1
|
Rodríguez-Berríos RR, Ríos-Delgado AM, Perdomo-Lizardo AP, Cardona-Rivera AE, Vidal-Rosado ÁG, Narváez-Lozano GA, Nieves-Quiñones IA, Rodríguez-Vargas JA, Álamo-Diverse KY, Lebrón-Acosta N, Medina-Berríos N, Rivera-Lugo PS, Avellanet-Crespo YA, Ortiz-Colón YW. Extraction, Isolation, Characterization, and Bioactivity of Polypropionates and Related Polyketide Metabolites from the Caribbean Region. Antibiotics (Basel) 2023; 12:1087. [PMID: 37508183 PMCID: PMC10376297 DOI: 10.3390/antibiotics12071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The Caribbean region is a hotspot of biodiversity (i.e., algae, sponges, corals, mollusks, microorganisms, cyanobacteria, and dinoflagellates) that produces secondary metabolites such as polyketides and polypropionates. Polyketides are a diverse class of natural products synthesized by organisms through a biosynthetic pathway catalyzed by polyketide synthase (PKS). This group of compounds is subdivided into fatty acids, aromatics, and polypropionates such as macrolides, and linear and cyclic polyethers. Researchers have studied the Caribbean region to find natural products and focused on isolation, purification, structural characterization, synthesis, and conducting biological assays against parasites, cancer, fungi, and bacteria. These studies have been summarized in this review, including research from 1981 to 2020. This review includes about 90 compounds isolated in the Caribbean that meet the structural properties of polyketides. Out of 90 compounds presented, 73 have the absolute stereochemical configuration, and 82 have shown biological activity. We expect to motivate the researchers to continue exploring the Caribbean region's marine environments to discover and investigate new polyketide and polypropionate natural products.
Collapse
Affiliation(s)
- Raúl R. Rodríguez-Berríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan PR 00931-3346, Puerto Rico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bera N, Samanta S, Sarkar D. Stereoselective Synthesis of Oxacycles via Ruthenium-Catalyzed Atom-Economic Coupling of Propargyl Alcohols and Michael Acceptors. J Org Chem 2021; 86:16369-16395. [PMID: 34735155 DOI: 10.1021/acs.joc.1c01758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of β-hydroxyenones and its application toward development of tetrahydro-4H-pyran-4-one in an atom-economic fashion is limited. This manuscript describes a ruthenium-catalyzed atom-economic coupling of pent-2-yne-1,5-diols and Michael acceptors as an efficient route for the synthesis of β-hydroxyenones with excellent yields and high regioselectivity. The β-hydroxyenones further undergo a 6-endo trig cyclization under acid-catalyzed conditions to deliver the tetrahydro-4H-pyran-4-ones with high diastereoselectivity. An intramolecular aldol condensation under mild basic conditions and palladium-catalyzed oxidative aromatization was developed for the synthesis of hexahydro-6H-isochromen-6-ones and isochromanols, respectively, from highly substituted tetrahydro-4H-pyran-4-ones with excellent yield and diastereoselectivity. Overall, this work demonstrates the synthetic potential toward the synthesis of oxacycles like tetrahydro-4H-pyran-4-ones, hexahydro-6H-isochromen-6-ones, and isochromanols via an atom-economic catalysis.
Collapse
Affiliation(s)
- Nabakumar Bera
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela769008, India
| | - Shantanu Samanta
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela769008, India
| | - Debayan Sarkar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela769008, India
| |
Collapse
|
3
|
Zhang H, Zou J, Yan X, Chen J, Cao X, Wu J, Liu Y, Wang T. Marine-Derived Macrolides 1990-2020: An Overview of Chemical and Biological Diversity. Mar Drugs 2021; 19:180. [PMID: 33806230 PMCID: PMC8066444 DOI: 10.3390/md19040180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/18/2022] Open
Abstract
Macrolides are a significant family of natural products with diverse structures and bioactivities. Considerable effort has been made in recent decades to isolate additional macrolides and characterize their chemical and bioactive properties. The majority of macrolides are obtained from marine organisms, including sponges, marine microorganisms and zooplankton, cnidarians, mollusks, red algae, bryozoans, and tunicates. Sponges, fungi and dinoflagellates are the main producers of macrolides. Marine macrolides possess a wide range of bioactive properties including cytotoxic, antibacterial, antifungal, antimitotic, antiviral, and other activities. Cytotoxicity is their most significant property, highlighting that marine macrolides still encompass many potential antitumor drug leads. This extensive review details the chemical and biological diversity of 505 macrolides derived from marine organisms which have been reported from 1990 to 2020.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingting Wang
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (H.Z.); (J.Z.); (X.Y.); (J.C.); (X.C.); (J.W.); (Y.L.)
| |
Collapse
|
4
|
Synthesis of the C1 – C16 fragment of bryostatin for incorporation into 20,20-fluorinated analogues. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
6
|
Provenzani R, Tarvainen I, Brandoli G, Lempinen A, Artes S, Turku A, Jäntti MH, Talman V, Yli-Kauhaluoma J, Tuominen RK, Boije af Gennäs G. Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C. PLoS One 2018; 13:e0195668. [PMID: 29641588 PMCID: PMC5895059 DOI: 10.1371/journal.pone.0195668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain–targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.
Collapse
Affiliation(s)
- Riccardo Provenzani
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilari Tarvainen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Giulia Brandoli
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Antti Lempinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sanna Artes
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Maria Helena Jäntti
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Raimo K. Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Lu J, Zhang Y, Yang W, Guo Q, Gao L, Song Z. Transformation of the B Ring to the C Ring of Bryostatins by Csp 3-H Amination and Z to E Isomerization. Org Lett 2017; 19:5232-5235. [PMID: 28901773 DOI: 10.1021/acs.orglett.7b02510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An interesting approach to transform the B ring of bryostatins to the C ring has been developed. The key tactics of the approach feature an intramolecular Csp3-H bond amination to form spirocyclic hemiaminal, which undergoes ring opening to afford the C ring found in bryostatin 17. The subsequent epoxidation/oxidation sequence results in Z to E isomerization of the exo-cyclic enoate, delivering the common precursor, which could be transformed into the C ring found in bryostatins 1, 2, 4-9, 12, 14, and 15.
Collapse
Affiliation(s)
- Ji Lu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Yuebao Zhang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - WenYu Yang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Qianyou Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Lu Gao
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Hu J, Bian M, Ding H. Recent application of oxa-Michael reaction in complex natural product synthesis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Farrell M, Melillo B, Smith AB. Type II Anion Relay Chemistry: Exploiting Bifunctional Weinreb Amide Linchpins for the One-Pot Synthesis of Differentiated 1,3-Diketones, Pyrans, and Spiroketals. Angew Chem Int Ed Engl 2015; 55:232-5. [PMID: 26586577 DOI: 10.1002/anie.201509342] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/27/2015] [Indexed: 11/08/2022]
Abstract
The design, synthesis, and validation of new highly effective bifunctional linchpins for type II anion relay chemistry (ARC) has been achieved. The mechanistically novel negative-charge migration that comprises the Brook rearrangement is now initiated by a stabilized tetrahedral intermediate, which is generated by nucleophilic addition to a Weinreb amide, rather than by a simple oxyanion that is generated from an epoxide. As a result, the linchpin preserves the carbonyl functionality in the ARC adducts, thus permitting access to functionally complex systems in a single flask without the need for further chemical manipulations. This tactic was validated with the one-pot preparation of monoprotected 1,3-diketones as well as pyran and spiroketal scaffolds, depending on the choice of nucleophile, electrophile, and work-up conditions.
Collapse
Affiliation(s)
- Mark Farrell
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104 (USA)
| | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104 (USA)
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104 (USA).
| |
Collapse
|
10
|
Farrell M, Melillo B, Smith AB. Type II Anion Relay Chemistry: Exploiting Bifunctional Weinreb Amide Linchpins for the One-Pot Synthesis of Differentiated 1,3-Diketones, Pyrans, and Spiroketals. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Yu HB, Yang F, Li YY, Gan JH, Jiao WH, Lin HW. Cytotoxic Bryostatin Derivatives from the South China Sea Bryozoan Bugula neritina. JOURNAL OF NATURAL PRODUCTS 2015; 78:1169-1173. [PMID: 25932671 DOI: 10.1021/acs.jnatprod.5b00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Four new macrocyclic lactones, bryostatin 21 (1) and 9-O-methylbryostatins 4, 16, and 17 (2-4), together with three known related compounds, bryostatins 4, 16, and 17 (5-7), have been isolated from an extract of the South China Sea bryozoan Bugula neritina. The structures of all compounds were unambiguously elucidated using detailed spectroscopic analysis. Structurally, the presence of a single methyl group at C-18 in compound 1 has not been observed before for known bryostatins. The isolated macrolides exhibited inhibitory effects against a small panel of human cancer cell lines.
Collapse
Affiliation(s)
- Hao-Bing Yu
- †Laboratory of Marine Drugs, Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
- ‡Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Fan Yang
- ‡Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Yan-Yun Li
- ‡Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Jian-Hong Gan
- †Laboratory of Marine Drugs, Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Wei-Hua Jiao
- ‡Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Hou-Wen Lin
- †Laboratory of Marine Drugs, Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
- ‡Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| |
Collapse
|
12
|
Identification and Biological Activities of Bryostatins from Japanese Bryozoan. Biosci Biotechnol Biochem 2014; 76:1041-3. [DOI: 10.1271/bbb.120026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Gao L, Lu J, Song Z. Recent efforts to construct the B-ring of bryostatins. Chem Commun (Camb) 2014; 49:10211-20. [PMID: 24051556 DOI: 10.1039/c3cc45947k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among macrocyclic natural products, bryostatins have excellent bioactivities and unique structures that make them highly attractive to synthetic chemists. Particularly challenging for the total synthesis of bryostatins is the B-ring, which features a cis-tetrahydropyran containing a geometrically defined exocyclic Z-methyl enoate. Synthetic chemists have recently displayed great prowess in their efforts to construct this ring, and here we summarize the progress towards this goal.
Collapse
Affiliation(s)
- Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | | | | |
Collapse
|
14
|
Abstract
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
Alcaide B, Almendros P, Alonso JM. Gold-catalyzed cyclizations of alkynol-based compounds: synthesis of natural products and derivatives. Molecules 2011; 16:7815-43. [PMID: 22143545 PMCID: PMC6264458 DOI: 10.3390/molecules16097815] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.
Collapse
Affiliation(s)
- Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006-Madrid, Spain
| | - José M. Alonso
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain
| |
Collapse
|
16
|
Yang F, Zhang HJ, Chen JT, Tang HF, Piao SJ, Chen WS, Lin HW. New cytotoxic oxygenated sterols from marine bryozoanBugula neritina. Nat Prod Res 2011; 25:1505-11. [DOI: 10.1080/14786410903211235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Trost BM, Yang H, Dong G. Total syntheses of bryostatins: synthesis of two ring-expanded bryostatin analogues and the development of a new-generation strategy to access the C7-C27 fragment. Chemistry 2011; 17:9789-805. [PMID: 21780195 PMCID: PMC3517064 DOI: 10.1002/chem.201002932] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 04/26/2011] [Indexed: 11/06/2022]
Abstract
Herein, we report the synthesis of novel ring-expanded bryostatin analogues. By carefully modifying the substrate, a selective and high-yielding Ru-catalyzed tandem enyne coupling/Michael addition was employed to construct the northern fragment. Ring-closing metathesis was utilized to form the 31-membered ring macrocycle of the analogue. These ring-expanded bryostatin analogues possess anticancer activity against several cancer cell lines. Given the difficulty in forming the C16-C17 olefin at a late stage, we also describe our development of a new-generation strategy to access the C7-C27 fragment, containing both the ring B and C subunits.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
18
|
Trost BM, Frontier AJ, Thiel OR, Yang H, Dong G. Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit. Chemistry 2011; 17:9762-76. [PMID: 21793057 PMCID: PMC3437499 DOI: 10.1002/chem.201002898] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 05/12/2011] [Indexed: 11/07/2022]
Abstract
Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for the stereoselective assembly of the ring C subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the ring C subunit of bryostatins.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
| | | | | | | | | |
Collapse
|
19
|
Alcaide B, Almendros P, Alonso JM. Gold catalyzed oxycyclizations of alkynols and alkyndiols. Org Biomol Chem 2011; 9:4405-16. [DOI: 10.1039/c1ob05249g] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Green AP, Lee ATL, Thomas EJ. Total synthesis of a 20-deoxybryostatin. Chem Commun (Camb) 2011; 47:7200-2. [DOI: 10.1039/c1cc12332g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
|
22
|
Trost BM, Dong G. Total synthesis of bryostatin 16 using a Pd-catalyzed diyne coupling as macrocyclization method and synthesis of C20-epi-bryostatin 7 as a potent anticancer agent. J Am Chem Soc 2010; 132:16403-16. [PMID: 21043491 PMCID: PMC2993185 DOI: 10.1021/ja105129p] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric total synthesis of bryostatin 16 was achieved in 26 steps in the longest linear sequence and in 39 total steps from aldehyde 10. A Pd-catalyzed alkyne-alkyne coupling was employed for the first time as a macrocyclization method in a natural product synthesis. A route to convert bryostatin 16 to a new family of bryostatin analogues was developed. Toward this end, 20-epi-bryostatin 7 was synthesized from a bryostatin 16-like intermediate; the key step involves a Re-catalyzed epoxidation/ring-opening reaction. Preliminary biological studies indicated that this new analogue exhibits nanomolar anti-cancer activity against several cancer cell lines.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States.
| | | |
Collapse
|
23
|
|
24
|
Hale KJ, Manaviazar S. New approaches to the total synthesis of the bryostatin antitumor macrolides. Chem Asian J 2010; 5:704-54. [PMID: 20354984 DOI: 10.1002/asia.200900634] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this Focus Review, we give an overview of various bryostatin total syntheses. We also discuss the synthesis of various bryostatin analogues and their biological activity. Work reviewed includes that of Masamune, Evans, Nishiyama and Yamamura, Hale and Manaviazar, Trost, Wender, Keck, Burke, Thomas, and Krische. Our coverage is primarily for the period 2001-2009, since detailed reviews already exist on bryostatin total synthesis work and biology up to this time.
Collapse
Affiliation(s)
- Karl J Hale
- School of Chemistry & Chemical Engineering, Queen's Universty Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | | |
Collapse
|
25
|
Trost BM, Dong G. Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches. Nature 2008; 456:485-8. [PMID: 19037312 DOI: 10.1038/nature07543] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/10/2008] [Indexed: 11/09/2022]
Abstract
Of the concepts used to improve the efficiency of organic syntheses, two have been especially effective: atom economy (the use of routes in which most of the atoms present in the reactants also end up in the product) and chemoselectivity (the use of reactions that take place only at desired positions in a molecule). Synthesis of complex natural products is the most demanding arena in which to explore such principles. The bryostatin family of compounds are especially interesting targets, because they combine structural complexity with promising biological activity. Furthermore, synthetic routes to some bryostatins have already been reported, providing a benchmark against which new syntheses can be measured. Here we report a concise total synthesis of bryostatin 16 (1), a parent structure from which almost all other bryostatins could in principle be accessed. Application of atom-economical and chemoselective reactions currently under development provides ready access to polyhydropyran motifs in the molecule, which are common structural features of many other natural products. The most notable transformations are two transition-metal-catalysed reactions. The first is a palladium-catalysed reaction of two different alkynes to form a large ring. The product of this step is then converted into a dihydropyran (the 'C ring' of bryostatins) in the second key reaction, which is catalysed by a gold compound. Analogues of bryostatin that do not exist in nature could be readily made by following this route, which might allow the biological activity of bryostatins to be fine-tuned.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
| | | |
Collapse
|
26
|
Elsworth JD, Willis CL. Intramolecular Prins cyclisations for the stereoselective synthesis of bicyclic tetrahydropyrans. Chem Commun (Camb) 2008:1587-9. [DOI: 10.1039/b717078e] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Abstract
This Highlight covers the chemical ecology of bryozoans, primarily the ecological functions of bryozoan natural products. The Highlight is arranged taxonomically, according to the bryozoan Treatise classification (P. Bock, Bryozoa Homepage, 2006, http://bryozoa.net).
Collapse
Affiliation(s)
- Jasmine H Sharp
- Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Ceredigion, Wales, UK
| | | | | |
Collapse
|
28
|
El-Rayes BF, Gadgeel S, Shields AF, Manza S, Lorusso P, Philip PA. Phase I Study of Bryostatin 1 and Gemcitabine. Clin Cancer Res 2006; 12:7059-62. [PMID: 17145828 DOI: 10.1158/1078-0432.ccr-06-1419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Bryostatin 1 is a macrocyclic lactone with protein kinase C inhibitory activity. Gemcitabine is a nucleotide analogue with a broad spectrum of anticancer activity. Bryostatin 1 enhanced the activity of antitumor agents including gemcitabine in preclinical models. The primary objective of this phase I study was to determine the recommended doses for phase II trials of bryostatin 1 and gemcitabine. EXPERIMENTAL DESIGN Eligible patients had histologic or cytologic diagnosis of nonhematologic cancer refractory to conventional treatment; life expectancy of >3 months; normal renal, hepatic, and bone marrow function; and a Southwest Oncology Group performance status of 0 to 2. Gemcitabine was administered i.v. over 30 minutes and was followed by bryostatin 1 by i.v. infusion over 24 hours on days 1, 8, and 15 of a 28-day cycle. Bryostatin 1 (microg/m(2)) and gemcitabine (mg/m(2)) doses were escalated as follows: 25/600, 25/800, 25/1,000, 30/1,000, 35/1,000, and 45/1,000, respectively. RESULTS Thirty-six patients (mean age, 57 years; male/female 15:21) were treated. The median number of treatment cycles per patient was 3 (range, 0-24). Four patients developed dose limiting toxicities: myalgia, 2; myelosuppression, 1; and elevation of serum alanine aminotransferase levels, 1. Ten grade 3 toxicities were observed (anemia, 2; neutropenia, 5; thrombocytopenia, 3). No treatment-related death was seen. The recommended doses for phase II trials for bryostatin 1 and gemcitabine were 35 microg/m(2) and 1,000 mg/m(2), respectively. Two heavily pretreated patients with breast and colon cancer experienced partial responses lasting 22 and 8 months, respectively. Eight patients had stable disease. CONCLUSION The combination of bryostatin 1 and gemcitabine seemed to be well tolerated with limited grade 3 toxicity. The recommended dose of bryostatin 1 in combination with full doses of gemcitabine was 35 microg/m(2).
Collapse
Affiliation(s)
- Basil F El-Rayes
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Collecting marine organisms for the discovery and development of pharmaceuticals has been perceived variously as sustaining and threatening conservation. Our initial expectations that marine bioprospecting might pose conservation challenges were largely not confirmed. Thousands of marine species have been collected for initial assessment, but usually only in very small amounts. Very few compounds are sufficiently promising to provoke re-collections, where volumes can be much larger. This is where conservation concerns may arise, particularly if the organism is rare, has a restricted distribution, or is targeted in one narrow area. However, industry generally seeks to avoid dependency on small populations, for economic as well as ecological reasons. Alternative supply strategies to wild capture include synthesis and culture. Mandatory collection protocols and environmental impact (stock) assessments are useful routes for management to achieve sustainable use where extraction is desirable. In general, the scanty information available suggests that marine bioprospecting for pharmaceuticals may have minimal impacts on the environment, particularly compared with those created by other pressures.
Collapse
Affiliation(s)
- Bob Hunt
- Project Seahorse, Fisheries Centre, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
30
|
Daniel PT, Koert U, Schuppan J. Apoptolidin: Induction of Apoptosis by a Natural Product. Angew Chem Int Ed Engl 2006; 45:872-93. [PMID: 16404760 DOI: 10.1002/anie.200502698] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apoptolidin is a natural product that selectively induces apoptosis in several cancer cell lines. Apoptosis, programmed cell death, is a biological key pathway for regulating homeostasis and morphogenesis. Apoptotic misregulations are connected with several diseases, in particular cancer. The extrinsic way to apoptosis leads through death ligands and death receptors to the activiation of the caspase cascade, which results in proteolytic degradation of the cell architecture. The intrinsic pathway transmits signals of internal cellular damage to the mitochondrion, which loses its structural integrity, and forms an apoptosome that initiates the caspase cascade. Compounds which regulate apoptosis are of high medical significance. Many natural products regulate apoptotic pathways, and apoptolidin is one of them. The known synthetic routes to apoptolidin are described and compared in this Review. Selected further natural products which regulate apoptosis are introduced briefly.
Collapse
Affiliation(s)
- Peter T Daniel
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University of Berlin, Germany
| | | | | |
Collapse
|
31
|
Daniel PT, Koert U, Schuppan J. Apoptolidin: Induktion von Apoptose durch einen Naturstoff. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Hassfeld J, Kalesse M, Stellfeld T, Christmann M. Asymmetric total synthesis of complex marine natural products. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 97:133-203. [PMID: 16261808 DOI: 10.1007/b135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Among nature's ecosystems, the marine environment has been an extremely rich source of structurally complex and biologically active molecules. This review aims to cover the recent developments in the synthesis of marine natural products, also reflecting the trend of their increased use to address biological questions. The examples chosen should be viewed as representative of the different structural motifs on the one hand and the strategies and stimuli for their synthesis on the other.
Collapse
Affiliation(s)
- Jorma Hassfeld
- Institut für Organische Chemie, Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | |
Collapse
|
33
|
Hildebrand M, Waggoner LE, Liu H, Sudek S, Allen S, Anderson C, Sherman DH, Haygood M. bryA: an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. ACTA ACUST UNITED AC 2005; 11:1543-52. [PMID: 15556005 DOI: 10.1016/j.chembiol.2004.08.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/23/2004] [Accepted: 08/24/2004] [Indexed: 11/29/2022]
Abstract
"Candidatus Endobugula sertula," the uncultivated bacterial symbiont of Bugula neritina, is the proposed source of the bryostatin family of anticancer compounds. We cloned a large modular polyketide synthase (PKS) gene complex from "Candidatus Endobugula sertula" and characterized one gene, bryA, which we propose is responsible for the initial steps of bryostatin biosynthesis. Typical PKS domains are present. However, acyltransferase domains are lacking in bryA, and beta-ketoacyl synthase domains of bryA cluster with those of PKSs with discrete, rather than integral, acyltransferases. We propose a model for biosynthesis of the bryostatin D-lactate starter unit by the bryA loading module, utilizing atypical domains homologous to FkbH, KR, and DH. The bryA gene product is proposed to synthesize a portion of the pharmacologically active part of bryostatin and may be useful in semisynthesis of clinically useful bryostatin analogs.
Collapse
Affiliation(s)
- Mark Hildebrand
- Scripps Institution of Oceanography, Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine and UCSD Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ohmori K. Evolution of Synthetic Strategies for Highly Functionalized Natural Products: A Successful Route to Bryostatin 3. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2004. [DOI: 10.1246/bcsj.77.875] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Hale KJ, Frigerio M, Manaviazar S. New, abridged pathway to Masamune's "southern hemisphere" intermediate for the total synthesis of bryostatin 7. Org Lett 2003; 5:503-5. [PMID: 12583754 DOI: 10.1021/ol027393m] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The "Southern Hemisphere" intermediate 2, used by Masamune and co-workers for their asymmetric total synthesis of bryostatin 7 (1), has been synthesized from (E)-1,4-hexadiene (11) by a 24-step pathway that has a longest linear sequence of only 20 steps. This is the shortest synthesis of 2 so far recorded, and moreover, it is fully stereocontrolled.
Collapse
Affiliation(s)
- Karl J Hale
- The Christopher Ingold Laboratories, The Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom.
| | | | | |
Collapse
|
36
|
Temperature-dependent separation of bryostatin 18 and 10 by high performance liquid chromatography. Chromatographia 2001. [DOI: 10.1007/bf02491833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Affiliation(s)
- G Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
38
|
Abstract
Bryostatins are a class of antineoplastic compounds isolated from the bryozoans Bugula neritina. A wide range of scientific research is currently underway, studying different aspects of the bryostatins. In this review we try to summarize the latest findings, including all the topics involved, from marine biology to medicinal chemistry.
Collapse
Affiliation(s)
- R Mutter
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | |
Collapse
|
39
|
|
40
|
|
41
|
Wender PA, DeBrabander J, Harran PG, Jimenez JM, Koehler MF, Lippa B, Park CM, Siedenbiedel C, Pettit GR. The design, computer modeling, solution structure, and biological evaluation of synthetic analogs of bryostatin 1. Proc Natl Acad Sci U S A 1998; 95:6624-9. [PMID: 9618462 PMCID: PMC22576 DOI: 10.1073/pnas.95.12.6624] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/1998] [Indexed: 02/07/2023] Open
Abstract
The bryostatins are a unique family of emerging cancer chemotherapeutic candidates isolated from marine bryozoa. Although the biochemical basis for their therapeutic activity is not known, these macrolactones exhibit high affinities for protein kinase C (PKC) isozymes, compete for the phorbol ester binding site on PKC, and stimulate kinase activity in vitro and in vivo. Unlike the phorbol esters, they are not first-stage tumor promoters. The design, computer modeling, NMR solution structure, PKC binding, and functional assays of a unique class of synthetic bryostatin analogs are described. These analogs (7b, 7c, and 8) retain the putative recognition domain of the bryostatins but are simplified through deletions and modifications in the C4-C14 spacer domain. Computer modeling of an analog prototype (7a) indicates that it exists preferentially in two distinct conformational classes, one in close agreement with the crystal structure of bryostatin 1. The solution structure of synthetic analog 7c was determined by NMR spectroscopy and found to be very similar to the previously reported structures of bryostatins 1 and 10. Analogs 7b, 7c, and 8 bound strongly to PKC isozymes with Ki = 297, 3.4, and 8.3 nM, respectively. Control 7d, like the corresponding bryostatin derivative, exhibited weak PKC affinity, as did the derivative, 9, lacking the spacer domain. Like bryostatin, acetal 7c exhibited significant levels of in vitro growth inhibitory activity (1.8-170 ng/ml) against several human cancer cell lines, providing an important step toward the development of simplified, synthetically accessible analogs of the bryostatins.
Collapse
Affiliation(s)
- P A Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- D J Faulkner
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla 92093-0212, USA
| |
Collapse
|
43
|
Bioactive marine macrolides. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1572-5995(96)80015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|