1
|
Ding Y, Ruan X, Shu K, Xu W, Liu Y, Mo G, Xu J, Jian Y, Zhang J, Zhang L, Wang K, Hou JT, Shen J, Yan Z, Ye F, Zhu J, Dai L. Rational Design of Mono-Substituted Gd-DOTA as Highly Stable and Efficient MRI Contrast Agents for Hepatobiliary and Inflammation Imaging. J Med Chem 2024; 67:15476-15493. [PMID: 39190821 DOI: 10.1021/acs.jmedchem.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hepatobiliary-specific magnetic resonance imaging contrast agents (MRI CAs) play a crucial role in the early diagnosis of hepatocellular carcinoma (HCC). However, only two acyclic CAs, Gd-BOPTA and Gd-EOB-DTPA, exhibit unfavorable kinetic inertness. Our study focused on the development of superior stable innovative macrocyclic CAs. By introducing a lipophilic benzyloxy group (OBn) into the H4DOTA ring (Gd-L1), we achieved significant enhancement in kinetic inertness. In vivo experiments in mice demonstrated that 40% of the dosage was distributed to the liver at 5 min, providing sustained hepatic enhancement for over 35 min. We also developed an MPO-responsive MRI CA (Gd-L3), which can participate in the "peroxidase cycle" as the substrate, generating oligomers with a 3.8-fold increase in relaxivity, and selectively enhance the lesion in an acute gout mouse model. Overall, our work represents a significant advancement in the field of hepatic and inflammatory MRI, offering promising avenues for early diagnosis and improved imaging outcomes.
Collapse
Affiliation(s)
- Yinghui Ding
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Xinzhong Ruan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Kun Shu
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weiyuan Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yao Liu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gengshen Mo
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiao Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yong Jian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jilai Zhang
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Lingfeng Zhang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Keren Wang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhihan Yan
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fangfu Ye
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Lixiong Dai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
2
|
Xu Z. Editorial for "Myeloperoxidase-Sensitive Magnetic Resonance Imaging Assesses Inflammatory Activation State in Experimental Mouse Acute Gout". J Magn Reson Imaging 2023; 58:1723-1724. [PMID: 37093742 DOI: 10.1002/jmri.28749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023] Open
Affiliation(s)
- Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Nie Q, Li C, Wang Y, Hu Y, Pu W, Zhang Q, Cai J, Lin Y, Li G, Wang C, Li L, Dou Y, Zhang J. Pathologically triggered in situ aggregation of nanoparticles for inflammation-targeting amplification and therapeutic potentiation. Acta Pharm Sin B 2023; 13:390-409. [PMID: 36815041 PMCID: PMC9939322 DOI: 10.1016/j.apsb.2022.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Uncontrolled and persistent inflammation is closely related to numerous acute and chronic diseases. However, effective targeting delivery systems remain to be developed for precision therapy of inflammatory diseases. Herein we report a novel strategy for engineering inflammation-accumulation nanoparticles via phenolic functionalization. Different phenol-functionalized nanoparticles were first developed, which can undergo in situ aggregation upon triggering by the inflammatory/oxidative microenvironment. Phenolic compound-decorated poly (lactide-co-glycolide) nanoparticles, in particular tyramine (Tyr)-coated nanoparticles, showed significantly enhanced accumulation at inflammatory sites in mouse models of colitis, acute liver injury, and acute lung injury, mainly resulting from in situ cross-linking and tissue anchoring of nanoparticles triggered by local myeloperoxidase and reactive oxygen species. By combining a cyclodextrin-derived bioactive material with Tyr decoration, a multifunctional nanotherapy (TTN) was further developed, which displayed enhanced cellular uptake, anti-inflammatory activities, and inflammatory tissue accumulation, thereby affording amplified therapeutic effects in mice with colitis or acute liver injury. Moreover, TTN can serve as a bioactive and inflammation-targeting nanoplatform for site-specifically delivering a therapeutic peptide to the inflamed colon post oral administration, leading to considerably potentiated in vivo efficacies. Preliminary studies also revealed good safety of orally delivered TTN. Consequently, Tyr-based functionalization is promising for inflammation targeting amplification and therapeutic potentiation of nanotherapies.
Collapse
Affiliation(s)
- Qiang Nie
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Wang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qixiong Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenping Wang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China,State Key Lab of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China,Corresponding author. Tel.: +86 23 68771637.
| |
Collapse
|
4
|
Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. J Inorg Biochem 2022; 230:111763. [DOI: 10.1016/j.jinorgbio.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
|
5
|
Li JH, Forghani R, Bure L, Wojtkiewicz GR, Wu Y, Iwamoto Y, Ali M, Li A, Wang C, Motlagh NJ, Papadakis AI, Pusztaszeri MP, Spatz A, Curtin H, Cheng YS, Chen JW. Molecular immuno-imaging improves tumor detection in head and neck cancer. FASEB J 2022; 36:e22092. [PMID: 34919761 PMCID: PMC9584652 DOI: 10.1096/fj.202100864r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Detection and accurate delineation of tumor is important for the management of head and neck squamous cell carcinoma (HNSCC) but is challenging with current imaging techniques. In this study, we evaluated whether molecular immuno-imaging targeting myeloperoxidase (MPO) activity, an oxidative enzyme secreted by many myeloid innate immune cells, would be superior in detecting tumor extent compared to conventional contrast agent (DTPA-Gd) in a carcinogen-induced immunocompetent HNSCC murine model and corroborated in human surgical specimens. In C57BL/6 mice given 4-nitroquinoline-N-oxide (4-NQO), there was increased MPO activity in the head and neck region as detected by luminol bioluminescence compared to that of the control group. On magnetic resonance imaging, the mean enhancing volume detected by the MPO-targeting agent (MPO-Gd) was higher than that by the conventional agent DTPA-Gd. The tumor volume detected by MPO-Gd strongly correlated with tumor size on histology, and higher MPO-Gd signal corresponded to larger tumor size found by imaging and histology. On the contrary, the tumor volume detected by DTPA-Gd did not correlate as well with tumor size on histology. Importantly, MPO-Gd imaging detected areas not visualized with DTPA-Gd imaging that were confirmed histopathologically to represent early tumor. In human specimens, MPO was similarly associated with tumors, especially at the tumor margins. Thus, molecular immuno-imaging targeting MPO not only detects oxidative immune response in HNSCC, but can better detect and delineate tumor extent than nonselective imaging agents. Thus, our findings revealed that MPO imaging could improve tumor resection as well as be a useful imaging biomarker for tumor progression, and potentially improve clinical management of HNSCC once translated.
Collapse
Affiliation(s)
- Jing-Hui Li
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Magnetic Resonance Imaging, FuWai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Reza Forghani
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Lionel Bure
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory R. Wojtkiewicz
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yue Wu
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshiko Iwamoto
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad Ali
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anning Li
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cuihua Wang
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas I. Papadakis
- Department of Pathology, Jewish General Hospital & McGill University, Montreal, Quebec, Canada
| | - Marc P. Pusztaszeri
- Department of Pathology, Jewish General Hospital & McGill University, Montreal, Quebec, Canada
| | - Alan Spatz
- Department of Pathology, Jewish General Hospital & McGill University, Montreal, Quebec, Canada
| | - Hugh Curtin
- Department of Radiology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying-Sheng Cheng
- Department of Radiology, The Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - John W. Chen
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Wang C, Cheng D, Jalali Motlagh N, Kuellenberg EG, Wojtkiewicz GR, Schmidt SP, Stocker R, Chen JW. Highly Efficient Activatable MRI Probe to Sense Myeloperoxidase Activity. J Med Chem 2021; 64:5874-5885. [PMID: 33945286 PMCID: PMC8564765 DOI: 10.1021/acs.jmedchem.1c00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myeloperoxidase (MPO) is a key component of innate immunity but can damage tissues when secreted abnormally. We developed a new generation of a highly efficient MPO-activatable MRI probe (heMAMP) to report MPO activity. heMAMP has improved Gd stability compared to bis-5-HT-Gd-DTPA (MPO-Gd) and demonstrates no significant cytotoxicity. Importantly, heMAMP is more efficiently activated by MPO compared to MPO-Gd, 5HT-DOTA(Gd), and 5HT-DOTAGA-Gd. Molecular docking simulations revealed that heMAMP has increased rigidity via hydrogen bonding intramolecularly and improved binding affinity to the active site of MPO. In animals with subcutaneous inflammation, activated heMAMP showed a 2-3-fold increased contrast-to-noise ratio (CNR) compared to activated MPO-Gd and 4-10 times higher CNR compared to conventional DOTA-Gd. This increased efficacy was further confirmed in a model of unstable atherosclerotic plaque where heMAMP demonstrated a comparable signal increase and responsiveness to MPO inhibition at a 3-fold lower dosage compared to MPO-Gd, further underscoring heMAMP as a potential translational candidate.
Collapse
Affiliation(s)
- Cuihua Wang
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Cheng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Enrico G Kuellenberg
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Stephen P Schmidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Heart Research Institute, Newton, NSW 2042, Australia
| | - John W Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
7
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Jens Groebner
- Department of Electrical Engineering and Information Technology South Westphalian University of Applied Sciences Bahnhofsallee 5 58507 Luedenscheid Germany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbH Aviares Research Network Deichstraße 25 20459 Hamburg Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| |
Collapse
|
8
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021; 60:8220-8226. [PMID: 33606332 PMCID: PMC8048480 DOI: 10.1002/anie.202015851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/27/2022]
Abstract
Temperature can be used as clinical marker for tissue metabolism and the detection of inflammations or tumors. The use of magnetic resonance imaging (MRI) for monitoring physiological parameters like the temperature noninvasively is steadily increasing. In this study, we present a proof-of-principle study of MRI contrast agents (CA) for absolute and concentration independent temperature imaging. These CAs are based on azoimidazole substituted NiII porphyrins, which can undergo Light-Driven Coordination-Induced Spin State Switching (LD-CISSS) in solution. Monitoring the fast first order kinetic of back isomerisation (cis to trans) with standard clinical MR imaging sequences allows the determination of half-lives, that can be directly translated into absolute temperatures. Different temperature responsive CAs were successfully tested as prototypes in methanol-based gels and created temperature maps of gradient phantoms with high spatial resolution (0.13×0.13×1.1 mm) and low temperature errors (<0.22 °C). The method is sufficiently fast to record the temperature flow from a heat source as a film.
Collapse
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Jens Groebner
- Department of Electrical Engineering and Information TechnologySouth Westphalian University of Applied SciencesBahnhofsallee 558507LuedenscheidGermany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbHAviares Research NetworkDeichstraße 2520459HamburgGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Rainer Herges
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| |
Collapse
|
9
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
11
|
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020; 73:1241-1254. [PMID: 32585160 PMCID: PMC7572718 DOI: 10.1016/j.jhep.2020.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Collapse
Affiliation(s)
- Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Onofrio A. Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
12
|
Tavazzi E, Zivadinov R, Dwyer MG, Jakimovski D, Singhal T, Weinstock-Guttman B, Bergsland N. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Rev Neurother 2020; 20:821-834. [PMID: 32306772 DOI: 10.1080/14737175.2020.1757435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Conventional imaging measures remain a key clinical tool for the diagnosis multiple sclerosis (MS) and monitoring of patients. However, most measures used in the clinic show unsatisfactory performance in predicting disease progression and conversion to secondary progressive MS. AREAS COVERED Sophisticated imaging techniques have facilitated the identification of imaging biomarkers associated with disease progression, such as global and regional brain volume measures, and with conversion to secondary progressive MS, such as leptomeningeal contrast enhancement and chronic inflammation. The relevance of emerging imaging approaches partially overcoming intrinsic limitations of traditional techniques is also discussed. EXPERT OPINION Imaging biomarkers capable of detecting tissue damage early on in the disease, with the potential to be applied in multicenter trials and at an individual level in clinical settings, are strongly needed. Several measures have been proposed, which exploit advanced imaging acquisitions and/or incorporate sophisticated post-processing, can quantify irreversible tissue damage. The progressively wider use of high-strength field MRI and the development of more advanced imaging techniques will help capture the missing pieces of the MS puzzle. The ability to more reliably identify those at risk for disability progression will allow for earlier intervention with the aim to favorably alter the disease course.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, The State University of New York , Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Tarun Singhal
- PET Imaging Program in Neurologic Diseases and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi , Milan, Italy
| |
Collapse
|
13
|
Rodríguez-Rodríguez A, Shuvaev S, Rotile N, Jones CM, Probst CK, Dos Santos Ferreira D, Graham-O′Regan K, Boros E, Knipe RS, Griffith JW, Tager AM, Bogdanov A, Caravan P. Peroxidase Sensitive Amplifiable Probe for Molecular Magnetic Resonance Imaging of Pulmonary Inflammation. ACS Sens 2019; 4:2412-2419. [PMID: 31397156 DOI: 10.1021/acssensors.9b01010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An amplifiable magnetic resonance imaging (MRI) probe that combines the stability of the macrocyclic Gd-DOTAGA core with a peroxidase-reactive 5-hydroxytryptamide (5-HT) moiety is reported. The incubation of the complex under enzymatic oxidative conditions led to a 1.7-fold increase in r1 at 1.4 T that was attributed to an oligomerization of the probe upon oxidation. This probe, Gd-5-HT-DOTAGA, provided specific detection of lung inflammation by MRI in bleomycin-injured mice.
Collapse
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sergey Shuvaev
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicholas Rotile
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Chloe M. Jones
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Diego Dos Santos Ferreira
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Katherine Graham-O′Regan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Eszter Boros
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jason W. Griffith
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Alexei Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
14
|
Kiessling F. Molecular Imaging Unravels Cerebral Malaria. Radiology 2019; 290:368-369. [DOI: 10.1148/radiol.2018182461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabian Kiessling
- From the Center for Biohybrid Medical Systems, Institute for Experimental Molecular Imaging, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; and Fraunhofer MEVIS, Institute for Medical Image Computing, Aachen, Germany
| |
Collapse
|
15
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
Yu M, Bouley BS, Xie D, Enriquez JS, Que EL. 19F PARASHIFT Probes for Magnetic Resonance Detection of H2O2 and Peroxidase Activity. J Am Chem Soc 2018; 140:10546-10552. [DOI: 10.1021/jacs.8b05685] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meng Yu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Bailey S. Bouley
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Da Xie
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - José S. Enriquez
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
17
|
High-resolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease. Sci Rep 2018; 8:7687. [PMID: 29769642 PMCID: PMC5956082 DOI: 10.1038/s41598-018-25804-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 01/23/2023] Open
Abstract
Progress in clinical development of magnetic resonance imaging (MRI) substrate-sensors of enzymatic activity has been slow partly due to the lack of human efficacy data. We report here a strategy that may serve as a shortcut from bench to bedside. We tested ultra high-resolution 7T MRI (µMRI) of human surgical histology sections in a 3-year IRB approved, HIPAA compliant study of surgically clipped brain aneurysms. µMRI was used for assessing the efficacy of MRI substrate-sensors that detect myeloperoxidase activity in inflammation. The efficacy of Gd-5HT-DOTAGA, a novel myeloperoxidase (MPO) imaging agent synthesized by using a highly stable gadolinium (III) chelate was tested both in tissue-like phantoms and in human samples. After treating histology sections with paramagnetic MPO substrate-sensors we observed relaxation time shortening and MPO activity-dependent MR signal enhancement. An increase of normalized MR signal generated by ultra-short echo time MR sequences was corroborated by MPO activity visualization by using a fluorescent MPO substrate. The results of µMRI of MPO activity associated with aneurysmal pathology and immunohistochemistry demonstrated active involvement of neutrophils and neutrophil NETs as a result of pro-inflammatory signalling in the vascular wall and in the perivascular space of brain aneurysms.
Collapse
|
18
|
Singh A, Sahoo SK, Trivedi DR. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:596-610. [PMID: 28779621 DOI: 10.1016/j.saa.2017.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 05/24/2023]
Abstract
A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F- and AcO- ions in DMSO. Due to presences of the NO2 group at para and ortho position with extended π-conjugation of naphthyl group carrying OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F- and AcO- ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of NO2 group at para position induced in increasing the acidity of OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35ppm for F- and AcO- ions which is beneath WHO permission level (1.0ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO- ion. Receptor A1 depicts high selectivity towards AcO- ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO- and F- ions was monitored from 1HNMR titration and DFT study.
Collapse
Affiliation(s)
- Archana Singh
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S.V. National Institute Technology Surat, 395 007, Gujarat, India
| | - Darshak R Trivedi
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India.
| |
Collapse
|
19
|
Kushwaha A, Patil SK, Das D. A pyrene-benzimidazole composed effective fluoride sensor: potential mimicking of a Boolean logic gate. NEW J CHEM 2018. [DOI: 10.1039/c8nj01011k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly selective fluoride sensor based on a pyrene benzimidazole unit was developed and studied for recyclable memory function.
Collapse
Affiliation(s)
- Archana Kushwaha
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai 400019
- India
| | - Sagar K. Patil
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai 400019
- India
| | - Dipanwita Das
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai 400019
- India
| |
Collapse
|
20
|
Lacerda S, Tóth É. Lanthanide Complexes in Molecular Magnetic Resonance Imaging and Theranostics. ChemMedChem 2017; 12:883-894. [DOI: 10.1002/cmdc.201700210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| |
Collapse
|
21
|
Meloni MM, Barton S, Xu L, Kaski JC, Song W, He T. Contrast agents for cardiovascular magnetic resonance imaging: an overview. J Mater Chem B 2017; 5:5714-5725. [DOI: 10.1039/c7tb01241a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Contrast agents for Cardiovascular Magnetic Resonance (CMR) play a major role in research and clinical cardiology.
Collapse
Affiliation(s)
- Marco M. Meloni
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- School of Pharmacy and Chemistry
| | - Stephen Barton
- School of Pharmacy and Chemistry
- Kingston University
- London
- UK
| | - Lei Xu
- Department of Radiology
- Beijing Anzhen Hospital
- Beijing
- China
| | - Juan C. Kaski
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
| | - Wenhui Song
- UCL Centre for Biomaterials
- Division of surgery & Interventional Science
- University College of London
- London
- UK
| | - Taigang He
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- Royal Brompton Hospital
| |
Collapse
|
22
|
Albadawi H, Chen JW, Oklu R, Wu Y, Wojtkiewicz G, Pulli B, Milner JD, Cambria RP, Watkins MT. Spinal Cord Inflammation: Molecular Imaging after Thoracic Aortic Ischemia Reperfusion Injury. Radiology 2016; 282:202-211. [PMID: 27509542 DOI: 10.1148/radiol.2016152222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose To evaluate whether noninvasive molecular imaging technologies targeting myeloperoxidase (MPO) can reveal early inflammation associated with spinal cord injury after thoracic aortic ischemia-reperfusion (TAR) in mice. Materials and Methods The study was approved by the institutional animal care and use committee. C57BL6 mice that were 8-10 weeks old underwent TAR (n = 55) or sham (n = 26) surgery. Magnetic resonance (MR) imaging (n = 6) or single photon emission computed tomography (SPECT)/computed tomography (CT) (n = 15) studies targeting MPO activity were performed after intravenous injection of MPO sensors (bis-5-hydroxytryptamide-tetraazacyclododecane [HT]-diethyneletriaminepentaacetic acid [DTPA]-gadolinium or indium 111-bis-5-HT-DTPA, respectively). Immunohistochemistry and flow cytometry were used to identify myeloid cells and neuronal loss. Proinflammatory cytokines, keratinocyte chemoattractant (KC), and interleukin 6 (IL-6) were measured with enzyme-linked immunosorbent assay. Statistical analyses were performed by using nonparametric tests and the Pearson correlation coefficient. P < .05 was considered to indicate a significant difference. Results Myeloid cells infiltrated into the injured cord at 6 and 24 hours after TAR. MR imaging confirmed the presence of ischemic lesions associated with mild MPO-mediated enhancement in the thoracolumbar spine at 24 hours compared with the sham procedure. SPECT/CT imaging of MPO activity showed marked MPO-sensor retention at 6 hours (P = .003) that continued to increase at 24 hours after TAR (P = .0001). The number of motor neurons decreased substantially at 24 hours after TAR (P < .01), which correlated inversely with in vivo inflammatory changes detected at molecular imaging (r = 0.64, P = .0099). MPO was primarily secreted by neutrophils, followed by lymphocyte antigen 6 complexhigh monocytes and/or macrophages. There were corresponding increased levels of proinflammatory cytokines KC (P = .0001) and IL-6 (P = .0001) that mirrored changes in MPO activity. Conclusion MPO is a suitable imaging biomarker for identifying and tracking inflammatory damage in the spinal cord after TAR in a mouse model. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Hassan Albadawi
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - John W Chen
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Rahmi Oklu
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Yue Wu
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Gregory Wojtkiewicz
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Benjamin Pulli
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - John D Milner
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Richard P Cambria
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Michael T Watkins
- From the Department of Surgery, Division of Vascular and Endovascular Surgery (H.A., J.D.M., R.P.C., M.T.W.), and Center for System Biology and Institute for Innovation in Imaging, Department of Radiology (J.W.C., Y.W., G.W., B.P.), Massachusetts General Hospital, Harvard Medical School, 70 Blossom St, Edwards 301, Boston, MA 02114; and Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Ariz (R.O.)
| |
Collapse
|
23
|
Sarkar A, Bhattacharyya S, Mukherjee A. Colorimetric detection of fluoride ions by anthraimidazoledione based sensors in the presence of Cu(ii) ions. Dalton Trans 2016; 45:1166-75. [DOI: 10.1039/c5dt03209a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A thioimidazole bearing anthraimidazoledione detects fluoride selectively in the presence of Cu2+with a detection limit of 0.04 ppm. The results show that the change of thioimidazole to imidazole leads to no detection.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Sudipta Bhattacharyya
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
24
|
Molecular Magnetic Resonance Imaging Probes Based on Ln3+ Complexes. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Barzegar Amiri Olia M, Schiesser CH, Taylor MK. New reagents for detecting free radicals and oxidative stress. Org Biomol Chem 2015; 12:6757-66. [PMID: 25053503 DOI: 10.1039/c4ob01172d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free radicals and oxidative stress play important roles in the deterioration of materials, and free radicals are important intermediates in many biological processes. The ability to detect these reactive species is a key step on the road to their understanding and ultimate control. This short review highlights recent progress in the development of reagents for the detection of free radicals and reactive oxygen species with broad application to materials science as well as biology.
Collapse
|
26
|
De León-Rodríguez LM, Martins AF, Pinho MC, Rofsky NM, Sherry AD. Basic MR relaxation mechanisms and contrast agent design. J Magn Reson Imaging 2015; 42:545-65. [PMID: 25975847 DOI: 10.1002/jmri.24787] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists, largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we detail the many important considerations when pursuing the design and use of MR contrast media. We offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand-based contrast agents. We discuss the mechanisms involved in MR relaxation in the context of probe design strategies. A brief description of currently available contrast agents is accompanied by an in-depth discussion that highlights promising MRI contrast agents in the development of future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide.
Collapse
Affiliation(s)
| | - André F Martins
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Marco C Pinho
- Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neil M Rofsky
- Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA.,Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
27
|
Dommaschk M, Peters M, Gutzeit F, Schütt C, Näther C, Sönnichsen FD, Tiwari S, Riedel C, Boretius S, Herges R. Photoswitchable Magnetic Resonance Imaging Contrast by Improved Light-Driven Coordination-Induced Spin State Switch. J Am Chem Soc 2015; 137:7552-5. [PMID: 25914182 DOI: 10.1021/jacs.5b00929] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a fully reversible and highly efficient on-off photoswitching of magnetic resonance imaging (MRI) contrast with green (500 nm) and violet-blue (435 nm) light. The contrast change is based on intramolecular light-driven coordination-induced spin state switch (LD-CISSS), performed with azopyridine-substituted Ni-porphyrins. The relaxation time of the solvent protons in 3 mM solutions of the azoporphyrins in DMSO was switched between 3.5 and 1.7 s. The relaxivity of the contrast agent changes by a factor of 6.7. No fatigue or side reaction was observed, even after >100,000 switching cycles in air at room temperature. Electron-donating substituents at the pyridine improve the LD-CISSS in two ways: better photostationary states are achieved, and intramolecular binding is enhanced.
Collapse
Affiliation(s)
- Marcel Dommaschk
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Morten Peters
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Florian Gutzeit
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Christian Schütt
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Christian Näther
- ‡Institut für Anorganische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 6/7, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Sanjay Tiwari
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Christian Riedel
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Susann Boretius
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Rainer Herges
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| |
Collapse
|
28
|
van Duijnhoven SMJ, Robillard MS, Langereis S, Grüll H. Bioresponsive probes for molecular imaging: concepts and in vivo applications. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:282-308. [PMID: 25873263 DOI: 10.1002/cmmi.1636] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly two classes of bioresponsive imaging probes. The first class consists of probes that show direct activation of the imaging label (from "off" to "on" state) and have been applied in optical imaging and magnetic resonance imaging (MRI). The other class consists of probes that show specific retention of the imaging label at the site of target interaction and these probes have found application in all different imaging modalities, including photoacoustic imaging and nuclear imaging. In this review, we present a comprehensive overview of bioresponsive imaging probes in order to discuss the various molecular imaging strategies. The focus of the present article is the rationale behind the design of bioresponsive molecular imaging probes and their potential in vivo application for the detection of endogenous molecular targets in pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sander M J van Duijnhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Marc S Robillard
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
29
|
Broome AM, Ramamurthy G, Lavik K, Liggett A, Kinstlinger I, Basilion J. Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels. Bioconjug Chem 2015; 26:660-8. [PMID: 25775241 DOI: 10.1021/bc500597y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.
Collapse
Affiliation(s)
- Ann-Marie Broome
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Gopal Ramamurthy
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kari Lavik
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexander Liggett
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ian Kinstlinger
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - James Basilion
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
30
|
Gounis MJ, van der Bom IMJ, Wakhloo AK, Zheng S, Chueh JY, Kühn AL, Bogdanov AA. MR imaging of myeloperoxidase activity in a model of the inflamed aneurysm wall. AJNR Am J Neuroradiol 2015; 36:146-52. [PMID: 25273534 DOI: 10.3174/ajnr.a4135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Although myeloperoxidase activity in vivo can be visualized by using noninvasive imaging, successful clinical translation requires further optimization of the imaging approach. We report a motion-sensitized driven-equilibrium MR imaging approach for the detection of a myeloperoxidase activity-specific gadolinium-containing imaging agent in experimental aneurysm models, which compensates for irregular blood flow, enabling vascular wall imaging in the aneurysm. MATERIALS AND METHODS A phantom was built from rotational angiography of a rabbit elastase aneurysm model and was connected to a cardiac pulse duplicator mimicking rabbit-specific flow conditions. A T1-weighted turbo spin-echo-based motion-sensitized driven-equilibrium pulse sequence was optimized in vitro, including the addition of fat suppression and the selection of the velocity-encoding gradient parameter. The optimized sequence was applied in vivo to rabbit aneurysm models with and without inflammation in the aneurysmal wall. Under each condition, the aneurysms were imaged before and after intravenous administration of the imaging agent. The signal-to-noise ratio of each MR imaging section through the aneurysm was calculated. RESULTS The motion-sensitized driven-equilibrium sequence was optimized to reduce flow signal, enabling detection of the myeloperoxidase imaging agent in the phantom. The optimized imaging protocol in the rabbit model of saccular aneurysms revealed a significant increase in the change of SNR from pre- to post-contrast MR imaging in the inflamed aneurysms compared with naïve aneurysms and the adjacent carotid artery (P < .0001). CONCLUSIONS A diagnostic MR imaging protocol was optimized for molecular imaging of a myeloperoxidase-specific molecular imaging agent in an animal model of inflamed brain aneurysms.
Collapse
Affiliation(s)
- M J Gounis
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - I M J van der Bom
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - A K Wakhloo
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research Departments of Neurosurgery and Neurology (A.K.W.)
| | - S Zheng
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - J-Y Chueh
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - A L Kühn
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - A A Bogdanov
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research Radiology (A.A.B.), Laboratory of Molecular Imaging Probes, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
31
|
Prodi L, Rampazzo E, Rastrelli F, Speghini A, Zaccheroni N. Imaging agents based on lanthanide doped nanoparticles. Chem Soc Rev 2015; 44:4922-52. [DOI: 10.1039/c4cs00394b] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes the recent progress of single and multimodal imaging agents based on lanthanide doped nanoparticles.
Collapse
Affiliation(s)
- L. Prodi
- Dipartimento di Chimica “G. Ciamician” and INSTM
- UdR Bologna
- Università di Bologna
- 40126 Bologna
- Italy
| | - E. Rampazzo
- Dipartimento di Chimica “G. Ciamician” and INSTM
- UdR Bologna
- Università di Bologna
- 40126 Bologna
- Italy
| | - F. Rastrelli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - A. Speghini
- Dipartimento di Biotecnologie
- Università degli Studi di Verona Ca' Vignal 1
- 37134 Verona
- Italy
| | - N. Zaccheroni
- Dipartimento di Chimica “G. Ciamician” and INSTM
- UdR Bologna
- Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|
32
|
Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014; 8:389. [PMID: 25505871 PMCID: PMC4245913 DOI: 10.3389/fncel.2014.00389] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023] Open
Abstract
Although the blood-brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO).
Collapse
Affiliation(s)
- Maxime Gauberti
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Axel Montagne
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Aurélien Quenault
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| |
Collapse
|
33
|
Hingorani DV, Yoo B, Bernstein AS, Pagel MD. Detecting enzyme activities with exogenous MRI contrast agents. Chemistry 2014; 20:9840-50. [PMID: 24990812 PMCID: PMC4117811 DOI: 10.1002/chem.201402474] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on exogenous magnetic resonance imaging (MRI) contrast agents that are responsive to enzyme activity. Enzymes can catalyze a change in water access, rotational tumbling time, the proximity of a (19)F-labeled ligand, the aggregation state, the proton chemical-exchange rate between the agent and water, or the chemical shift of (19)F, (31)P, (13)C or a labile (1)H of an agent, all of which can be used to detect enzyme activity. The variety of agents attests to the creativity in developing enzyme-responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V. Hingorani
- Department of Chemistry and Biochemisty University of Arizona 1515 N. Campbell Ave. Tucson, AZ, USA Fax: (520)-626-0194
| | - Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adam S. Bernstein
- Department of Biomedical Engineering University of Arizona 1515 N. Campbell Ave. Tucson, AZ, USA
| | - Mark D. Pagel
- Department of Chemistry and Biochemisty University of Arizona 1515 N. Campbell Ave. Tucson, AZ, USA Fax: (520)-626-0194
| |
Collapse
|
34
|
Lim EK, Kang B, Choi Y, Jang E, Han S, Lee K, Suh JS, Haam S, Huh YM. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging. NANOTECHNOLOGY 2014; 25:245103. [PMID: 24872113 DOI: 10.1088/0957-4484/25/24/245103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.
Collapse
|
35
|
Affiliation(s)
- Marie C. Heffern
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Lauren M. Matosziuk
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
36
|
Teresa Albelda M, Garcia-España E, Frias JC. Visualizing the atherosclerotic plaque: a chemical perspective. Chem Soc Rev 2014; 43:2858-76. [PMID: 24526041 DOI: 10.1039/c3cs60410a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is the major underlying pathologic cause of coronary artery disease. An early detection of the disease can prevent clinical sequellae such as angina, myocardial infarction, and stroke. The different imaging techniques employed to visualize the atherosclerotic plaque provide information of diagnostic and prognostic value. Furthermore, the use of contrast agents helps to improve signal-to-noise ratio providing better images. For nuclear imaging techniques and optical imaging these agents are absolutely necessary. We report on the different contrast agents that have been used, are used or may be used in future in animals, humans, or excised tissues for the distinct imaging modalities for atherosclerotic plaque imaging.
Collapse
Affiliation(s)
- Ma Teresa Albelda
- Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna, c/ Catedrático José Beltrán 2, 46071 Valencia, Spain
| | | | | |
Collapse
|
37
|
Gounis MJ, Vedantham S, Weaver JP, Puri AS, Brooks CS, Wakhloo AK, Bogdanov AA. Myeloperoxidase in human intracranial aneurysms: preliminary evidence. Stroke 2014; 45:1474-7. [PMID: 24713525 DOI: 10.1161/strokeaha.114.004956] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Noninvasive imaging identifying a predictive biomarker of the bleeding risk of unruptured intracranial aneurysms (UIAs) is needed. We investigated a potential biomarker of UIA instability, myeloperoxidase, in human aneurysm tissue. METHODS Human brain aneurysms were harvested after clipping and were histologically and biochemically evaluated for the presence of myeloperoxidase. Of the tissue collected, 3 were from ruptured aneurysms and 20 were from UIAs. For each UIA, its 5-year aneurysm rupture risk was determined using the Population, Hypertension, Age, Size of Aneurysm, Earlier Subarachnoid Hemorrhage From Another Aneurysm and Site of Aneurysm (PHASES) model. RESULTS All ruptured aneurysms were myeloperoxidase positive. Of the UIAs, half were myeloperoxidase positive. The median 5-year aneurysm rupture risk was higher for myeloperoxidase-positive UIA (2.28%) than myeloperoxidase-negative UIA (0.69%), and the distributions were statistically different (P<0.005, Wilcoxon-Mann-Whitney test). The likelihood for myeloperoxidase-positive UIA was significantly associated (P=0.031) with aneurysm rupture risk (odds ratio, 4.79; 95% confidence limits, 1.15-19.96). CONCLUSIONS Myeloperoxidase is associated with PHASES estimated risk of aneurysm rupture and may potentially be used as an imaging biomarker of aneurysm instability.
Collapse
Affiliation(s)
- Matthew J Gounis
- From the Departments of Radiology (M.J.G., S.V., A.S.P., C.S.B., A.K.W., A.A.B.) and Neurosurgery (J.P.W., A.S.P., A.K.W.), University of Massachusetts, Worcester
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, Gorbatov R, Iwamoto Y, Dutta P, Wojtkiewicz G, Courties G, Sebas M, Borodovsky A, Fitzgerald K, Nolte MW, Dickneite G, Chen JW, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013; 127:2038-46. [PMID: 23616627 DOI: 10.1161/circulationaha.112.000116] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. Here, we used nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6C(high) monocyte subset traffic, to reduce infarct inflammation in apolipoprotein E-deficient (apoE(-/-)) mice after MI. We used dual-target positron emission tomography/magnetic resonance imaging of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset-targeted RNAi altered infarct inflammation and healing. METHODS AND RESULTS Flow cytometry, gene expression analysis, and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE(-/-) mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix cross-linking noninvasively, we developed a fluorine-18-labeled positron emission tomography agent ((18)F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged with a molecular magnetic resonance imaging sensor of MPO activity (MPO-Gd). Positron emission tomography/magnetic resonance imaging detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal; P<0.05), whereas (18)F-FXIII positron emission tomography reflected unimpeded matrix cross-linking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29% to 35% (P<0.05). CONCLUSION CCR2-targeted RNAi reduced recruitment of Ly-6C(high) monocytes, attenuated infarct inflammation, and curbed post-MI left ventricular remodeling.
Collapse
Affiliation(s)
- Maulik D Majmudar
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shazeeb MS, Xie Y, Gupta S, Bogdanov AA. A Novel Paramagnetic Substrate for Detecting Myeloperoxidase Activity in Vivo. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mohammed S. Shazeeb
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Yang Xie
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Suresh Gupta
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Alexei A. Bogdanov
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
41
|
Geelen T, Paulis LEM, Coolen BF, Nicolay K, Strijkers GJ. Contrast-enhanced MRI of murine myocardial infarction - part I. NMR IN BIOMEDICINE 2012; 25:953-968. [PMID: 22308108 DOI: 10.1002/nbm.2768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/07/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The use of contrast agents has added considerable value to the existing cardiac MRI toolbox that can be used to study murine myocardial infarction, as it enables detailed in vivo visualization of the molecular and cellular processes that occur in the infarcted and remote tissue. A variety of non-targeted and targeted contrast agents to study myocardial infarction are available and under development. Manganese, which acts as a calcium analogue, can be used to assess cell viability. Traditionally, low-molecular-weight Gd-containing contrast agents are employed to measure infarct size in a late gadolinium enhancement experiment. Gd-based blood-pool agents are used to study the vascular status of the myocardium. The use of targeted contrast agents facilitates more detailed imaging of pathophysiological processes in the acute and chronic infarct. Cell death was visualized by contrast agents functionalized with annexin A5 that binds specifically to phosphatidylserine accessible on dying cells and with an agent that binds to the exposed DNA of dead cells. Inflammation in the myocardium was depicted by contrast agents that target cell adhesion molecules expressed on activated endothelium, by contrast agents that are phagocytosed by inflammatory cells, and by using a probe that targets enzymes excreted by inflammatory cells. Cardiac remodeling processes were visualized with a contrast agent that binds to angiogenic vasculature and with an MR probe that specifically binds to collagen in the fibrotic myocardium. These recent advances in murine contrast-enhanced cardiac MRI have made a substantial contribution to the visualization of the pathophysiology of myocardial infarction, cardiac remodeling processes and the progression to heart failure, which helps to design new treatments. This review discusses the advances and challenges in the development and application of MRI contrast agents to study murine myocardial infarction.
Collapse
Affiliation(s)
- Tessa Geelen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | | | | | | | | |
Collapse
|
42
|
Wu MC, Ho HI, Lee TW, Wu HL, Lo JM. In vivo examination of 111In-bis-5HT-DTPA to target myeloperoxidase in atherosclerotic ApoE knockout mice. J Drug Target 2012; 20:605-14. [PMID: 22738345 DOI: 10.3109/1061186x.2012.702768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of the study is to assess the feasibility of imaging specific activity of myeloperoxidase (MPO), a leukocyte-derived enzyme with important role in atherosclerosis, by SPECT/CT using a novel radiotracer, (111)In-bis-5-hydroxytryptamide-diethylenetriamine-pentaacetate ((111)In-bis-5HT-DTPA). METHODS Bis-5HT-DTPA was synthesized. Oligomerization of bis-5HT-DTPA in the presence of MPO/H(2)O(2) was studied and confirmed using MALDI-TOF. Apolipoprotein E knockout (ApoE KO) mice was used as an atherosclerosis-prone rodent model. Biodistribution assay and micro SPECT/CT imaging were carried out to prove the atherosclerosis targeting of (111)In-bis-5HT-DTPA in the ApoE KO mice. RESULTS MALDI-TOF spectrum showed that the 5HT base agent can self oligomerize after activating by MPO. From the biodistribution study, (111)In-bis-5HT-DTPA was quantified to be retained markedly higher while eliminated much slower in the aortas of the ApoE KO mice than that of the wild type (WT) mice within 1 h post-injection. The nuclear imaging showed significantly higher uptake in the aorta of the ApoE KO mice than that of the WT mice at least within 2 h post-injection. CONCLUSION This study described the pharmacokinetics and biodistribution of (111)In-bis-5HT-DTPA in ApoE KO mice and validated its utilization for early detection of atherosclerotic marker, MPO, in the aortic wall of atherosclerosis-prone rodent model.
Collapse
Affiliation(s)
- Ming-Che Wu
- Department of Nuclear Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Niers JM, Chen JW, Lewandrowski G, Kerami M, Garanger E, Wojtkiewicz G, Waterman P, Keliher E, Weissleder R, Tannous BA. Single reporter for targeted multimodal in vivo imaging. J Am Chem Soc 2012; 134:5149-56. [PMID: 22397453 PMCID: PMC3310895 DOI: 10.1021/ja209868g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have developed a multifaceted, highly specific reporter for multimodal in vivo imaging and applied it for detection of brain tumors. A metabolically biotinylated, membrane-bound form of Gaussia luciferase was synthesized, termed mbGluc-biotin. We engineered glioma cells to express this reporter and showed that brain tumor formation can be temporally imaged by bioluminescence following systemic administration of coelenterazine. Brain tumors expressing this reporter had high sensitivity for detection by magnetic resonance and fluorescence tomographic imaging upon injection of streptavidin conjugated to magnetic nanoparticles or fluorophore, respectively. Moreover, single photon emission computed tomography showed enhanced imaging of these tumors upon injection with streptavidin complexed to (111)In-DTPA-biotin. This work shows for the first time a single small reporter (∼40 kDa) which can be monitored with most available molecular imaging modalities and can be extended for single cell imaging using intravital microscopy, allowing real-time tracking of any cell expressing it in vivo.
Collapse
Affiliation(s)
- Johanna M Niers
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, USA
- Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - John W Chen
- Center for Systems Biology, Massachusetts General Hospital, Boston, USA
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Grant Lewandrowski
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Mariam Kerami
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, USA
- Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, 1007 MB Amsterdam, The Netherlands
| | | | - Greg Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Boston, USA
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Peter Waterman
- Center for Systems Biology, Massachusetts General Hospital, Boston, USA
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Edmund Keliher
- Center for Systems Biology, Massachusetts General Hospital, Boston, USA
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, USA
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, USA
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, USA
- Program in Neuroscience, Harvard Medical School, Boston, USA
| |
Collapse
|
44
|
Ligation of the jugular veins does not result in brain inflammation or demyelination in mice. PLoS One 2012; 7:e33671. [PMID: 22457780 PMCID: PMC3310075 DOI: 10.1371/journal.pone.0033671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
An alternative hypothesis has been proposed implicating chronic cerebrospinal venous insufficiency (CCSVI) as a potential cause of multiple sclerosis (MS). We aimed to evaluate the validity of this hypothesis in a controlled animal model. Animal experiments were approved by the institutional animal care committee. The jugular veins in SJL mice were ligated bilaterally (n = 20), and the mice were observed for up to six months after ligation. Sham-operated mice (n = 15) and mice induced with experimental autoimmune encephalomyelitis (n = 8) were used as negative and positive controls, respectively. The animals were evaluated using CT venography and (99m)Tc-exametazime to assess for structural and hemodynamic changes. Imaging was performed to evaluate for signs of blood-brain barrier (BBB) breakdown and neuroinflammation. Flow cytometry and histopathology were performed to assess inflammatory cell populations and demyelination. There were both structural changes (stenosis, collaterals) in the jugular venous drainage and hemodynamic disturbances in the brain on Tc99m-exametazime scintigraphy (p = 0.024). In the JVL mice, gadolinium MRI and immunofluorescence imaging for barrier molecules did not reveal evidence of BBB breakdown (p = 0.58). Myeloperoxidase, matrix metalloproteinase, and protease molecular imaging did not reveal signs of increased neuroinflammation (all p>0.05). Flow cytometry and histopathology also did not reveal increase in inflammatory cell infiltration or population shifts. No evidence of demyelination was found, and the mice remained without clinical signs. Despite the structural and hemodynamic changes, we did not identify changes in the BBB permeability, neuroinflammation, demyelination, or clinical signs in the JVL group compared to the sham group. Therefore, our murine model does not support CCSVI as a cause of demyelinating diseases such as multiple sclerosis.
Collapse
|
45
|
Bonnet CS, Tóth É. Magnetic Resonance Imaging Contrast Agents. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Yang CT, Chuang KH. Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood–brain barrier permeable. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00279e] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Su HS, Nahrendorf M, Panizzi P, Breckwoldt MO, Rodriguez E, Iwamoto Y, Aikawa E, Weissleder R, Chen JW. Vasculitis: molecular imaging by targeting the inflammatory enzyme myeloperoxidase. Radiology 2011; 262:181-90. [PMID: 22084204 DOI: 10.1148/radiol.11110040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if a molecular imaging approach targeting the highly oxidative enzyme myeloperoxidase (MPO) can help noninvasively identify and confirm sites of vascular wall inflammation in a murine model of vasculitis. MATERIALS AND METHODS Animal experiments were approved by the institutional animal care committee. Twenty-six mice were studied, including eight MPO-deficient and six sham-operated mice as controls. Vasculitis was induced with intraperitoneal injection of Candida albicans water-soluble fraction (CAWS). Aortic root magnetic resonance imaging was performed after intravenous injection of the activatable MPO sensor (bis-5-hydroxytryptamide-diethylenetriaminepentatacetate gadolinium) (n = 23), referred to as MPO-Gd, or gadopentetate dimeglumine (n = 10). Seven mice were randomly assigned to receive either MPO-Gd or gadopentetate dimeglumine first. Aortic root specimens were collected for biochemical and histopathologic analyses to validate imaging findings. Statistical significance was calculated for contrast-to-noise ratios (CNRs) by using the paired t test. RESULTS In the aortic root, the mean MPO-Gd CNRs after agent injection (CNR = 28.1) were more than 2.5-fold higher than those of sham-operated mice imaged with MPO-Gd and vasculitis mice imaged with gadopentetate dimeglumine (CNR = 10.6) (P < .05). MPO-Gd MR imaging helped identify areas of vasculitis that were not seen at unenhanced and contrast material-enhanced imaging with gadopentetate dimeglumine. Histopathologic and biochemical analyses for MPO and myeloid cells confirmed imaging findings. In MPO-deficient mice, injection of CAWS did not result in a vasculitis phenotype, implying a key role of the imaging target in disease cause. CONCLUSION Molecular imaging targeting MPO can be a useful biomarker to noninvasively detect and confirm inflammation in vasculitis by using a murine model of Kawasaki disease.
Collapse
Affiliation(s)
- Henry S Su
- Center for Molecular Imaging Research, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liang G, Ronald J, Chen Y, Ye D, Pandit P, Ma ML, Rutt B, Rao J. Controlled self-assembling of gadolinium nanoparticles as smart molecular magnetic resonance imaging contrast agents. Angew Chem Int Ed Engl 2011; 50:6283-6. [PMID: 21618367 PMCID: PMC4140417 DOI: 10.1002/anie.201007018] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 04/11/2011] [Indexed: 12/22/2022]
Affiliation(s)
- Gaolin Liang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484 (USA), Fax: (+1) 650-736-7925, Homepage: http://raolab.stanford.edu
| | - John Ronald
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484 (USA), Fax: (+1) 650-736-7925, Homepage: http://raolab.stanford.edu
| | - Yunxin Chen
- Imaging research laboratories, Robarts Research Institute, The University of Western Ontario, 100 Perth Drive, London N6A 5K8, Canada
| | - Deju Ye
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484 (USA), Fax: (+1) 650-736-7925, Homepage: http://raolab.stanford.edu
| | - Prachi Pandit
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484 (USA), Fax: (+1) 650-736-7925, Homepage: http://raolab.stanford.edu
| | - Man Lung Ma
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484 (USA), Fax: (+1) 650-736-7925, Homepage: http://raolab.stanford.edu
| | - Brian Rutt
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484 (USA), Fax: (+1) 650-736-7925, Homepage: http://raolab.stanford.edu
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484 (USA), Fax: (+1) 650-736-7925, Homepage: http://raolab.stanford.edu
| |
Collapse
|
49
|
Abstract
Molecular MRI plays an important role in studying molecular and cellular processes associated with heart disease. Targeted probes that recognize important biomarkers of atherosclerosis, apoptosis, necrosis, angiogenesis, thrombosis and inflammation have been developed. This review discusses the properties of chemically different contrast agents including iron oxide nanoparticles, gadolinium-based nanoparticles or micelles, discrete peptide conjugates and activatable probes. Numerous examples of contrast agents based on these approaches have been used in preclinical MRI of cardiovascular diseases. Clinical applications are still under investigation for some selected agents with highly promising initial results. Molecular MRI shows great potential for the detection and characterization of a wide range of cardiovascular diseases, as well as for monitoring response to therapy.
Collapse
|
50
|
Liang G, Ronald J, Chen Y, Ye D, Pandit P, Ma ML, Rutt B, Rao J. Controlled Self-Assembling of Gadolinium Nanoparticles as Smart Molecular Magnetic Resonance Imaging Contrast Agents. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|