1
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
2
|
Wang X, Ding F, Jia T, Li F, Ding X, Deng R, Lin K, Yang Y, Wu W, Xia D, Chen G. Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nat Commun 2024; 15:2157. [PMID: 38461161 PMCID: PMC10924867 DOI: 10.1038/s41467-024-46541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies (η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fangwei Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tao Jia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiping Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ruibin Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yulin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Debin Xia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
3
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
4
|
Herrera CK, Vahdani A, Yang C, Bates M, Lunt SY, Borhan B, Lunt RR. Enhanced Lifetime of Cyanine Salts in Dilute Matrix Luminescent Solar Concentrators via Counterion Tuning. ACS PHOTONICS 2023; 10:3195-3202. [PMID: 39071812 PMCID: PMC11281435 DOI: 10.1021/acsphotonics.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Organic luminophores offer great potential for energy harvesting and light emission due to tunable spectral properties, strong luminescence, high solubility, and excellent wavelength-selectivity. To realize their full potential, the lifetimes of luminophores must extend to many years under illumination. Many organic luminophores, however, have a tendency to degrade and undergo rapid photobleaching, leading to the perception of intrinsic instability of organic molecules. In this work we demonstrate that by exchanging the counterion of a heptamethine cyanine salt the photostability and corresponding lifetime of dilute cyanine salts can be enhanced by orders of magnitude from 10 hours to an extrapolated lifetime of greater than 65,000 hours under illumination. To help correlate and comprehend the underlying mechanism behind this phenomenon, the water contact angle and binding energy of each pairing were measured and calculated. We find that increased water contact angle, and therefore increasing hydrophobicity, generally correlate to improved lifetimes. Similarly, a lower absolute binding energy between cation and anion correlates to increased lifetimes. Utilizing the binding energy formalism, we predict the stability of a new anion and experimentally verify with good consistency. Moving forward, these factors could be used to rapidly screen and identify highly photostable organic luminophore salt systems for a range of energy harvesting and light emitting applications.
Collapse
Affiliation(s)
- Christopher K. Herrera
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aria Vahdani
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chenchen Yang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Matthew Bates
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sophia Y. Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Yuan Y, Diao S, Zhang D, Yi W, Qi B, Hu X, Xie C, Fan Q, Yu A. A targeted activatable NIR-II nanoprobe for positive visualization of anastomotic thrombosis and sensitive identification of fresh fibrinolytic thrombus. Mater Today Bio 2023; 21:100697. [PMID: 37346779 PMCID: PMC10279546 DOI: 10.1016/j.mtbio.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Anastomotic thrombosis prevalently causes anastomosis failure, accompanied with ischemia and necrosis, the early diagnosis of which is restricted by inherent shortcomings of traditional imaging techniques in clinic and lack of appropriate prodromal biomarkers for thrombosis initiation. Herein, a fresh thrombus-specific molecular event, protein disulfide isomerase (PDI) is innovatively chosen as the activating factor, and a thrombosis targeting and PDI-responsive turn-on near infrared II (NIR-II) fluorescence nanoprobe is firstly developed. The supramolecular complex-based nanoprobe IR806-PDA@BSA-CREKA is fabricated by assembling NIR-II emitting cyanine derivative IR806-PDA with bovine serum albumin (BSA), which could ameliorate the stability and pharmacokinetics of the nanoprobe, addressing the contradiction in the balance of brightness and biocompatibility. The NIR-II-off nanoprobe exhibits robust turn-on NIR-II fluorescence upon PDI-specific activation, in vitro and in vivo. Of note, the constructed nanoprobe demonstrates superior photophysical stability, efficient fibrin targeting peptide-derived thrombosis binding and a maximum signal-to-background ratio (SBR) of 9.30 for anastomotic thrombosis in NIR-II fluorescent imaging. In conclusion, the exploited strategy enables positive visualized diagnosis for anastomotic thrombosis and dynamic monitoring for thrombolysis of fresh fibrinolytic thrombus, potentially contributes a novel strategy for guiding the therapeutic selection between thrombolysis and thrombectomy for thrombosis treatment in clinic.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shanchao Diao
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Dong Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wanrong Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Photoconduction and Electroluminescence of Copper (II) Protoporphyrin and Chlorin Cu-C-e6. Int J Mol Sci 2023; 24:ijms24043178. [PMID: 36834589 PMCID: PMC9964107 DOI: 10.3390/ijms24043178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Cu (II) protoporphyrin Cu-PP-IX and chlorin Cu-C-e6 were found to have both thin solid film formation and charge carrier transport abilities. In the layers deposited by resistive thermal evaporation, the mobilities of holes and electrons are on the order of 10-5 cm2 V-1 s-1. Organic light-emitting diodes incorporating the dye molecules as emitting dopants demonstrate electroluminescence in the UV and near-IR ranges.
Collapse
|
7
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
9
|
Blanchard AT, Li Z, Duran EC, Scull CE, Hoff JD, Wright KR, Pan V, Walter NG. Ultra-photostable DNA FluoroCubes: Mechanism of Photostability and Compatibility with FRET and Dark Quenching. NANO LETTERS 2022; 22:6235-6244. [PMID: 35881934 PMCID: PMC10080265 DOI: 10.1021/acs.nanolett.2c01757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA-based FluoroCubes were recently developed as a solution to photobleaching, a ubiquitous limitation of fluorescence microscopy (Niekamp; ; Stuurman; ; Vale Nature Methods, 2020). FluoroCubes, that is, compact ∼4 × 4 × 5.4 nm3 four-helix bundles coupled to ≤6 fluorescent dyes, remain fluorescent up to ∼50× longer than single dyes and emit up to ∼40× as many photons. The current work answers two important questions about the FluoroCubes. First, what is the mechanism by which photostability is enhanced? Second, are FluoroCubes compatible with Förster resonance energy transfer (FRET) and similar techniques? We use single particle photobleaching studies to show that photostability arises through interactions between the fluorophores and the four-helix DNA bundle. Supporting this, we discover that smaller ∼4 × 4 × 2.7 nm3 FluoroCubes also confer ultraphotostability. However, we find that certain dye-dye interactions negatively impact FluoroCube performance. Accordingly, 4-dye FluoroCubes lacking these interactions perform better than 6-dye FluoroCubes. We also demonstrate that FluoroCubes are compatible with FRET and dark quenching applications.
Collapse
Affiliation(s)
- Aaron T. Blanchard
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Michigan Society of Fellows, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Elizabeth C. Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Catherine E. Scull
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - J. Damon Hoff
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Keenan R. Wright
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Victor Pan
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, Georgia, 30322
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
10
|
Kwon J, Elgawish MS, Shim S. Bleaching-Resistant Super-Resolution Fluorescence Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101817. [PMID: 35088584 PMCID: PMC8948665 DOI: 10.1002/advs.202101817] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 01/07/2022] [Indexed: 05/08/2023]
Abstract
Photobleaching is the permanent loss of fluorescence after extended exposure to light and is a major limiting factor in super-resolution microscopy (SRM) that restricts spatiotemporal resolution and observation time. Strategies for preventing or overcoming photobleaching in SRM are reviewed developing new probes and chemical environments. Photostabilization strategies are introduced first, which are borrowed from conventional fluorescence microscopy, that are employed in SRM. SRM-specific strategies are then highlighted that exploit the on-off transitions of fluorescence, which is the key mechanism for achieving super-resolution, which are becoming new routes to address photobleaching in SRM. Off states can serve as a shelter from excitation by light or an exit to release a damaged probe and replace it with a fresh one. Such efforts in overcoming the photobleaching limits are anticipated to enhance resolution to molecular scales and to extend the observation time to physiological lifespans.
Collapse
Affiliation(s)
- Jiwoong Kwon
- Department of Biophysics and Biophysical ChemistryJohns Hopkins UniversityBaltimoreMD21205USA
| | - Mohamed Saleh Elgawish
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
- Medicinal Chemistry DepartmentFaculty of PharmacySuez Canal UniversityIsmailia41522Egypt
| | - Sang‐Hee Shim
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
11
|
Yang Y, Zhang F. Molecular fluorophores for in vivo bioimaging in the second near-infrared window. Eur J Nucl Med Mol Imaging 2022; 49:3226-3246. [PMID: 35088125 DOI: 10.1007/s00259-022-05688-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE This systematic review aims to summarize the current developments of fluorescence and chemi/bioluminescence imaging based on the molecular fluorophores for in vivo imaging in the second near-infrared window. METHODS AND RESULTS By investigating most of the relevant references on the web of science and some journals, this review firstly begins with an overview of the background of fluorescence and chemi/bioluminescence imaging. Secondly, the chemical and optical properties of NIR-II dyes are discussed, such as water solubility, chemostability and photo-stability, and brightness. Thirdly, the bioimaging based on NIR-II fluorescence emission is outlined, including the in vivo imaging of polymethine dyes, donor - acceptor - donor (D - A - D) chromophores, and lanthanide complexes. Fourthly, we demonstrate the chemi/bioluminescence in vivo imaging in the second near-infrared window. Fifthly, the clinical application and translation of near-infrared fluorescence imaging are presented. Finally, the current challenges, feasible strategies and potential prospects of the fluorophores and in vivo bioimaging are discussed. CONCLUSIONS Based on the above literature research on the applications of molecular fluorescent and chemi/bioluminescent probes in the second near-infrared window in recent years, this review weighs the advantages and disadvantages of fluorescence and chemi/bioluminescence imaging, and NIR-II fluorophores based on polymethine dyes, D - A - D chromophores, and lanthanide complexes. Besides, this review also provides a very important guidance for expanding the imaging applications of molecular fluorophores in the second near-infrared window.
Collapse
Affiliation(s)
- Yanling Yang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
13
|
Singh AK, Schade B, Wycisk V, Böttcher C, Haag R, von Berlepsch H. Aggregation of Amphiphilic Carbocyanines: Fluorination Favors Cylindrical Micelles over Bilayered Tubes. J Phys Chem B 2021; 125:10538-10550. [PMID: 34505509 DOI: 10.1021/acs.jpcb.1c05128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis of a new amphiphilic 5,5',6,6'-tetrachlorobenzimidacarbocyanine dye derivative with -(CH2)2-(CF2)5-CF3 chains attached to the nitrogen atoms in the 1,1'-position, CF8O3, is reported. Depending on the dye concentration and the addition of MeOH, CF8O3 forms J- and H-aggregates in aqueous solutions. The aggregation behavior was investigated using steady-state absorption, linear dichroism, and fluorescence spectroscopy, as well as by cryogenic transmission electron microscopy (cryo-TEM). The J-band of the MeOH-free solution is monomer-like, rather broad, and less red-shifted with respect to the monomer absorption, indicating weak excitonic coupling and disorder effects. Cryo-TEM reveals a diversity of supramolecular structures, wherein linear and branched cylindrical micelles dominate. It is concluded that the high stiffness of fluoroalkyl chains does not allow the chains to splay and completely fill up the hydrophobic gap between opposing chromophores. This destabilizes the bilayers and favors the micellar structure motifs instead. The aggregates appearing at 30% MeOH show a split absorption spectrum consisting of a broad blue-shifted H-band and an accompanying sharp red-shifted J-band with perpendicular polarizations. These HJ-type aggregates are also composed of micellar fibers, but these bundle into rope-like strands. For 10% MeOH, a narrow bilayered tube is the dominating morphology. The observed MeOH dependence of aggregation reveals a clear cosolvent effect.
Collapse
Affiliation(s)
- Abhishek Kumar Singh
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany.,Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Virginia Wycisk
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Hans von Berlepsch
- Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| |
Collapse
|
14
|
Su L, Shu L, Shi B, Hang Y, Huang J. Construction of Enhanced Photostability Anthraquinone-Type Nanovesicles Based on a Novel Two-Step Supramolecular Assembly Strategy and Their Application on Multiband Laser-Responsive Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43458-43472. [PMID: 34464092 DOI: 10.1021/acsami.1c14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The photostability and dispersity under aggregation states always become an obstacle for the development of small-molecular organic dye (SMOD) composites. Herein, a novel supramolecular assembly strategy with a two-step assembly method is implemented to encapsulate SMODs for improving their photostability and acquiring uniformly dispersed nanoaggregates in aqueous solution. By the novel assembly strategy, photodegradation rates of the anthraquinone-type dyes can decrease significantly, and the stability of dispersed nanoassembly bodies can be improved in solution. Based on the two-step supramolecular assembly strategy, a new kind of aqueous processing composite system can be developed for preparing multiband laser-responsive devices and in situ healing of optical composite films. This two-step supramolecular assembly strategy can provide a new template and reference for improving the defects of SMODs and fabricating high-performance optical devices.
Collapse
Affiliation(s)
- Linlin Su
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lan Shu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Binbin Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yixiao Hang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jin Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Cho Y, An HJ, Kim T, Lee C, Lee NK. Mechanism of Cyanine5 to Cyanine3 Photoconversion and Its Application for High-Density Single-Particle Tracking in a Living Cell. J Am Chem Soc 2021; 143:14125-14135. [PMID: 34432445 DOI: 10.1021/jacs.1c04178] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanine (Cy) dyes are among the most useful organic fluorophores that have found a wide range of applications in single-molecule and super-resolution imaging as well as in other biophysical studies. However, recent observations that blueshifted derivatives of Cy dyes are formed via photoconversion have raised concerns as to the potential artifacts in multicolor imaging. Here, we report the mechanism for the photoconversion of Cy5 to Cy3 that occurs upon photoexcitation during fluorescent imaging. Our studies show that the formal C2H2 excision from Cy5 occurs mainly through an intermolecular pathway involving a combination of bond cleavage and reconstitution while unambiguously confirming the identity of the fluorescent photoproduct of Cy5 to be Cy3 using various spectroscopic tools. The carbonyl products generated from singlet oxygen-mediated photooxidation of Cy5 undergo a sequence of carbon-carbon bond-breaking and -forming events to bring about the novel dye-to-dye transformation. We also show that the deletion of a two-methine unit from the polymethine chain, which results in the formation of blueshifted products, commonly occurs in other cyanine dyes, such as Alexa Fluor 647 (AF647) and Cyanine5.5. The formation of a blueshifted congener dye can obscure the multicolor fluorescence imaging, leading to misinterpretation of the data. We demonstrate that the potentially deleterious photoconversion, however, can be exploited to develop a new photoactivation method for high-density single-particle tracking in a living cell without using UV illumination and cell-toxic additives.
Collapse
Affiliation(s)
- Yoonjung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeong Jeon An
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Taehoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulbom Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Rietsch P, Zeyat M, Hübner O, Hoffmann K, Kutter M, Paskin A, Uhlig J, Lentz D, Resch-Genger U, Eigler S. Substitution Pattern-Controlled Fluorescence Lifetimes of Fluoranthene Dyes. J Phys Chem B 2021; 125:1207-1213. [PMID: 33475384 DOI: 10.1021/acs.jpcb.0c08851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The absorption and emission properties of organic dyes are generally tuned by altering the substitution pattern. However, tuning the fluorescence lifetimes over a range of several 10 ns while barely affecting the spectral features and maintaining a moderate fluorescence quantum yield is challenging. Such properties are required for lifetime multiplexing and barcoding applications. Here, we show how this can be achieved for the class of fluoranthene dyes, which have substitution-dependent lifetimes between 6 and 33 ns for single wavelength excitation and emission. We explore the substitution-dependent emissive properties in the crystalline solid state that would prevent applications. Furthermore, by analyzing dye mixtures and embedding the dyes in carboxy-functionalized 8 μm-sized polystyrene particles, the unprecedented potential of these dyes as labels and encoding fluorophores for time-resolved fluorescence detection techniques is demonstrated.
Collapse
Affiliation(s)
- Philipp Rietsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Mohammad Zeyat
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Oskar Hübner
- Department 1, Division Biophotonics, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard Willstätter Straße 11, 12489 Berlin, Germany
| | - Katrin Hoffmann
- Department 1, Division Biophotonics, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard Willstätter Straße 11, 12489 Berlin, Germany
| | - Maximilian Kutter
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Alice Paskin
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Julian Uhlig
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Dieter Lentz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Ute Resch-Genger
- Department 1, Division Biophotonics, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard Willstätter Straße 11, 12489 Berlin, Germany
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
17
|
Zhang S, Chen H, Wang L, Liu C, Liu L, Sun Y, Shen XC. A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy. J Mater Chem B 2021; 9:1089-1095. [PMID: 33427258 DOI: 10.1039/d0tb02674c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Near-infrared fluorophores are emerging as promising molecular tools for cancer theranostics because of their inherent biodegradability, low toxicity, and synthetic flexibility. However, they still suffer from several limitations, such as poor photostability and insufficient organelle-targeting stability during photothermal therapy. In this work, we introduce an "aldehyde functionalization" strategy for simultaneously enhancing photostability and mitochondria-immobilization of near-infrared fluorophores for the first time. Based on the proposed strategy, representative near-infrared organic molecules, namely AF-Cy, were rationally designed and synthesized. Upon aldehyde modification, the AF-Cy dyes displayed both remarkable photostability and mitochondrial-targeting stability. The strong absorption in the near-infrared region confers the AF-Cy dyes with outstanding fluorescent/photoacoustic imaging and photothermal therapy capabilities. Finally, in vitro and in vivo studies revealed the enhanced performance in inhibiting the growth of breast tumors under NIR laser radiation, and these results suggested the strong potential of AF-Cy dyes as efficient multimodal imaging-guided photothermal therapy agents, further highlighting the value of this simple strategy in the design high performance near-infrared fluorophores for tumor theranostics.
Collapse
Affiliation(s)
- Shuping Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Nan X, Huyan Y, Li H, Sun S, Xu Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213580] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Santos FMF, Domínguez Z, Fernandes JPL, Parente Carvalho C, Collado D, Pérez-Inestrosa E, Pinto MV, Fernandes A, Arteaga JF, Pischel U, Gois PMP. Cyanine-Like Boronic Acid-Derived Salicylidenehydrazone Complexes (Cy-BASHY) for Bioimaging Applications. Chemistry 2020; 26:14064-14069. [PMID: 32449571 DOI: 10.1002/chem.202001623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Boronic acid-derived salicylidenehydrazone complex (BASHY) dyes with a polymethine backbone were designed to yield efficient red-emitting and two-photon absorbing fluorophores that can be used as markers for astrocytes. The dyes are chemically stable in aqueous solution and do not undergo photodecomposition. Their photophysical properties can be electronically fine-tuned and thereby adapted to potentially different imaging situations and requirements.
Collapse
Affiliation(s)
- Fábio M F Santos
- Research Institute for Medicines (iMed.ULisboba), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Zoe Domínguez
- CIQSO-Centre for Research in Sustainable Chemistry and Department of, Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - João P L Fernandes
- Research Institute for Medicines (iMed.ULisboba), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Cátia Parente Carvalho
- Research Institute for Medicines (iMed.ULisboba), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Daniel Collado
- Department of Organic Chemistry, University of Málaga IBIMA, Campus Teatinos s/n, 29071, Málaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology, BIONAND Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - Ezequiel Pérez-Inestrosa
- Department of Organic Chemistry, University of Málaga IBIMA, Campus Teatinos s/n, 29071, Málaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology, BIONAND Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - Maria V Pinto
- Research Institute for Medicines (iMed.ULisboba), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboba), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jesús F Arteaga
- CIQSO-Centre for Research in Sustainable Chemistry and Department of, Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Uwe Pischel
- Research Institute for Medicines (iMed.ULisboba), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,CIQSO-Centre for Research in Sustainable Chemistry and Department of, Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboba), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
21
|
Lim I, Vian A, van de Wouw HL, Day RA, Gomez C, Liu Y, Rheingold AL, Campàs O, Sletten EM. Fluorous Soluble Cyanine Dyes for Visualizing Perfluorocarbons in Living Systems. J Am Chem Soc 2020; 142:16072-16081. [PMID: 32808518 PMCID: PMC8366720 DOI: 10.1021/jacs.0c07761] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bioorthogonal nature of perfluorocarbons provides a unique platform for introducing dynamic nano- and microdroplets into cells and organisms. To monitor the localization and deformation of the droplets, fluorous soluble fluorophores that are compatible with standard fluorescent protein markers and applicable to cells, tissues, and small organisms are necessary. Here, we introduce fluorous cyanine dyes that represent the most red-shifted fluorous soluble fluorophores to date. We study the effect of covalently appended fluorous tags on the cyanine scaffold and evaluate the changes in photophysical properties imparted by the fluorous phase. Ultimately, we showcase the utility of the fluorous soluble pentamethine cyanine dye for tracking the localization of perfluorocarbon nanoemulsions in macrophage cells and for measurements of mechanical forces in multicellular spheroids and zebrafish embryonic tissues. These studies demonstrate that the red-shifted cyanine dyes offer spectral flexibility in multiplexed imaging experiments and enhanced precision in force measurements.
Collapse
Affiliation(s)
- Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Antoine Vian
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Heidi L. van de Wouw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Rachael A. Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Carlos Gomez
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093-0505, United States
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
22
|
Oxygen- and pH-Dependent Photophysics of Fluorinated Fluorescein Derivatives: Non-Symmetrical vs. Symmetrical Fluorination. SENSORS 2020; 20:s20185172. [PMID: 32927830 PMCID: PMC7570907 DOI: 10.3390/s20185172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
Fluorescein, and derivatives of fluorescein, are often used as fluorescent probes and sensors. In systems where pH is a variable, protonation/deprotonation of the molecule can influence the pertinent photophysics. Fluorination of the xanthene moiety can alter the molecule’s pKa such as to render a probe whose photophysics remains invariant over a wide pH range. Di-fluorination is often sufficient to accomplish this goal, as has been demonstrated with compounds such as Oregon Green in which the xanthene moiety is symmetrically difluorinated. In this work, we synthesized a non-symmetrical difluorinated analog of Oregon Green which we call Athens Green. We ascertained that the photophysics and photochemistry of Athens Green, including the oxygen-dependent photophysics that results in the sensitized production of singlet oxygen, O2(a1Δg), can differ appreciably from the photophysics of Oregon Green. Our data indicate that Athens Green will be a more benign fluorescent probe in systems that involve the production and removal of O2(a1Δg). These results expand the available options in the toolbox of fluorescein-based fluorophores.
Collapse
|
23
|
Jun JV, Chenoweth DM, Petersson EJ. Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem 2020; 18:5747-5763. [PMID: 32691820 PMCID: PMC7453994 DOI: 10.1039/d0ob01131b] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.
Collapse
Affiliation(s)
- Joomyung V Jun
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Acker CD, Yan P, Loew LM. Recent progress in optical voltage-sensor technology and applications to cardiac research: from single cells to whole hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:3-10. [PMID: 31474387 PMCID: PMC7048644 DOI: 10.1016/j.pbiomolbio.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The first workshop on Novel Optics-based approaches for Cardiac Electrophysiology (NOtiCE) was held in Florence Italy in 2018. Here, we learned how optical approaches have shaped our basic understanding of cardiac electrophysiology and how new technologies and approaches are being developed and validated to advance the field. Several technologies are being developed that may one day allow for new clinical approaches for diagnosing cardiac disorders and possibly intervening to treat human patients. In this review, we discuss several technologies and approaches to optical voltage imaging with voltage-sensitive dyes. We highlight the development and application of fluorinated and long wavelength voltage-sensitive dyes. These optical voltage sensors have now been applied and well validated in several different assays from cultured human stem cell-derived cardiomyocytes to whole hearts in-vivo. Imaging concepts such as dual wavelength ratiometric techniques, which are crucial to maximizing the information from optical sensors by increasing the useful signal and eliminating noise and artifacts, are presented. Finally, novel voltage sensors including photoacoustic voltage-sensitive dyes, their current capabilities and potential advantages, are introduced.
Collapse
Affiliation(s)
- Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
25
|
Hoelzel CA, Zhang X. Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies. Chembiochem 2020; 21:1935-1946. [PMID: 32180315 PMCID: PMC7367766 DOI: 10.1002/cbic.202000037] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific insights that are difficult to obtain by traditional methodologies. As the multiplex of self-labeling protein tag systems continues to be developed and expanded, the utility of these protein tags will allow researchers to address previously inaccessible questions at the forefront of biology.
Collapse
Affiliation(s)
- Conner A Hoelzel
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| |
Collapse
|
26
|
Effect of fluorination on the crystal and electronic structure of organometallic cyclopentadienyl-phenylenediamino-cobalt complexes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Isselstein M, Zhang L, Glembockyte V, Brix O, Cosa G, Tinnefeld P, Cordes T. Self-Healing Dyes-Keeping the Promise? J Phys Chem Lett 2020; 11:4462-4480. [PMID: 32401520 DOI: 10.1021/acs.jpclett.9b03833] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-healing dyes have emerged as a new promising class of fluorescent labels. They consist of two units, a fluorescent dye and a photostabilizer. The latter heals whenever the fluorescent dye is in danger of taking a reaction pathway toward photobleaching. We describe the underlying concepts and summarize the developmental history and state-of-the-art, including latest applications in high-resolution microscopy, live-cell, and single-molecule imaging. We further discuss remaining limitations, which are (i) lower photostabilization of most self-healing dyes when compared to solution additives, (ii) limited mechanistic understanding on the influence of the biochemical environment and molecular oxygen on self-healing, and (iii) the lack of cheap and facile bioconjugation strategies. Finally, we provide ideas on how to further advance self-healing dyes, show new data on redox blinking caused by double-stranded DNA, and highlight forthcoming work on intramolecular photostabilization of fluorescent proteins.
Collapse
Affiliation(s)
- Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Oliver Brix
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Jiao L, Liu Y, Zhang X, Hong G, Zheng J, Cui J, Peng X, Song F. Constructing a Local Hydrophobic Cage in Dye-Doped Fluorescent Silica Nanoparticles to Enhance the Photophysical Properties. ACS CENTRAL SCIENCE 2020; 6:747-759. [PMID: 32490191 PMCID: PMC7256957 DOI: 10.1021/acscentsci.0c00071] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Aggregation-caused quenching (ACQ) and poor photostability in aqueous media are two common problems for organic fluorescence dyes which cause a dramatic loss of fluorescence imaging quality and photodynamic therapy (PDT) failure. Herein, a local hydrophobic cage is built up inside near-infrared (NIR) cyanine-anchored fluorescent silica nanoparticles (FSNPs) in which a hydrophobic silane coupling agent (n-octyltriethoxysilane, OTES) is doped into FSNPs for the first time to significantly inhibit the ACQ effect and inward diffusion of water molecules. Therefore, the obtained optimal FSNP-C with OTES-modification can provide hydrophobic repulsive forces to effectively inhibit the π-π stacking interaction of cyanine dyes and simultaneously reduce the formation of strong oxidizing species (•OH and H2O2) in reaction with H2O, resulting in the best photostability (fluorescent intensity remained at 90.1% of the initial value after 300 s of laser scanning) and a high PDT efficiency on two- and three-dimensional (spheroids) HeLa cell culture models. Moreover, through molecular engineering (including increasing covalent anchoring sites and steric hindrance groups of cyanine dyes), FSNP-C exhibits the highest fluorescent intensity both in water solution (12.3-fold improvement compared to free dye) and living cells due to the limitation of molecular motion. Thus, this study provides an effectively strategy by combining a local hydrophobic cage and molecular engineering for NIR FSNPs in long-term bright fluorescence imaging and a stable PDT process.
Collapse
Affiliation(s)
- Long Jiao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Yongzhuo Liu
- Shandong
Collaborative Innovation Center of Eco-Chemical Engineering, College
of Chemical Engineering, Qingdao University
of Science and Technology, No. 53 Zhengzhou Road, Shibei
District, Qingdao 266042, P. R. China
| | - Xiaoye Zhang
- Marine
Engineering College, Dalian Maritime University, No. 1 Linghai Road, High-tech District, Dalian 116026, P. R. China
| | - Gaobo Hong
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Jing Zheng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Jingnan Cui
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Fengling Song
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
- Institute
of Molecular Sciences and Engineering, Shandong
University, Qingdao 266237, P. R. China
- ;
| |
Collapse
|
30
|
Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 2020; 8:022001. [PMID: 32028269 DOI: 10.1088/2050-6120/ab7365] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photochemical stability is one of the most important parameters that determine the usefulness of organic dyes in different applications. This Review addresses key factors that determine the dye photostability. It is shown that photodegradation can follow different oxygen-dependent and oxygen-independent mechanisms and may involve both 1S1-3T1 and higher-energy 1Sn-3Tn excited states. Their involvement and contribution depends on dye structure, medium conditions, irradiation power. Fluorescein, rhodamine, BODIPY and cyanine dyes, as well as conjugated polymers are discussed as selected examples illustrating photobleaching mechanisms. The strategies for modulating and improving the photostability are overviewed. They include the improvement of fluorophore design, particularly by attaching protective and anti-fading groups, creating proper medium conditions in liquid, solid and nanoscale environments. The special conditions for biological labeling, sensing and imaging are outlined.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, Leontovicha st. 9, Kyiv 01030, Ukraine. Yuriy Fedkovych National University, Chernivtsi, 58012, Ukraine
| |
Collapse
|
31
|
Dobson DE, Mahoney ER, Mach TP, LeTourneau RJ, Schmitthenner HF. Pentamethine sulfobenzoindocyanine dyes with low net charge states and high photostability. Photochem Photobiol Sci 2020; 19:56-65. [PMID: 31825058 PMCID: PMC6980914 DOI: 10.1039/c9pp00445a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 11/21/2022]
Abstract
A series of Cy5.5 dye analogs and targeted probes with net charges varied from -3 to 0 were synthesized by an optimized method, followed by comparing their spectral and photostability properties in saturated solutions of air, oxygen, and argon. The Cy5.5 analogs with reduced charge were relatively stable when irridated at their excitation maxima, with a trend of higher stability with lower net charge states. The photostability of dyes was markedly lower in pure oxygen and higher in inert argon relative to ambient atmospheric conditions. The stability of c(RGDyK) conjugates as models of targeted molecular imaging agents mirrored these results and demonstrated the practical utility of the new family of Cy5.5 fluorophores.
Collapse
Affiliation(s)
- Damien E Dobson
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Emily R Mahoney
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Toan P Mach
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Ryan J LeTourneau
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Hans F Schmitthenner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, 14623, USA.
| |
Collapse
|
32
|
Zheng S, Lingyue G, Ong MJH, Jacquemin D, Romieu A, Richard JA, Srinivasan R. Divergent synthesis of 5',7'-difluorinated dihydroxanthene-hemicyanine fused near-infrared fluorophores. Org Biomol Chem 2019; 17:4291-4300. [PMID: 30969301 DOI: 10.1039/c9ob00568d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe an expedient access to a 5',6',7'-trifluoro dihydroxanthene-hemicyanine fused scaffold in 2 steps and 54% overall yield from the corresponding salicylic aldehyde. A 6'-regioselective nucleophilic aromatic substitution (SNAr) reaction with a wide range of nitrogen, sulfur or selenium nucleophiles then gives access to 16 near-infrared (NIR) fluorophores emitting in the 710-750 nm range. We also report the experimental and theoretical photophysical investigations of these unique optical agents that include the first series of 6'-heavy atom substituted dihydroxanthenes, extending the pool of polyfluorinated markers for biomedical and material applications.
Collapse
Affiliation(s)
- Shasha Zheng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Manjula D. Rathnayake
- Department of Chemistry, Oklahoma State University, 107, Physical Science, Stillwater, Oklahoma 74078, United States
| | - Jimmie D. Weaver
- Department of Chemistry, Oklahoma State University, 107, Physical Science, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
34
|
Bera A, Bagchi D, Pal SK. Improvement of Photostability and NIR Activity of Cyanine Dye through Nanohybrid Formation: Key Information from Ultrafast Dynamical Studies. J Phys Chem A 2019; 123:7550-7557. [PMID: 31402654 DOI: 10.1021/acs.jpca.9b04100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Near-infrared (NIR) light harvesting has enormous importance for different potential applications in the modern era of research. Some NIR cyanine dyes such as IR820 have achieved great success in energy harvesting and cancer therapy. However, their action is limited for low photostability, considerable thermal degradation, short circulation times, and nonspecific biodistribution. Our present study is an attempt to overcome such limitations by attaching a model cyanine dye IR820 with ZnO nanoparticles. We prepared an IR820-ZnO nanohybrid and characterized it using microscopic and optical spectroscopic tools. Thermogravimetric analysis depicted greater thermal stability of the IR820-ZnO nanohybrid compared to free dye. We explored the enhancement in the photostability of IR820 upon nanohybrid formation. We detected generation of photoinduced reactive oxygen species (ROS) such as superoxide, singlet oxygen, and so forth using appropriate molecular probes. The formation of IR820-ZnO nanohybrid reduced production of photoinduced singlet oxygen. However, it revealed an alternative trend in overall ROS formation (increases total ROS) under red light illumination. To correlate the enhanced photostability of IR820 on the ZnO surface, we explored excited-state dynamical processes at the interface in nanohybrids. We illustrated the photoinduced excited-state electron-transfer process from the lowest unoccupied molecular orbital of IR820 to the conduction band of ZnO. This photoelectron-transfer process enhances the production of ROS and decreases the formation of singlet oxygen that altogether leads to improvement in photostability and overall activity. A quencher of singlet oxygen sodium azide (NaN3) was used to further confirm the direct association of singlet oxygen generation with the photostability issue of IR820. Also, ZnO is able to deliver the dye selectively in acidic environment, which suggests its diseased site-specific targeted activity. Our results provide promising improvement for potential use of IR820 through formation of a nanohybrid that could be translated for other NIR cyanine dyes.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Damayanti Bagchi
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|
35
|
Hadj Kouider NHE, Kasmi-Mir S, Pierrat P, Magri P, Madi F, Kirsch G. Synthesis and optical properties of novel thermally stable bis-merocyanine dyes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Braun AB, Wehl I, Kölmel DK, Schepers U, Bräse S. New Polyfluorinated Cyanine Dyes for Selective NIR Staining of Mitochondria. Chemistry 2019; 25:7998-8002. [PMID: 30947363 DOI: 10.1002/chem.201900412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 12/26/2022]
Abstract
In this communication, the synthesis of three unknown polyfluorinated cyanine dyes and their application as selective markers for mitochondria are presented. By incorporating fluorous side chains into cyanine dyes, their remarkable photophysical properties were enhanced. To investigate their biological application, several different cell lines were incubated with the synthesized cyanine dyes. It was discovered that the presented dyes can be utilized for selective near-infrared-light (NIR) staining of mitochondria, with very low cytotoxicity determined by MTT assay. This is the first time that polyfluorinated cyanine fluorophores are presented as selective markers for mitochondria. Due to the versatile applications of polyfluorinated fluorophores in bioimaging and materials science, it is expected that the presented fluorophores will be stimulating for the scientific community.
Collapse
Affiliation(s)
- Alexander B Braun
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik K Kölmel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
37
|
Funabiki K, Saito Y, Kikuchi T, Yagi K, Kubota Y, Inuzuka T, Miwa Y, Yoshida M, Sakurada O, Kutsumizu S. Aromatic Fluorine-Induced One-Pot Synthesis of Ring-Perfluorinated Trimethine Cyanine Dye and Its Remarkable Fluorescence Properties. J Org Chem 2019; 84:4372-4380. [DOI: 10.1021/acs.joc.9b00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yousaf M, Ahmad M, Bhatti IA, Nasir A, Hasan M, Jian X, Kalantar-Zadeh K, Mahmood N. In Vivo and In Vitro Monitoring of Amyloid Aggregation via BSA@FGQDs Multimodal Probe. ACS Sens 2019; 4:200-210. [PMID: 30596230 DOI: 10.1021/acssensors.8b01216] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early detection of peptide aggregate intermediates is quite challenging because of their variable and complex nature as well as due to lack of reliable sensors for diagnosis. Herein, we report the detection of monomers and oligomers using specified fluorescence and a magnetic resonance imaging (MRI) multimodal probe based on bovine-serum-albumin-capped fluorine functionalized graphene quantum dots (BSA@FGQDs). This probe enables in vitro fluorescence-based monitoring of human islet amyloid polypeptide (hIAPP), insulin, and amyloid β(1-42) (Aβ42) monomers and oligomers during the fibrillogenesis dynamic. Up to 90% fluorescence quenching of BSA@FGQDs probe upon addition of amyloid monomers/oligomers was observed due to static quenching and nonradiative energy transfer. Moreover, the BSA@FGQDs probe shows 10 times higher signals in detecting amyloid intermediates and fibrils than that of conventional thioflavin dye. A negative Δ G° value (-36.21 kJ/mol) indicates spontaneous interaction of probe with the peptide. These interactions are hydrogen bonding and hydrophobic as proved by thermodynamic parameters. Visual binding clues of BSA@FGQDs with different morphological states of amyloid protein was achieved through electron microscopy. Furthermore, intravenous and intracranial injection of BSA@FGQDs probe in Alzheimer model mice brain enabled in vivo detection of amyloid plaques in live mice brain by 19F MRI through contrast enhancement. Our proposed probe not only effectively monitors in vitro fibrillation kinetics of number of amyloid proteins with higher sensitivity and specificity than thioflavin dye, but also, the presence of a 19F center makes BSA@FGQDs an effective probe as a noninvasive and nonradiative in vivo detection probe for amyloid plaques.
Collapse
Affiliation(s)
- Maryam Yousaf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Muhammad Ahmad
- Department of Structure and Environmental Engineering, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Abdul Nasir
- Department of Structure and Environmental Engineering, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Murtaza Hasan
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Xian Jian
- School of Materials and Energy, National Engineering Research Centre of Electromagnetic Radiation Control Materials, Centre for Applied Chemistry, University of Electronic Science and Technology, Chengdu 611731, P.R. China
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), 2052 Kensington, New South Wales, Australia
| | - Nasir Mahmood
- School of Engineering, RMIT University, 3001 Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Hameed S, Chen H, Irfan M, Bajwa SZ, Khan WS, Baig SM, Dai Z. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjug Chem 2018; 30:13-28. [DOI: 10.1021/acs.bioconjchem.8b00812] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hong Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muhammad Irfan
- Department of Medicines, Gujranwala Medical College, Gujranwala 52250, Pakistan
| | - Sadia Zafar Bajwa
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Waheed S Khan
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Shahid Mahmood Baig
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Kuo CT, Wu IC, Chen L, Yu J, Wu L, Chiu DT. Improving the Photostability of Semiconducting Polymer Dots Using Buffers. Anal Chem 2018; 90:11785-11790. [PMID: 30277754 DOI: 10.1021/acs.analchem.8b03104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photostability of fluorescent probes is critical in biological imaging, especially for long-term observational analyses. Here, we describe a simple and universal method to improve the photostability of semiconducting polymer dots (Pdots) and other fluorescent probes by using buffers. Using Pdots as a model system, we found that HEPES or MES buffer can improve the photostability of Pdots by a factor of 20. Through a systematic study, we show that Pdot photobleaching is dominated by photoinduced radicals which can be quenched by the piperazine or morpholine structures of these buffers, which act as radical scavengers. For conditions where choice of buffer is limited, we designed fluorescent polymers conjugated with radical scavengers to improve Pdot photostability. We then demonstrate a practical application in which HEPES buffer is used to improve the photostability of Pdots during cell imaging.
Collapse
Affiliation(s)
- Chun-Ting Kuo
- Departments of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - I-Che Wu
- Departments of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Lei Chen
- Departments of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Jiangbo Yu
- Departments of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Li Wu
- Departments of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Daniel T Chiu
- Departments of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
41
|
Pushalkar S, Ghosh G, Xu Q, Liu Y, Ghogare AA, Atem C, Greer A, Saxena D, Lyons AM. Superhydrophobic Photosensitizers: Airborne 1O 2 Killing of an in Vitro Oral Biofilm at the Plastron Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25819-25829. [PMID: 29972022 PMCID: PMC6698391 DOI: 10.1021/acsami.8b09439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Singlet oxygen is a potent agent for the selective killing of a wide range of harmful cells; however, current delivery methods pose significant obstacles to its widespread use as a treatment agent. Limitations include the need for photosensitizer proximity to tissue because of the short (3.5 μs) lifetime of singlet oxygen in contact with water; the strong optical absorption of the photosensitizer, which limits the penetration depth; and hypoxic environments that restrict the concentration of available oxygen. In this article, we describe a novel superhydrophobic singlet oxygen delivery device for the selective inactivation of bacterial biofilms. The device addresses the current limitations by: immobilizing photosensitizer molecules onto inert silica particles; embedding the photosensitizer-containing particles into the plastron (i.e. the fluid-free space within a superhydrophobic surface between the solid substrate and fluid layer); distributing the particles along an optically transparent substrate such that they can be uniformly illuminated; enabling the penetration of oxygen via the contiguous vapor space defined by the plastron; and stabilizing the superhydrophobic state while avoiding the direct contact of the sensitizer to biomaterials. In this way, singlet oxygen generated on the sensitizer-containing particles can diffuse across the plastron and kill bacteria even deep within the hypoxic periodontal pockets. For the first time, we demonstrate complete biofilm inactivation (>5 log killing) of Porphyromonas gingivalis, a bacterium implicated in periodontal disease using the superhydrophobic singlet oxygen delivery device. The biofilms were cultured on hydroxyapatite disks and exposed to active and control surfaces to assess the killing efficiency as monitored by colony counting and confocal microscopy. Two sensitizer particle types, a silicon phthalocyanine sol-gel and a chlorin e6 derivative covalently bound to fluorinated silica, were evaluated; the biofilm killing efficiency was found to correlate with the amount of singlet oxygen detected in separate trapping studies. Finally, we discuss the applications of such devices in the treatment of periodontitis.
Collapse
Affiliation(s)
- Smruti Pushalkar
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - QianFeng Xu
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| | - Yang Liu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ashwini A. Ghogare
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Cecilia Atem
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Alan M. Lyons
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| |
Collapse
|
42
|
In vivo delineation of glioblastoma by targeting tumor-associated macrophages with near-infrared fluorescent silica coated iron oxide nanoparticles in orthotopic xenografts for surgical guidance. Sci Rep 2018; 8:11122. [PMID: 30042406 PMCID: PMC6057886 DOI: 10.1038/s41598-018-29424-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/11/2018] [Indexed: 01/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal type of human brain cancer. Surgery is a current gold standard for GBM treatment but the complete surgical resection of GBM is almost impossible due to their diffusive characteristics into surrounded normal brain tissues. There is an urgent need to develop a sensitive imaging tool for accurate delineation of GBM in the operating room to guide surgeons. Here we illustrate the feasibility of using near-infrared fluorescent silica coated iron oxide nanoparticles (NF-SIONs) with high water dispersion capacity and strong fluorescence stability for intraoperative imaging of GBM by targeting tumor-associated macrophages. Abundant macrophage infiltration is a key feature of GBM margins and it is well associated with poor prognosis. We synthesized NF-SIONs of about 37 nm to maximize endocytosis activity for macrophage uptake. The NF-SIONs selectively visualized tumor-associated macrophage populations by in vitro live-cell imaging and in vivo fluorescence imaging. In the orthotopic GBM xenograft models, the NF-SIONs could successfully penetrate blood-brain barrier and delineated tumor burden specifically. Taken together, this study showcased the potential applications in GBM treatment for improved intraoperative staging and more radical surgery as well as dual modality benefit in order to circumvent previous clinical failure.
Collapse
|
43
|
Wang C, Fukazawa A, Tanabe Y, Inai N, Yokogawa D, Yamaguchi S. Water-Soluble Phospholo[3,2-b
]phosphole-P
,P
′-Dioxide-Based Fluorescent Dyes with High Photostability. Chem Asian J 2018; 13:1616-1624. [DOI: 10.1002/asia.201800533] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Chenguang Wang
- Institute of Transformative Bio-Molecules (WPI-ITbM); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Aiko Fukazawa
- Department of Chemistry; Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Yoshiyuki Tanabe
- Department of Chemistry; Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Naoto Inai
- Department of Chemistry; Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Daisuke Yokogawa
- Institute of Transformative Bio-Molecules (WPI-ITbM); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Department of Chemistry; Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Department of Chemistry; Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS); Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
44
|
Butkevich AN, Ta H, Ratz M, Stoldt S, Jakobs S, Belov VN, Hell SW. Two-Color 810 nm STED Nanoscopy of Living Cells with Endogenous SNAP-Tagged Fusion Proteins. ACS Chem Biol 2018; 13:475-480. [PMID: 28933823 DOI: 10.1021/acschembio.7b00616] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 810 nm STED nanoscopy setup and an appropriate combination of two fluorescent dyes (Si-rhodamine 680SiR and carbopyronine 610CP) have been developed for near-IR live-cell super-resolution imaging. Vimentin endogenously tagged using the CRISPR/Cas9 approach with the SNAP tag, together with a noncovalent tubulin label, provided reliable and cell-to-cell reproducible dual-color confocal and STED imaging of the cytoskeleton in living cells.
Collapse
Affiliation(s)
- Alexey N. Butkevich
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Haisen Ta
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Ratz
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Stoldt
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Department
of Neurology, University of Göttingen Medical Faculty, Robert-Koch-Str.
40, 37075 Göttingen, Germany
| | - Vladimir N. Belov
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Vasilev AA, Kandinska MI, Stoyanov SS, Yordanova SB, Sucunza D, Vaquero JJ, Castaño OD, Baluschev S, Angelova SE. Halogen-containing thiazole orange analogues - new fluorogenic DNA stains. Beilstein J Org Chem 2017; 13:2902-2914. [PMID: 29564018 PMCID: PMC5753173 DOI: 10.3762/bjoc.13.283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
Novel asymmetric monomeric monomethine cyanine dyes 5a–d, which are analogues of the commercial dsDNA fluorescence binder thiazole orange (TO), have been synthesized. The synthesis was achieved by using a simple, efficient and environmetally benign synthetic procedure to obtain these cationic dyes in good to excellent yields. Interactions of the new derivatives of TO with dsDNA have been investigated by absorption and fluorescence spectroscopy. The longest wavelength absorption bands in the UV–vis spectra of the target compounds are in the range of 509–519 nm and these are characterized by high molar absorptivities (63000–91480 L·mol−1·cm−1). All investigated dyes from the series are either not fluorescent or their fluorescence is quite low, but they become strongly fluorescent after binding to dsDNA. The influence of the substituents attached to the chromophores was investigated by combination of spectroscopic (UV–vis and fluorescence spectroscopy) and theoretical (DFT and TDDFT calculations) methods.
Collapse
Affiliation(s)
- Aleksey A Vasilev
- Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Meglena I Kandinska
- Department of Organic Chemistry and Pharmacognosy, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stanimir S Stoyanov
- Department of Organic Chemistry and Pharmacognosy, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stanislava B Yordanova
- Department of Organic Chemistry and Pharmacognosy, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - David Sucunza
- Departments of Organic and Physical Chemistry, University of Alcala, 28871-Alcala de Henares, Madrid, Spain
| | - Juan J Vaquero
- Departments of Organic and Physical Chemistry, University of Alcala, 28871-Alcala de Henares, Madrid, Spain
| | - Obis D Castaño
- Departments of Organic and Physical Chemistry, University of Alcala, 28871-Alcala de Henares, Madrid, Spain
| | - Stanislav Baluschev
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvia E Angelova
- Departments of Organic and Physical Chemistry, University of Alcala, 28871-Alcala de Henares, Madrid, Spain.,Institute of Organic Chemistry with Centre of Phytochemisty, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (permanent address)
| |
Collapse
|
46
|
Michie MS, Götz R, Franke C, Bowler M, Kumari N, Magidson V, Levitus M, Loncarek J, Sauer M, Schnermann MJ. Cyanine Conformational Restraint in the Far-Red Range. J Am Chem Soc 2017; 139:12406-12409. [PMID: 28862842 DOI: 10.1021/jacs.7b07272] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Far-red cyanine fluorophores find extensive use in modern microscopy despite modest quantum yields. To improve the photon output of these molecules, we report a synthetic strategy that blocks the major deactivation pathway: excited-state trans-to-cis polyene rotation. In the key transformation, a protected dialdehyde precursor undergoes a cascade reaction to install the requisite tetracyclic ring system. The resulting molecules exhibit the characteristic features of conformational restraint, including improved fluorescence quantum yield and extended lifetime. Moreover, these compounds recover from hydride reduction with dramatically improved efficiency. These observations enable efficient single-molecule localization microscopy in oxygenated buffer without addition of thiols. Enabled by modern organic synthesis, these studies provide a new class of far-red dyes with promising spectroscopic and chemical properties.
Collapse
Affiliation(s)
- Megan S Michie
- Laboratory of Chemical Biology, NIH/NCI/CCR , 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Ralph Götz
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg , Am Hubland 97074 Würzburg, Germany
| | - Christian Franke
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg , Am Hubland 97074 Würzburg, Germany
| | - Matthew Bowler
- Optical Microscopy and Analysis Laboratory, NIH/NCI/CCR , 1050 Boyles Street, Frederick, Maryland 21702, United States
| | - Nikita Kumari
- School of Molecular Sciences and The Biodesign Institute at Arizona State University , Tempe, Arizona 85287, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Res. Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States
| | - Marcia Levitus
- School of Molecular Sciences and The Biodesign Institute at Arizona State University , Tempe, Arizona 85287, United States
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR , 1050 Boyles Street, Frederick, Maryland 21702, United States
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg , Am Hubland 97074 Würzburg, Germany
| | - Martin J Schnermann
- Laboratory of Chemical Biology, NIH/NCI/CCR , 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
47
|
Zheng Q, Lavis LD. Development of photostable fluorophores for molecular imaging. Curr Opin Chem Biol 2017; 39:32-38. [PMID: 28544971 DOI: 10.1016/j.cbpa.2017.04.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Advances in fluorescence microscopy promise to unlock details of biological systems with high spatiotemporal precision. These new techniques also place a heavy demand on the 'photon budget'-the number of photons one can extract from a sample. Improving the photostability of small molecule fluorophores using chemistry is a straightforward method for increasing the photon budget. Here, we review the (sometimes sparse) efforts to understand the mechanism of fluorophore photobleaching and recent advances to improve photostability through reducing the propensity for oxidation or through intramolecular triplet-state quenching. Our intent is to inspire a more thorough mechanistic investigation of photobleaching and the use of precise chemistry to improve fluorescent probes.
Collapse
Affiliation(s)
- Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA.
| |
Collapse
|
48
|
Hayashi H, Aratani N, Yamada H. Semiconducting Self-Assembled Nanofibers Prepared from Photostable Octafluorinated Bisanthene Derivatives. Chemistry 2017; 23:7000-7008. [PMID: 28256784 DOI: 10.1002/chem.201700080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Indexed: 11/07/2022]
Abstract
Bisanthene is an important class of small two-dimensional polycyclic aromatic hydrocarbons with a zigzag-edged graphene nanoribbon character. Therefore, the functionalization and deep understanding of the structure-property relationship of bisanthene would provide an effective design for small organic molecular devices. In this study, octa- and tetrafluorinated bisanthene derivatives were synthesized for investigating the effect of electronegative fluorine substitution on the structure and physical property of bisanthene. Firstly, the octafluorinated bisanthene derivative has a twisted structure due to the steric repulsion of fluorine atoms at the bay region. Secondly, the absorption and fluorescence peak maxima are blueshifted with an increase in the degree of fluorine substitution. Notably, a triisopropylsilylethynyl-substituted octafluorinated derivative (F8) exhibited strong fluorescence at 657 nm with high fluorescence quantum yield (84 %). Additionally, cyclic voltammograms indicate the positive effect of fluorine substitution on the high highest occupied molecular orbital energy level of the molecules; thus, F8 molecule exhibited a remarkably increased photostability. Finally, the self-assembled behavior of fluorinated compounds was investigated by scanning electron microscopy and X-ray diffraction analysis. Specifically, F8 self-assembled to form bundles of long semicrystalline nanofibers exhibiting hole-transporting properties (3.4×10-3 cm2 V-1 s-1 ).
Collapse
Affiliation(s)
- Hironobu Hayashi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Naoki Aratani
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Hiroko Yamada
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| |
Collapse
|
49
|
Minoshima M, Kikuchi K. Photostable and photoswitching fluorescent dyes for super-resolution imaging. J Biol Inorg Chem 2017; 22:639-652. [PMID: 28083655 DOI: 10.1007/s00775-016-1435-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/28/2016] [Indexed: 12/18/2022]
Abstract
Super-resolution fluorescence microscopy is a recently developed imaging tool for biological researches. Several methods have been developed for detection of fluorescence signals from molecules in a subdiffraction-limited area, breaking the diffraction limit of the conventional optical microscopies and allowing visualization of detailed macromolecular structures in cells. As objectives are exposed to intense laser in the optical systems, fluorophores for super-resolution microscopy must be tolerated even under severe light irradiation conditions. The fluorophores must also be photoactivatable and photoswitchable for single-molecule localization-based super-resolution microscopy, because the number of active fluorophores must be controlled by light irradiation. This has led to growing interest in these properties in the development of fluorophores. In this mini-review, we focus on the development of photostable and photoswitching fluorescent dyes for super-resolution microscopy. We introduce recent efforts, including improvement of fluorophore photostability and control of photoswitching behaviors of fluorophores based on photochemical and photophysical processes. Understanding and manipulation of chemical reactions in excited fluorophores can develop highly photostable and efficiently photoswitchable fluorophores that are suitable for super-resolution imaging applications.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan. .,Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
50
|
Milián-Medina B, Gierschner J. "Though It Be but Little, It Is Fierce": Excited State Engineering of Conjugated Organic Materials by Fluorination. J Phys Chem Lett 2017; 8:91-101. [PMID: 27958747 DOI: 10.1021/acs.jpclett.6b02495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fluorination is frequently used to significantly change the properties of conjugated organic materials due to fluorine's exceptional properties; well-known is its impact on electronic structure, but it also impacts the geometry despite fluorine's small size. Less known, the changes in the electronic and geometrical properties may provoke drastic changes of the excited state properties like batho- and hypsochromic shifts of absorption and emission bands (inter alia leading to excited state switching), hypo- and hyperchromic effects, spectral broadening, and changes of the nonradiative deactivation pathways. The state of the art on these issues is summarized in the current Perspective to stimulate further discussions on this intriguing subject.
Collapse
Affiliation(s)
- Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia , Avenida Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
- Madrid Institute for Advanced Studies, IMDEA Nanoscience , Calle Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience , Calle Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|