1
|
Abdelrahim M, Gao Q, Zhang Y, Li W, Xing Q, Bradley M, Geng J. Light-mediated intracellular polymerization. Nat Protoc 2024; 19:1984-2025. [PMID: 38514838 DOI: 10.1038/s41596-024-00970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/24/2023] [Indexed: 03/23/2024]
Abstract
The synthesis of synthetic intracellular polymers offers groundbreaking possibilities in cellular biology and medical research, allowing for novel experiments in drug delivery, bioimaging and targeted cancer therapies. These macromolecules, composed of biocompatible monomers, are pivotal in manipulating cellular functions and pathways due to their bioavailability, cytocompatibility and distinct chemical properties. This protocol details two innovative methods for intracellular polymerization. The first one uses 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) as a photoinitiator for free radical polymerization under UV light (365 nm, 5 mW/cm2). The second method employs photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization with visible light (470 nm, 100 mW/cm2). We further elaborate on isolating these intracellular polymers by streptavidin/biotin interaction or immobilized metal ion affinity chromatography for polymers tagged with biotin or histidine. The entire process, from polymerization to isolation, takes ~48 h. Moreover, the intracellular polymers thus generated demonstrate significant potential in enhancing actin polymerization, in bioimaging applications and as a novel avenue in cancer treatment strategies. The protocol extends to animal models, providing a comprehensive approach from cellular to systemic applications. Users are advised to have a basic understanding of organic synthesis and cell biology techniques.
Collapse
Affiliation(s)
- Mohamed Abdelrahim
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Weishuo Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Wang X, Yu H, Yang T, Wang X, Yang T, Ge Z, Xie Y, Liao X, Li P, Liu Z, Liu L. Density Regulation and Localization of Cell Clusters by Self-Assembled Femtosecond-Laser-Fabricated Micropillar Arrays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58261-58269. [PMID: 34854663 DOI: 10.1021/acsami.1c13818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor cell clusters of varying sizes and densities have different metastatic potentials. Three-dimensional (3D) patterned structures with rational topographical and mechanical properties are capable of guiding the 3D clustering of tumor cells. In this study, single femtosecond laser pulses were used to fabricate individual high-aspect-ratio micropillars via two-photon polymerization (TPP). By combining this approach with capillary-force self-assembly, complex 3D microstructure patterns were constructed with a high efficiency. The microstructures were able to regulate the formation of cell clusters at different cell seeding densities and direct self-guided 3D assembly of cell clusters of various sizes and densities. Localization of cell clusters was achieved using grid-indexed samples to address individual cell clusters, which holds great promise for in situ cell cluster culture and monitoring and for applications such as RNA sequencing of cell clusters.
Collapse
Affiliation(s)
- Xiaoduo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ting Yang
- Northeastern University, Shenyang 110016, China
| | - Xiaofang Wang
- Ningbo Institute of Life and Health Industry, Ningbo 315000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbao Xie
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- Northeastern University, Shenyang 110016, China
| | - Zhu Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
3
|
Carlotti M, Cesini I, Mattoli V. A Simple Approach for Flexible and Stretchable Anti-icing Lubricant-Infused Tape. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45105-45115. [PMID: 34495645 PMCID: PMC8461601 DOI: 10.1021/acsami.1c15634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Unwanted icing has major safety and economic repercussions on human activities, affecting means of transportation, infrastructures, and consumer goods. Compared to the common deicing methods in use today, intrinsically icephobic surfaces can decrease ice accumulation and formation without any active intervention from humans or machines. However, such systems often require complex fabrication methods and can be costly, which limits their applicability. In this study, we report the preparation and characterization of several slippery lubricant-infused porous surfaces (SLIPSs) realized by impregnating with silicone oil a candle soot layer deposited on double-sided adhesive tape. Despite the use of common household items, these SLIPSs showed anti-icing performance comparable to other systems described in the literature (ice adhesion < 20 kPa) and a good resistance to mechanical and environmental damages in laboratory conditions. The use of a flexible and functional substrate as tape allowed these devices to be stretchable without suffering significant degradation and highlights how these systems can be easily prepared and applied anywhere needed. In addition, the possibility of deforming the substrate can "allow" the application of SLIPS technology in mechanical ice removal methodologies, drastically incrementing their performance.
Collapse
Affiliation(s)
- Marco Carlotti
- Center for Materials Interfaces, Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Ilaria Cesini
- Center for Materials Interfaces, Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Virgilio Mattoli
- Center for Materials Interfaces, Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
4
|
Synthetic Data in Quantitative Scanning Probe Microscopy. NANOMATERIALS 2021; 11:nano11071746. [PMID: 34361132 PMCID: PMC8308173 DOI: 10.3390/nano11071746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
Synthetic data are of increasing importance in nanometrology. They can be used for development of data processing methods, analysis of uncertainties and estimation of various measurement artefacts. In this paper we review methods used for their generation and the applications of synthetic data in scanning probe microscopy, focusing on their principles, performance, and applicability. We illustrate the benefits of using synthetic data on different tasks related to development of better scanning approaches and related to estimation of reliability of data processing methods. We demonstrate how the synthetic data can be used to analyse systematic errors that are common to scanning probe microscopy methods, either related to the measurement principle or to the typical data processing paths.
Collapse
|
5
|
del Pozo M, Delaney C, Bastiaansen CWM, Diamond D, Schenning APHJ, Florea L. Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACS NANO 2020; 14:9832-9839. [PMID: 32574044 PMCID: PMC7450659 DOI: 10.1021/acsnano.0c02481] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the advent of direct laser writing using two-photon polymerization, the generation of high-resolution three-dimensional microstructures has increased dramatically. However, the development of stimuli-responsive photoresists to create four-dimensional (4D) microstructures remains a challenge. Herein, we present a supramolecular cholesteric liquid crystalline photonic photoresist for the fabrication of 4D photonic microactuators, such as pillars, flowers, and butterflies, with submicron resolution. These micron-sized features display structural color and shape changes triggered by a variation of humidity or temperature. These findings serve as a roadmap for the design and creation of high-resolution 4D photonic microactuators.
Collapse
Affiliation(s)
- Marc del Pozo
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Colm Delaney
- School
of Chemistry and AMBER, the SFI Research Centre for Advanced Materials
and BioEngineering Research, Trinity College
Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Cees W. M. Bastiaansen
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Dermot Diamond
- Insight
Centre for Data Analytics, National Centre for Sensor Research, School
of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Albert P. H. J. Schenning
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Larisa Florea
- School
of Chemistry and AMBER, the SFI Research Centre for Advanced Materials
and BioEngineering Research, Trinity College
Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
6
|
Marino A, Camponovo A, Degl'Innocenti A, Bartolucci M, Tapeinos C, Martinelli C, De Pasquale D, Santoro F, Mollo V, Arai S, Suzuki M, Harada Y, Petretto A, Ciofani G. Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. NANOSCALE 2019; 11:21227-21248. [PMID: 31663592 PMCID: PMC6867905 DOI: 10.1039/c9nr07976a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aiming at finding new solutions for fighting glioblastoma multiforme, one of the most aggressive and lethal human cancer, here an in vitro validation of multifunctional nanovectors for drug delivery and hyperthermia therapy is proposed. Hybrid magnetic lipid nanoparticles have been fully characterized and tested on a multi-cellular complex model resembling the tumor microenvironment. Investigations of cancer therapy based on a physical approach (namely hyperthermia) and on a pharmaceutical approach (by exploiting the chemotherapeutic drug temozolomide) have been extensively carried out, by evaluating its antiproliferative and pro-apoptotic effects on 3D models of glioblastoma multiforme. A systematic study of transcytosis and endocytosis mechanisms has been moreover performed with multiple complimentary investigations, besides a detailed description of local temperature increments following hyperthermia application. Finally, an in-depth proteomic analysis corroborated the obtained findings, which can be summarized in the preparation of a versatile, multifunctional, and effective nanoplatform able to overcome the blood-brain barrier and to induce powerful anti-cancer effects on in vitro complex models.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Alice Camponovo
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy. and Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesca Santoro
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Valentina Mollo
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Satoshi Arai
- Kanazawa University, Nano Life Science Institute (WPI-NanoLSI), Kakuma-Machi, 920-1192 Kanazawa, Japan and Waseda University, Research Institute for Science and Engineering, 3-4-1 Ohkubo, Shinjuku-ku, 169-8555 Tokyo, Japan
| | - Madoka Suzuki
- Osaka University, Institute for Protein Research, 3-2 Yamadaoka, Suita-Shi, 565-0871 Osaka, Japan and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, 332-0012 Saitama, Japan
| | - Yoshie Harada
- Osaka University, Institute for Protein Research, 3-2 Yamadaoka, Suita-Shi, 565-0871 Osaka, Japan
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy. and Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
7
|
Carlotti M, Mattoli V. Functional Materials for Two-Photon Polymerization in Microfabrication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902687. [PMID: 31402578 DOI: 10.1002/smll.201902687] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Indexed: 05/23/2023]
Abstract
Direct laser writing methods based on two-photon polymerization (2PP) are powerful tools for the on-demand printing of precise and complex 3D architectures at the micro and nanometer scale. While much progress was made to increase the resolution and the feature size throughout the years, by carefully designing a material, one can confer specific functional properties to the printed structures thus making them appealing for peculiar and novel applications. This Review summarizes the state-of-the-art of functional resins and photoresists used in 2PP, discussing both the range of material functions available and the methods used to prepare them, highlighting advantages and disadvantages of different classes of materials in achieving certain properties.
Collapse
Affiliation(s)
- Marco Carlotti
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| |
Collapse
|
8
|
Florian B, Michel K, Steffi G, Nicole H, Frant M, Klaus L, Henning S. MSC differentiation on two-photon polymerized, stiffness and BMP2 modified biological copolymers. ACTA ACUST UNITED AC 2019; 14:035001. [PMID: 30699400 DOI: 10.1088/1748-605x/ab0362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Bone tissue regeneration requires a three-dimensional biological setting. An ideal scaffold should enable cell proliferation and differentiation by mimicking structure and mechanical properties of the compromised defect as well as carrying growth factors. Two-photon polymerization (2PP) allows the preparation of 3D structures with a micrometric resolution. METHODS In this study, 2PP was applied to design scaffolds made from biocompatible methacrylated D,L-lactide-co-ε-caprolactone copolymers (LC) with a controlled porous architecture. Proliferation and differentiation of bone marrow mesenchymal stromal cells on LC was analyzed and compared to a standard inorganic urethane-dimethacrylate (UDMA) matrix. To functionalize LC and UDMA surfaces we analyzed a biomimetic, layer-by-layer coating, which could be modified in stiffness and integration of bone morphogenetic protein 2 (BMP2) and evaluated its effect on osteogenic differentiation. RESULTS On LC surfaces, BMSC demonstrated an optimal proliferation within pore sizes of 60-100 μm and showed a continuous expression of Vimentin. On the polyelectrolyte multilayer coating a significant increase in BMSC proliferation and differentiation as marked by Osteonectin expression was achieved using stiffness modification and BMP2 functionalization. CONCLUSION Combining 3D-Design with biofunctionalization, LC offers a promising approach for future regenerative applications in osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Böhrnsen Florian
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Li G, Chen S, Zeng M, Kong Y, Zhao F, Zhang L, Yang Y. Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloids Surf B Biointerfaces 2019; 176:341-351. [PMID: 30654241 DOI: 10.1016/j.colsurfb.2019.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
To penetrate the effect of protein gradient micropattern on peripheral nerve regeneration, the hierarchically aligned gradient collagen micropattern was prepared by micromoulding method and the influence on Schwann cells growth behavior was studied. The morphology, wettability, stability and component variation of the micropatterns were firstly characterized. Then, Schwann cells were cultured and the related mechanism was penetrated. The results showed that the gradient collagen micropattern could be well fabricated. The surface wettability varied with the change of collagen concentration, and the prepared gradient micropattern showed a good stability after PBS immersion for 15 days. The results of Schwann cells culture and morphological index analysis displayed that the prepared gradient collagen micropatten could well regulate the orientation growth of Schwann cells, while a much better cell alignment growth was obtained on the gradient micropattern with higher collagen concentration and wider pattern size. PCR and WB showed that the micropattern structure could effectively up-regulate the key specific genes for axon regeneration and myelination process. Overall, the study provides a systematic and facile method for understanding the effect of various sized micropatterns on cell behavior, which may have a great significance for the development of artificial implants for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| | - Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China
| | - Ming Zeng
- School of Biology Science, Nantong University, 226019, Nantong, PR China
| | - Yan Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China
| | - Fei Zhao
- School of Biology Science, Nantong University, 226019, Nantong, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| |
Collapse
|
10
|
Shin CS, Li TJ, Lin CL. Alleviating Distortion and Improving the Young's Modulus in Two-Photon Polymerization Fabrications. MICROMACHINES 2018; 9:mi9120615. [PMID: 30467303 PMCID: PMC6316448 DOI: 10.3390/mi9120615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Two-photon polymerization enables the extremely high resolution three-dimensional printing of micro-structures. To know the mechanical properties, and better still, to be able to adjust them is of paramount importance to ensuring the proper structural integrity of the printed products. In this work, the Young’s modulus is measured on two-photon polymerized micro-cantilever bars. Optimizing the scanning trajectory of the laser focus points is important in alleviating distortion of the printed bars. By increasing the laser power and decreasing the inter-voxel distances we can double the Young’s modulus. Post-curing with ultraviolet light can approximately quadruple the Young’s modulus. However, the resulting modulus is still only about 0.3% of that of the bulk polymerized material.
Collapse
Affiliation(s)
- Chow-Shing Shin
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Tzu-Jui Li
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Chih-Lang Lin
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan.
| |
Collapse
|
11
|
Li S, Yu W, Zhang W, Zhang G, Yu L, Lu E. Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration. Int J Nanomedicine 2018; 13:3643-3659. [PMID: 29983560 PMCID: PMC6027846 DOI: 10.2147/ijn.s159989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Optimal osseointegration has been recognized as a pivotal factor in determining the long-term success of biomedical implants. Materials and methods In the current study, highly carbonated hydroxyapatite (CHA) with carbonate contents of 8, 12 and 16 wt% and pure hydroxyapatite (HA) were fabricated via a novel hydrothermal method and deposited on the titanium substrates to generate corresponding CHA bioceramic coatings (designated as C8, C12 and C16, respectively) and HA bioceramic coatings (designated as C0). Results C8, C12 and C16 were endowed with nanoscale, hierarchical hybrid micro-/nanoscale and microscale surface topographies with rod-like superstructures, respectively. Compared with C0, the micro-/nanotextured CHA bioceramic coatings (C8, C12 and C16) possessed excellent surface bioactivity and biocompatibility, as well as better wettability, which mediated improved protein adsorption, giving rise to simultaneous enhancement of a biological cascade of events of rat bone-marrow-derived mesenchymal stem cells including cell adhesion, proliferation, osteogenic differentiation and, notably, the production of the pro-angiogenic growth factor, vascular endothelial growth factor-A. In particular, C12 with biomimetic hierarchical hybrid micro-/nanorod topography exhibited superior fractal property and predominant performance of protein adsorption, cell adhesion, proliferation and osteogenesis concomitant with angiogenesis. Conclusion All these results suggest that the 12 wt% CHA bioceramic coating with synergistic modification of surface chemistry and topography has great prospect for future use as implant coating to achieve optimum osseointegration for orthopedic and dental applications.
Collapse
Affiliation(s)
- Shuang Li
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ; .,Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weijun Yu
- College of Stomatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiqi Zhang
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ;
| | - Guohua Zhang
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ;
| | - Li Yu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ;
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ;
| |
Collapse
|
12
|
Hasselmann NF, Horn W. Attachment of microstructures to single bacteria by two-photon patterning of a protein based hydrogel. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaafb7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Zhu C, Taipaleenmäki EM, Zhang Y, Han X, Städler B. Interaction of cells with patterned reactors. Biomater Sci 2018; 6:793-802. [DOI: 10.1039/c7bm00838d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The patterning of subcompartmentalized enzyme-loaded reactors is illustrated and the effect of triggered encapsulated catalysis on adhering cells is reported.
Collapse
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | | | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| |
Collapse
|
14
|
Barata D, Provaggi E, van Blitterswijk C, Habibovic P. Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions. LAB ON A CHIP 2017; 17:4134-4147. [PMID: 29114689 DOI: 10.1039/c7lc00802c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microfluidic screening platforms offer new possibilities for performing in vitro cell-based assays with higher throughput and in a setting that has the potential to closely mimic the physiological microenvironment. Integrating functional biomaterials into such platforms is a promising approach to obtain a deeper insight into the interactions occurring at the cell-material interface. The success of such an approach is, however, largely dependent on the ability to miniaturize the biomaterials as well as on the choice of the assay used to study the cell-material interactions. In this work, we developed a microfluidic device, the main component of which is made of a widely used biocompatible polymer, polylactic acid (PLA). This device enabled cell culture under different fluidic regimes, including perfusion and diffusion. Through a combination of photolithography, two-photon polymerization and hot embossing, it was possible to microstructure the surface of the cell culture chamber of the device with highly defined geometrical features. Furthermore, using pyramids with different heights and wall microtopographies as an example, adhesion, morphology and distribution of human MG63 osteosarcoma cells were studied. The results showed that both the height of the topographical features and the microstructural properties of their walls affected cell spreading and distribution. This proof-of-concept study shows that the platform developed here is a useful tool for studying interactions between cells and clinically relevant biomaterials under controlled fluidic regimes.
Collapse
Affiliation(s)
- D Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | | | | | | |
Collapse
|
15
|
Hasturk O, Sivas A, Karasozen B, Demirci U, Hasirci N, Hasirci V. Quantification of Type, Timing, and Extent of Cell Body and Nucleus Deformations Caused by the Dimensions and Hydrophilicity of Square Prism Micropillars. Adv Healthc Mater 2016; 5:2972-2982. [PMID: 27925459 DOI: 10.1002/adhm.201600857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/21/2016] [Indexed: 01/30/2023]
Abstract
Novel digital analysis strategies are developed for the quantification of changes in the cytoskeletal and nuclear morphologies of mesenchymal stem cells cultured on micropillars. Severe deformations of nucleus and distinct conformational changes of cell body ranging from extensive elongation to branching are visualized and quantified. These deformations are caused mainly by the dimensions and hydrophilicity of the micropillars.
Collapse
Affiliation(s)
- Onur Hasturk
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Abdullah Sivas
- Institute of Applied Mathematics; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Bulent Karasozen
- Institute of Applied Mathematics; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Utkan Demirci
- Bio-Acoustic-MEMs in Medicine (BAMM) Laboratory; Stanford School of Medicine; Palo Alto CA 94394 USA
| | - Nesrin Hasirci
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
- Department of Chemistry; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Vasif Hasirci
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
- Department of Biological Sciences; Middle East Technical University (METU); Ankara 06800 Turkey
| |
Collapse
|
16
|
Pectin-coated boron nitride nanotubes: In vitro cyto-/immune-compatibility on RAW 264.7 macrophages. Biochim Biophys Acta Gen Subj 2016; 1860:775-84. [DOI: 10.1016/j.bbagen.2016.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/11/2016] [Accepted: 01/24/2016] [Indexed: 11/23/2022]
|
17
|
Soloperto A, Palazzolo G, Tsushima H, Chieregatti E, Vassalli M, Difato F. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool. Front Neurosci 2016; 10:101. [PMID: 27013962 PMCID: PMC4786546 DOI: 10.3389/fnins.2016.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Hanako Tsushima
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Evelina Chieregatti
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy Genoa, Italy
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
18
|
Marino A, Filippeschi C, Mattoli V, Mazzolai B, Ciofani G. Modulation of cellular responses: The two-photon polymerization approach in the control of the physical micro/nanoenvironment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:1865-8. [PMID: 26736645 DOI: 10.1109/embc.2015.7318745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells and tissues are extremely sensitive to their physico-chemical surroundings: in regenerative medicine, as an example, the maintenance of culture conditions resembling the in vivo environment is essential for a correct tissue development. In this review, we summarize our results concerning the preparation and testing of micro/nanostructures for fostering peculiar cellular behavior, prepared by exploiting an innovative technique of high resolution 3D photolithography, the two-photon polymerization (2pp).
Collapse
|
19
|
Nazir R, Balčiu̅nas E, Buczyńska D, Bourquard F, Kowalska D, Gray D, Maćkowski S, Farsari M, Gryko DT. Donor–Acceptor Type Thioxanthones: Synthesis, Optical Properties, and Two-Photon Induced Polymerization. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rashid Nazir
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Evaldas Balčiu̅nas
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete Greece
| | - Dorota Buczyńska
- Department
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Florent Bourquard
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete Greece
| | - Dorota Kowalska
- Department
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - David Gray
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete Greece
| | - Sebastian Maćkowski
- Department
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Maria Farsari
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete Greece
| | - Daniel T. Gryko
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| |
Collapse
|
20
|
Marino A, Filippeschi C, Mattoli V, Mazzolai B, Ciofani G. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. NANOSCALE 2015; 7:2841-50. [PMID: 25519056 DOI: 10.1039/c4nr06500j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Living systems such as cells and tissues are extremely sensitive to their surrounding physico-chemical microenvironment. In the field of regenerative medicine and tissue engineering, the maintenance of culture conditions suitable for the formation of proliferation niches, for the self-renewal maintenance of stem cells, or for the promotion of a particular differentiation fate is an important issue that has been addressed using different strategies. A number of investigations suggests that a particular cell behavior can be in vitro resembled by mimicking the corresponding in vivo conditions. In this context, several biomimetic environments have been designed in order to control cell phenotypes and functions. In this review, we will analyze the most recent examples of the control of the in vitro physical micro/nano-environment by exploiting an innovative technique of high resolution 3D photolithography, the two-photon polymerization (2pp). The biomedical applications of this versatile and disruptive computer assisted design/manufacturing technology are very wide, and range from the fabrication of biomimetic and nanostructured scaffolds for tissue engineering and regenerative medicine, to the microfabrication of biomedical devices, like ossicular replacement prosthesis and microneedles.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | | | | | | | | |
Collapse
|