1
|
Xue M, Tan L, Zhang S, Wang JN, Mi X, Si W, Qiao Y, Lao Z, Meng X, Yang Y. Chemoenzymatic synthesis of sialyl-α2,3-lactoside-functionalized BSA conjugate inhibits influenza infection. Eur J Med Chem 2024; 276:116633. [PMID: 38968785 DOI: 10.1016/j.ejmech.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Influenza remains a global public health threat, and the development of new antivirals is crucial to combat emerging drug-resistant influenza strains. In this study, we report the synthesis and evaluation of a sialyl lactosyl (TS)-bovine serum albumin (BSA) conjugate as a potential multivalent inhibitor of the influenza virus. The key trisaccharide component, TS, was efficiently prepared via a chemoenzymatic approach, followed by conjugation to dibenzocyclooctyne-modified BSA via a strain-promoted azide-alkyne cycloaddition reaction. Biophysical and biochemical assays, including surface plasmon resonance, isothermal titration calorimetry, hemagglutination inhibition, and neuraminidase inhibition, demonstrated the strong binding affinity of TS-BSA to the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus as well as intact virion particles. Notably, TS-BSA exhibited potent inhibitory activity against viral entry and release, preventing cytopathic effects in cell culture. This multivalent presentation strategy highlights the potential of glycocluster-based antivirals for combating influenza and other drug-resistant viral strains.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Lintongqing Tan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuai Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Weixue Si
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Ying Qiao
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
2
|
Dhakal B, Mandhapati A, Park S, Sun L, Chaikof EL. Insights Derived from the Synthesis of a Complex Core 2 Glycan. J Org Chem 2024; 89:11641-11658. [PMID: 39087956 DOI: 10.1021/acs.joc.4c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We describe the synthesis of a benzoyl-based C2-O-sLeX-Thr-COOH building block devoid of any aglycone transfer or orthoester-formed byproducts. The absence of byproducts was achieved in the course of both [1 + 1] glycosylation reactions with thiophenol aglycone containing galactose acceptors, as well as a [2 + 2] glycosylation in the presence of a p-methoxy benzyl containing glucosamine-fucose disaccharide. We also report an efficient [2 + 1 + 1] synthesis of a peracetylated sLeX en route to a peracetylated C2-O-sLeX-Thr-COOH. While the total synthesis of the latter compound was recently reported by a related route, the divergent [2 + 1 + 1] synthesis provided good reaction yields for each step of the sequence, establishing this scheme as an alternate approach to the peracetylated C2-O-sLeX-Thr-COOH. Importantly, the current report details the role of a variety of hydroxy-protecting groups, including acetyl, benzoyl, p-methoxy benzyl, and naphthylmethyl that may be considered in designing a route to this complex Core 2 glycan. While we have previously described the use of more glycosylation-friendly naphthylmethyl protecting groups, the current synthesis used p-methoxy benzyl protecting groups with excellent reaction yields, demonstrating the feasibility of applying this side reaction-prone protecting group for this challenging synthesis.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Appi Mandhapati
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Simon Park
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lijun Sun
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Dhakal B, Mandhapati A, Eradi P, Park S, Fibben K, Li K, DeYong A, Escopy S, Karki G, Park DD, Haller CA, Dai E, Sun L, Lam WA, Chaikof EL. Total Synthesis of a PSGL-1 Glycopeptide Analogue for Targeted Inhibition of P-Selectin. J Am Chem Soc 2024; 146:17414-17427. [PMID: 38865166 DOI: 10.1021/jacs.4c05090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The high affinity interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin is mediated by a multimotif glycosulfopeptide (GSP) recognition domain consisting of clustered tyrosine sulfates and a Core 2 O-glycan terminated with sialyl LewisX (C2-O-sLeX). These distinct GSP motifs are much more common than previously appreciated within a wide variety of functionally important domains involved in protein-protein interactions. However, despite the potential of GSPs to serve as tools for fundamental studies and prospects for drug discovery, their utility has been limited by the absence of chemical schemes for synthesis on scale. Herein, we report the total synthesis of GSnP-6, an analogue of the N-terminal domain of PSGL-1, and potent inhibitor of P-selectin. An efficient, scalable, hydrogenolysis-free synthesis of C2-O-sLeX-Thr-COOH was identified by both convergent and orthogonal one-pot assembly, which afforded this crucial building block, ready for direct use in solid phase peptide synthesis (SPPS). C2-O-sLeX-Thr-COOH was synthesized in 10 steps with an overall yield of 23% from the 4-O,5-N oxazolidinone thiosialoside donor. This synthesis represents an 80-fold improvement in reaction yield as compared to prior reports, achieving the first gram scale synthesis of SPPS ready C2-O-sLeX-Thr-COOH and enabling the scalable synthesis of GSnP-6 for preclinical evaluation. Significantly, we established that GSnP-6 displays dose-dependent inhibition of venous thrombosis in vivo and inhibits vaso-occlusive events in a human sickle cell disease equivalent microvasculature-on-a-chip system. The insights gained in formulating this design strategy can be broadly applied to the synthesis of a wide variety of biologically important oligosaccharides and O-glycan bearing glycopeptides.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Appi Mandhapati
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Pradheep Eradi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Simon Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Kirby Fibben
- Departments of Pediatrics and Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kaicheng Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ashley DeYong
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Samira Escopy
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Geeta Karki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Diane D Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Lijun Sun
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Wilbur A Lam
- Departments of Pediatrics and Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Keenan T, Parmeggiani F, Malassis J, Fontenelle CQ, Vendeville JB, Offen W, Both P, Huang K, Marchesi A, Heyam A, Young C, Charnock SJ, Davies GJ, Linclau B, Flitsch SL, Fascione MA. Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chem Biol 2020; 27:1199-1206.e5. [DOI: 10.1016/j.chembiol.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
|
5
|
Chen J, Hansen T, Zhang Q, Liu D, Sun Y, Yan H, Codée JDC, Schmidt RR, Sun J. 1‐Picolinyl‐5‐azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jian Chen
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Qing‐Ju Zhang
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - De‐Yong Liu
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yao Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Richard R. Schmidt
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- Department of ChemistryUniversity of Konstanz 78457 Konstanz Germany
| | - Jian‐Song Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
6
|
Chen J, Hansen T, Zhang Q, Liu D, Sun Y, Yan H, Codée JDC, Schmidt RR, Sun J. 1‐Picolinyl‐5‐azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages. Angew Chem Int Ed Engl 2019; 58:17000-17008. [DOI: 10.1002/anie.201909177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jian Chen
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Qing‐Ju Zhang
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - De‐Yong Liu
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yao Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Richard R. Schmidt
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- Department of ChemistryUniversity of Konstanz 78457 Konstanz Germany
| | - Jian‐Song Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
7
|
Goto K, Tamai H, Takeda Y, Tanaka HN, Mizuno T, Imamura A, Ishida H, Kiso M, Ando H. Total Synthesis of Sialyl Inositol Phosphosphingolipids CJP-2, CJP-3, and CJP-4 Isolated from Feather Star Comanthus japonica. Org Lett 2019; 21:4054-4057. [DOI: 10.1021/acs.orglett.9b01229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kenta Goto
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hideki Tamai
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoh Takeda
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
| | - Takashi Mizuno
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Zhang H, Shao L, Wang X, Zhang Y, Guo Z, Gao J. One-Pot Synthesis of the Repeating Unit of Type VII Group B Streptococcus Polysaccharide and the Dimer. Org Lett 2019; 21:2374-2377. [DOI: 10.1021/acs.orglett.9b00653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Han Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Liming Shao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Yanxin Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Nagornaya MO, Orlova AV, Stepanova EV, Zinin AI, Laptinskaya TV, Kononov LO. The use of the novel glycosyl acceptor and supramer analysis in the synthesis of sialyl-α(2-3)-galactose building block. Carbohydr Res 2018; 470:27-35. [PMID: 30343245 DOI: 10.1016/j.carres.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
A new glycosyl acceptor to be used in sialylation was designed as a 3-hydroxy derivative of 4-methoxyphenyl β-d-galactopyranoside with 2-O-acetyl group and O-4 and O-6 protected as benzylidene acetal. Two alternative syntheses of this compound were compared. Sialylation of 3-OH group of the glycosyl acceptor with O-chloroacetylated N-trifluoroacetylneuraminic acid phenyl thioglycoside (NIS, TfOH, MeCN, MS 3 Å, -40 °C) was studied in a wide concentration range (5-150 mmol L-1). The outcome of sialylation generally followed the predictions of supramer analysis of solutions of sialyl donor in MeCN, which was performed by polarimetry and static light scattering and revealed two concentration ranges differing in solution structure and the structures of supramers of glycosyl donor. The optimized conditions of sialylation (C = 50 mmol L-1) were used to synthesize protected Neu-α(2-3)-Gal disaccharide (78%, α:β = 13:1), which was then converted to sialyl-α(2-3)-galactose imidate building block useful for the synthesis of complex sialo-oligosaccharides.
Collapse
Affiliation(s)
- Marina O Nagornaya
- School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russian Federation; N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Anna V Orlova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Elena V Stepanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation; Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Tatiana V Laptinskaya
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 119992, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
10
|
Sardar MYR, Mandhapati AR, Park S, Wever WJ, Cummings RD, Chaikof EL. Convergent Synthesis of Sialyl Lewis X- O-Core-1 Threonine. J Org Chem 2018; 83:4963-4972. [PMID: 29638128 PMCID: PMC7648531 DOI: 10.1021/acs.joc.7b03117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selectins are a class of cell adhesion molecules that play a critical role during the initial steps of inflammation. The N-terminal domain of P-selectin glycoprotein ligand-1 (PSGL-1) binds to all selectins, but with the highest affinity to P-selectin. Recent evidence suggests that the blockade of P-selectin/PSGL-1 interactions provides a viable therapeutic option for the treatment of many inflammatory diseases. Herein, we report the total synthesis of threonine bearing sialyl LewisX (sLeX) linked to a Core-1- O-hexasaccharide 1, as a key glycan of the N-terminal domain of PSGL-1. A convergent synthesis using α-selective sialylation and a regioselective [4+2] glycosylation are the key features of this synthesis.
Collapse
Affiliation(s)
- Mohammed Y. R. Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Walter J. Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Richard D. Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
| | - Elliot L. Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Shao L, Zhang H, Li Y, Gu G, Cai F, Guo Z, Gao J. Chemical Synthesis of the Repeating Unit of Type II Group B Streptococcus Capsular Polysaccharide. J Org Chem 2018; 83:5920-5930. [DOI: 10.1021/acs.joc.8b00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Liming Shao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Han Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Yaoyao Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Feng Cai
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
12
|
Abstract
Investigations of methodologies aimed on improving the stereoselective synthesis of sialosides and the efficient assembly of sialic acid glycoconjugates has been the mission of dedicated research groups from the late 1960s. This review presents major accomplishments in the field, with the emphasis on significant breakthroughs and influential synthetic strategies of the last decade.
Collapse
|
13
|
The Synthesis and Biological Characterization of Acetal-Free Mimics of the Tumor-Associated Carbohydrate Antigens. Adv Carbohydr Chem Biochem 2017; 74:137-237. [PMID: 29173726 DOI: 10.1016/bs.accb.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carcinomas express unique carbohydrates, known as tumor-associated carbohydrate antigens (TACAs), on their surface. These are potential targets for anticancer vaccines; however, to date, no such vaccine has reached the clinic. One factor that may complicate the success of this effort is the lability of the glycosidic bond. Acetal-free carbohydrates are analogues that lack the glycosidic linkage by replacing either the endo or exo oxygen with a methylene. This chapter summarizes the seminal syntheses of the mucin TACAs, provides an overview of common techniques for the synthesis of carbasugars and C-glycosides, reviews the syntheses published to date of acetal-free TACA analogues, and provides an overview of their observed biological activity. We conclude by offering a summation of the challenges remaining to the field biologically and the potential that acetal-free TACAs have of answering several basic questions in carbohydrate immunology.
Collapse
|
14
|
Abstract
Structurally diverse glycans are expressed by all animate beings and exert diverse biological functions through specific interactions with glycan binding proteins (GBPs). In humans, glycan-GBP interactions are implicated in many disease-relevant processes in development, infection and immune response to bacterial and viral pathogens. Recent progress in chemical synthesis, including automated glycan assembly, has facilitated access to complex glycans that cannot be isolated from biological material. Glycan immobilization on microarrays allows rapid, multiplexed glycan-GBP interaction studies to reveal biological functions. Synthetic glycan microarrays have enabled, for instance, the identification of glycan ligands for lectins, the definition of vaccine antigens, revealed viral glycan receptors and can serve as diagnostic tools for human disease. Here, we describe the methods to fabricate custom glycan microarrays that are used to examine glycan-GBP binding specificities. Conjugation-ready synthetic glycans are covalently attached to microarray surfaces through nucleophilic linker moieties. Microarrays are incubated with GBPs, and binding events are quantitatively detected by fluorescent signals. These methods are readily adaptable to a multitude of purposes from basic research to biomedical applications.
Collapse
|
15
|
Aoyagi T, Ohira S, Fuse S, Uzawa J, Yamaguchi Y, Tanaka H. The α-Glycosidation of Partially Unprotected N
-Acetyl and N
-Glycolyl Sialyl Donors in the Absence of a Nitrile Solvent Effect. Chemistry 2016; 22:6968-73. [DOI: 10.1002/chem.201601031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Taku Aoyagi
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H101 Ookayama, Meguro Tokyo 152-8552 Japan
| | - Shuichi Ohira
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H101 Ookayama, Meguro Tokyo 152-8552 Japan
| | - Shinichiro Fuse
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H101 Ookayama, Meguro Tokyo 152-8552 Japan
- Laboratory of Chemical and Life Science, Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Jun Uzawa
- RIKEN-Max-Planck Joint Research Center for Systems Chemical Biology; RIKEN Global Research Cluster; 2-1 Hirosawa, Wako 351-0198 Saitama Japan
| | - Yoshiki Yamaguchi
- RIKEN-Max-Planck Joint Research Center for Systems Chemical Biology; RIKEN Global Research Cluster; 2-1 Hirosawa, Wako 351-0198 Saitama Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H101 Ookayama, Meguro Tokyo 152-8552 Japan
| |
Collapse
|
16
|
|
17
|
Munneke S, Painter GF, Gainsford GJ, Stocker BL, Timmer MS. Total synthesis of LewisX using a late-stage crystalline intermediate. Carbohydr Res 2015; 414:1-7. [DOI: 10.1016/j.carres.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022]
|
18
|
Chen C, Zhang Y, Xue M, Liu XW, Li Y, Chen X, Wang PG, Wang F, Cao H. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chem Commun (Camb) 2015; 51:7689-92. [DOI: 10.1039/c5cc01330e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A highly efficient sequential one-pot multienzyme (OPME) approach for the synthesis of lacto-N-neotetraose (LNnT) and its derivatives at preparative scale was reported.
Collapse
Affiliation(s)
- Congcong Chen
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Yan Zhang
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Mengyang Xue
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Xian-wei Liu
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Yanhong Li
- Department of Chemistry
- University of California
- One Shields Avenue
- Davis
- USA
| | - Xi Chen
- Department of Chemistry
- University of California
- One Shields Avenue
- Davis
- USA
| | - Peng George Wang
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Fengshan Wang
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Hongzhi Cao
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| |
Collapse
|
19
|
Akçay G, Ramphal JY, d’Alarcao M, Kumar K. Total synthesis of trifluorobutyryl-modified, globally protected sialyl Lewis x by a convergent [2+2] approach. Tetrahedron Lett 2015; 56:109-114. [PMID: 25530638 PMCID: PMC4269248 DOI: 10.1016/j.tetlet.2014.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structural and quantitative changes in the expression of sialic acid residues on the surface of eukaryotic cells profoundly influence a broad range of biological processes including inflammation, antigen recognition, microbial attachment, and tumor metastasis. Uptake and incorporation of sialic acid analogues in mammalian cells enable structure-function studies and perturbation of specific recognition events. Our group has recently shown that a trifluorobutyryl-modified sialic acid metabolite diminishes the adhesion of mammalian cells to E and P-selectin, presumably by leading to the expression of fluorinated sLex epitopes on cell surfaces, and interfering with the sLex-selectin interactions that are well known in mediating tumor cell migration.1 For studies directed towards understanding the molecular basis of this reduced adhesion, chemical synthesis of trifluorobutyrylated sialyl Lewis x (C4F3--sLex) was crucial. We have developed a highly efficient [2+2] approach for the assembly of C4F3-sLex on a preparative scale that contains versatile protective groups allowing the glycan to be surface immobilized or solubilized as needed for biophysical studies to investigate selectin interactions. This strategy can, in principle, be used for preparation of other N-modified sLex analogues.
Collapse
Affiliation(s)
- Gizem Akçay
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - John Y. Ramphal
- Department of Chemistry, San José State University, San José, California 95192 , United States
| | - Marc d’Alarcao
- Department of Chemistry, San José State University, San José, California 95192 , United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
20
|
Podvalnyy NM, Zinin AI, Malysheva NN, Kunetskiy RA, Kononov LO. Convenient Synthesis and Purification ofN-Trifluoroacetylated Neuraminic Acid Tetraol: A Key Precursor for the Synthesis of New Sialyl Donors Containing LabileO-Acyl Protecting Groups. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.913058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Lu D, Hu Y, He X, Sollogoub M, Zhang Y. Total synthesis of a sialyl Lewis(x) derivative for the diagnosis of cancer. Carbohydr Res 2013; 383:89-96. [PMID: 24333940 DOI: 10.1016/j.carres.2013.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 01/01/2023]
Abstract
The total synthesis of aminoethyl glycoside of sialyl Lewis(x) (sLe(x)) is described. A galactose donor was condensed with a diol of glucosamine to afford regioselectively a β1,4 linked disaccharide, which was further stereoselectively fucosylated to provide a protected Lewis(x) trisaccharide. After chemical modification, the trisaccharide was sialylated to give regio- and stereoselectively an azidoethyl glycoside of sLe(x). Finally, deprotection and azide reduction afforded the target compound. This compound will be coupled with protein and then be used to conduct further preclinical studies for the diagnosis of cancer.
Collapse
Affiliation(s)
- Dan Lu
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France; ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China
| | - Matthieu Sollogoub
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France; ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China.
| |
Collapse
|
22
|
Boltje TJ, Heise T, Rutjes FPJT, van Delft FL. A Divergent Method to Prepare 5-Amino-, 5-N-Acetamido-, and 5-N-Glycolylsialosides. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Guiard J, Paszkiewicz E, Sadowska J, Bundle DR. Design and Synthesis of a Universal Antigen to Detect Brucellosis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Guiard J, Paszkiewicz E, Sadowska J, Bundle DR. Design and Synthesis of a Universal Antigen to Detect Brucellosis. Angew Chem Int Ed Engl 2013; 52:7181-5. [DOI: 10.1002/anie.201302303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 11/06/2022]
|
25
|
Chassagne P, Fontana C, Guerreiro C, Gauthier C, Phalipon A, Widmalm G, Mulard LA. Structural Studies of theO-Acetyl-Containing O-Antigen from aShigella flexneriSerotype 6 Strain and Synthesis of Oligosaccharide Fragments Thereof. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Castelli R, Overkleeft HS, van der Marel GA, Codée JDC. 2,2-Dimethyl-4-(4-methoxy-phenoxy) butanoate and 2,2-Dimethyl-4-azido Butanoate: Two New Pivaloate-ester-like Protecting Groups. Org Lett 2013; 15:2270-3. [DOI: 10.1021/ol4008475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Riccardo Castelli
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
27
|
Sun B, Jiang H. An efficient approach for total synthesis of aminopropyl functionalized ganglioside GM1b. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.08.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Esposito D, Hurevich M, Castagner B, Wang CC, Seeberger PH. Automated synthesis of sialylated oligosaccharides. Beilstein J Org Chem 2012; 8:1601-9. [PMID: 23209492 PMCID: PMC3510992 DOI: 10.3762/bjoc.8.183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/16/2012] [Indexed: 12/14/2022] Open
Abstract
Sialic acid-containing glycans play a major role in cell-surface interactions with external partners such as cells and viruses. Straightforward access to sialosides is required in order to study their biological functions on a molecular level. Here, automated oligosaccharide synthesis was used to facilitate the preparation of this class of biomolecules. Our strategy relies on novel sialyl α-(2→3) and α-(2→6) galactosyl imidates, which, used in combination with the automated platform, provided rapid access to a small library of conjugation-ready sialosides of biological relevance.
Collapse
Affiliation(s)
- Davide Esposito
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Mattan Hurevich
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Bastien Castagner
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | - Peter H Seeberger
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
29
|
Wang HC, Chang K, Lin CY, Chen YH, Lu PL. Periodic fever as the manifestation of primary Sjogren's syndrome: a case report and literature review. Clin Rheumatol 2012; 31:1517-9. [PMID: 22837018 DOI: 10.1007/s10067-012-2039-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
A 56-year-old male had periodic fever for 5 years and suffered from auditory hallucination and hearing impairment for 3 years. Xerostomia, xerophthalmia, elevated anti-SSA/Ro tilter, positive Schirmer's test, and lymphocyte infiltrate of mucoserous gland in lip biopsy of this case confirmed the diagnosis of primary Sjogren's syndrome (pSS). We review literature for fever and neuropsychiatric involvement in pSS case series. Though fever is present in 6-41 % pSS cases, periodic fever has not been reported. Auditory hallucination was rare in cases with pSS. The literature review alerts clinicians that fever and neurological manifestations were not uncommon in pSS cases.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road 807, Kaohsiung, Taiwan, China
| | | | | | | | | |
Collapse
|
30
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
31
|
Kononov LO, Malysheva NN, Orlova AV, Zinin AI, Laptinskaya TV, Kononova EG, Kolotyrkina NG. Concentration Dependence of Glycosylation Outcome: A Clue to Reproducibility and Understanding the Reasons Behind. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101613] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Kröck L, Esposito D, Castagner B, Wang CC, Bindschädler P, Seeberger PH. Streamlined access to conjugation-ready glycans by automated synthesis. Chem Sci 2012. [DOI: 10.1039/c2sc00940d] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
34
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Sun B, Jiang H. Pre-activation based, highly alpha-selective O-sialylation with N-acetyl-5-N,4-O-carbonyl-protected p-tolyl thiosialoside donor. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Hudak JE, Yu HH, Bertozzi CR. Protein glycoengineering enabled by the versatile synthesis of aminooxy glycans and the genetically encoded aldehyde tag. J Am Chem Soc 2011; 133:16127-35. [PMID: 21866965 PMCID: PMC3187659 DOI: 10.1021/ja206023e] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Homogeneously glycosylated proteins are important targets for fundamental research and for biopharmaceutical development. The use of unnatural protein–glycan linkages bearing structural similarity to their native counterparts can accelerate the synthesis of glycoengineered proteins. Here we report an approach toward generating homogeneously glycosylated proteins that involves chemical attachment of aminooxy glycans to recombinantly produced proteins via oxime linkages. We employed the recently introduced aldehyde tag method to obtain a recombinant protein with the aldehyde-bearing formylglycine residue at a specific site. Complex aminooxy glycans were synthesized using a new route that features N-pentenoyl hydroxamates as key intermediates that can be readily elaborated chemically and enzymatically. We demonstrated the method by constructing site-specifically glycosylated variants of the human growth hormone.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
37
|
Hanashima S. Recent Strategies for Stereoselective Sialylation and Their Application to the Synthesis of Oligosialosides. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Sugiarto G, Lau K, Yu H, Vuong S, Thon V, Li Y, Huang S, Chen X. Cloning and characterization of a viral α2-3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology 2010; 21:387-96. [PMID: 20978012 DOI: 10.1093/glycob/cwq172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sialyl Lewis(x) (SLe(x), Siaα2-3Galβ1-4(Fucα1-3)GlcNAcβOR) is an important sialic acid-containing carbohydrate epitope involved in many biological processes such as inflammation and cancer metastasis. In the biosynthetic process of SLe(x), α2-3-sialyltransferase-catalyzed sialylation generally proceeds prior to α1-3-fucosyltransferase-catalyzed fucosylation. For the chemoenzymatic synthesis of SLe(x) containing different sialic acid forms, however, it would be more efficient if diverse sialic acid forms are transferred in the last step to the fucosylated substrate Lewis(x) (Le(x)). An α2-3-sialyltransferase obtained from myxoma virus-infected European rabbit kidney RK13 cells (viral α2-3-sialyltransferase (vST3Gal-I)) was reported to be able to tolerate fucosylated substrate Le(x). Nevertheless, the substrate specificity of the enzyme was only determined using partially purified protein from extracts of cells infected with myxoma virus. Herein we demonstrate that a previously reported multifunctional bacterial enzyme Pasteurella multocida sialyltransferase 1 (PmST1) can also use Le(x) as an acceptor substrate, although at a much lower efficiency compared to nonfucosylated acceptor. In addition, N-terminal 30-amino-acid truncated vST3Gal-I has been successfully cloned and expressed in Escherichia coli Origami™ B(DE3) cells as a fusion protein with an N-terminal maltose binding protein (MBP) and a C-terminal His(6)-tag (MBP-Δ30vST3Gal-I-His(6)). The viral protein has been purified to homogeneity and characterized biochemically. The enzyme is active in a broad pH range varying from 5.0 to 9.0. It does not require a divalent metal for its α2-3-sialyltransferase activity. It has been used in one-pot multienzyme sialylation of Le(x) for the synthesis of SLe(x) containing different sialic acid forms with good yields.
Collapse
Affiliation(s)
- Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vohra Y, Buskas T, Boons GJ. Rapid assembly of oligosaccharides: a highly convergent strategy for the assembly of a glycosylated amino acid derived from PSGL-1. J Org Chem 2010; 74:6064-71. [PMID: 19606831 DOI: 10.1021/jo901135k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
P-Selectin and P-selectin glycoprotein ligand 1 (PSGL-1) are vascular adhesion molecules that play an important role in the recruitment of leukocytes to inflamed tissue by establishing leukocyte-endothelial and leukocyte-platelet interaction. P-Selectin binds to the amino-terminus of PSGL-1 through recognition of a sialyl Lewis(x) (SLe(x)) moiety linked to a properly positioned core-2 O-glycan and three tyrosine sulfate residues. We have developed a highly convergent synthesis of the PSGL-1 oligosaccharide linked to threonine based on the use of trichoroacetimidate donors and thioglycosyl acceptors that give products that can immediately be employed in a subsequent glycosylation step without the need for protecting group manipulations. Furthermore, by employing one-pot multistep glycosylation sequences the number of purification steps could be minimized. The process of oligosaccharide assembly was further streamlined by combining protecting group manipulations and glycosylations as a one-pot multistep synthetic procedure. The resulting PSGL-1 oligosaccharide is properly protected for glycopeptide assembly. It is to be expected that the strategic principles employed for the synthesis of the target compound can be applied for the preparation of other complex oligosaccharides of biological and medical importance.
Collapse
Affiliation(s)
- Yusuf Vohra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
40
|
Krishnamurthy VR, Dougherty A, Kamath M, Song X, Cummings RD, Chaikof EL. Synthesis of an Fmoc-threonine bearing core-2 glycan: a building block for PSGL-1 via Fmoc-assisted solid-phase peptide synthesis. Carbohydr Res 2010; 345:1541-7. [PMID: 20561607 PMCID: PMC2902660 DOI: 10.1016/j.carres.2010.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 05/02/2010] [Accepted: 05/06/2010] [Indexed: 01/13/2023]
Abstract
Selectins (L, E, and P) are vascular endothelial molecules that play an important role in the recruitment of leukocytes to inflamed tissue. In this regard, P-Selectin glycoprotein-1 (PSGL-1) has been identified as a ligand for P-Selectin. PSGL-1 binds to P-Selectin through the interaction of core-2 O-glycan expressing sialyl Lewis(x) oligosaccharide and the three tyrosine sulfate residues. Herein, we report the synthesis of threonine-linked core-2 O-glycan as an amino acid building block for the synthesis of PSGL-1. This building block was further incorporated in the Fmoc-assisted solid-phase peptide synthesis to provide a portion of the PSGL-1 glycopeptide.
Collapse
Affiliation(s)
- Venkata R Krishnamurthy
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, and Department of Surgery, Emory University, Atlanta, GA 30322, USA
| | - Ann Dougherty
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, and Department of Surgery, Emory University, Atlanta, GA 30322, USA
| | - Medha Kamath
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, and Department of Surgery, Emory University, Atlanta, GA 30322, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Elliot. L. Chaikof
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, and Department of Surgery, Emory University, Atlanta, GA 30322, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
41
|
Vibert A, Lopin-Bon C, Jacquinet JC. Efficient alternative for the reduction of N-trichloroacetyl groups in synthetic chondroitin oligosaccharide intermediates. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Abstract
Sialic acids are a subset of nonulosonic acids, which are nine-carbon alpha-keto aldonic acids. Natural existing sialic acid-containing structures are presented in different sialic acid forms, various sialyl linkages, and on diverse underlying glycans. They play important roles in biological, pathological, and immunological processes. Sialobiology has been a challenging and yet attractive research area. Recent advances in chemical and chemoenzymatic synthesis, as well as large-scale E. coli cell-based production, have provided a large library of sialoside standards and derivatives in amounts sufficient for structure-activity relationship studies. Sialoglycan microarrays provide an efficient platform for quick identification of preferred ligands for sialic acid-binding proteins. Future research on sialic acid will continue to be at the interface of chemistry and biology. Research efforts not only will lead to a better understanding of the biological and pathological importance of sialic acids and their diversity but also could lead to the development of therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
43
|
Wang P, Zhu J, Yuan Y, Danishefsky SJ. Total synthesis of the 2,6-sialylated immunoglobulin G glycopeptide fragment in homogeneous form. J Am Chem Soc 2010; 131:16669-71. [PMID: 19886622 DOI: 10.1021/ja907136d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2,6-sialylated tridecasaccharide 1 associated with the Fc fragment of intravenous immunoglobulin has been synthesized.
Collapse
Affiliation(s)
- Ping Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|
44
|
Yu B, Sun J. Glycosylation with glycosyl N-phenyltrifluoroacetimidates (PTFAI) and a perspective of the future development of new glycosylation methods. Chem Commun (Camb) 2010; 46:4668-79. [DOI: 10.1039/c0cc00563k] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Muthana S, Cao H, Chen X. Recent progress in chemical and chemoenzymatic synthesis of carbohydrates. Curr Opin Chem Biol 2009; 13:573-81. [PMID: 19833544 DOI: 10.1016/j.cbpa.2009.09.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/28/2009] [Accepted: 09/05/2009] [Indexed: 12/12/2022]
Abstract
The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products.
Collapse
Affiliation(s)
- Saddam Muthana
- Department of Chemistry, One Shields Avenue, University of California, Davis, CA 95616, United States
| | | | | |
Collapse
|
46
|
Study on systematizing the synthesis of the a-series ganglioside glycans GT1a, GD1a, and GM1 using the newly developed N-Troc-protected GM3 and GalN intermediates. Carbohydr Res 2009; 344:1453-63. [DOI: 10.1016/j.carres.2009.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/27/2009] [Accepted: 06/02/2009] [Indexed: 11/18/2022]
|
47
|
Smoot JT, Demchenko AV. Oligosaccharide synthesis: from conventional methods to modern expeditious strategies. Adv Carbohydr Chem Biochem 2009; 62:161-250. [PMID: 19501706 DOI: 10.1016/s0065-2318(09)00005-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- James T Smoot
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, MO 63121, USA
| | | |
Collapse
|
48
|
Abstract
A neuritegenic ganglioside from sea cucumber, HLG-2 (see figure), has been synthesized for the first time. The unique tandem of sialic acids, Neu5Gc-alpha(2,4)-NeuAc, was established by the combination of a reactive N-Troc sialyl donor and a 1,5-lactamized sialyl acceptor. The ceramide counterpart was assembled in a stereoselective manner. Direct connection of the trisaccharide and the ceramide successfully afforded a precursor of HLG-2, which was converted to ganglioside HLG-2 in pure form.A first synthesis of the neuritegenic ganglioside HLG-2, which was identified in extracts of the sea cucumber Holothuria leucospilota, is described. The characteristic sequence of the trisaccharide part, alpha-N-glycolylsialyl-(2,4)-alpha-N-acetylsialyl-(2,6)-glucoside, was efficiently assembled by coupling of a highly active N-2,2,2-trichloroethoxycarbonyl (Troc)-protected sialyl donor and a 1,5-lactamized sialyl acceptor with high stereoselectivity. The corresponding trisaccharyl imidate donor was directly glycosidated with the primary hydroxyl group of the ceramide part, producing protected HLG-2 in relatively high yield, global deprotection of which furnished ganglioside HLG-2 in highly pure form.
Collapse
Affiliation(s)
- Yuki Iwayama
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, Japan
| | | | | | | |
Collapse
|
49
|
Tanaka H, Nishiura Y, Takahashi T. Stereoselective Synthesis of α(2,9) Di- to Tetrasialic Acids, Using a 5,4-N,O-Carbonyl Protected Thiosialoside. J Org Chem 2009; 74:4383-6. [DOI: 10.1021/jo900176e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Yuji Nishiura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Takashi Takahashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
50
|
Ye D, Liu W, Zhang D, Feng E, Jiang H, Liu H. Efficient dehydrative sialylation of C-4-aminated sialyl-hemiketal donors with Ph2SO/Tf2O. J Org Chem 2009; 74:1733-5. [PMID: 19152263 DOI: 10.1021/jo802396a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient approach to the dehydrative sialylation of various substrates with C-4-aminated sialyl-hemiketal donors by using the reagent combination of diphenyl sulfoxide and triflic anhydride is reported. By using a C-4-hindered non-nucleophilic amine auxiliary, excellent yields and high alpha-stereoselectivities were obtained for coupling with a wide range of primary and secondary acceptors.
Collapse
Affiliation(s)
- Deju Ye
- The Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | | | | | | | |
Collapse
|