1
|
Aswani SS, Aparna NS, Mohan MS, Boban PT, Saja K. Sesame oil downregulates the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis. Prostaglandins Other Lipid Mediat 2024; 174:106862. [PMID: 38936541 DOI: 10.1016/j.prostaglandins.2024.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease forming plaques in medium and large-sized arteries. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) is an extracellular-matrix remodelling enzyme involved in the degradation of versican in the arterial wall. Recent reports indicated that increased expression of ADAMTS-4 is associated with plaque progression and vulnerability. Bioactive components of dietary oil, like sesame oil, are reported to have anti-inflammatory and antioxidant properties. Here, we studied the effect of sesame oil on regulating ADAMTS-4 in high-fat diet-induced atherosclerosis rat model. Our results indicated that sesame oil supplementation improved the anti-inflammatory and anti-oxidative status of the body. It also reduced atherosclerotic plaque formation in high-fat diet-fed rats. Our results showed that the sesame oil supplementation significantly down-regulated the expression of ADAMTS-4 in serum and aortic samples. The versican, the large proteoglycan substrate of ADAMTS-4 in the aorta, was downregulated to normal control level on sesame oil supplementation. This study, for the first time, reveals that sesame oil could down-regulate the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis, imparting a new therapeutic potential for sesame oil in the management of atherosclerosis.
Collapse
Affiliation(s)
- S S Aswani
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - N S Aparna
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - Mithra S Mohan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - P T Boban
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India.
| |
Collapse
|
2
|
Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, Soares JC, Chen CH. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer's disease. Front Neurosci 2023; 17:1275932. [PMID: 38033552 PMCID: PMC10687420 DOI: 10.3389/fnins.2023.1275932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| | | | - Mei-Chuan Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shioulan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salih Selek
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Chu-Huang Chen
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
3
|
Majdalawieh AF, Eltayeb AE, Abu-Yousef IA, Yousef SM. Hypolipidemic and Anti-Atherogenic Effects of Sesamol and Possible Mechanisms of Action: A Comprehensive Review. Molecules 2023; 28:molecules28083567. [PMID: 37110801 PMCID: PMC10146572 DOI: 10.3390/molecules28083567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Sesamol is a phenolic lignan isolated from Sesamum indicum seeds and sesame oil. Numerous studies have reported that sesamol exhibits lipid-lowering and anti-atherogenic properties. The lipid-lowering effects of sesamol are evidenced by its effects on serum lipid levels, which have been attributed to its potential for significantly influencing molecular processes involved in fatty acid synthesis and oxidation as well as cholesterol metabolism. In this review, we present a comprehensive summary of the reported hypolipidemic effects of sesamol, observed in several in vivo and in vitro studies. The effects of sesamol on serum lipid profiles are thoroughly addressed and evaluated. Studies highlighting the ability of sesamol to inhibit fatty acid synthesis, stimulate fatty acid oxidation, enhance cholesterol metabolism, and modulate macrophage cholesterol efflux are outlined. Additionally, the possible molecular pathways underlying the cholesterol-lowering effects of sesamol are presented. Findings reveal that the anti-hyperlipidemic effects of sesamol are achieved, at least in part, by targeting liver X receptor α (LXRα), sterol regulatory element binding protein-1 (SREBP-1), and fatty acid synthase (FAS) expression, as well as peroxisome proliferator-activated receptor α (PPARα) and AMP activated protein kinase (AMPK) signaling pathways. A detailed understanding of the molecular mechanisms underlying the anti-hyperlipidemic potential of sesamol is necessary to assess the possibility of utilizing sesamol as an alternative natural therapeutic agent with potent hypolipidemic and anti-atherogenic properties. Research into the optimal sesamol dosage that may bring about such favorable hypolipidemic effects should be further investigated, most importantly in humans, to ensure maximal therapeutic benefit.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Aaram E Eltayeb
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Sarah M Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
4
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
5
|
Apolipoprotein C3-Rich Low-Density Lipoprotein Induces Endothelial Cell Senescence via FBXO31 and Its Inhibition by Sesamol In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10040854. [PMID: 35453604 PMCID: PMC9028166 DOI: 10.3390/biomedicines10040854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Premature endothelial senescence decreases the atheroprotective capacity of the arterial endothelium. Apolipoprotein C3 (ApoC3) delays the catabolism of triglyceride-rich particles and plays a critical role in atherosclerosis progression. FBXO31 is required for the intracellular response to DNA damage, which is a significant cause of cellular senescence. Sesamol is a natural antioxidant with cardiovascular-protective properties. In this study, we aimed to examine the effects of ApoC3-rich low-density lipoprotein (AC3RL) mediated via FBXO31 on endothelial cell (EC) senescence and its inhibition by sesamol. AC3RL and ApoC3-free low-density lipoproteins (LDL) (AC3(-)L) were isolated from the plasma LDL of patients with ischemic stroke. Human aortic endothelial cells (HAECs) treated with AC3RL induced EC senescence in a dose-dependent manner. AC3RL induced HAEC senescence via DNA damage. However, silencing FBXO31 attenuated AC3RL-induced DNA damage and reduced cellular senescence. Thus, FBXO31 may be a novel therapeutic target for endothelial senescence-related cardiovascular diseases. Moreover, the aortic arch of hamsters fed a high-fat diet with sesamol showed a substantial reduction in their atherosclerotic lesion size. In addition to confirming the role of AC3RL in aging and atherosclerosis, we also identified AC3RL as a potential therapeutic target that can be used to combat atherosclerosis and the onset of cardiovascular disease in humans.
Collapse
|
6
|
Preparation, characterization, and molecular modeling of sesamol/β-cyclodextrin derivatives inclusion complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Chen CS, Pan BY, Tsai PH, Chen FY, Yang WC, Shen MY. Kansuinine A Ameliorates Atherosclerosis and Human Aortic Endothelial Cell Apoptosis by Inhibiting Reactive Oxygen Species Production and Suppressing IKKβ/IκBα/NF-κB Signaling. Int J Mol Sci 2021; 22:ijms221910309. [PMID: 34638650 PMCID: PMC8508741 DOI: 10.3390/ijms221910309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS)-induced vascular endothelial cell apoptosis is strongly associated with atherosclerosis progression. Herein, we aimed to examine whether Kansuinine A (KA), extracted from Euphorbia kansui L., prevents atherosclerosis development in a mouse model and inhibits cell apoptosis through oxidative stress reduction. Atherosclerosis development was analyzed in apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (HFD) using Oil Red O staining and H&E staining. Human aortic endothelial cells (HAECs) were treated with KA, followed by hydrogen peroxide (H2O2), to investigate the KA-mediated inhibition of ROS-induced oxidative stress and cell apoptosis. Oil Red O staining and H&E staining showed that atherosclerotic lesion size was significantly smaller in the aortic arch of ApoE-/- mice in the HFD+KA group than that in the aortic arch of those in the HFD group. Further, KA (0.1-1.0 μM) blocked the H2O2-induced death of HAECs and ROS generation. The H2O2-mediated upregulation of phosphorylated IKKβ, phosphorylated IκBα, and phosphorylated NF-κB was suppressed by KA. KA also reduced the Bax/Bcl-2 ratio and cleaved caspase-3 expression, preventing H2O2-induced vascular endothelial cell apoptosis. Our results indicate that KA may protect against ROS-induced endothelial cell apoptosis and has considerable clinical potential in the prevention of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen-Sheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan;
| | - Bo-Yi Pan
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Ping-Hsuan Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan;
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
- Department of Medical Research, China Medical University Hospital, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
- Department of Nursing, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366
| |
Collapse
|
8
|
Wang JS, Tsai PH, Tseng KF, Chen FY, Yang WC, Shen MY. Sesamol Ameliorates Renal Injury-Mediated Atherosclerosis via Inhibition of Oxidative Stress/IKKα/p53. Antioxidants (Basel) 2021; 10:antiox10101519. [PMID: 34679653 PMCID: PMC8532890 DOI: 10.3390/antiox10101519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at an increased risk of premature death due to the development of cardiovascular disease (CVD) owing to atherosclerosis-mediated cardiovascular events. However, the mechanisms linking CKD and CVD are clear, and the current treatments for high-risk groups are limited. In this study, we aimed to examine the effects of sesamol, a natural compound extracted from sesame oil, on the development of atherosclerosis in a rodent CKD model, and reactive oxygen species-induced oxidative damage in an endothelial cell model. ApoE–/– mice were subjected to 5/6 nephrectomy (5/6 Nx) and administered sesamol for 8 weeks. Compared with the sham group, the 5/6 Nx ApoE–/– mice showed a significant increase in malondialdehyde levels and Oil Red O staining patterns, which significantly decreased following sesamol administration. Sesamol suppressed H2O2-induced expression of phospho-IKKα, p53, and caspase-3. Our results highlight the protective role of sesamol in renal injury-associated atherosclerosis and the pathological importance of oxidative stress burden in CKD–CVD interaction.
Collapse
Affiliation(s)
- Jie-Sian Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (J.-S.W.); (P.-H.T.); (F.-Y.C.)
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ping-Hsuan Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (J.-S.W.); (P.-H.T.); (F.-Y.C.)
| | - Kuo-Feng Tseng
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan;
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (J.-S.W.); (P.-H.T.); (F.-Y.C.)
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan;
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (J.-S.W.); (P.-H.T.); (F.-Y.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: or ; Tel.: +886-4-2205-3366 (ext. 5809)
| |
Collapse
|
9
|
Baş H, Apaydın FG, Kalender S, Kalender Y. Lead nitrate and cadmium chloride induced hepatotoxicity and nephrotoxicity: Protective effects of sesamol on biochemical indices and pathological changes. J Food Biochem 2021; 45:e13769. [PMID: 34021611 DOI: 10.1111/jfbc.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Lead nitrate (LN) and cadmium chloride (CdCl2 ), regarded as environmental contaminants, are toxic heavy metals. Sesamol is a dietary phytochemical found in sesame oil. We aimed to analyze the hepatotoxic and nephrotoxic effects of LN and CdCl2 and to evaluate the possible protective effect of sesamol. LN (90 mg/kg bw per day), CdCl2 (3 mg/kg bw per day), and sesamol (50 mg/kg bw per day) were given to rats via gavage for 28 days. Total protein, albumin, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, total cholesterol, urea, uric acid, creatinine, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, malondialdehyde, acetylcholinesterase, and histopathological changes were investigated in liver and kidney tissues. Lead and cadmium were found to result in decreases in the antioxidant enzymes and acetylcholinesterase activities, increases in malondialdehyde levels, and changes in serum biochemical parameters and various pathological findings. An improvement in all these parameters was observed in the sesamol-treated groups. PRACTICAL APPLICATIONS: Heavy metals are used in many areas of the industry all over the world. Heavy metals which include lead nitrate and cadmium chloride cause cell damage by oxidative stress. Some of the examining parameters for oxidative stress are SOD, GST, MDA, GPx, and CAT. However, some chemicals such as sesamol are well-liked and widely used as antioxidants against xenobiotic toxicity. We also indicate that sesamol has been shown to protective effect against heavy metals caused cell damage.
Collapse
Affiliation(s)
- Hatice Baş
- Faculty of Arts and Science, Department of Biology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Suna Kalender
- Gazi Education Faculty, Department of Science Education, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Jayaraj P, Narasimhulu CA, Rajagopalan S, Parthasarathy S, Desikan R. Sesamol: a powerful functional food ingredient from sesame oil for cardioprotection. Food Funct 2020; 11:1198-1210. [PMID: 32037412 DOI: 10.1039/c9fo01873e] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phytophenols are important bioactive food based chemical entities, largely present in several natural sources. Among them, sesamol is one of the key natural phenols found in sesame seeds, Piper cubeba etc. Several studies have reported that sesame oil is a potent cardioprotective functional food. Papers on the utility of sesamol in sesame oil (the chemical name of sesamol is methylenedioxyphenol, MDP) have appeared in the literature, though there is no single concise review on the usefulness of sesamol in sesame oil in CVD in the literature. Cardiovascular disease (CVD) is the most challenging health problem encountered by the global population. There has been increasing interest in the growth of effective cardiovascular therapeutics, specifically of natural origin. Among various natural sources of chemicals, phytochemicals are micronutrients and bio-compatible scaffolds having an extraordinary efficacy at multiple disease targets with minimal or no adverse effect. This review offers a perspective on the existing literature on functional ingredients in sesame oil with particular focus on sesamol and its derivatives having nutritional and cardioprotective properties. This is demonstrated to have shown a specifically modulating oxidative enzyme myeloperoxidase (MPO) and other proteins which are detrimental to human well-being. The molecular mechanism of cardioprotection by this food ingredient is primarily attributed to the methylenedioxy group present in the sesamol component.
Collapse
Affiliation(s)
- Premkumar Jayaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| | | | | | | | | |
Collapse
|
11
|
Rivas-Urbina A, Rull A, Aldana-Ramos J, Santos D, Puig N, Farre-Cabrerizo N, Benitez S, Perez A, de Gonzalo-Calvo D, Escola-Gil JC, Julve J, Ordoñez-Llanos J, Sanchez-Quesada JL. Subcutaneous Administration of Apolipoprotein J-Derived Mimetic Peptide d-[113-122]apoJ Improves LDL and HDL Function and Prevents Atherosclerosis in LDLR-KO Mice. Biomolecules 2020; 10:biom10060829. [PMID: 32485898 PMCID: PMC7356811 DOI: 10.3390/biom10060829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Mimetic peptides are potential therapeutic agents for atherosclerosis. d-[113–122]apolipoprotein (apo) J (d-[113–122]apoJ) is a 10-residue peptide that is predicted to form a class G* amphipathic helix 6 from apoJ; it shows anti-inflammatory and anti-atherogenic properties. In the present study, we analyzed the effect of d-[113–122]apoJ in low-density lipoprotein receptor knockout mice(LDLR-KO) on the development of atherosclerosis and lipoprotein function. Fifteen-week-old female LDLR-KO mice fed an atherogenic Western-type diet were treated for eight weeks with d-[113–122]apoJ peptide, a scrambled peptide, or vehicle. Peptides were administered subcutaneously three days per week (200 µg in 100 µL of saline). After euthanasia, blood and hearts were collected and the aortic arch was analyzed for the presence of atherosclerotic lesions. Lipoproteins were isolated and their composition and functionality were studied. The extent of atherosclerotic lesions was 43% lower with d-[113–122]apoJ treatment than with the vehicle or scramble. The lipid profile was similar between groups, but the high-density lipoprotein (HDL) of d-[113–122]apoJ-treated mice had a higher antioxidant capacity and increased ability to promote cholesterol efflux than the control group. In addition, low-density lipoprotein (LDL) from d-[113–122]apoJ-treated mice was more resistant to induced aggregation and presented lower electronegativity than in mice treated with d-[113–122]apoJ. Our results demonstrate that the d-[113–122]apoJ peptide prevents the extent of atherosclerotic lesions, which could be partially explained by the improvement of lipoprotein functionality.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Joile Aldana-Ramos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
| | - David Santos
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Nuria Puig
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
| | - Nuria Farre-Cabrerizo
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
| | - Antonio Perez
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain;
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Joan Carles Escola-Gil
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Josep Julve
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Jordi Ordoñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Jose Luis Sanchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-35537588
| |
Collapse
|
12
|
Akyol O, Chowdhury I, Akyol HR, Tessier K, Vural H, Akyol S. Why are cardiovascular diseases more common among patients with severe mental illness? The potential involvement of electronegative low-density lipoprotein (LDL) L5. Med Hypotheses 2020; 142:109821. [PMID: 32417641 DOI: 10.1016/j.mehy.2020.109821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts of experimental and clinical studies and knowledge, the pathophysiology of severe mental illness (SMI), including bipolar disorder (BD), unipolar depression (mood disorders, MD), and schizophrenia (SCZ), remains poorly understood. Besides their chronic course and high prevalence in society, mental and somatic comorbidities are really serious problems; patients with these disorders have increased risk of cardiovascular (CV) diseases (CVD) including coronary artery diseases (CAD, i.e. myocardial infarction and angina), stroke, sudden cardiac death, hypertension, cardiomyopathy, arrhythmia, and thromboembolic disease. Although it is determined that triglycerides, cholesterol, glucose, and low-density lipoprotein (LDL) levels are increased in MD and SCZ, the underlying reason remains unknown. Considering this, we propose that electronegative LDL (L5) is probably the main crucial element to understanding CVD induced by SMI and to discovering novel remedial approaches for these diseases. When it is hypothesized that L5 is greatly presupposed in CV system abnormalities, it follows that the anti-L5 therapies and even antioxidant treatment options may open new therapeutic opportunities to prevent CVD diseases secondary to SMI. In this review article, we tried to bring a very original subject to the attention of readers who are interested in lipoprotein metabolism in terms of experimental, clinical, and cell culture studies that corroborate the involvement of L5 in physiopathology of CVD secondary to SMI and also the new therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Omer Akyol
- Michigan Math & Science Academy, Department of Science, Warren, MI, USA.
| | - Imtihan Chowdhury
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Hafsa Rana Akyol
- Illinois Institute of Technology, Biology, Sophomore, Chicago, IL, USA
| | - Kylie Tessier
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Huseyin Vural
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Sumeyya Akyol
- Beaumont Health, Beaumont Research Institute, Royal Oak, MI, USA
| |
Collapse
|
13
|
Puig N, Montolio L, Camps-Renom P, Navarra L, Jiménez-Altayó F, Jiménez-Xarrié E, Sánchez-Quesada JL, Benitez S. Electronegative LDL Promotes Inflammation and Triglyceride Accumulation in Macrophages. Cells 2020; 9:cells9030583. [PMID: 32121518 PMCID: PMC7140452 DOI: 10.3390/cells9030583] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Electronegative low-density lipoprotein (LDL) (LDL(−)), a modified LDL that is present in blood and exerts atherogenic effects on endothelial cells and monocytes. This study aimed to determine the action of LDL(−) on monocytes differentiated into macrophages. LDL(−) and in vitro-modified LDLs (oxidized, aggregated, and acetylated) were added to macrophages derived from THP1 monocytes over-expressing CD14 (THP1-CD14). Then, cytokine release, cell differentiation, lipid accumulation, and gene expression were measured by ELISA, flow cytometry, thin-layer chromatography, and real-time PCR, respectively. LDL(−) induced more cytokine release in THP1-CD14 macrophages than other modified LDLs. LDL(−) also promoted morphological changes ascribed to differentiated macrophages. The addition of high-density lipoprotein (HDL) and anti-TLR4 counteracted these effects. LDL(−) was highly internalized by macrophages, and it was the major inductor of intracellular lipid accumulation in triglyceride-enriched lipid droplets. In contrast to inflammation, the addition of anti-TLR4 had no effect on lipid accumulation, thus suggesting an uptake pathway alternative to TLR4. In this regard, LDL(−) upregulated the expression of the scavenger receptors CD36 and LOX-1, as well as several genes involved in triglyceride (TG) accumulation. The importance and novelty of the current study is that LDL(−), a physiologically modified LDL, exerted atherogenic effects in macrophages by promoting differentiation, inflammation, and triglyceride-enriched lipid droplets formation in THP1-CD14 macrophages, probably through different receptors.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Building M, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lara Montolio
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, and IIB-Sant Pau, 08041 Barcelona, Spain;
| | - Laia Navarra
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology. Neuroscience Institute. Faculty of Medicine, UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Elena Jiménez-Xarrié
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, and IIB-Sant Pau, 08041 Barcelona, Spain;
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| | - Sonia Benitez
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| |
Collapse
|
14
|
Validation of Cell-Based Assay for Quantification of Sesamol Uptake and Its Application for Measuring Target Exposure. Molecules 2019; 24:molecules24193522. [PMID: 31569436 PMCID: PMC6803937 DOI: 10.3390/molecules24193522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
The intracellular drug concentration is needed for determination of target exposure at the site of action regarding its pharmacological action and adverse effects. Sesamol is an antiproliferative molecule from Sesamum indicum with promising health benefits. We present a method for measuring the intracellular sesamol content using reverse-phase HPLC with a UV diode array in melanoma cells. Sesamol was completely resolved by isocratic elution (4.152 ± 0.008 min) with methanol/water (70%, v/v) through a 30 °C, 5-µm C-18 column and detection at 297 nm. The present assay offers high sensitivity, fast elution, and an accurate and linear nominal concentration range of 10–1000 ng/mL (R2 = 0.9972). The % accuracy of the sesamol quality control sample was −3.36% to 1.50% (bias) with a 0.84% to 5.28% relative standard deviation (RSD), representing high repeatability and high reproducibility. The % recovery was 94.80% to 99.29%, which determined that there was no loss of sesamol content during the sample preparation. The validated method was applied to monitor intracellular sesamol concentration after treatment from 5 min to 24 h. The remaining intracellular sesamol content was correlated with its antiproliferative effect (R2 = 0.9483). In conclusion, this assay demonstrated low manipulation, quick elution, and high sensitivity, precision, accuracy, and recovery, and it was successfully applied to the quantification of sesamol in target cells.
Collapse
|
15
|
Electronegative LDL from Rabbits Fed with Atherogenic Diet Is Highly Proinflammatory. Mediators Inflamm 2019; 2019:6163130. [PMID: 31534437 PMCID: PMC6724430 DOI: 10.1155/2019/6163130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Electronegative low-density lipoprotein (LDL(-)) has been found in the plasma of familial hypercholesterolemia and acute myocardial infarction and has been implicated in atherosclerosis and cardiovascular disease. However, less is known about the involvement of LDL(-) in atherosclerosis-related inflammation. This study aims at investigating the inducibility of LDL(-) by atherogenic diet in rabbits and at exploring the proinflammatory potential of the diet-induced LDL(-) in macrophages. Rabbits were fed with an atherogenic diet; LDL was isolated from plasma by NaBr density gradient ultracentrifugation and was then resolved into nLDL and LDL(-) by anion-exchange chromatography. Isolated nLDL and LDL(-) were directly used or incubated with 10 μM CuSO4 for 24 h to produce copper- (Cu-) ox-nLDL and Cu-ox-LDL(-). The effects of these LDLs on inflammation were evaluated in THP-1-derived macrophages. Macrophages were treated with nLDL, LDL(-), and extensively oxidized LDL (ox-LDL), then the levels of interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α in a culture medium were determined by ELISA, and the levels of total and phosphorylated IκB, p65, p38, JNK, and ERK in cell lysates were determined by Western blotting. The LDL(-) induced significantly higher levels of IL-1β, IL-6, and TNF-α in the medium. The levels of phosphorylated/total IκB, p65, p38, JNK, and ERK were also upregulated by LDL(-). In contrast, nLDL, Cu-ox-nLDL, and Cu-ox-LDL(-) exhibited much less effect. Knockdown of lectin-type oxidized LDL receptor- (LOX-) 1 resulted in significant reduction in LDL(-)-induced IL-1β, IL-6, and TNF-α. In addition, these LDL(-) effects were also markedly attenuated by inhibition of NF-κB and ERK1/2. The data suggested that LDL(-) induced inflammation through LOX-1-, NF-κB-, and ERK1/2-dependent pathways. Taken together, our results show that rabbits fed with atherogenic diet produce a highly proinflammatory LDL(-) that is more potent in inducing inflammation than nLDL and extensively oxidize LDL in macrophages. The results thus provide a novel link between diet-induced hypercholesterolemia and inflammation.
Collapse
|
16
|
Combined LDL and VLDL Electronegativity Correlates with Coronary Heart Disease Risk in Asymptomatic Individuals. J Clin Med 2019; 8:jcm8081193. [PMID: 31404961 PMCID: PMC6723521 DOI: 10.3390/jcm8081193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
The most electronegative constituents of human plasma LDL (i.e., L5) and VLDL (i.e., V5) are highly atherogenic. We determined whether the combined electronegativity of L5 and V5 (i.e., L5 + V5) plays a role in coronary heart disease (CHD). In 33 asymptomatic individuals (ages 32–64), 10-year hard CHD risk correlated with age (r = 0.42, p = 0.01). However, in age-adjusted analyses, 10-year hard CHD risk correlated with L5 + V5 plasma concentration (r = 0.43, p = 0.01) but not age (p = 0.74). L5 + V5 plasma concentration was significantly greater in the group with high CHD risk (39.4 ± 22.0 mg/dL; n = 17) than in the group with low CHD risk (16.9 ± 14.8 mg/dL; n = 16; p = 0.01). In cultured human aortic endothelial cells, L5 + V5 treatment induced significantly more senescence-associated–β-Gal activity than did equal concentrations of L1 + V1 (n = 4, p < 0.001). To evaluate the in vivo relevance of these findings, we fed ApoE−/− and wild-type mice with a high-fat diet and found that plasma LDL, VLDL, and LDL + VLDL from ApoE−/− mice exhibited significantly greater electrophoretic mobility than did wild-type counterparts (n = 6, p < 0.01). The increased electronegativity of LDL and VLDL in ApoE−/− mice was accompanied by increased aortic lipid accumulation and cellular senescence (n = 6, p < 0.05). Clinical trials are warranted to test the predictive value of L5 + V5 concentration in patients with CHD.
Collapse
|
17
|
Majdalawieh AF, Mansour ZR. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur J Pharmacol 2019; 855:75-89. [PMID: 31063773 DOI: 10.1016/j.ejphar.2019.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Sesamol is a natural phenolic compound and a major lignan isolated from sesame seeds (Sesamum indicum) and sesame oil. The therapeutic potential of sesamol was investigated intensively, and there is compelling evidence that sesamol acts as a metabolic regulator that possesses antioxidant, anti-mutagenic, anti-hepatotoxic, anti-inflammatory, anti-aging, and chemopreventive properties. Various studies have reported that sesamol exerts potent anti-cancer effects. Herein, we provide a comprehensive review that summarizes the in vitro and in vivo anti-cancer activity of sesamol in several cancer cell lines and animal models. The protective role that sesamol plays against oxidative stress through its radical scavenging ability and lipid peroxidation lowering potential is analyzed. The ability of sesamol to regulate apoptosis and various stages of the cell cycle is also outlined. Moreover, the signaling pathways that sesamol seems to target to execute its antioxidant, anti-inflammatory, and pro-apoptotic/anti-proliferative roles are discussed. The signaling pathways that sesamol targets include the p53, MAPK, JNK, PI3K/AKT, TNFα, NF-κB, PPARγ, caspase-3, Nrf2, eNOS, and LOX pathways. The mechanisms of action that sesamol executes to deliver its anti-cancer effects are delineated. In sum, there is ample evidence suggesting that sesamol possesses potent anti-cancer properties in vitro and in vivo. A thorough understanding of the molecular targets of sesamol and the mechanisms of action underlying its anti-cancer effects is necessary for possible employment of sesamol as a chemotherapeutic agent in cancer prevention and therapy.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Zeenah R Mansour
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
19
|
Chu CS, Chan HC, Tsai MH, Stancel N, Lee HC, Cheng KH, Tung YC, Chan HC, Wang CY, Shin SJ, Lai WT, Yang CY, Dixon RA, Chen CH, Ke LY. Range of L5 LDL levels in healthy adults and L5's predictive power in patients with hyperlipidemia or coronary artery disease. Sci Rep 2018; 8:11866. [PMID: 30089847 PMCID: PMC6082876 DOI: 10.1038/s41598-018-30243-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Electronegative L5 low-density lipoprotein (LDL) level may be a useful biomarker for predicting cardiovascular disease. We determined the range of plasma L5 levels in healthy adults (n = 35) and examined the power of L5 levels to differentiate patients with coronary artery disease (CAD; n = 40) or patients with hyperlipidemia (HLP) without evidence of CAD (n = 35) from healthy adults. The percent L5 in total LDL (L5%) was quantified by using fast-protein liquid chromatography with an anion-exchange column. Receiver operating characteristic curve analysis was performed to determine cut-off values for L5 levels. The mean L5% and plasma concentration of L5 (ie, [L5]) were significantly higher in patients with HLP or CAD than in healthy adults (P < 0.001). The ranges of L5% and [L5] in healthy adults were determined to be <1.6% and <1.7 mg/dL, respectively. In individuals with L5% >1.6%, the odds ratio was 9.636 for HLP or CAD. In individuals with [L5] >1.7 mg/dL, the odds ratio was 17.684 for HLP or CAD. The power of L5% or [L5] to differentiate patients with HLP or CAD from healthy adults was superior to that of the LDL/high-density lipoprotein ratio. The ranges of L5% and [L5] in healthy adults determined here may be clinically useful in preventing and treating cardiovascular disease.
Collapse
Affiliation(s)
- Chih-Sheng Chu
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Hua-Chen Chan
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Ming-Hsien Tsai
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Nicole Stancel
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Hsiang-Chun Lee
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Kai-Hung Cheng
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Yi-Ching Tung
- Department of Public Health and Environmental Medicine, KMU, Kaohsiung, Taiwan
| | - Hsiu-Chuan Chan
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan
| | - Chung-Ya Wang
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Shyi-Jang Shin
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Wen-Ter Lai
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Chao-Yuh Yang
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Chu-Huang Chen
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan. .,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan. .,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan. .,New York Heart Research Foundation, Mineola, NY, USA.
| | - Liang-Yin Ke
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan. .,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan. .,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, KMU, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Ke LY, Chan HC, Chan HC, Kalu FCU, Lee HC, Lin IL, Jhuo SJ, Lai WT, Tsao CR, Sawamura T, Dixon RA, Chen CH, Chu CS, Shin SJ. Electronegative Low-Density Lipoprotein L5 Induces Adipose Tissue Inflammation Associated With Metabolic Syndrome. J Clin Endocrinol Metab 2017; 102:4615-4625. [PMID: 29029093 DOI: 10.1210/jc.2017-01657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
CONTEXT Electronegative low-density lipoprotein (LDL) L5 is a naturally occurring, atherogenic entity found at elevated levels in the plasma of patients with metabolic syndrome (MetS) in the absence of elevated plasma LDL levels. OBJECTIVE To investigate the role of L5 in the mechanism of adipose tissue inflammation associated with MetS. PATIENTS/SETTING Plasma LDL isolated from patients with MetS (n = 29) and controls (n = 29) with similar plasma LDL levels was separated into five subfractions, L1 to L5, with increasing electronegativity. DESIGN We examined the invivo effects of L5 on adipose tissue in mice and the in vitro effects of L5 on adipocytokine signaling and monocytes. RESULTS Tail-vein injection of human L5 but not L1 into C57BL/6 mice induced the accumulation of F4/80+ and CD11c+ M1 macrophages. The effects of L5 were attenuated in mice deficient for L5's receptor, lectin-like oxidized LDL receptor 1 (LOX-1). L5 but not L1 induced human adipocytes to release inflammatory adipocytokines. Incubating human THP-1 monocytes with LDL-free culture media from L5-treated adipocytes enhanced the migration of monocytes by 300-fold (P < 0.001 vs L1-treated adipocyte media)-effects that were attenuated by LOX-1 neutralizing antibody. Migrated cells were positive for mature macrophage marker PM-2K, indicating the transformation of monocytes into macrophages. The infiltration of M1 macrophages in adipose tissue was also observed in a previously established hamster model of endogenously elevated L5. CONCLUSIONS L5 induces adipose inflammation through LOX-1 by promoting macrophage maturation and infiltration into adipose tissue. Elevated plasma L5 levels may be a novel etiology of adipose tissue inflammation in patients with MetS.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Vascular and Medicinal Research, Texas Heart Institute
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Taiwan
| | - Hua-Chen Chan
- Vascular and Medicinal Research, Texas Heart Institute
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Taiwan
| | - Hsiu-Chuan Chan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
| | - Franklin Chikodi Udo Kalu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Taiwan
| | - Hsiang-Chun Lee
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Taiwan
| | - Shih-Jie Jhuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Wen-Ter Lai
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Chen-Rong Tsao
- Division of Cardiology, Department of Internal Medicine, Feng Yuan Hospital, Ministry of Health, Taiwan
| | - Tatsuya Sawamura
- Department of Physiology, School of Medicine, Shinshu University, Japan
| | | | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Taiwan
- New York Heart Research Foundation
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Chih-Sheng Chu
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Shyi-Jang Shin
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| |
Collapse
|
21
|
Electronegative Low-Density Lipoprotein L5 Impairs Viability and NGF-Induced Neuronal Differentiation of PC12 Cells via LOX-1. Int J Mol Sci 2017; 18:ijms18081744. [PMID: 28800073 PMCID: PMC5578134 DOI: 10.3390/ijms18081744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
There have been striking associations of cardiovascular diseases (e.g., atherosclerosis) and hypercholesterolemia with increased risk of neurodegeneration including Alzheimer's disease (AD). Low-density lipoprotein (LDL), a cardiovascular risk factor, plays a crucial role in AD pathogenesis; further, L5, a human plasma LDL fraction with high electronegativity, may be a factor contributing to AD-type dementia. Although L5 contributing to atherosclerosis progression has been studied, its role in inducing neurodegeneration remains unclear. Here, PC12 cell culture was used for treatments with human LDLs (L1, L5, or oxLDL), and subsequently cell viability and nerve growth factor (NGF)-induced neuronal differentiation were assessed. We identified L5 as a neurotoxic LDL, as demonstrated by decreased cell viability in a time- and concentration-dependent manner. Contrarily, L1 had no such effect. L5 caused cell damage by inducing ATM/H2AX-associated DNA breakage as well as by activating apoptosis via lectin-like oxidized LDL receptor-1 (LOX-1) signaling to p53 and ensuring cleavage of caspase-3. Additionally, sublethal L5 long-termly inhibited neurite outgrowth in NGF-treated PC12 cells, as evidenced by downregulation of early growth response factor-1 and neurofilament-M. This inhibitory effect was mediated via an interaction between L5 and LOX-1 to suppress NGF-induced activation of PI3k/Akt cascade, but not NGF receptor TrkA and downstream MAPK pathways. Together, our data suggest that L5 creates a neurotoxic stress via LOX-1 in PC12 cells, thereby leading to impairment of viability and NGF-induced differentiation. Atherogenic L5 likely contributes to neurodegenerative disorders.
Collapse
|
22
|
Hsu E, Parthasarathy S. Anti-inflammatory and Antioxidant Effects of Sesame Oil on Atherosclerosis: A Descriptive Literature Review. Cureus 2017; 9:e1438. [PMID: 28924525 PMCID: PMC5587404 DOI: 10.7759/cureus.1438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Sesame oil (SO) is a supplement that has been known to have anti-inflammatory and antioxidant properties, which makes it effective for reducing atherosclerosis and the risk of cardiovascular disease. Due to the side effects of statins, the current recommended treatment for atherosclerosis and cardiovascular diseases, the idea of using dietary and nutritional supplementation has been explored. The benefits of a dietary health regime have piqued curiosity because many different cultures have reaped health benefits through the ingredients in their cooking with negligible side effects. The purpose of this literary review is to provide a broad overview of the potential benefits and risks of SO on the development of atherosclerosis and its direction toward human clinical use. Current in vivo and in vitro research has shed light on the effects of SO and its research has shown that SO can decrease low-density lipoprotein (LDL) levels while maintaining high-density lipoprotein (HDL) levels. Current limitations in recent studies include no standardized doses of SO given to subjects and unknown specific mechanisms of the different components of SO. Future studies should explore possible synergistic and adverse effects of SO when combined with current recommended pharmaceutical therapies and other adjunct treatments.
Collapse
Affiliation(s)
- Edmund Hsu
- University of Central Florida College of Medicine
| | - Sam Parthasarathy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| |
Collapse
|
23
|
Abd El Razik HA, Badr MH, Atta AH, Mouneir SM, Abu-Serie MM. Benzodioxole-Pyrazole Hybrids as Anti-Inflammatory and Analgesic Agents with COX-1,2/5-LOX Inhibition and Antioxidant Potential. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Heba A. Abd El Razik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Alexandria University; Alexandria Egypt
| | - Mona H. Badr
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Alexandria University; Alexandria Egypt
| | - Attia H. Atta
- Faculty of Veterinary Medicine, Department of Pharmacology; Cairo University; Cairo Egypt
| | - Samar M. Mouneir
- Faculty of Veterinary Medicine, Department of Pharmacology; Cairo University; Cairo Egypt
| | - Marwa M. Abu-Serie
- Genetic Engineering and Biotechnology Research Institute (GEBRI); City for Scientific Research and Technology Application, Borg El-Arab; Alexandria Egypt
| |
Collapse
|
24
|
Liu Z, Sun Y, Qiao Q, Zhao T, Zhang W, Ren B, Liu Q, Liu X. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system. Food Funct 2017; 8:710-719. [DOI: 10.1039/c6fo01562j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study demonstrated that sesamol prevents high-fat and high-fructose diet induced systemic insulin resistance and cognitive defects via stimulating PI3K/Akt signaling, improving ERK/CREB/BDNF cascades, and preserving mitochondrial function.
Collapse
Affiliation(s)
- Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yali Sun
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| |
Collapse
|
25
|
Akyol S, Lu J, Akyol O, Akcay F, Armutcu F, Ke LY, Chen CH. The role of electronegative low-density lipoprotein in cardiovascular diseases and its therapeutic implications. Trends Cardiovasc Med 2016; 27:239-246. [PMID: 28040327 DOI: 10.1016/j.tcm.2016.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
Cardiovascular disease (CVD) is a health problem of great concern to both the public and medical authorities. Low-density lipoprotein (LDL) has been reported to play an important role in both the development and progression of CVD, but studies are underway to determine how LDL exerts its effects. In recent years, it has been found that LDL has several subfractions, each of which affects endothelial function differently; L5, the most electronegative fraction, has been shown to be unique in that it induces an atherogenic response. This review examines the current knowledge concerning the relationships between L5 and CVD and highlights the role of L5 in the pathophysiology of CVD, especially with regards to atherosclerosis.
Collapse
Affiliation(s)
- Sumeyya Akyol
- Vascular & Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, MC 2-255, Houston, TX 77030, USA; Department of Medical Biology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey.
| | - Jonathan Lu
- Vascular & Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, MC 2-255, Houston, TX 77030, USA
| | - Omer Akyol
- Vascular & Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, MC 2-255, Houston, TX 77030, USA; Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fatih Akcay
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ferah Armutcu
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Liang-Yin Ke
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chu-Huang Chen
- Vascular & Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, MC 2-255, Houston, TX 77030, USA; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Estruch M, Sanchez-Quesada JL, Ordoñez-Llanos J, Benitez S. Inflammatory intracellular pathways activated by electronegative LDL in monocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:963-969. [PMID: 27235719 DOI: 10.1016/j.bbalip.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022]
Abstract
AIMS Electronegative LDL (LDL(-)) is a plasma LDL subfraction that induces cytokine release in monocytes through toll-like receptor 4 (TLR4) activation. However, the intracellular pathways induced by LDL(-) downstream TLR4 activation are unknown. We aimed to identify the pathways activated by LDL(-) leading to cytokine release in monocytes. METHODS AND RESULTS We determined LDL(-)-induced activation of several intracellular kinases in protein extracts from monocytes using a multikinase ELISA array. LDL(-) induced higher p38 mitogen-activated protein kinase (MAPK) phosphorylation than native LDL. This was corroborated by a specific cell-based assay and it was dependent on TLR4 and phosphoinositide 3-kinase (PI3k)/Akt pathway. P38 MAPK activation was involved in cytokine release promoted by LDL(-). A specific ELISA showed that LDL(-) activated cAMP response-element binding (CREB) in a p38 MAPK dependent manner. P38 MAPK was also involved in the nuclear factor kappa-B (NF-kB) and activating protein-1 (AP-1) activation by LDL(-). We found that NF-kB, AP-1 and CREB inhibitors decreased LDL(-)-induced cytokine release, mainly on MCP1, IL6 and IL10 release, respectively. CONCLUSIONS LDL(-) promotes p38 MAPK phosphorylation through TLR4 and PI3k/Akt pathways. Phosphorylation of p38 MAPK is involved in NF-kB, AP-1 and CREB activation, leading to LDL(-)-induced cytokine release in monocytes.
Collapse
Affiliation(s)
- Montserrat Estruch
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain.
| | - Jose Luis Sanchez-Quesada
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| | - Jordi Ordoñez-Llanos
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain; Biochemistry Department, Hospital de la Santa Creu i Sant Pau Barcelona, C/Sant Quintí 89, 08026 Barcelona, Spain.
| | - Sonia Benitez
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| |
Collapse
|
27
|
Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag 2015; 11:525-32. [PMID: 26357481 PMCID: PMC4559248 DOI: 10.2147/vhrm.s74697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk.
Collapse
Affiliation(s)
- Ekaterina A Ivanova
- Department of Pediatric Nephrology and Growth and Regeneration, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Yuri V Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW, Australia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia ; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|