOI: 10.1039/d2tb01475k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have been widely used in tissue engineering with the potential to be replaced by regenerative tissue. While conventional bionic interfaces are designed to be implanted in living tissue and organs permanently, biocompatible and biodegradable electronic materials are now progressing a paradigm shift towards transient and regenerative bionic engineering. For example, biodegradable bioelectronics can monitor physiologies in a body, transiently rehabilitate disease symptoms, and seamlessly form regenerative interfaces from synthetic electronic devices to tissues by reducing inflammatory foreign-body responses. Conventional electronic materials have not readily been considered biodegradable. However, several strategies have been adopted for designing electroactive and biodegradable materials systems: (1) conductive materials blended with biodegradable components, (2) molecularly engineered conjugated polymers with biodegradable moieties, (3) naturally derived conjugated biopolymers, and (4) aqueously dissolvable metals with encapsulating layers. In this review, we endeavor to present the technical bridges from electrically active and biodegradable material systems to edible and biodegradable electronics as well as transient bioelectronics with pre-clinical bio-instrumental applications, including biodegradable sensors, neural and tissue engineering, and intelligent drug delivery systems.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
17
|
Shin YK, Shin Y, Lee JW, Seo MH. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. BIOSENSORS 2022; 12:952. [PMID: 36354461 PMCID: PMC9687959 DOI: 10.3390/bios12110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.
Collapse
Affiliation(s)
- Yoo-Kyum Shin
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| | - Yujin Shin
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| |
Collapse
|
18
|
Corsi M, Paghi A, Mariani S, Golinelli G, Debrassi A, Egri G, Leo G, Vandini E, Vilella A, Dähne L, Giuliani D, Barillaro G. Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202062. [PMID: 35618637 PMCID: PMC9353472 DOI: 10.1002/advs.202202062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Here, the authors report on the manufacturing and in vivo assessment of a bioresorbable nanostructured pH sensor. The sensor consists of a micrometer-thick porous silica membrane conformably coated layer-by-layer with a nanometer-thick multilayer stack of two polyelectrolytes labeled with a pH-insensitive fluorophore. The sensor fluorescence changes linearly with the pH value in the range 4 to 7.5 upon swelling/shrinking of the polymer multilayer and enables performing real-time measurements of the pH level with high stability, reproducibility, and accuracy, over 100 h of continuous operation. In vivo studies carried out implanting the sensor in the subcutis on the back of mice confirm real-time monitoring of the local pH level through skin. Full degradation of the pH sensor occurs in one week from implant in the animal model, and its biocompatibility after 2 months is confirmed by histological and fluorescence analyses. The proposed approach can be extended to the detection of other (bio)markers in vivo by engineering the functionality of one (at least) of the polyelectrolytes with suitable receptors, thus paving the way to implantable bioresorbable chemical sensors.
Collapse
Affiliation(s)
- Martina Corsi
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| | - Alessandro Paghi
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & AdultsUniversity‐Hospital of Modena and Reggio EmiliaVia del Pozzo 71Modena41124Italy
| | - Aline Debrassi
- Surflay Nanotec GmbHMax‐Planck‐Straße 312489BerlinGermany
| | - Gabriella Egri
- Surflay Nanotec GmbHMax‐Planck‐Straße 312489BerlinGermany
| | - Giuseppina Leo
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Eleonora Vandini
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Antonietta Vilella
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Lars Dähne
- Surflay Nanotec GmbHMax‐Planck‐Straße 312489BerlinGermany
| | - Daniela Giuliani
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| |
Collapse
|
19
|
Al Mamun A, Sueoka B, Allison N, Huang Y, Zhao F. Design and Evaluation of In-Plane Silicon Microneedles Fabricated with Post-CMOS Compatible Processes. SENSORS AND ACTUATORS. A, PHYSICAL 2022; 336:113407. [PMID: 35573145 PMCID: PMC9104144 DOI: 10.1016/j.sna.2022.113407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, a comprehensive study was carried out on in-plane silicon (Si) microneedles, a useful tool for transdermal drug delivery and sample collection. Microneedles with eleven designs were investigated by post-complementary metal-oxide-semiconductor (CMOS) compatible microfabrication processes and characterized via pricking tests by insertion in chicken breast flesh. Mechanical strength of all designs were also evaluated by theoretical calculation and finite element modeling (FEM) for bending and buckling analysis. To efficiently improve the sharpness and insertion, the wedge-shaped needle tips with thickness determined by Si wafer thickness were sharpened by a wet chemical etching process. Insertion forces recorded from pricking tests and bending and buckling from theoretical calculation and FEM analysis before and after etching were compared. The results showed that the insertion force, free bending force and the maximum buckling force were all reduced and the maximum bending stress were improved after tip sharpening. Furthermore, the buckling safety factor of all eleven designs was great than 1 and the maximum bending stress was less than the fracture strength of Si, indicating that our in-plane Si microneedles are robust enough for insertion into human skin.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, United States
| | - Brandon Sueoka
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, United States
| | - Noah Allison
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, United States
| | | | - Feng Zhao
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, United States
| |
Collapse
|
20
|
Pandey S, Mastrangelo C. Towards Transient Electronics through Heat Triggered Shattering of Off-the-Shelf Electronic Chips. MICROMACHINES 2022; 13:mi13020242. [PMID: 35208366 PMCID: PMC8877697 DOI: 10.3390/mi13020242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
With most of the critical data being stored in silicon (Si) based electronic devices, there is a need to develop such devices with a transient nature. Here, we have focused on developing a programmable and controllable heat triggered shattering transience mechanism for any off-the-shelf (OTS) Si microchip as a means to develop transient electronics which can then be safely and rapidly disabled on trigger when desired. This transience mechanism is based on irreversible and spontaneous propagation of cracks that are patterned on the back of the OTS chip in the form of grooves and then filled with thermally expandable (TE) material. Two types of TE materials were used in this study, commercially available microsphere particles and a developed elastomeric material. These materials expand >100 times their original volume on the application of heat which applies wedging stress of the groove boundaries and induces crack propagation resulting in the complete shattering of the OTS Si chip into tiny silicon pieces. Transience was controlled by temperature and can be triggered at ~160–190 °C. We also demonstrated the programmability of critical parameters such as transience time (0.35–12 s) and transience efficiency (5–60%) without the knowledge of material properties by modeling the swelling behavior using linear viscoelastic models.
Collapse
|
21
|
Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium. SENSORS 2022; 22:s22030802. [PMID: 35161547 PMCID: PMC8838160 DOI: 10.3390/s22030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.
Collapse
|
22
|
Choi YS, Yin RT, Pfenniger A, Koo J, Avila R, Benjamin Lee K, Chen SW, Lee G, Li G, Qiao Y, Murillo-Berlioz A, Kiss A, Han S, Lee SM, Li C, Xie Z, Chen YY, Burrell A, Geist B, Jeong H, Kim J, Yoon HJ, Banks A, Kang SK, Zhang ZJ, Haney CR, Sahakian AV, Johnson D, Efimova T, Huang Y, Trachiotis GD, Knight BP, Arora RK, Efimov IR, Rogers JA. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat Biotechnol 2021; 39:1228-1238. [PMID: 34183859 PMCID: PMC9270064 DOI: 10.1038/s41587-021-00948-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
Temporary cardiac pacemakers used in periods of need during surgical recovery involve percutaneous leads and externalized hardware that carry risks of infection, constrain patient mobility and may damage the heart during lead removal. Here we report a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm that undergoes complete dissolution and clearance by natural biological processes after a defined operating timeframe. We show that these devices provide effective pacing of hearts of various sizes in mouse, rat, rabbit, canine and human cardiac models, with tailored geometries and operation timescales, powered by wireless energy transfer. This approach overcomes key disadvantages of traditional temporary pacing devices and may serve as the basis for the next generation of postoperative temporary pacing technology.
Collapse
Affiliation(s)
- Yeon Sik Choi
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Rose T Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Anna Pfenniger
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Jahyun Koo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - K Benjamin Lee
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Sheena W Chen
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Gang Li
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Qiao
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | | | - Alexi Kiss
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- The George Washington Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Shuling Han
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seung Min Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Chenhang Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
| | - Yu-Yu Chen
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy Burrell
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Beth Geist
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Hyoyoung Jeong
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Joohee Kim
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Hong-Joon Yoon
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Anthony Banks
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chad R Haney
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA
| | - Alan Varteres Sahakian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - David Johnson
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- The George Washington Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yonggang Huang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Gregory D Trachiotis
- Department of Cardiothoracic Surgery, Veteran Affairs Medical Center, Washington, DC, USA
| | - Bradley P Knight
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Rishi K Arora
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
23
|
Lee WH, Cha GD, Kim DH. Flexible and biodegradable electronic implants for diagnosis and treatment of brain diseases. Curr Opin Biotechnol 2021; 72:13-21. [PMID: 34425329 DOI: 10.1016/j.copbio.2021.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
In the diagnosis and treatment of brain diseases, implantable devices have immense potential for intracranial sensing of brain activity and application of controlled therapy for providing feedback to the sensing. Flexible materials are preferred for implantable devices, as they can minimise implanted device-brain tissue mechanical mismatch. Moreover, biodegradable implantable devices can reduce potential immunological side-effects. Biodegradability also helps avoid the burdensome secondary surgery for retrieving the implanted device. In this study, we reviewed recent advancements related to the use of flexible and biodegradable type of implantable devices for the diagnosis and treatment of brain diseases. Representative cases of intracranial sensing and feedback therapy are introduced, and then a brief discussion concludes the review.
Collapse
Affiliation(s)
- Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Abstract
Bio-photonic devices that utilize the interaction between light and biological substances have been emerging as an important tool for clinical diagnosis and/or therapy. At the same time, implanted biodegradable photonic devices can be disintegrated and resorbed after a predefined operational period, thus avoiding the risk and cost associated with the secondary surgical extraction. In this paper, the recent progress on biodegradable photonics is reviewed, with a focus on material strategies, device architectures and their biomedical applications. We begin with a brief introduction of biodegradable photonics, followed by the material strategies for constructing biodegradable photonic devices. Then, various types of biodegradable photonic devices with different functionalities are described. After that, several demonstration examples for applications in intracranial pressure monitoring, biochemical sensing and drug delivery are presented, revealing the great potential of biodegradable photonics in the monitoring of human health status and the treatment of human diseases. We then conclude with the summary of this field, as well as current challenges and possible future directions.
Collapse
|
25
|
Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. MICROMACHINES 2021; 12:mi12060600. [PMID: 34067419 PMCID: PMC8224698 DOI: 10.3390/mi12060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, China;
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Z.X.); (Q.G.)
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China;
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Correspondence: (Z.X.); (Q.G.)
| |
Collapse
|
26
|
Review of 3D-printing technologies for wearable and implantable bio-integrated sensors. Essays Biochem 2021; 65:491-502. [PMID: 33860794 DOI: 10.1042/ebc20200131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023]
Abstract
Thin-film microfabrication-based bio-integrated sensors are widely used for a broad range of applications that require continuous measurements of biophysical and biochemical signals from the human body. Typically, they are fabricated using standard photolithography and etching techniques. This traditional method is capable of producing a precise, thin, and flexible bio-integrated sensor system. However, it has several drawbacks, such as the fact that it can only be used to fabricate sensors on a planar surface, it is highly complex requiring specialized high-end facilities and equipment, and it mostly allows only 2D features to be fabricated. Therefore, developing bio-integrated sensors via 3D-printing technology has attracted particular interest. 3D-printing technology offers the possibility to develop sensors on nonplanar substrates, which is beneficial for noninvasive bio-signal sensing, and to directly print on complex 3D nonplanar organ structures. Moreover, this technology introduces a highly flexible and precisely controlled printing process to realize patient-specific sensor systems for ultimate personalized medicine, with the potential of rapid prototyping and mass customization. This review summarizes the latest advancements in 3D-printed bio-integrated systems, including 3D-printing methods and employed printing materials. Furthermore, two widely used 3D-printing techniques are discussed, namely, ex-situ and in-situ fabrication techniques, which can be utilized in different types of applications, including wearable and smart-implantable biosensor systems.
Collapse
|
27
|
Curtis IS, Wills RJ, Dasog M. Photocatalytic hydrogen generation using mesoporous silicon nanoparticles: influence of magnesiothermic reduction conditions and nanoparticle aging on the catalytic activity. NANOSCALE 2021; 13:2685-2692. [PMID: 33496714 DOI: 10.1039/d0nr07463b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, mesoporous silicon (mp-Si) nanoparticles (NPs) have been recognized as promising materials for sustainable photocatalytic hydrogen (H2) generation, which is both an important chemical feedstock and potential clean energy vector. These materials are commonly prepared via magnesiothermic reduction of silica precursors due to the ease, scalability, and tunability of this reaction. In this work, we investigate how the conditions of magnesiothermic reduction (i.e. reaction temperature and time) influence the performance of mp-Si for photocatalytic H2 generation. The mp-Si NPs were prepared using either the conventional single temperature heating method (650 °C for 3 or 6 h) or a two-temperature method in which the reaction is initially heated to 650 °C for 0.5 h, followed by a second step heating at 100 (mp-Si100), 200 (mp-Si200), or 300 °C (mp-Si300) for 6 h. Of these, mp-Si300 was the best performing photocatalyst and showed the highest H2 evolution rate (4437 μmol h-1 g-1 Si). Our results suggest that crystallinity has a profound effect on the performance of mp-Si photocatalysts. Additionally, high amounts of oxygen and particle sintering lower H2 evolution rates by introducing defect states or grain boundaries. It was also discovered that aging mp-Si NPs under ambient conditions result in continued surface oxidation which deleteriously affects its photocatalytic performance.
Collapse
Affiliation(s)
- Isabel S Curtis
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
| | - Ryan J Wills
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
| | - Mita Dasog
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
28
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
29
|
Sheng H, Zhou J, Li B, He Y, Zhang X, Liang J, Zhou J, Su Q, Xie E, Lan W, Wang K, Yu C. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. SCIENCE ADVANCES 2021; 7:7/2/eabe3097. [PMID: 33523998 PMCID: PMC7793580 DOI: 10.1126/sciadv.abe3097] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 05/23/2023]
Abstract
It has been an outstanding challenge to achieve implantable energy modules that are mechanically soft (compatible with soft organs and tissues), have compact form factors, and are biodegradable (present for a desired time frame to power biodegradable, implantable medical electronics). Here, we present a fully biodegradable and bioabsorbable high-performance supercapacitor implant, which is lightweight and has a thin structure, mechanical flexibility, tunable degradation duration, and biocompatibility. The supercapacitor with a high areal capacitance (112.5 mF cm-2 at 1 mA cm-2) and energy density (15.64 μWh cm-2) uses two-dimensional, amorphous molybdenum oxide (MoO x ) flakes as electrodes, which are grown in situ on water-soluble Mo foil using a green electrochemical strategy. Biodegradation behaviors and biocompatibility of the associated materials and the supercapacitor implant are systematically studied. Demonstrations of a supercapacitor implant that powers several electronic devices and that is completely degraded after implantation and absorbed in rat body shed light on its potential uses.
Collapse
Affiliation(s)
- Hongwei Sheng
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingjing Zhou
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bo Li
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xuetao Zhang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jie Liang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinyuan Zhou
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing Su
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Erqing Xie
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wei Lan
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
- Department of Mechanical Engineering, Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Cunjiang Yu
- Department of Mechanical Engineering, Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
30
|
Ghelich P, Nolta NF, Han M. Unprotected sidewalls of implantable silicon-based neural probes and conformal coating as a solution. NPJ MATERIALS DEGRADATION 2021; 5:5. [PMID: 33855191 PMCID: PMC8043659 DOI: 10.1038/s41529-021-00154-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Silicon-based implantable neural devices have great translational potential as a means to deliver various treatments for neurological disorders. However, they are currently held back by uncertain longevity following chronic exposure to body fluids. Conventional deposition techniques cover only the horizontal surfaces which contain active electronics, electrode sites, and conducting traces. As a result, a vast majority of today's silicon devices leave their vertical sidewalls exposed without protection. In this work, we investigated two batch-process silicon dioxide deposition methods separately and in combination: atomic layer deposition and inductively-coupled plasma chemical vapor deposition. We then utilized a rapid soak test involving potassium hydroxide to evaluate the coverage quality of each protection strategy. Focused ion beam cross sectioning, scanning electron microscopy, and 3D extrapolation enabled us to characterize and quantify the effectiveness of the deposition methods. Results showed that bare silicon sidewalls suffered the most dissolution whereas ALD silicon dioxide provided the best protection, demonstrating its effectiveness as a promising batch process technique to mitigate silicon sidewall corrosion in chronic applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Nicholas F Nolta
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Martin Han
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
31
|
Li S, Rizvi MH, Lynch BB, Tracy JB, Ford E. Flexible Cyclic-Poly(phthalaldehyde)/Poly(ε-caprolactone) Blend Fibers with Fast Daylight-Triggered Transience. Macromol Rapid Commun 2020; 42:e2000657. [PMID: 33368746 DOI: 10.1002/marc.202000657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022]
Abstract
Cyclic-poly(phthalaldehyde) (cPPHA) exhibits photo-triggerable depolymerization on-demand for applications like the photolithography of microfabricated electronics. However, cPPHA is inherently brittle and thermally sensitive; both of these properties limit its usefulness as an engineering plastic. Prior to this report, small molecule plasticizers are added to cPPHA-based films to make the polymer more flexible. But plasticizers can eventually leach out of cPPHA, then leaving it increasingly more brittle throughout product lifetime. In this research, a new approach to fabricating flexible cPPHA blends for use as spun fibers is achieved through the incorporation of poly (ε-caprolactone) (PCL) by a modified wet spinning method. Among blend compositions, the 50/50 cPPHA/PCL fiber shows fast transience (<50 s) in response to daylight while retaining the flexibility of PCL and mechanical properties of an elastomer (i.e., tensile strength of ≈8 MPa, Young's modulus of ≈118 MPa, and elongation at break of ≈190%). Embedding 2 wt% gold nanoparticles to cPPHA can further improve the transience rate of fibers comprising less than 50% cPPHA. These flexible, daylight-triggerable cPPHA/PCL fibers can be applied to an extensive range of applications, such as wearable electronics, intelligent textiles, and zero waste packaging for which modest mechanical performance and fast transience are desired.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
| | - Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Brian B Lynch
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Ericka Ford
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
| |
Collapse
|
32
|
Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Indexed: 05/23/2023]
Abstract
Transient electronics refers to an emerging class of advanced technology, defined by an ability to chemically or physically dissolve, disintegrate, and degrade in actively or passively controlled fashions to leave environmentally and physiologically harmless by-products in environments, particularly in bio-fluids or aqueous solutions. The unusual properties that are opposite to operational modes in conventional electronics for a nearly infinite time frame offer unprecedented opportunities in research areas of eco-friendly electronics, temporary biomedical implants, data-secure hardware systems, and others. This review highlights the developments of transient electronics, including materials, manufacturing strategies, electronic components, and transient kinetics, along with various potential applications.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
33
|
Koo J, Kim SB, Choi YS, Xie Z, Bandodkar AJ, Khalifeh J, Yan Y, Kim H, Pezhouh MK, Doty K, Lee G, Chen YY, Lee SM, D’Andrea D, Jung K, Lee K, Li K, Jo S, Wang H, Kim JH, Kim J, Choi SG, Jang WJ, Oh YS, Park I, Kwak SS, Park JH, Hong D, Feng X, Lee CH, Banks A, Leal C, Lee HM, Huang Y, Franz CK, Ray WZ, MacEwan M, Kang SK, Rogers JA. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. SCIENCE ADVANCES 2020; 6:eabb1093. [PMID: 32923633 PMCID: PMC7455185 DOI: 10.1126/sciadv.abb1093] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release. These valves operate through an electrochemical mechanism of geometrically accelerated corrosion induced by passage of electrical current from a wireless, bioresorbable power-harvesting unit. Evaluations in cell cultures demonstrate the efficacy of this technology for the treatment of cancerous tissues by release of the drug doxorubicin. Complete in vivo studies of platforms with multiple, independently controlled release events in live-animal models illustrate capabilities for control of blood glucose levels by timed delivery of insulin.
Collapse
Affiliation(s)
- Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung Bong Kim
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yeon Sik Choi
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Amay J. Bandodkar
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jawad Khalifeh
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hojun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | | | - Karen Doty
- Department of Comparative Biosciences Histology Service Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Geumbee Lee
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Yu-Yu Chen
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seung Min Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dominic D’Andrea
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
| | - Kimin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science Technology, Daejeon 34141, Republic of Korea
| | - KunHyuck Lee
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Kan Li
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Seongbin Jo
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heling Wang
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jae-Hwan Kim
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sung-Geun Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo Jin Jang
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong Suk Oh
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Soo Kwak
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Ji-Hyeon Park
- Korea Institute of Ceramic Engineering and Technology, 15-5, Chungmugong-dong, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Doosun Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science Technology, Daejeon 34141, Republic of Korea
| | - Xue Feng
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Chi-Hwan Lee
- Weldon School of Biomedical Engineering and School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Anthony Banks
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyuck Mo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science Technology, Daejeon 34141, Republic of Korea
| | - Yonggang Huang
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Colin K. Franz
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
- Departments of Physical Medicine and Rehabilitation, and Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Matthew MacEwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Corresponding author. (J.A.R.); (S.-K.K.); (M.M.)
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (J.A.R.); (S.-K.K.); (M.M.)
| | - John A. Rogers
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (J.A.R.); (S.-K.K.); (M.M.)
| |
Collapse
|
34
|
Lu D, Yan Y, Avila R, Kandela I, Stepien I, Seo M, Bai W, Yang Q, Li C, Haney CR, Waters EA, MacEwan MR, Huang Y, Ray WZ, Rogers JA. Bioresorbable, Wireless, Passive Sensors as Temporary Implants for Monitoring Regional Body Temperature. Adv Healthc Mater 2020; 9:e2000942. [PMID: 32597568 DOI: 10.1002/adhm.202000942] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/26/2022]
Abstract
Measurements of regional internal body temperatures can yield important information in the diagnosis of immune response-related anomalies, for precisely managing the effects of hyperthermia and hypothermia therapies and monitoring other transient body processes such as those associated with wound healing. Current approaches rely on permanent implants that require extraction surgeries after the measurements are no longer needed. Emerging classes of bioresorbable sensors eliminate the requirements for extraction, but their use of percutaneous wires for data acquisition leads to risks for infection at the suture site. As an alternative, a battery-free, wireless implantable device is reported here, which is constructed entirely with bioresorbable materials for monitoring regional internal body temperatures over clinically relevant timeframes. Ultimately, these devices disappear completely in the body through natural processes. In vivo demonstrations indicate stable operation as subcutaneous and intracranial implants in rat models for up to 4 days. Potential applications include monitoring of healing cascades associated with surgical wounds, recovery processes following internal injuries, and the progression of thermal therapies for various conditions.
Collapse
Affiliation(s)
- Di Lu
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Ying Yan
- Department of Neurological Surgery Washington University School of Medicine St Louis MO 63110 USA
| | - Raudel Avila
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering Northwestern University Evanston IL 60208 USA
| | - Irawati Kandela
- Center for Developmental Therapeutics Northwestern University Evanston IL 60208 USA
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
| | - Iwona Stepien
- Center for Developmental Therapeutics Northwestern University Evanston IL 60208 USA
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
| | - Min‐Ho Seo
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Wubin Bai
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Quansan Yang
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Chenhang Li
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering Northwestern University Evanston IL 60208 USA
| | - Chad R. Haney
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
- Center for Advanced Molecular Imaging Northwestern University Evanston IL 60208 USA
| | - Emily A. Waters
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
- Center for Advanced Molecular Imaging Northwestern University Evanston IL 60208 USA
| | - Matthew R. MacEwan
- Department of Neurological Surgery Washington University School of Medicine St Louis MO 63110 USA
| | - Yonggang Huang
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering Northwestern University Evanston IL 60208 USA
| | - Wilson Z. Ray
- Department of Neurological Surgery Washington University School of Medicine St Louis MO 63110 USA
| | - John A. Rogers
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| |
Collapse
|
35
|
Kim H, Lee H, Jeon Y, Park W, Zhang Y, Kim B, Jang H, Xu B, Yeo Y, Kim DR, Lee CH. Bioresorbable, Miniaturized Porous Silicon Needles on a Flexible Water-Soluble Backing for Unobtrusive, Sustained Delivery of Chemotherapy. ACS NANO 2020; 14:7227-7236. [PMID: 32401016 PMCID: PMC8279902 DOI: 10.1021/acsnano.0c02343] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Conventional melanoma therapies suffer from the toxicity and side effects of repeated treatments due to the aggressive and recurrent nature of melanoma cells. Less-invasive topical chemotherapies by utilizing polymeric microneedles have emerged as an alternative, but the sustained, long-lasting release of drug cargos remains challenging. In addition, the size of the microneedles is relatively bulky for the small, curvilinear, and exceptionally sensitive cornea for the treatment of ocular melanoma. Here, we report a design of bioresorbable, miniaturized porous-silicon (p-Si) needles with covalently linked drug cargos at doses comparable to those of conventional polymeric microneedles. The p-Si needles are built on a water-soluble film as a temporary flexible holder that can be intimately interfaced with the irregular surface of living tissues, followed by complete dissolution with saline solution within 1 min. Consequently, the p-Si needles remain embedded inside tissues and then undergo gradual degradation, allowing for sustained release of the drug cargos. Its utility in unobtrusive topical delivery of chemotherapy with minimal side effects is demonstrated in a murine melanoma model.
Collapse
Affiliation(s)
- Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Heungsoo Lee
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yue Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hanmin Jang
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
- Corresponding Authors: (Y.Y.), (D.R.K.), (C.H.L.)
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
- Corresponding Authors: (Y.Y.), (D.R.K.), (C.H.L.)
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47907, USA
- Corresponding Authors: (Y.Y.), (D.R.K.), (C.H.L.)
| |
Collapse
|
36
|
Jung YH, Kim JU, Lee JS, Shin JH, Jung W, Ok J, Kim TI. Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907478. [PMID: 32104960 DOI: 10.1002/adma.201907478] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The rapid pace of progress in implantable electronics driven by novel technology has created devices with unconventional designs and features to reduce invasiveness and establish new sensing and stimulating techniques. Among the designs, injectable forms of biomedical electronics are explored for accurate and safe targeting of deep-seated body organs. Here, the classes of biomedical electronics and tools that have high aspect ratio structures designed to be injected or inserted into internal organs for minimally invasive monitoring and therapy are reviewed. Compared with devices in bulky or planar formats, the long shaft-like forms of implantable devices are easily placed in the organs with minimized outward protrusions via injection or insertion processes. Adding flexibility to the devices also enables effortless insertions through complex biological cavities, such as the cochlea, and enhances chronic reliability by complying with natural body movements, such as the heartbeat. Diverse types of such injectable implants developed for different organs are reviewed and the electronic, optoelectronic, piezoelectric, and microfluidic devices that enable stimulations and measurements of site-specific regions in the body are discussed. Noninvasive penetration strategies to deliver the miniscule devices are also considered. Finally, the challenges and future directions associated with deep body biomedical electronics are explained.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ju Seung Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Department of Biomedical Engineering, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
37
|
Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. MICROMACHINES 2020; 11:E243. [PMID: 32111023 PMCID: PMC7143805 DOI: 10.3390/mi11030243] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The skyrocketing popularity of health monitoring has spurred increasing interest in wearable electrochemical biosensors. Compared with the traditionally rigid and bulky electrochemical biosensors, flexible and stretchable devices render a unique capability to conform to the complex, hierarchically textured surfaces of the human body. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable electrochemical biosensors can convert the types and concentrations of chemical changes in the body into electrical signals for easy readout. Initial exploration of wearable electrochemical biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable property is needed for the thin-film device to form an intimate contact with the textured skin surface and to deform with various natural skin motions. Thus, stretchable materials and structures have been exploited to ensure the effective function of a wearable electrochemical biosensor. In this mini-review, we summarize the recent development of flexible and stretchable electrochemical biosensors, including their principles, representative application scenarios (e.g., saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have been made in the wearable electrochemical biosensors, challenges still exist, which represents a small fraction of opportunities for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Xudong Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Automotive Engineering, Beihang University, Beijing 100191, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huanyu Cheng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
38
|
La Mattina AA, Mariani S, Barillaro G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902872. [PMID: 32099766 PMCID: PMC7029671 DOI: 10.1002/advs.201902872] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Over the last decade, scientists have dreamed about the development of a bioresorbable technology that exploits a new class of electrical, optical, and sensing components able to operate in physiological conditions for a prescribed time and then disappear, being made of materials that fully dissolve in vivo with biologically benign byproducts upon external stimulation. The final goal is to engineer these components into transient implantable systems that directly interact with organs, tissues, and biofluids in real-time, retrieve clinical parameters, and provide therapeutic actions tailored to the disease and patient clinical evolution, and then biodegrade without the need for device-retrieving surgery that may cause tissue lesion or infection. Here, the major results achieved in bioresorbable technology are critically reviewed, with a bottom-up approach that starts from a rational analysis of dissolution chemistry and kinetics, and biocompatibility of bioresorbable materials, then moves to in vivo performance and stability of electrical and optical bioresorbable components, and eventually focuses on the integration of such components into bioresorbable systems for clinically relevant applications. Finally, the technology readiness levels (TRLs) achieved for the different bioresorbable devices and systems are assessed, hence the open challenges are analyzed and future directions for advancing the technology are envisaged.
Collapse
Affiliation(s)
- Antonino A. La Mattina
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| |
Collapse
|
39
|
Ding S, Cai Q, Mao J, Chen F, Fu L, Lv Y, Zhao S. Highly conductive and transient tracks based on silver flakes and a polyvinyl pyrrolidone composite. RSC Adv 2020; 10:33112-33118. [PMID: 35515073 PMCID: PMC9056664 DOI: 10.1039/d0ra06603f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Transient electronics have been widely researched to solve the electronic waste (E-waste) issue. Although various transient materials and devices have been reported, the fabrication technique for transient conductors always uses expensive sputtering or evaporation processes. In this study, a silver flake (AgF) and polyvinyl pyrrolidone (PVP) composite is prepared for conductive and transient tracks. The AgF/PVP composite tracks are highly conductive with a resistivity of 8.9 mOhm cm after sintering at 80 °C for only 3 minutes. Impressively, the AgF/PVP tracks disintegrate in water in 3 minutes due to the fast dissolution of the water-soluble PVP. The transient behavior of the AgF/PVP tracks has potential in transient electronics as demonstrated in a light emitting diode (LED) circuit and antenna. Transient electronics have been widely researched to solve the electronic waste (E-waste) issue.![]()
Collapse
Affiliation(s)
- Su Ding
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- 310018 Hangzhou
- P. R. China
| | - Qingfeng Cai
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- 310018 Hangzhou
- P. R. China
| | - Jintao Mao
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- 310018 Hangzhou
- P. R. China
| | - Fei Chen
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- 310018 Hangzhou
- P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- 310018 Hangzhou
- P. R. China
| | - Yanfei Lv
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- 310018 Hangzhou
- P. R. China
| | - Shichao Zhao
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- 310018 Hangzhou
- P. R. China
| |
Collapse
|
40
|
Huang S, Xuan W, Liu S, Tao X, Xu H, Zhan S, Chen J, Cao Z, Jin H, Dong S, Zhou H, Wang X, Kim JM, Luo J. Ultra-thin atom layer deposited alumina film enables the precise lifetime control of fully biodegradable electronic devices. NANOSCALE 2019; 11:22369-22377. [PMID: 31729502 DOI: 10.1039/c9nr06566k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomic layer deposited (ALD) ultra-thin alumina film is proposed to control the operational lifetimes of fully biodegradable (FB-) surface sensitive surface acoustic wave (SAW) devices. SAW devices encapsulated with conventional thick organic materials fail to function effectively, while devices with an ultra-thin alumina encapsulation layer (AEL) function normally with high performance. After being subjected to degradation in water, a FB-SAW device with no AEL starts to degrade immediately and fails within 8 h, due to dissolution of the tungsten electrode and piezoelectric material (ZnO). The coating of an ultra-thin AEL on the surfaces prevents SAW devices from undergoing degradation in water and enables SAW devices to perform normally before the AEL is dissolved. The stable operation lifetimes of SAW devices are linearly dependent on the AEL thickness, thus allowing for the design of devices with precisely controlled operational lifetimes and degradation times. The results show that all the materials used could be degraded; also, in vitro cytotoxicity tests indicate that the encapsulated FB-SAW devices are biocompatible, and cells can adhere and proliferate on them normally, demonstrating great potential for broader biodegradable electronic device applications.
Collapse
Affiliation(s)
- Shuyi Huang
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Qin G, Pei Z, Zhang Y, Lan K, Li Q, Li L, Yu S, Chen X. Dielectric ceramics/TiO 2/single-crystalline silicon nanomembrane heterostructure for high performance flexible thin-film transistors on plastic substrates. RSC Adv 2019; 9:35289-35296. [PMID: 35530705 PMCID: PMC9074119 DOI: 10.1039/c9ra06572e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/20/2019] [Indexed: 12/03/2022] Open
Abstract
A dielectric ceramics/TiO2/single-crystalline silicon nanomembrane (SiNM) heterostructure is designed and fabricated for high performance flexible thin-film transistors (TFTs). Both the dielectric ceramics (Nb2O3-Bi2O3-MgO) and TiO2 are deposited by radio frequency (RF) magnetron sputtering at room temperature, which is compatible with flexible plastic substrates. And the single-crystalline SiNM is transferred and attached to the dielectric ceramics/TiO2 layers to form the heterostructure. The experimental results demonstrate that the room temperature processed heterostructure has high quality because: (1) the Nb2O3-Bi2O3-MgO/TiO2 heterostructure has a high dielectric constant (∼76.6) and low leakage current. (2) The TiO2/single-crystalline SiNM structure has a relatively low interface trap density. (3) The band gap of the Nb2O3-Bi2O3-MgO/TiO2 heterostructure is wider than TiO2, which increases the conduction band offset between Si and TiO2, lowering the leakage current. Flexible TFTs have been fabricated with the Nb2O3-Bi2O3-MgO/TiO2/SiNM heterostructure on plastic substrates and show a current on/off ratio over 104, threshold voltage of ∼1.2 V, subthreshold swing (SS) as low as ∼0.2 V dec-1, and interface trap density of ∼1012 eV-1 cm-2. The results indicate that the dielectric ceramics/TiO2/SiNM heterostructure has great potential for high performance TFTs.
Collapse
Affiliation(s)
- Guoxuan Qin
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Zhihui Pei
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Yibo Zhang
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Kuibo Lan
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin 300072 P. R. China
| | - Lingxia Li
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
| | - Shihui Yu
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
42
|
Phan HP, Zhong Y, Nguyen TK, Park Y, Dinh T, Song E, Vadivelu RK, Masud MK, Li J, Shiddiky MJA, Dao D, Yamauchi Y, Rogers JA, Nguyen NT. Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. ACS NANO 2019; 13:11572-11581. [PMID: 31433939 DOI: 10.1021/acsnano.9b05168] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Implantable electronics are of great interest owing to their capability for real-time and continuous recording of cellular-electrical activity. Nevertheless, as such systems involve direct interfaces with surrounding biofluidic environments, maintaining their long-term sustainable operation, without leakage currents or corrosion, is a daunting challenge. Herein, we present a thin, flexible semiconducting material system that offers attractive attributes in this context. The material consists of crystalline cubic silicon carbide nanomembranes grown on silicon wafers, released and then physically transferred to a final device substrate (e.g., polyimide). The experimental results demonstrate that SiC nanomembranes with thicknesses of 230 nm do not experience the hydrolysis process (i.e., the etching rate is 0 nm/day at 96 °C in phosphate-buffered saline (PBS)). There is no observable water permeability for at least 60 days in PBS at 96 °C and non-Na+ ion diffusion detected at a thickness of 50 nm after being soaked in 1× PBS for 12 days. These properties enable Faradaic interfaces between active electronics and biological tissues, as well as multimodal sensing of temperature, strain, and other properties without the need for additional encapsulating layers. These findings create important opportunities for use of flexible, wide band gap materials as essential components of long-lived neurological and cardiac electrophysiological device interfaces.
Collapse
Affiliation(s)
- Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
| | - Yishan Zhong
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Yoonseok Park
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
| | - Toan Dinh
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Enming Song
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Raja Kumar Vadivelu
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering & Nanotechnology and School of Chemical Engineering , University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Jinghua Li
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Plant & Environmental New Resources , Kyung Hee University , 1732 Deogyeong-daero , Giheung-gu, Yongin-si , Gyeonggi-do 446-701 , Korea
| | - Muhammad J A Shiddiky
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
- School of Environment and Science , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Dzung Dao
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
- School of Engineering and Built Environment , Griffith University , Gold Coast , Queensland 4215 , Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering & Nanotechnology and School of Chemical Engineering , University of Queensland , Brisbane , Queensland 4072 , Australia
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - John A Rogers
- Center for Bio-Integrated Electronics, Department of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and, Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/biotechnology, McCormick School of Engineering and Feinberg School of Medicine , Northwestern University , Evanston , Illinois 60208 , United States
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| |
Collapse
|
43
|
Lu D, Liu TL, Chang JK, Peng D, Zhang Y, Shin J, Hang T, Bai W, Yang Q, Rogers JA. Transient Light-Emitting Diodes Constructed from Semiconductors and Transparent Conductors that Biodegrade Under Physiological Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902739. [PMID: 31489737 DOI: 10.1002/adma.201902739] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Transient forms of electronics, systems that disintegrate, dissolve, resorb, or sublime in a controlled manner after a well-defined operating lifetime, are of interest for applications in hardware secure technologies, temporary biomedical implants, "green" consumer devices and other areas that cannot be addressed with conventional approaches. Broad sets of materials now exist for a range of transient electronic components, including transistors, diodes, antennas, sensors, and even batteries. This work reports the first examples of transient light-emitting diodes (LEDs) that can completely dissolve in aqueous solutions to biologically and environmentally benign end products. Thin films of highly textured ZnO and polycrystalline Mo serve as semiconductors for light generation and conductors for transparent electrodes, respectively. The emitted light spans a range of visible wavelengths, where nanomembranes of monocrystalline silicon can serve as transient filters to yield red, green, and blue LEDs. Detailed characterization of the material chemistries and morphologies of the constituent layers, assessments of their performance properties, and studies of their dissolution processes define the underlying aspects. These results establish an electroluminescent light source technology for unique classes of optoelectronic systems that vanish into benign forms when exposed to aqueous conditions in the environment or in living organisms.
Collapse
Affiliation(s)
- Di Lu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Tzu-Li Liu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jan-Kai Chang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Dongsheng Peng
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, China
| | - Yi Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jiho Shin
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Tao Hang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wubin Bai
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Quansan Yang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
44
|
Chen Y, Wang H, Zhang Y, Li R, Chen C, Zhang H, Tang S, Liu S, Chen X, Wu H, Lv R, Sheng X, Zhang P, Wang S, Yin L. Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices. NANOTECHNOLOGY 2019; 30:394002. [PMID: 31181541 DOI: 10.1088/1361-6528/ab2853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transient electronics is an emerging technology that enables unique functional transformation or the physical disappearance of electronic devices, and is attracting increasing attention for potential applications in data secured hardware as an ultimate solution against data breaches. Developing smart triggered degradation modalities of silicon (Si) remain the key challenge to achieve advanced non-recoverable on-demand transient electronics. Here, we present a novel electrochemically triggered transience mechanism of Si by lithiation, allowing complete and controllable destruction of Si devices. The depth and microstructure of the lithiation-affected zone over time is investigated in detail and the results suggest a few hours of lithiation is sufficient to create microcracks and significantly promote lithium penetration. Finite element models are proposed to confirm the mechanism. Electrochemically triggered degradation of thin film Si ribbons and Si integrated circuit chips with metal-oxide-semiconductor field-effect transistors from a commercial 0.35 micrometer complementary metal-oxide-semiconductor technology node is performed to demonstrate the potential applications for commercial electronics. This work opens new opportunities for versatile triggered transience of Si-based devices for critical secured information systems and green consumer electronics.
Collapse
Affiliation(s)
- Yaoxu Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
46
|
Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, Kaddoura M, Blondeel EJM, Cui B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. MICROSYSTEMS & NANOENGINEERING 2019; 5:41. [PMID: 31636931 PMCID: PMC6799813 DOI: 10.1038/s41378-019-0077-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 05/22/2023]
Abstract
Microneedle technologies have the potential for expanding the capabilities of wearable health monitoring from physiology to biochemistry. This paper presents the fabrication of silicon hollow microneedles by a deep-reactive ion etching (DRIE) process, with the aim of exploring the feasibility of microneedle-based in-vivo monitoring of biomarkers in skin fluid. Such devices shall have the ability to allow the sensing elements to be integrated either within the needle borehole or on the backside of the device, relying on capillary filling of the borehole with dermal interstitial fluid (ISF) for transporting clinically relevant biomarkers to the sensor sites. The modified DRIE process was utilized for the anisotropic etching of circular holes with diameters as small as 30 μm to a depth of >300 μm by enhancing ion bombardment to efficiently remove the fluorocarbon passivation polymer. Afterward, isotropic wet and/or dry etching was utilized to sharpen the needle due to faster etching at the pillar top, achieving tip radii as small as 5 μm. Such sharp microneedles have been demonstrated to be sufficiently robust to penetrate porcine skin without needing any aids such as an impact-insertion applicator, with the needles remaining mechanically intact after repetitive penetrations. The capillary filling of DRIE-etched through-wafer holes with water has also been demonstrated, showing the feasibility of use to transport the analyte to the target sites.
Collapse
Affiliation(s)
- Yan Li
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Hang Zhang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Ruifeng Yang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Yohan Laffitte
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Ulises Schmill
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Wenhan Hu
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Moufeed Kaddoura
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | | | - Bo Cui
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
47
|
Cha GD, Kang D, Lee J, Kim D. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Adv Healthc Mater 2019; 8:e1801660. [PMID: 30957984 DOI: 10.1002/adhm.201801660] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Medical implants, either passive implants for structural support or implantable devices with active electronics, have been widely used for the diagnosis and treatment of various diseases and clinical issues. These implants offer various functions, including mechanical support of biological structures in orthopedic and dental applications, continuous electrophysiological monitoring and feedback of electrical stimulation in neuronal and cardiac applications, and controlled drug delivery while maintaining arterial structure in drug-eluting stents. Although these implants exhibit long-term biocompatibility, surgery for their retrieval is often required, which imposes physical, biological, and economical burdens on the patients. Therefore, as an alternative to such secondary surgeries, bioresorbable implants that disappear after a certain period of time inside the body, including bioresorbable active electronics, have been highlighted recently. This review first discusses the historical background of medical implants and briefly define related terminology. Representative examples of non-degradable medical implants for passive structural support and/or for diagnosis and therapy with active electronics are also provided. Then, recent progress in bioresorbable active implants composed of biosignal sensors, actuators for therapeutics, wireless power supply components, and their integrated systems are reviewed. Finally, clinical applications of these bioresorbable electronic implants are exemplified with brief conclusion and future outlook.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dayoung Kang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Jongha Lee
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| |
Collapse
|
48
|
Wang L, Gao Y, Dai F, Kong D, Wang H, Sun P, Shi Z, Sheng X, Xu B, Yin L. Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18013-18023. [PMID: 31010291 DOI: 10.1021/acsami.9b03546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradable electronic devices that physically disappear in physiological or environmental solutions are of critical importance for widespread applications in healthcare management and environmental sustainability. The precise modulation of materials and devices dissolution with on-demand operational lifetime, however, remain a key challenge. Silicon nanomembranes (Si NMs) are one of the essential semiconductor components for high-performance biodegradable electronics at the system level. In this work, we discover unusual hydrolysis behaviors of Si NMs that are significantly dependent on the dimensions of devices as well as their surface chemistry statuses. The experiments show a pronounced increase in hydrolysis rates of p-type Si NMs with larger sizes, and mechanical stirring introduces a significant decrease in dissolution rates. The presence of phosphates and potassium ions in solutions, or lower dopant levels of Si NMs will facilitate the degradation of Si NMs and will also lead to a stronger size-dependent effect. Molecular dynamics simulations are performed to reveal ion adsorption mechanisms of Si NMs under different surface charge statuses and confirm our experimental observations. Through geometrical designs, Si NM-based electrode arrays with tunable dissolution lifetime are formed, and their electrochemical properties are analyzed in vitro. These results offer new controlling strategies to modulate the operational time frames of Si NMs through geometrical design and surface chemistry modification and provide crucial fundamental understandings for engineering high-performance biodegradable electronics.
Collapse
Affiliation(s)
| | - Yuan Gao
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | | | | | | | | | | | | | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | | |
Collapse
|
49
|
Jelinek M, Kocourek T, Jurek K, Jelinek M, Smolková B, Uzhytchak M, Lunov O. Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E451. [PMID: 30889797 PMCID: PMC6474194 DOI: 10.3390/nano9030451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
This paper deals with the synthesis and study of the properties of germanium-doped diamond-like carbon (DLC) films. For deposition of doped DLC films, hybrid laser technology was used. Using two deposition lasers, it was possible to arrange the dopant concentrations by varying the laser repetition rate. Doped films of Ge concentrations from 0 at.% to 12 at.% were prepared on Si (100) and fused silica (FS) substrates at room temperature. Film properties, such as growth rate, roughness, scanning electron microscopy (SEM) morphology, wavelength dependent X-ray spectroscopy (WDS) composition, VIS-near infrared (IR) transmittance, and biological properties (cytotoxicity, effects on cellular morphology, and ability to produce reactive oxygen species (ROS)) were studied in relation to codeposition conditions and dopant concentrations. The analysis showed that Ge-DLC films exhibit cytotoxicity for higher Ge doping.
Collapse
Affiliation(s)
- Miroslav Jelinek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 27 201 Kladno, Czech Republic.
| | - Tomáš Kocourek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 27 201 Kladno, Czech Republic.
| | - Karel Jurek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| | - Michal Jelinek
- Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic.
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| |
Collapse
|
50
|
Kook G, Jeong S, Kim SH, Kim MK, Lee S, Cho IJ, Choi N, Lee HJ. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:115-124. [PMID: 30480426 DOI: 10.1021/acsami.8b13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Silk fibroin is an excellent candidate for biomedical implantable devices because of its biocompatibility, controllable biodegradability, solution processability, flexibility, and transparency. Thus, fibroin has been widely explored in biomedical applications as biodegradable films as well as functional microstructures. Although there exists a large number of patterning methods for fibroin thin films, multilayer micropatterning of fibroin films interleaved with metal layers still remains a challenge. Herein, we report a new wafer-scale multilayer microfabrication process named aluminum hard mask on silk fibroin (AMoS), which is capable of micropatterning multiple layers composed of both fibroin and inorganic materials (e.g., metal and dielectrics) with high-precision microscale alignment. To the best of our knowledge, our AMoS process is the first demonstration of wafer-scale multilayer processing of both silk fibroin and metal micropatterns. In the AMoS process, aluminum deposited on fibroin is first micropatterned using conventional ultraviolet (UV) photolithography, and the patterned aluminum layer is then used as a mask to pattern fibroin underneath. We demonstrate the versatility of our fabrication process by fabricating fibroin microstructures with different dimensions, passive electronic components composed of both fibroin and metal layers, and functional fibroin microstructures for drug delivery. Furthermore, because one of the crucial advantages of fibroin is biocompatibility, we assess the biocompatibility of our fabrication process through the culture of highly susceptible primary neurons. Because the AMoS process utilizes conventional UV photolithography, the principal advantages of our process are multilayer fabrication with high-precision alignment, high resolution, wafer-scale large area processing, no requirement for chemical modification of the protein, and high throughput and thus low cost, all of which have not been feasible with silk fibroin. Therefore, the proposed fabrication method is a promising candidate for batch fabrication of functional fibroin microelectronics (e.g., memristors and organic thin film transistors) for next-generation implantable biomedical applications.
Collapse
Affiliation(s)
- Geon Kook
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sohyeon Jeong
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - So Hyun Kim
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- SK Biopharmaceuticals Co., Ltd. , 221 Pangyoyeok-ro , Bundang-gu, Seongnam-si , Gyeonggi-do 13494 , Republic of Korea
| | - Mi Kyung Kim
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sungwoo Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Hyunjoo J Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| |
Collapse
|