1
|
Nong TAT, Le TTH, Vu VT, Nguyen MQ, Can DQH, Dong THY, Nguyen TPT, Hoang VH, Nguyen PH. Inhibitory Activity of Compounds Isolated from Ligustrum robustum (Roxb.) Against HepG2 Liver Cancer Cells: Isocubein and 4-(2-Acetoxyethyl)phenol as Potential Candidates. Chem Biodivers 2024; 21:e202401065. [PMID: 39004876 DOI: 10.1002/cbdv.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Many herbal species in the genus Ligustrum have been shown to contain compounds with anti-cancer biological activity. This study aimed to isolate some compounds from the leaves of Ligustrum robustum (Roxb.) Blume (L. robustum) and evaluate their effects against liver cancer cells. As a result, seven previously reported compounds (1-7) were isolated, including four lignans (1-4) and three phenolic derivatives (5-7). The structures of these compounds were determined using spectroscopic methods and comparison with reported data. All isolates were assessed for their inhibitory effects on HepG2 liver cancer cells. Screening results revealed that two compounds, isocubein (3) and 4-(2-acetoxyethyl)phenol (7), exhibited strong inhibitory activity against cell proliferation, with IC50 values of 3.1±0.9 and 4.5±14 μM, respectively. Further analyses demonstrated that both compounds could suppress the formation and development of 3D tumorspheres in terms of quantity and size. Additionally, isocubein (3) and 4-(2-acetoxyethyl)phenol (7) exhibited the ability to inhibit the migration of HepG2 cells. This study represents the first report on the inhibitory activity against HepG2 liver cancer cells of extracts and isolated compounds from L. robustum, providing valuable information for future research aiming to develop products for liver cancer treatment.
Collapse
Affiliation(s)
- Thi Anh Thu Nong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Thanh Huong Le
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Tuan Vu
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Mai Quynh Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Dinh Quang Hung Can
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Hoang Yen Dong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Phuong Thao Nguyen
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Hung Hoang
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Phu Hung Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| |
Collapse
|
2
|
Li Z, Zhang H, Li W, Yao M, Yu H, He M, Feng Y, Li Z. Potential antioxidative components from Syringa oblata Lindl stems revealed by affinity ultrafiltration with multiple drug targets. Bioorg Chem 2023; 138:106604. [PMID: 37178648 DOI: 10.1016/j.bioorg.2023.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Traditional Chinese medicine is the main source of natural products due to its remarkable clinical efficacy. Syringa oblata Lindl (S. oblata) was widely used because of its extensive biological activities. However, to explore the antioxidant components of S. oblata against tyrosinase, the experiments of antioxidation in vitro were employed. At the same time, the determination of TPC was also use to assess the antioxidant ability of CE, MC, EA and WA fractions and the liver protective activity of the EA fraction was evaluated by mice in vivo. Next, UF-LC-MS technology was performed to screen and identify the efficient tyrosinase inhibitors in S. oblata. The results showed that alashinol (G), dihydrocubebin, syripinin E and secoisolariciresinol were characterized as potential tyrosinase ligands and their RBA values were 2.35, 1.97, 1.91 and 1.61, respectively. Moreover, these four ligands can effectively dock with tyrosinase molecules, with binding energies (BEs) ranging from 0.74 to -0.73 kcal/mol. In addition, tyrosinase inhibition experiment was employed to evaluate the tyrosinase inhibition activities of four potential ligands, the result showed that compound 12 (alashinol G, IC50 = 0.91 ± 0.20 mM) showed the strongest activity to tyrosinase, followed by secoisolariciresinol (IC50 = 0.99 ± 0.07 mM), dihydrocubebin (IC50 = 1.04 ± 0.30 mM) and syripinin E (IC50 = 1.28 ± 0.23 mM), respectively. The results demonstrate that S. oblata might have excellent antioxidant activity, and UF-LC-MS technique is a effective means to filter out tyrosinase inhibitors from natural products.
Collapse
Affiliation(s)
- Zhiqiang Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Haonan Zhang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China
| | - Wanting Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Min Yao
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Huimin Yu
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China
| | - Mingzhen He
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Yulin Feng
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Zhifeng Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| |
Collapse
|
3
|
de Araújo FHS, Nogueira CR, Trichez VDK, da Rosa Guterres Z, da Silva Pinto L, Velter SQ, Mantovani Ferreira GA, Machado MB, de Oliveira Gomes Neves K, Vieira MDC, Lima Cardoso CA, Heredia-Vieira SC, de Oliveira KMP, Piva RC, Oesterreich SA. Anti-hyperglycemic potential and chemical constituents of Aristolochia triangularis Cham. leaves - A medicinal species native to Brazilian forests. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115991. [PMID: 36470307 DOI: 10.1016/j.jep.2022.115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochia triangularis Cham. has been used in Brazilian traditional medicine for various therapeutic purposes, including as a leaf-based infusion for diabetes management. AIM OF THE STUDY This study was designed to chemically characterize an infusion of in natura A. triangularis leaves and evaluate the in vivo anti-hyperglycemic properties of this infusion. MATERIALS AND METHODS Chemical composition was examined using liquid-liquid extraction procedure, chromatographic methods, NMR, and LC-MS/MS. The in vivo anti-hyperglycemic activity of the freeze-dried infusion of A. triangularis leaves (Inf-L-At) was assessed using oral glucose tolerance test (OGTT). Initially, normoglycemic male rats were pre-treated with orally administered Inf-L-At at doses of 62.5, 125, and 250 mg/kg for two consecutive days. On the day of the OGTT, fasting animals received a glucose load (4 g/kg) 30 min after treatment with Inf-L-At, and the blood glucose levels were verified at 15, 30, 60, and 180 min. Intestinal maltase, lactase, and sucrase activities and muscle and liver glycogen contents were also assessed after the OGTT. RESULTS Inf-L-At extract led to glycemic reduction with no dose-response at 15, 30, and 60 min comparable to that of the antidiabetic drug glibenclamide and was accompanied by an increase in hepatic and muscle glycogen contents. Additionally, there was a significant statistically decrease in the in vitro activity of disaccharidases. Maltase and sucrase activities were inhibited at all doses, whereas lactase activity was inhibited only at 62.5 and 250 mg/kg. In total, 75 compounds were found in the infusion, including seven new ones, (7S*,8S*,7ꞌS*,8ꞌR*)-4,4ꞌ-dihydroxy-3,3ꞌ-dimethoxy-7,9ꞌ-epoxylignan-7ꞌ-ol; 4ꞌ-hydroxy-3ꞌ-methoxy-3,4-methylenedioxy-7,9ꞌ-epoxylignan-9,7ꞌ-diol; triangularisines A, B, and C; N-ethyl-N-methyl-affineine; and N-methyl pachyconfine, and one previously not described as a natural product, epi-secoisolariciresinol monomethyl ether. CONCLUSION The results demonstrated the anti-hyperglycemic activity of the infusion from A. triangularis leaves and showed that it is a rich source of lignoids, alkaloids, and glycosylated flavonoids, which are known to exhibit antidiabetic effects and other biological properties that can be beneficial for patients with chronic hyperglycemia, thus certifying the popular use of this herbal drink.
Collapse
Affiliation(s)
- Flávio Henrique Souza de Araújo
- Faculdade de Ciências da Saúde (FCS), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Cláudio Rodrigo Nogueira
- Grupo Especializado em Substâncias Secundárias e em Bioconversão por Lepidópteros (GESSBIL), Faculdade de Ciências Exatas e Tecnologia (FACET), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Virginia Demarchi Kappel Trichez
- Faculdade de Ciências da Saúde (FCS), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Zaira da Rosa Guterres
- Universidade Estadual de Mato Grosso do Sul - UEMS, Unidade Universitária de Mundo Novo, BR 163, km 202, s/n, Mundo Novo, MS, 79.980-000, Brazil.
| | - Luciano da Silva Pinto
- Departamento de Química, Universidade Federal de São Carlos - UFSCAR, Rodovia Washington Luís km 235, São Carlos, SP, 13.565-905, Brazil.
| | - Suzana Queiroz Velter
- Grupo Especializado em Substâncias Secundárias e em Bioconversão por Lepidópteros (GESSBIL), Faculdade de Ciências Exatas e Tecnologia (FACET), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Guilherme Antonio Mantovani Ferreira
- Grupo Especializado em Substâncias Secundárias e em Bioconversão por Lepidópteros (GESSBIL), Faculdade de Ciências Exatas e Tecnologia (FACET), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Marcos Batista Machado
- Laboratório de RMN, Central Analítica, Universidade Federal do Amazonas, Manaus - UFAM, Av. Gal. Rodrigo Octávio Jordão Ramos, 1200, Coroado I, Amazonas, AM, 69.067-005, Brazil.
| | - Kidney de Oliveira Gomes Neves
- Laboratório de RMN, Central Analítica, Universidade Federal do Amazonas, Manaus - UFAM, Av. Gal. Rodrigo Octávio Jordão Ramos, 1200, Coroado I, Amazonas, AM, 69.067-005, Brazil.
| | - Maria do Carmo Vieira
- Faculdade de Ciências Agrárias (FCA), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Claudia Andrea Lima Cardoso
- Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul - UEMS, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Silvia Cristina Heredia-Vieira
- Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera-Uniderp, Av. Alexandre Herculano, 1400, Taquaral Bosque, Campo Grande, MS, 79.035-470, Brazil.
| | - Kelly Mari Pires de Oliveira
- Faculdade de Ciências Biológicas e Ambientais (FCBA), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Raul Cremonize Piva
- Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul - UEMS, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Silvia Aparecida Oesterreich
- Faculdade de Ciências da Saúde (FCS), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| |
Collapse
|
4
|
Lignans from the genus Piper L. and their pharmacological activities: An updated review. Fitoterapia 2023; 165:105403. [PMID: 36577457 DOI: 10.1016/j.fitote.2022.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The genus Piper, a member of the Piperaceae family, comprises >2000 species, of which many are well known to possess considerable economic and medicinal values. Lignans are essential ingredients and are rich in Piper plants. Although many phytochemical studies have reported many lignans identified from Piper plants, comprehensive research has not reviewed these compounds. Hence, the present review reports on natural lignans from the genus Piper and their pharmacological activities. At least 275 lignans have been discovered from the Piper genus until October 2022, including traditional lignans, neolignans, oxyneolignans, norlignans, secolignans, and polyneolignans, especially some neolignans and norlignans with novel and complex scaffolds. In addition, these lignans have been reported to show various pharmacological activities, such as antimicrobial, anti-inflammatory, neuroprotective, antioxidative, anti-platelet aggregation, cytotoxic, anti-parasitic, CYP3A4 inhibitory activities, and so on. The current work presents an up-to-date critical review and a systematic summary of publications on lignans from the genus Piper to lay the groundwork and show better insights for further investigations.
Collapse
|
5
|
New oligomeric neolignans from the leaves of Magnolia officinalis var. biloba. Chin J Nat Med 2021; 19:491-499. [PMID: 34247772 DOI: 10.1016/s1875-5364(21)60048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 01/04/2023]
Abstract
Six new oligomeric neolignans including two trimeric neolignans (1 and 2) and four dimeric neolignans (3-6) were isolated from the leaves of Magnolia officinalis var. biloba. Their structures were determined based on HR-ESIMS and NMR data, as well as electronic circular dichroism (ECD) calculations. Compound 1 is formed from two obovatol moieties directly linked to an aromatic ring of the remaining obovatol moiety, which is an unprecedented type of linkage between monomers. All isolates were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 1 and 3 showed significantly inhibitory activities with IC50 values of 6.04 and 3.26 μmol·L-1, respectively.
Collapse
|
6
|
Passero LFD, Brunelli EDS, Sauini T, Amorim Pavani TF, Jesus JA, Rodrigues E. The Potential of Traditional Knowledge to Develop Effective Medicines for the Treatment of Leishmaniasis. Front Pharmacol 2021; 12:690432. [PMID: 34220515 PMCID: PMC8248671 DOI: 10.3389/fphar.2021.690432] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects people living in tropical and subtropical areas of the world. There are few therapeutic options for treating this infectious disease, and available drugs induce severe side effects in patients. Different communities have limited access to hospital facilities, as well as classical treatment of leishmaniasis; therefore, they use local natural products as alternative medicines to treat this infectious disease. The present work performed a bibliographic survey worldwide to record plants used by traditional communities to treat leishmaniasis, as well as the uses and peculiarities associated with each plant, which can guide future studies regarding the characterization of new drugs to treat leishmaniasis. A bibliographic survey performed in the PubMed and Scopus databases retrieved 294 articles related to traditional knowledge, medicinal plants and leishmaniasis; however, only 20 were selected based on the traditional use of plants to treat leishmaniasis. Considering such studies, 378 quotes referring to 292 plants (216 species and 76 genera) that have been used to treat leishmaniasis were recorded, which could be grouped into 89 different families. A broad discussion has been presented regarding the most frequent families, including Fabaceae (27 quotes), Araceae (23), Solanaceae and Asteraceae (22 each). Among the available data in the 378 quotes, it was observed that the parts of the plants most frequently used in local medicine were leaves (42.3% of recipes), applied topically (74.6%) and fresh poultices (17.2%). The contribution of Latin America to studies enrolling ethnopharmacological indications to treat leishmaniasis was evident. Of the 292 plants registered, 79 were tested against Leishmania sp. Future studies on leishmanicidal activity could be guided by the 292 plants presented in this study, mainly the five species Carica papaya L. (Caricaceae), Cedrela odorata L. (Meliaceae), Copaifera paupera (Herzog) Dwyer (Fabaceae), Musa × paradisiaca L. (Musaceae), and Nicotiana tabacum L. (Solanaceae), since they are the most frequently cited in articles and by traditional communities.
Collapse
Affiliation(s)
- Luiz Felipe D Passero
- Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil.,Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), São Paulo, Brazil
| | - Erika Dos Santos Brunelli
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thamara Sauini
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thais Fernanda Amorim Pavani
- Chemical and Pharmaceutical Research Group (GPQFfesp), Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jéssica Adriana Jesus
- Laboratório de Patologia de Moléstias Infecciosas (LIM50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eliana Rodrigues
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:115-176. [PMID: 33797642 DOI: 10.1007/978-3-030-64853-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the "hunt" for new biologically active molecules with a "beneficial effect on human mind and body." Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously "neglected" diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world's population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.
Collapse
|
8
|
Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż, Nalewajko-Sieliwoniuk E, Naumowicz M, Lewandowski W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4454. [PMID: 33049979 PMCID: PMC7579235 DOI: 10.3390/ma13194454] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Natural carboxylic acids are plant-derived compounds that are known to possess biological activity. The aim of this review was to compare the effect of structural differences of the selected carboxylic acids (benzoic acid (BA), cinnamic acid (CinA), p-coumaric acid (p-CA), caffeic acid (CFA), rosmarinic acid (RA), and chicoric acid (ChA)) on the antioxidant, antimicrobial, and cytotoxic activity. The studied compounds were arranged in a logic sequence of increasing number of hydroxyl groups and conjugated bonds in order to investigate the correlations between the structure and bioactivity. A review of the literature revealed that RA exhibited the highest antioxidant activity and this property decreased in the following order: RA > CFA ~ ChA > p-CA > CinA > BA. In the case of antimicrobial properties, structure-activity relationships were not easy to observe as they depended on the microbial strain and the experimental conditions. The highest antimicrobial activity was found for CFA and CinA, while the lowest for RA. Taking into account anti-cancer properties of studied NCA, it seems that the presence of hydroxyl groups had an influence on intermolecular interactions and the cytotoxic potential of the molecules, whereas the carboxyl group participated in the chelation of endogenous transition metal ions.
Collapse
Affiliation(s)
- Beata Godlewska-Żyłkiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Aleksandra Golonko
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02–532 Warsaw, Poland;
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Żaneta Arciszewska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland;
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| |
Collapse
|
9
|
Vu VT, Nguyen MT, Wang WL, Nguyen BN, Pham GN, Kong LY, Luo JG. Patulignans A-C, three structurally unique lignans from the leaves of Melicope patulinervia. Org Biomol Chem 2020; 18:6607-6611. [PMID: 32818221 DOI: 10.1039/d0ob01412e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
(±)-Patulignans A-C (1-3), three unique pairs of lignan enantiomers were isolated from the leaves of Melicope patulinervia. Patulignan A (1) possesses an unprecedented dimethyloxonane moiety in nature, meanwhile patulignans B (2) and C (3) are epimers carrying a novel dimethyl-1,6-dioxaspiro[4.5]decane skeleton. Their structures were established by spectroscopy methods and electronic circular dichroism (ECD) calculations. Compounds 1-3 showed significant inhibitory activity against α-glucosidase.
Collapse
Affiliation(s)
- Van-Tuan Vu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Bernal FA, Kaiser M, Wünsch B, Schmidt TJ. Structure-Activity Relationships of Cinnamate Ester Analogues as Potent Antiprotozoal Agents. ChemMedChem 2020; 15:68-78. [PMID: 31697437 PMCID: PMC7003929 DOI: 10.1002/cmdc.201900544] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Protozoal infections are still a global health problem, threatening the lives of millions of people around the world, mainly in impoverished tropical and sub-tropical regions. Thus, in view of the lack of efficient therapies and increasing resistances against existing drugs, this study describes the antiprotozoal potential of synthetic cinnamate ester analogues and their structure-activity relationships. In general, Leishmania donovani and Trypanosoma brucei were quite susceptible to the compounds in a structure-dependent manner. Detailed analysis revealed a key role of the substitution pattern on the aromatic ring and a marked effect of the side chain on the activity against these two parasites. The high antileishmanial potency and remarkable selectivity of the nitro-aromatic derivatives suggested them as promising candidates for further studies. On the other hand, the high in vitro potency of catechol-type compounds against T. brucei could not be extrapolated to an in vivo mouse model.
Collapse
Affiliation(s)
- Freddy A. Bernal
- Institut für Pharmazeutische Biologie und Phytochemie (IPBP)Westfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute (Swiss TPH)Socinstr. 57Basel4051Switzerland
- University of BaselPetersplatz 1Basel4003Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 488149MünsterGermany
| | - Thomas J. Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie (IPBP)Westfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| |
Collapse
|
11
|
Nor-Lignans: Occurrence in Plants and Biological Activities-A Review. Molecules 2020; 25:molecules25010197. [PMID: 31947789 PMCID: PMC6983269 DOI: 10.3390/molecules25010197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
In this review article, the occurrence of nor-lignans and their biological activities are explored and described. Nor-lignans have proven to be present in several different families also belonging to chemosystematically distant orders as well as to have many different beneficial pharmacological activities. This review article represents the first one on this argument and is thought to give a first overview on these compounds with the hope that their study may continue and increase, after this.
Collapse
|
12
|
Fan SR, Guo JJ, Wang YT, Yang BJ, Chen DZ, Hao XJ. Two new bioactive lignans from leaves and twigs of Cleistanthus concinnus Croizat. Nat Prod Res 2019; 34:3328-3334. [PMID: 30720345 DOI: 10.1080/14786419.2019.1569663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two new lignans (1-2), along with five known compounds (3-7) with different structures were isolated from leaves and twigs of Cleistanthus concinnus Croizat. The new lignans were elucidated as (7'R,8'S)-3,3',5'-trimethoxy-4,4'-dihydroxy-7-en-7',9- epoxy-8,8'-lignan (1) and (7'R,8'S)-3,3'-dimethoxy-4,4'-dihydroxy-7-en-7',9-epoxy-8, 8'-lignan (2) by comprehensive spectroscopic analysis including 1D and 2D NMR as well as HREIMS and comparing their NMR data with known compounds in the literature. Among these isolated compounds, compound 1, 2, 3, and 6 were tested for anti- inflammatory effects by inhibiting NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Compound 1, 2, and 6 exhibit NO inhibitory activity.[Formula: see text].
Collapse
Affiliation(s)
- Shi-Rui Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan , PR China.,Department of Chemical Science and Engineering, Yunnan University, Kunming, Yunnan, PR China
| | - Jing-Jing Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan , PR China
| | - Yi-Ting Wang
- Department of Chemical Science and Engineering, Yunnan University, Kunming, Yunnan, PR China
| | - Bi-Juan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan , PR China
| | - Duo-Zhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan , PR China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan , PR China
| |
Collapse
|
13
|
Eklund P, Raitanen JE. 9-Norlignans: Occurrence, Properties and Their Semisynthetic Preparation from Hydroxymatairesinol. Molecules 2019; 24:molecules24020220. [PMID: 30634427 PMCID: PMC6358742 DOI: 10.3390/molecules24020220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Lignans, neolignans, norlignans and norneolignans constitute a large class of phenolic natural compounds. 9-Norlignans, here defined to contain a β⁻β' bond between the two phenylpropanoid units and to lack carbon number 9 from the parent lignan structure, are the most rarely occurring compounds within this class of natural compounds. We present here an overview of the structure, occurrence and biological activity of thirty-five 9-norlignans reported in the literature to date. In addition, we report the semisynthetic preparation of sixteen 9-norlignans using the natural lignan hydroxymatairesinol obtained from spruce knots, as starting material. 9-Norlignans are shown to exist in different species and to have various biological activities, and they may therefore serve as lead compounds for example for the development of anticancer agents. Hydroxymatairesinol is shown to be a readily available starting material for the preparation of norlignans of the imperanene, vitrofolal and noralashinol family.
Collapse
Affiliation(s)
- Patrik Eklund
- Johan Gadolin Process Chemistry Centre, Laboratory of Organic Chemistry, Åbo Akademi University, Piispankatu 8, FIN-20500 Turku, Finland.
| | - Jan-Erik Raitanen
- Johan Gadolin Process Chemistry Centre, Laboratory of Organic Chemistry, Åbo Akademi University, Piispankatu 8, FIN-20500 Turku, Finland.
| |
Collapse
|
14
|
Rezaei F, Saghaie L, Sabet R, Fassihi A, Hatam G. Novel Catechol Derivatives of Arylimidamides as Antileishmanial Agents. Chem Biodivers 2018; 15:e1800228. [PMID: 29999602 DOI: 10.1002/cbdv.201800228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Two novel bis-arylimidamide derivatives with terminal catechol moieties (9a and 10a) and two parent compounds with terminal phenyl groups (DB613 and DB884) were synthesized as dihydrobromide salts (9b and 10b). The designed compounds were hybrid molecules consisting of a catechol functionality embedded in an arylimidamide moiety. All compounds were examined for in vitro antiparasitic activity upon promastigotes of Leishmania major and L. infantum as well as axenic amastigotes of L. major. It was shown that conversion of terminal phenyl groups into catechol moieties resulted in more than 10-fold improvement in potency, coupled with lower cytotoxicity against fibroblast cells, compared to the corresponding parent compounds. The furan-containing analog 9a exhibited the highest activity with submicromolar IC50 values, ranging from 0.29 to 0.36 μm, which is comparable in efficacy to the reference drug amphotericin B (IC50 0.28 - 0.33 μm). The results justify further study of this class of compounds. It seems that the combination of catechol chelating groups with potent antiparasitic agents could improve the efficacy by presenting novel hybrid compounds.
Collapse
Affiliation(s)
- Foroogh Rezaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
|
16
|
Ma QY, Chen YL, Huang SZ, Kong FD, Dai HF, Hua Y, Zhao YX. Two New Lignans from Wikstroemia dolichantha. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2250-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Rios MY, Navarro V, Ramírez-Cisneros MÁ, Salazar-Rios E. Sulfur-Containing Aristoloxazines and Other Constituents of the Roots of Aristolochia orbicularis. JOURNAL OF NATURAL PRODUCTS 2017; 80:3112-3119. [PMID: 29210585 DOI: 10.1021/acs.jnatprod.7b00226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Six new compounds, aristoloxazine A (1), aristoloxazine B (2), 7-methoxytaliscanine (3), humul-7-en-1,4,11-triol (4), 8-hydroxy-β-logipinene (5), and 1β-hydroxy-4(14)-eudesmene (6), corresponding to two sulfur-containing aristoloxazines (1 and 2), an aristolactam (3), and three sesquiterpenes (4-6) were isolated, along with 26 known compounds, from the roots of Aristolochia orbicularis. The structures of the new compounds were established based on their spectroscopic and spectrometric data and in the case of aristoloxazine A (1) by single-crystal X-ray crystallography. This is the first report of sulfur-containing aristoloxazines from a natural source. Furthermore, aristoloxazine A (1) was found to possess potent in vitro antimicrobial activity against all resistant Staphylococcus aureus and several fungal strains in which it was evaluated.
Collapse
Affiliation(s)
- María Yolanda Rios
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos , Cuernavaca 62209, Morelos, México
| | - Víctor Navarro
- Laboratorio de Microbiología, Centro de Investigación Biomédica del Sur (IMSS) , Xochitepec 62790, Morelos, México
| | - M Ángeles Ramírez-Cisneros
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos , Cuernavaca 62209, Morelos, México
| | - Enrique Salazar-Rios
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos , Cuernavaca 62350, Morelos, México
| |
Collapse
|
18
|
Arruda C, Eugênio DDS, Moreira MR, Símaro GV, Bastos JK, Martins CHG, Silva MLA, Veneziani RCS, Vieira PB, Ambrósio SR. Biotransformation of (-)-cubebin by Aspergillus spp. into (-)-hinokinin and (-)-parabenzlactone, and their evaluation against oral pathogenic bacteria. Nat Prod Res 2017; 32:2803-2816. [DOI: 10.1080/14786419.2017.1380017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Guilherme Venâncio Símaro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Sérgio R. Ambrósio
- Nucleus of Research in Sciences and Technology, University of Franca, Franca, Brazil
| |
Collapse
|
19
|
Otero E, García E, Palacios G, Yepes LM, Carda M, Agut R, Vélez ID, Cardona WI, Robledo SM. Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities. Eur J Med Chem 2017; 141:73-83. [PMID: 29028533 DOI: 10.1016/j.ejmech.2017.09.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/02/2023]
Abstract
The synthesis, cytotoxicity, anti-leishmanial and anti-trypanosomal activities of twelve triclosan-caffeic acid hybrids are described herein. The structure of the synthesized products was elucidated by a combination of spectrometric analyses. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis, which is the most prevalent Leishmania species in Colombia, and against Trypanosoma cruzi, which is the pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. Eight compounds were active against L. (V) panamensis (18-23, 26 and 30) and eight of them against T. cruzi (19-22, 24 and 28-30) with EC50 values lower than 40 μM. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Esters 19 and 21 were the most active compounds for both L. (V) panamensis and T. cruzi with 3.82 and 11.65 μM and 8.25 and 8.69 μM, respectively. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Most of the compounds showed antiprotozoal activity and with exception of 18, 26 and 28, the remaining compounds were toxic for mammalian cells, yet they have potential to be considered as candidates for anti-trypanosomal and anti-leishmanial drug development. The activity is dependent on the length of the alkyl linker with compound 19, bearing a four-carbon alkyl chain, the most performing hybrid. In general, hydroxyl groups increase both activity and cytotoxicity and the presence of the double bond in the side chain is not decisive for cytotoxicity and anti-protozoal activity.
Collapse
Affiliation(s)
- Elver Otero
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia
| | - Elisa García
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia
| | - Genesis Palacios
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Lina M Yepes
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry, Jaume I University, E-12071 Castellón, Spain
| | - Raúl Agut
- Department of Inorganic and Organic Chemistry, Jaume I University, E-12071 Castellón, Spain
| | - Iván D Vélez
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Wilson I Cardona
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia.
| | - Sara M Robledo
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia.
| |
Collapse
|
20
|
Teponno RB, Kusari S, Spiteller M. Recent advances in research on lignans and neolignans. Nat Prod Rep 2017; 33:1044-92. [PMID: 27157413 DOI: 10.1039/c6np00021e] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: 2009 to 2015Lignans and neolignans are a large group of natural products derived from the oxidative coupling of two C6-C3 units. Owing to their biological activities ranging from antioxidant, antitumor, anti-inflammatory to antiviral properties, they have been used for a long time both in ethnic as well as in conventional medicine. This review describes 564 of the latest examples of naturally occurring lignans and neolignans, and their glycosides in some cases, which have been isolated between 2009 and 2015. It comprises the data reported in more than 200 peer-reviewed articles and covers their source, isolation, structure elucidation and bioactivities (where available), and highlights the biosynthesis and total synthesis of some important ones.
Collapse
Affiliation(s)
- Rémy Bertrand Teponno
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany. and Department of Chemistry, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany.
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany.
| |
Collapse
|
21
|
Tian X, Guo X, Zhuo Z, Zeng R, Fang X, Xu X, Li H, Shen Y, Zhang W. Prenylated phenylpropanoids with unprecedented skeletons from Illicium burmanicum. RSC Adv 2017. [DOI: 10.1039/c7ra01143a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two hetero adducts (1 and 2) which showed cytotoxic on A549 and HCT116 cells at 6.40–7.76 μM were isolated from Illicium burmanicum.
Collapse
Affiliation(s)
- Xinhui Tian
- Interdisciplinary Science Research Institute
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- P. R. China
| | - Xin Guo
- Interdisciplinary Science Research Institute
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- P. R. China
| | - Zhiguo Zhuo
- Department of Phytochemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Rentao Zeng
- Department of Phytochemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Xin Fang
- Department of Phytochemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Xike Xu
- Department of Phytochemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Huiliang Li
- Department of Phytochemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Yunheng Shen
- Department of Phytochemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Weidong Zhang
- Interdisciplinary Science Research Institute
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- P. R. China
- Department of Phytochemistry
| |
Collapse
|
22
|
Stereoselective oxy-homo-Michael reactions of enantioenriched bicyclic donor–acceptor cyclopropanes to afford optically active trans-α,β-disubstituted γ-butyrolactones possessing three serial chiral centers. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Su W, Zhao J, Yang M, Yan HW, Pang T, Chen SH, Huang HY, Zhang SH, Ma XC, Guo DA, Khan IA, Wang W. A coumarin lignanoid from the stems of Kadsura heteroclita. Bioorg Med Chem Lett 2015; 25:1506-8. [DOI: 10.1016/j.bmcl.2015.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
24
|
Cabanillas BJ, Le Lamer AC, Olagnier D, Castillo D, Arevalo J, Valadeau C, Coste A, Pipy B, Bourdy G, Sauvain M, Fabre N. Leishmanicidal compounds and potent PPARγ activators from Renealmia thyrsoidea (Ruiz & Pav.) Poepp. & Endl. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:149-155. [PMID: 25251262 DOI: 10.1016/j.jep.2014.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leaves and rhizomes of Renealmia thyrsoidea (Ruiz & Pav.) Poepp. & Endl. traditionally used in the Yanesha pharmacopoeia to treat skin infections such as leishmaniasis ulcers, or to reduce fever were chemically investigated to identify leishmanicidal compounds, as well as PPARγ activators. METHODS Compounds were isolated through a bioassay-guided fractionation and their structures were determined via detailed spectral analysis. The viability of Leishmania amazonensis axenic amastigotes was assessed by the reduction of tetrazolium salt (MTT), the cytotoxicity on macrophage was evaluated using trypan blue dye exclusion method, while the percentage of infected macrophages was determined microscopically in the intracellular macrophage-infected assay. The CD36, mannose receptor (MR) and dectin-1 mRNA expression on human monocytes-derived macrophages was evaluated by quantitative real-time PCR. RESULTS Six sesquiterpenes (1-6), one dihydrobenzofuranone (7) and four flavonoids (8-11) were isolated from the leaves. Alongside, two flavonoids (12-13) and five diarylheptanoids (14-18) were identified in the rhizomes. Leishmanicidal activity against Leishmania amazonensis axenic amastigotes was evaluated for all compounds. Compounds 6, 7, and 11, isolated from the leaves, showed to be the most active derivatives. Diarylheptanoids 14-18 were also screened for their ability to activate PPARγ nuclear receptor in macrophages. Compounds 17 and 18 bearing a Michael acceptor moiety strongly increased the expression of PPARγ target genes such as CD36, Dectin-1 and mannose receptor (MR), thus revealing interesting immunomodulatory properties. CONCLUSIONS Phytochemical investigation of Renealmia thyrsoidea has led to the isolation of leishmanicidal compounds from the leaves and potent PPARγ activators from the rhizomes. These results are in agreement with the traditional uses of the different parts of Renealmia thyrsoidea.
Collapse
Affiliation(s)
- Billy Joel Cabanillas
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Anne-Cécile Le Lamer
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France.
| | - David Olagnier
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Denis Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - Jorge Arevalo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - Céline Valadeau
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Agnès Coste
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Bernard Pipy
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Geneviève Bourdy
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Michel Sauvain
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Nicolas Fabre
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| |
Collapse
|
25
|
Zhang J, Chen J, Liang Z, Zhao C. New lignans and their biological activities. Chem Biodivers 2014; 11:1-54. [PMID: 24443425 DOI: 10.1002/cbdv.201100433] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Indexed: 11/10/2022]
Abstract
Lignans, which are widely distributed in higher plants, represent a vast and rather diverse group of phenylpropane derivatives. They have attracted considerable attention due to their pharmacological activities. Some of the lignans have been developed approved therapeutics, and others are considered as lead structures for new drugs. This article is based on our previous review of lignans discovered in the period 2000-2004, and it provides a comprehensive compilation of the 354 new naturally occurring lignans obtained from 61 plant families between 2005 and 2011. We classified five main types according to their structural features, and provided the details of their sources, some typical structures, and diverse biological activities. A tabular compilation of the novel lignans by species is presented at the end. A total of 144 references were considered for this review.
Collapse
Affiliation(s)
- Jia Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology (Beijing Normal University), Ministry of Education; Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing 100875, P. R. China (phone: +86-10-58805046; fax: +86-10-58807720)
| | | | | | | |
Collapse
|
26
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
27
|
Montrieux E, Perera WH, García M, Maes L, Cos P, Monzote L. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol Res 2014; 113:2925-32. [PMID: 24906989 DOI: 10.1007/s00436-014-3954-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/20/2014] [Indexed: 02/07/2023]
Abstract
The search for new therapeutic agents from natural sources has been a constant for the treatment of diseases such as leishmaniasis. Herein, in vitro and in vivo pharmacological activities of pure major phenolic constituents (caffeic acid, chlorogenic acid, ferulic acid, quercetin, and rosmarinic acid) from Pluchea carolinensis against Leishmania amazonensis are presented. Pure compounds showed inhibitory activity against promastigotes (IC50 = 0.2-0.9 μg/mL) and intracellular amastigotes (IC50 = 1.3-2.9 μg/mL). Four of them were selected after testing against macrophages of BALB/c mice: caffeic acid, ferulic acid, quercetin, and rosmarinic acid, with selective indices of 11, 17, 10, and 20, respectively. Ferulic acid, rosmarinic acid, and caffeic acid controlled lesion size development and parasite burden in footpads from BALB/c experimentally infected mice, after five injections of compounds by intralesional route at 30 mg/kg every 4 days. Pure compounds from P. carolinensis demonstrated antileishmanial properties.
Collapse
Affiliation(s)
- Elly Montrieux
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Xiao P, Zhang A, Zheng L, Song Y. Straightforward Enzyme-Catalyzed Asymmetric Synthesis of Caffeic Acid Esters in Enantioenriched Form. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5010477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peiliang Xiao
- College
of Life Sciences, Key Laboratory for Molecular Enzymology and Engineering
of Ministry of Education, Jilin University, Changchun 130012, People’s Republic of China
| | - Aijun Zhang
- College
of Life Sciences, Key Laboratory for Molecular Enzymology and Engineering
of Ministry of Education, Jilin University, Changchun 130012, People’s Republic of China
| | - Liangyu Zheng
- College
of Life Sciences, Key Laboratory for Molecular Enzymology and Engineering
of Ministry of Education, Jilin University, Changchun 130012, People’s Republic of China
| | - Yanqiu Song
- The
First Hospital, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
29
|
Kim CS, Kwon OW, Kim SY, Lee KR. Bioactive lignans from the trunk of Abies holophylla. JOURNAL OF NATURAL PRODUCTS 2013; 76:2131-2135. [PMID: 24224862 DOI: 10.1021/np4005322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Six new lignans (1-6) were isolated from the trunk of Abies holophylla MAXIM, together with 11 known lignans (7-17). The structures of 1-7 were elucidated by spectroscopic methods, acid hydrolysis, and use of the modified Mosher's method. The effects of the isolates on nerve growth factor induction in a C6 rat glioma cell line were evaluated. Compounds 6, 7, and 13 showed significant induction of nerve growth factor secretion at concentrations of 10 μM. Compounds 1, 5, 6, and 16 showed moderate inhibitory effects on nitric oxide production in lipopolysaccharide-activated BV-2 cells (IC50 28.5-36.4 μM).
Collapse
Affiliation(s)
- Chung Sub Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University , Suwon 440-746, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Otero E, Robledo SM, Díaz S, Carda M, Muñoz D, Paños J, Vélez ID, Cardona W. Synthesis and leishmanicidal activity of cinnamic acid esters: structure–activity relationship. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0741-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Antileishmanial Phenylpropanoids from the Leaves of Hyptis pectinata (L.) Poit. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:460613. [PMID: 23983783 PMCID: PMC3745876 DOI: 10.1155/2013/460613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022]
Abstract
Hyptis pectinata, popularly known in Brazil as "sambacaitá" or "canudinho," is an aromatic shrub largely grown in the northeast of Brazil. The leaves and bark are used in an infusion for the treatment of throat and skin inflammations, bacterial infections, pain, and cancer. Analogues of rosmarinic acid and flavonoids were obtained from the leaves of Hyptis pectinata and consisted of two new compounds, sambacaitaric acid (1) and 3-O-methyl-sambacaitaric acid (2), and nine known compounds, rosmarinic acid (3), 3-O-methyl-rosmarinic acid (4), ethyl caffeate (5), nepetoidin A (6), nepetoidin B (7), cirsiliol (8), circimaritin (9), 7-O-methylluteolin (10), and genkwanin (11). The structures of these compounds were determined by spectroscopic methods. Compounds 1-5, and 7 were evaluated in vitro against the promastigote form of L. braziliensis, and the ethanol extract. The hexane, ethyl acetate, and methanol-water fractions were also evaluated. The EtOH extract, the hexane extract, EtOAc, MeOH:H2O fractions; and compounds 1, 2 and 4 exhibited antileishmanial activity, and compound 1 was as potent as pentamidine. In contrast, compounds 3, 5, and 7 did not present activity against the promastigote form of L. braziliensis below 100 µM. To our knowledge, compounds 1 and 2 are being described for the first time.
Collapse
|
32
|
Silva Carrara VD, Cunha-Júnior EF, Torres-Santos EC, Corrêa AG, Monteiro JL, Demarchi IG, Campana Lonardoni MV, Garcia Cortez DA. Antileishmanial activity of amides from Piper amalago and synthetic analogs. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013005000022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Tan Z, Shahidi F. A novel chemoenzymatic synthesis of phytosteryl caffeates and assessment of their antioxidant activity. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|