1
|
Li H, Wang N, Zhou Z, Long L, Li X, Qian Y, Qiao L. Domino Michael/Oxa-Michael Reactions of the Unsymmetric Double Michael Acceptor for Access to Bicyclic Furo[2,3- b]pyrrole. J Org Chem 2024; 89:5883-5895. [PMID: 38600052 DOI: 10.1021/acs.joc.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
By creating an unsymmetric double Michael acceptor 1, we were able to synthesize the nonaromatic-fused bicyclic furo[2,3-b]pyrrole nucleus using a domino Michael/oxa-Michael reaction. Adopting benzoyl acetonitrile 2d (CN as the electron-withdrawing group) as a substrate, we discovered a (DHQ)2AQN-catalyzed method for high diastereo- and enantioselectivity of those products. The reaction path has been determined by isolating the reaction intermediates, and density functional theory calculations support these findings. Beyond providing a synthetic approach, this work illustrated the compounds' possible use in antitumor activity.
Collapse
Affiliation(s)
- Hang Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Ning Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Zhitin Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yiping Qian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Liang Qiao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
2
|
Zhang Z, Sun Y, Li Y, Song X, Wang R, Zhang D. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities. Eur J Med Chem 2024; 265:116081. [PMID: 38181652 DOI: 10.1016/j.ejmech.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Marine-derived piperazine alkaloids (MDPAs) constitute a significant group of natural compounds known for their diverse structures and biological activities. Over the past five decades, substantial efforts have been devoted to isolating these alkaloids from marine sources and characterizing their chemical and bioactive profiles. To date, a total of 922 marine-derived piperazine alkaloids have been reported from various marine organisms. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and various other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of marine-derived piperazine alkaloids. This review also summarizes the structure-activity relationship (SAR) studies associated with the cytotoxicity of these compounds. In summary, our objective is to provide an overview of the research progress concerning marine-derived piperazine alkaloids, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| |
Collapse
|
3
|
Sun C, Ha Y, Liu X, Wang N, Lian XY, Zhang Z. Isolation and Structure Elucidation of New Metabolites from the Mariana-Trench-Associated Fungus Aspergillus sp. SY2601. Molecules 2024; 29:459. [PMID: 38257372 PMCID: PMC10819015 DOI: 10.3390/molecules29020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Fungi are important resource for the discovery of novel bioactive natural products. This study investigated the metabolites produced by Mariana-Trench-associated fungus Aspergillus sp. SY2601 in EY liquid and rice solid media, resulting in the isolation and structure determination of 28 metabolites, including five new compounds, asperindopiperazines A-C (1-3), 5-methoxy-8,9-dihydroxy-8,9-deoxyaspyrone (21), and 12S-aspertetranone D (26). Structures of the new compounds were elucidated based on extensive NMR spectral analyses, HRESIMS data, optical rotation, ECD, and 13C NMR calculations. The new compound 12S-aspertetranone D (26) exhibited antibacterial activity against both methicillin-resistant Staphylococcus aureus and Escherichia coli with MIC values of 3.75 and 5 μg/mL, respectively.
Collapse
Affiliation(s)
- Cangzhu Sun
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (C.S.); (Y.H.); (X.L.)
| | - Yura Ha
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (C.S.); (Y.H.); (X.L.)
| | - Xin Liu
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (C.S.); (Y.H.); (X.L.)
| | - Nan Wang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (C.S.); (Y.H.); (X.L.)
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (C.S.); (Y.H.); (X.L.)
| |
Collapse
|
4
|
Liu M, Ohashi M, Zhou Q, Sanders JN, McCauley EP, Crews P, Houk KN, Tang Y. Enzymatic Benzofuranoindoline Formation in the Biosynthesis of the Strained Bridgehead Bicyclic Dipeptide (+)-Azonazine A. Angew Chem Int Ed Engl 2023; 62:e202311266. [PMID: 37589717 PMCID: PMC10868402 DOI: 10.1002/anie.202311266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
We uncovered and reconstituted a concise biosynthetic pathway of the strained dipeptide (+)-azonazine A from marine-derived Aspergillus insulicola. Formation of the hexacyclic benzofuranoindoline ring system from cyclo-(l-Trp-N-methyl-l-Tyr) is catalyzed by a P450 enzyme through an oxidative cyclization. Supplementing the producing strain with various indole-substituted tryptophan derivatives resulted in the generation of a series of azonazine A analogs.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Jacob N. Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Erin P. McCauley
- Department of Chemistry and Biochemistry, California State University–Dominguez Hills, Carson, California 90747, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Hafez Ghoran S, Taktaz F, Sousa E, Fernandes C, Kijjoa A. Peptides from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2023; 21:510. [PMID: 37888445 PMCID: PMC10608792 DOI: 10.3390/md21100510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Walker KL, Loach RP, Movassaghi M. Total synthesis of complex 2,5-diketopiperazine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 90:159-206. [PMID: 37716796 PMCID: PMC10955524 DOI: 10.1016/bs.alkal.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The 2,5-diketopiperazine (DKP) motif is present in many biologically relevant, complex natural products. The cyclodipeptide substructure offers structural rigidity and stability to proteolysis that makes these compounds promising candidates for medical applications. Due to their fascinating molecular architecture, synthetic organic chemists have focused significant effort on the total synthesis of these compounds. This review covers many such efforts on the total synthesis of DKP containing complex alkaloid natural products.
Collapse
Affiliation(s)
- Katherine L Walker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Richard P Loach
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
7
|
Zhao W, Zeng Y, Chang W, Chen H, Wang H, Dai H, Lv F. Potential α-Glucosidase Inhibitors from the Deep-Sea Sediment-Derived Fungus Aspergillus insulicola. Mar Drugs 2023; 21:md21030157. [PMID: 36976206 PMCID: PMC10056930 DOI: 10.3390/md21030157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Three new phenolic compounds, epicocconigrones C–D (1–2) and flavimycin C (3), together with six known phenolic compounds: epicocconigrone A (4); 2-(10-formyl-11,13-dihydroxy-12-methoxy-14-methyl)-6,7-dihydroxy-5-methyl-4-benzofurancarboxaldehyde (5); epicoccolide B (6); eleganketal A (7); 1,3-dihydro-5-methoxy-7-methylisobenzofuran (8); and 2,3,4-trihydroxy-6-(hydroxymethyl)-5-methylbenzyl-alcohol (9), were isolated from fermentation cultures of a deep-sea sediment-derived fungus, Aspergillus insulicola. Their planar structures were elucidated based on the 1D and 2D NMR spectra and HRESIMS data. The absolute configurations of compounds 1–3 were determined by ECD calculations. Compound 3 represented a rare fully symmetrical isobenzofuran dimer. All compounds were evaluated for their α-glucosidase inhibitory activity, and compounds 1, 4–7, and 9 exhibited more potent α-glucosidase inhibitory effect with IC50 values ranging from 17.04 to 292.47 μM than positive control acarbose with IC50 value of 822.97 μM, indicating that these phenolic compounds could be promising lead compounds of new hypoglycemic drugs.
Collapse
Affiliation(s)
- Weibo Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Yanbo Zeng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Wenjun Chang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Huiqin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Hao Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Haofu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Fang Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Correspondence:
| |
Collapse
|
8
|
Liu X, Yang D, Liu Z, Wang Y, Liu Y, Wang S, Wang P, Cong H, Chen YH, Lu L, Qi X, Yi H, Lei A. Unraveling the Structure and Reactivity Patterns of the Indole Radical Cation in Regioselective Electrochemical Oxidative Annulations. J Am Chem Soc 2023; 145:3175-3186. [PMID: 36705997 DOI: 10.1021/jacs.2c12902] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidation-induced strategy for inert chemical bond activation through highly active radical cation intermediate has exhibited unique reactivity. Understanding the structure and reactivity patterns of radical cation intermediates is crucial in the mechanistic study and will be beneficial for developing new reactions. In this work, the structure and properties of indole radical cations have been revealed using time-resolved transient absorption spectroscopy, in situ electrochemical UV-vis, and in situ electrochemical electron paramagnetic resonance (EPR) technique. Density functional theory (DFT) calculations were used to explain and predict the regioselectivity of several electrochemical oxidative indole annulations. Based on the understanding of the inherent properties of several indole radical cations, two different regioselective annulations of indoles have been successfully developed under electrochemical oxidation conditions. Varieties of furo[2,3-b]indolines and furo[3,2-b]indolines were synthesized in good yields with high regioselectivities. Our mechanistic insights into indole radical cations will promote the further development of oxidation-induced indole functionalizations.
Collapse
Affiliation(s)
- Xing Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yunkun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yichang Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yi-Hung Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
10
|
Khan J, Yadav N, Tyagi A, Hazra CK. Silyl Cation-Initiated, Brønsted Acid-Catalyzed Strategy toward Unsymmetrical 3,3-Disubstituted 2-Oxindoles and Azonazine Cores. J Org Chem 2022; 87:11097-11111. [PMID: 35930369 DOI: 10.1021/acs.joc.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, a mild, metal-free, robust approach for synthesizing valuable and sterically demanding unsymmetrical 3,3-disubstituted 2-oxindoles via reductive cyclization of α-ketoamides is reported. This operationally simple protocol is initiated by a silyl cation and further catalyzed by a Brønsted acid. We have utilized a wide range of arenes, amines, and thiols as coupling partners with various α-ketoamides. The products were afforded in excellent regioselectivity and good functional group tolerance. This procedure provides easy access to the scaffolds of azonazine and its derivatives with an excellent syn-diastereoselectivity bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar Drugs 2022; 20:md20070422. [PMID: 35877715 PMCID: PMC9324980 DOI: 10.3390/md20070422] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.
Collapse
|
12
|
Akyildiz V, Lafzi F, Kilic H, Saracoglu N. Solvent-controlled regioselective C(5)-H/N(1)-H bond alkylations of indolines and C(6)-H bond alkylations of 1,2,3,4-tetrahydroquinolines with para-quinone methides. Org Biomol Chem 2022; 20:3570-3588. [PMID: 35419578 DOI: 10.1039/d2ob00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solvent-promoted and -controlled regioselective bond alkylation reactions of para-quinone methides (p-QMs) with N-H free-indoline and 1,2,3,4-tetrahydroquinoline (THQ) under metal-free conditions have been developed. In the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent, 1,6-addition alkylation reactions of p-QMs with NH-free indolines and THQs efficiently gave C5-alkylated indolines and C6-alkylated THQs. Using catalytic amounts of HFIP in DCM, the reaction of indolines and p-QMs resulted in the alkylation of indolines at the N1-position. HFIP plays two roles in the reactions: converting the indoline and THQ into bidentate nucleophiles and activating the p-QMs to achieve the 1,6-addition alkylation via hydrogen bond clusters. The indoline and THQ act as a C-nucleophile due to the H-bond clusters between HFIP and the nitrogen atom, whereas upon using catalytic amounts of HFIP, the compounds act as an N-nucleophile. All alkylation products were transformed into the corresponding indoles and quinolines via oxidation in the presence of diethyl azodicarboxylate (DEAD). Furthermore, the synthetic utilities have been showcased with both the removal of the tert-butyl groups from the C5-alkylated indole products and submission to their Suzuki coupling reactions.
Collapse
Affiliation(s)
- Volkan Akyildiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Ferruh Lafzi
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Haydar Kilic
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| |
Collapse
|
13
|
|
14
|
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031445. [PMID: 35163367 PMCID: PMC8836030 DOI: 10.3390/ijms23031445] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides are a group of biological molecules that are normally buried in the structure of parent proteins and become active after the cleavage of the proteins. Another group of peptides is actively produced and found in many microorganisms and the body of organisms. Today, many groups of bioactive peptides have been marketed chemically or recombinantly. This article reviews the various production methods and sources of these important/ubiquitous and useful biomolecules. Their applications, such as antimicrobial, antihypertensive, antioxidant activities, blood-lipid-lowering effect, opioid role, antiobesity, ability to bind minerals, antidiabetic, and antiaging effects, will be explored. The types of pathways proposed for bioactive applications will be in the next part of the article, and at the end, the future perspectives of bioactive peptides will be reviewed. Reading this article is recommended for researchers interested in various fields of physiology, microbiology, biochemistry, and nanotechnology and food industry professionals.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ali Khani
- Department of Radiation Sciences, Faculty of Applied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sara Eghbalpour
- Department of Obstetrics and Gynecology Surgery, Babol University of Medical Sciences, Babol 4717647745, Iran;
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-974-5816
| |
Collapse
|
15
|
Rauf A, Khalil AA, Khan M, Anwar S, Alamri A, Alqarni AM, Alghamdi A, Alshammari F, Rengasamy KRR, Wan C. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health? Crit Rev Food Sci Nutr 2022; 62:7072-7116. [PMID: 33840324 DOI: 10.1080/10408398.2021.1910482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel Alghamdi
- Pharmaceutical Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Farhan Alshammari
- Department Of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
16
|
Babu KN, Pal S, Khatua A, Roy A, Bisai A. The catalytic decarboxylative allylation of enol carbonates: the synthesis of enantioenriched 3-allyl-3'-aryl 2-oxindoles and the core structure of azonazine. Org Biomol Chem 2021; 20:127-131. [PMID: 34897364 DOI: 10.1039/d1ob02048j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic asymmetric synthesis of 3-allyl-3'-aryl 2-oxindoles has been shown via the Pd(0)-catalyzed decarboxylative allylation of allylenol carbonates. This methodology provides access to a variety of 2-oxindole substrates (5a-v) with all-carbon quaternary stereocenters (up to 94% ee) at the pseudobenzylic position under additive-free and mild conditions. The synthetic potential of this method was shown by the asymmetric synthesis of the tetracyclic core of the diketopiparazine-based alkaloid azonazine (11).
Collapse
Affiliation(s)
- K Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Souvik Pal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, West Bengal, India
| |
Collapse
|
17
|
Total Synthesis of Pagoamide A. Molecules 2021; 26:molecules26144224. [PMID: 34299497 PMCID: PMC8307129 DOI: 10.3390/molecules26144224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The first total synthesis of the thiazole-containing cyclic depsipeptide pagoamide A, is detailed. The longest linear sequence of the liquid-phase synthesis comprises 9 long linear steps from simple known starting materials, which led to the unambiguous structural confirmation of pagoamide A.
Collapse
|
18
|
Lu ZY, Lan WQ, Liu FY, Wang JY, Zhang XM, Liao LH. Enantioselective synthesis of C3 substituted benzofuroindolines via catalytic asymmetric [3 + 2] cyclization of 3-substituted indoles with p-benzoquinones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Zhang J, Liu M, Huang M, Li W, Zhang X. Enantioselective Dearomative [3+2] Annulation of 3‐Hydroxymaleimides with Azonaphthalenes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| |
Collapse
|
20
|
Tang S, Vincent G. Natural Products Originated from the Oxidative Coupling of Tyrosine and Tryptophan: Biosynthesis and Bioinspired Synthesis. Chemistry 2021; 27:2612-2622. [PMID: 32820845 DOI: 10.1002/chem.202003459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Indexed: 12/18/2022]
Abstract
The oxidative coupling of tyrosine and tryptophan units is a pivotal step in the total synthesis of some peptide-derived marine and terrestrial natural products, such as the diazonamides, azonazine and tryptorubin A. This Minireview details the biosynthesis and bioinspired synthesis of natural products with such structures. A special focus is put on the challenges of the synthesis of these natural products and the innovative solutions adopted by synthetic chemists.
Collapse
Affiliation(s)
- Shanyu Tang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| |
Collapse
|
21
|
Zhao J, Xiao J, Wang Y, Peng Y. Advances on the Synthesis of Natural Products with Dihydrobenzofuran Skeleton via Oxidative [3+2] Cycloadditions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Zhang J, Liu M, Huang M, Liu H, Yan Y, Zhang X. Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00128k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines provided a large variety of succinimide fused indolines in moderate to good yields with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Hui Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
23
|
Mei GJ, Koay WL, Tan CXA, Lu Y. Catalytic asymmetric preparation of pyrroloindolines: strategies and applications to total synthesis. Chem Soc Rev 2021; 50:5985-6012. [DOI: 10.1039/d0cs00530d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pyrroloindolines are widely present in natural products. In this review, we summarize state-of-the-art of catalytic asymmetric synthesis of pyrroloindolines, as well as related applications to natural products total synthesis.
Collapse
Affiliation(s)
- Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
- Department of Chemistry
| | - Wai Lean Koay
- Department of Chemistry
- National University of Singapore
- Singapore
- Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| | - Chuan Xiang Alvin Tan
- Department of Chemistry
- National University of Singapore
- Singapore
- Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| | - Yixin Lu
- Department of Chemistry
- National University of Singapore
- Singapore
- Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| |
Collapse
|
24
|
Nazeri MT, Shaabani A. Synthesis of polysubstituted pyrroles via isocyanide-based multicomponent reactions as an efficient synthesis tool. NEW J CHEM 2021. [DOI: 10.1039/d1nj04514h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present review covers all synthetic methods based on isocyanide-based multicomponent reactions for the preparation of polysubstituted pyrroles as the parent cores of many essential drugs, biologically active compounds, and compounds with wide application in materials science.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
- Peoples’ Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
25
|
Di X, Wang S, Oskarsson JT, Rouger C, Tasdemir D, Hardardottir I, Freysdottir J, Wang X, Molinski TF, Omarsdottir S. Bromotryptamine and Imidazole Alkaloids with Anti-inflammatory Activity from the Bryozoan Flustra foliacea. JOURNAL OF NATURAL PRODUCTS 2020; 83:2854-2866. [PMID: 33016699 DOI: 10.1021/acs.jnatprod.0c00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical investigation of the marine bryozoan Flustra foliacea collected in Iceland resulted in isolation of 13 new bromotryptamine alkaloids, flustramines Q-W (1-7) and flustraminols C-H (8-13), and two new imidazole alkaloids, flustrimidazoles A and B (14 and 15), together with 12 previously described compounds (16-27). Their structures were established by detailed spectroscopic analysis using 1D and 2D NMR and HRESIMS. Structure 2 was verified by calculations of the 13C and 1H NMR chemical shifts using density functional theory. The relative and absolute configurations of the new compounds were elucidated on the basis of coupling constant analysis, NOESY, [α]D, and ECD spectroscopic data, in addition to chemical derivatization. The compounds were tested for in vitro anti-inflammatory activity using a dendritic cell model. Eight compounds (1, 3, 5, 13, 16, 18, 26, and 27) decreased dendritic cell secretion of the pro-inflammatory cytokine IL-12p40, and two compounds (4 and 14) increased secretion of the anti-inflammatory cytokine IL-10. Deformylflustrabromine B (27) showed the most potent anti-inflammatory effect (IC50 2.9 μM). These results demonstrate that F. foliacea from Iceland expresses a broad range of brominated alkaloids, many without structural precedents. The potent anti-inflammatory activity in vitro of metabolite 27 warrants further investigations into its potential as a lead for inflammation-related diseases.
Collapse
Affiliation(s)
- Xiaxia Di
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland
| | - Shuqi Wang
- Faculty of Pharmaceutical Science, Shandong University, 250012 Jinan, China
| | - Jon T Oskarsson
- Department of Immunology, Landspitali-The National University Hospital of Iceland, IS-101 Reykjavik, Iceland
| | - Caroline Rouger
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Marine Natural Products Chemistry Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Marine Natural Products Chemistry Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Sciences, Kiel University, 24118 Kiel, Germany
| | - Ingibjorg Hardardottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, IS-101 Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, IS-101 Reykjavik, Iceland
| | - Jona Freysdottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, IS-101 Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, IS-101 Reykjavik, Iceland
| | - Xiao Wang
- Analytical Research & Development, Merck & Co. Inc, Rahway, New Jersey 07065, United States
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland
| |
Collapse
|
26
|
Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, Jankie S, Gautam H, Singh S, Karan SK, Maharaj S, Fuloria S, Shrivastava J, Agarwal A, Singh S, Kishor A, Jadon G, Sharma A. Natural Bioactive Thiazole-Based Peptides from Marine Resources: Structural and Pharmacological Aspects. Mar Drugs 2020; 18:md18060329. [PMID: 32599909 PMCID: PMC7345825 DOI: 10.3390/md18060329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide–peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
- Correspondence: (R.D.); (S.D.); Tel.: +1-868-493-5655 (R.D.); +1-787-758-2525 (ext. 5413) (S.D.)
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
- Correspondence: (R.D.); (S.D.); Tel.: +1-868-493-5655 (R.D.); +1-787-758-2525 (ext. 5413) (S.D.)
| | - Neeraj Kumar Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia; (N.K.F.); (S.F.)
| | - Suresh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India;
| | - Rita Mourya
- School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar 6200, Ethiopia;
| | - Suresh V. Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia;
| | - Satish Jankie
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Hemendra Gautam
- Arya College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, Nawabganj, Bareilly 243407, Uttar Pardesh, India;
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Ideal Institute of Pharmacy, Wada, Palghar 421303, Maharashtra, India;
| | - Sanjay Kumar Karan
- Department of Pharmaceutical Chemistry, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj 757086, Orissa, India;
| | - Sandeep Maharaj
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Shivkanya Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia; (N.K.F.); (S.F.)
| | - Jyoti Shrivastava
- Department of Pharmaceutical Chemistry, The Oxford College of Pharmacy, Hongasandra, Bangalore 560068, Karnataka, India;
| | - Alka Agarwal
- Department of Pharmaceutical Chemistry, U.S. Ostwal Institute of Pharmacy, Mangalwad, Chittorgarh 313603, Rajasthan, India;
| | - Shamjeet Singh
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Awadh Kishor
- Department of Pharmaceutical Biotechnology, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India;
| | - Gunjan Jadon
- Department of Pharmaceutical Chemistry, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India;
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| |
Collapse
|
27
|
Vincent G, Abou-Hamdan H, Kouklovsky C. Dearomatization Reactions of Indoles to Access 3D Indoline Structures. Synlett 2020. [DOI: 10.1055/s-0040-1707152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This Account summarizes our involvement in the development of dearomatization reactions of indoles that has for origin a total synthesis problematic. We present the effort from our group to obtain 3D-indolines scaffold from the umpolung of N-acyl indoles via activation with FeCl3 to the oxidative spirocyclizations of N-EWG indoles and via the use of electrochemistry.1 Introduction2 Activation of N-Acyl Indoles with FeCl3
2.1 Hydroarylation of N-Acyl Indoles2.2 Difunctionalization of N-Acyl Indoles3 Radical-Mediated Dearomatization of Indoles for the Synthesis of Spirocyclic Indolines4 Electrochemical Dearomatization of Indoles4.1 Direct Electrochemical Oxidation of Indoles4.2 Indirect Electrochemical Oxidation of Indoles5 Conclusion
Collapse
|
28
|
Serbian I, Loesche A, Sommerwerk S, Liebing P, Ströhl D, Csuk R. In the Mists of a Fungal Metabolite: An Unexpected Reaction of 2,4,5-Trimethoxyphenylglyoxylic Acid. Molecules 2020; 25:molecules25081978. [PMID: 32340302 PMCID: PMC7221594 DOI: 10.3390/molecules25081978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
The reactions of phenylglyoxylic acids during the synthesis and biological evaluation of fungal metabolites led to the discovery of hitherto unknown compounds with a p-quinone methide (p-QM) structure. The formation of these p-QMs using 13C-labelled starting materials revealed a key-step of this reaction being a retro-Friedel–Crafts alkylation.
Collapse
Affiliation(s)
- Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - Sven Sommerwerk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - Phil Liebing
- Otto von Guericke Universität Magdeburg, Chemisches Institut, Universitätsplatz 2, D-39106 Magdeburg, Germany;
| | - Dieter Ströhl
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
- Correspondence: ; Tel.: +49-345-55-25660
| |
Collapse
|
29
|
Maity A, Roy A, Das MK, De S, Naskar M, Bisai A. Oxidative cyanation of 2-oxindoles: formal total synthesis of (±)-gliocladin C. Org Biomol Chem 2020; 18:1679-1684. [PMID: 32052001 DOI: 10.1039/c9ob02752a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient oxidative direct cyanations of 3-alkyl/aryl 2-oxindoles using Cyano-1,2-BenziodoXol-3(1H)-one (CBX) (2a) have been reported under 'transition metal-free' conditions to synthesize a wide variety of 3-cyano 3-alkyl/aryl 2-oxindoles sharing an all-carbon quaternary center under additive-free conditions. The application of this process is shown by the formal total synthesis of (±)-gliocladin C (11c) in a few steps.
Collapse
Affiliation(s)
- Arindam Maity
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Malay Naskar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741 246, West Bengal, India.
| |
Collapse
|
30
|
Balwe SG, Jeong YT. New efficient synthesis of benzofuro[2,3- b]pyrroles utilizing a reactive nitrilium trapping approach by an acid-promoted cascade addition/cyclization sequence. NEW J CHEM 2020. [DOI: 10.1039/c9nj05757a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first p-TSA·H2O-catalyzed highly efficient one-pot cascade reaction for the synthesis of novel fused tricyclic benzofuro[2,3-b]pyrroles has been discovered.
Collapse
Affiliation(s)
- Sandip Gangadhar Balwe
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Yeon Tae Jeong
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| |
Collapse
|
31
|
Zhang L, Hu J, Xu R, Pan S, Zeng X, Zhong G. Catalytic Asymmetric Dearomative [3+2] Cyclisation of 1,4‐Quinone with 2,3‐Disubstituted Indoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lvye Zhang
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Jinjin Hu
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Ruigang Xu
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Shulei Pan
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|
32
|
Bai X, Wang L, Zhang Z, Zhang K, Bu Z, Wu Y, Zhang W, Wang Q. Unexpected Cascade Reactions of
Ortho
‐Hydroxyenaminones and β,γ‐Unsaturated α‐Ketoesters to Access Hydrogenated Benzoxazolepolycycles and Pyrrole−Phenol Atropisomers. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xuguan Bai
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 People's Republic of China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 People's Republic of China
| | - Ziying Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 People's Republic of China
| | - Kuan Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 People's Republic of China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 People's Republic of China
| | - Yufeng Wu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 People's Republic of China
| | - Wenjing Zhang
- College of ChemistryZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 People's Republic of China
| |
Collapse
|
33
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
34
|
Li L, Yuan K, Jia Q, Jia Y. Eight‐Step Total Synthesis of Phalarine by Bioinspired Oxidative Coupling of Indole and Phenol. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Kuo Yuan
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Qianlan Jia
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
35
|
Li L, Yuan K, Jia Q, Jia Y. Eight‐Step Total Synthesis of Phalarine by Bioinspired Oxidative Coupling of Indole and Phenol. Angew Chem Int Ed Engl 2019; 58:6074-6078. [DOI: 10.1002/anie.201900199] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Kuo Yuan
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Qianlan Jia
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
36
|
Wu JC, Hou Y, Xu Q, Jin XJ, Chen Y, Fang J, Hu B, Wu QX. (±)-Alternamgin, a Pair of Enantiomeric Polyketides, from the Endophytic Fungi Alternaria sp. MG1. Org Lett 2019; 21:1551-1554. [PMID: 30789736 DOI: 10.1021/acs.orglett.9b00475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A pair of enantiomeric polyketides, (+)- and (-)-alternamgin (1), featuring an unprecedented 6/6/6/6/5/6/6 seven ring backbone, were isolated from the endophytic fungi Alternaria sp. MG1. The relative configuration of 1 was determined using X-ray diffraction, and the absolute configurations of (±)-1 were confirmed by comparing the experimental and calculated ECD data. Plausible biosynthetic pathways for 1 were proposed. Compound (-)-1 exhibited moderate necrosis rates to Hela and HepG2 cells, but (+)-1 only showed similar necrosis rates to HepG2 cells.
Collapse
Affiliation(s)
- Jun-Chen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Xiao-Jie Jin
- College of Pharmacy , Gansu University of Chinese Medicine , Lanzhou 730000 , People's Republic of China
| | - Yaxiong Chen
- Key Laboratory of Heavy Ion Radiation Biology and Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , People's Republic of China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Burong Hu
- Key Laboratory of Heavy Ion Radiation Biology and Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , People's Republic of China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| |
Collapse
|
37
|
Hajra S, Maity S, Roy S, Maity R, Samanta S. Brønsted Acid Promoted Regioselective C-3 Arylation and Heteroarylation of Spiro-epoxyoxindoles for the Construction of All Carbon Quaternary Centres: A Detailed Study. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saumen Hajra
- Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus; Centre of Biomedical Research; Raebareli Road, Lucknow 226014 India
| | - Subrata Maity
- Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus; Centre of Biomedical Research; Raebareli Road, Lucknow 226014 India
- Department of Chemistry; Indian Institute of Technology Kharagpur; 721302 Kharagpur India
| | - Sayan Roy
- Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus; Centre of Biomedical Research; Raebareli Road, Lucknow 226014 India
| | - Ramkrishna Maity
- Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus; Centre of Biomedical Research; Raebareli Road, Lucknow 226014 India
| | - Srikrishna Samanta
- Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus; Centre of Biomedical Research; Raebareli Road, Lucknow 226014 India
| |
Collapse
|
38
|
Zhang GT, Zhang J, Xu YJ, Dong L. Metal-Free [3+2] Tandem Cyclization Synthesis of Unique 11H
-Pyrido[3′,2′:4,5]Pyrrolo[3,2-b
]Indolizine from 7-Azaindoles and Pyridotriazoles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guo-Tai Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Jing Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Yan-Jun Xu
- Xinjiang Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; 830011 Urumqi China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
39
|
Ertugrul B, Kilic H, Lafzi F, Saracoglu N. Access to C5-Alkylated Indolines/Indoles via Michael-Type Friedel-Crafts Alkylation Using Aryl-Nitroolefins. J Org Chem 2018; 83:9018-9038. [PMID: 29916712 DOI: 10.1021/acs.joc.8b00973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A straightforward synthetic route toward C5-alkylated indolines/indoles has been developed. The strategy is composed of Zn(OTf)2-catalyzed Friedel-Crafts alkylation of N-benzylindolines with nitroolefins, and a series of diverse indolines was first obtained in up to 99% yield. This reaction provides a direct and practical route to a variety of the C5-alkylated indolines which were also utilized for accessing corresponding indoles. Indoline derivatives with free NH groups could be obtained through an N-deprotection reaction. Moreover, the primary alkyl nitro groups in both indolines and indoles are amenable to further synthetic elaborations, thereby broadening the diversity of the products.
Collapse
|
40
|
Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int J Mol Sci 2018; 19:ijms19030919. [PMID: 29558431 PMCID: PMC5877780 DOI: 10.3390/ijms19030919] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023] Open
Abstract
Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy.
Collapse
|
41
|
Liu QJ, Zhu J, Song XY, Wang L, Wang SR, Tang Y. Highly Enantioselective [3+2] Annulation of Indoles with Quinones to Access Structurally Diverse Benzofuroindolines. Angew Chem Int Ed Engl 2018; 57:3810-3814. [DOI: 10.1002/anie.201800733] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Qiong-Jie Liu
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Jun Zhu
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Xiang-Yang Song
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Sunewang R. Wang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| |
Collapse
|
42
|
Liu QJ, Zhu J, Song XY, Wang L, Wang SR, Tang Y. Highly Enantioselective [3+2] Annulation of Indoles with Quinones to Access Structurally Diverse Benzofuroindolines. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiong-Jie Liu
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Jun Zhu
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Xiang-Yang Song
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Sunewang R. Wang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| |
Collapse
|
43
|
Gogineni V, Hamann MT. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim Biophys Acta Gen Subj 2018; 1862:81-196. [PMID: 28844981 PMCID: PMC5918664 DOI: 10.1016/j.bbagen.2017.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.
Collapse
Affiliation(s)
- Vedanjali Gogineni
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS, United States.
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
44
|
Roy A, Das MK, Chaudhuri S, Bisai A. Transition-Metal Free Oxidative Alkynylation of 2-Oxindoles with Ethynylbenziodoxolone (EBX) Reagents. J Org Chem 2017; 83:403-421. [DOI: 10.1021/acs.joc.7b02797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| | - Saikat Chaudhuri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| |
Collapse
|
45
|
Wang X, Li Y, Zhang X, Lai D, Zhou L. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi. Molecules 2017; 22:E2026. [PMID: 29168781 PMCID: PMC6149763 DOI: 10.3390/molecules22122026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs), are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan-Xaa, proline-Xaa, non-tryptophan-non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Ibrahim SRM, Mohamed GA, Ross SA. Aspernolides L and M, new butyrolactones from the endophytic fungus Aspergillus versicolor. ACTA ACUST UNITED AC 2017; 72:155-160. [PMID: 27658145 DOI: 10.1515/znc-2016-0138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022]
Abstract
During the systematic search of active compounds from endophytic fungi, two new butyrolactones, namely aspernolides L (2) and M (4), together with four known compounds: 1-O-acetylglycerol (1), butyrolactone I (3), butyrolactone VI (5), and (+) alantrypinone (6) were characterized from the EtOAc extract of the endophytic fungus Aspergillus versicolor isolated from the roots of Pulicaria crispa (Asteraceae). Extensive spectroscopic analysis, including 1D, 2D NMR, and HRESIMS, was used to elucidate their structures. Compounds 1, 5, and 6 are reported for the first time from this fungus.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia, Phone: +966 581183034, E-mail: .,Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Samir A Ross
- National Center for Natural Products Research, Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, Mississippi 38677, United States of America
| |
Collapse
|
47
|
Liu K, Tang S, Huang P, Lei A. External oxidant-free electrooxidative [3 + 2] annulation between phenol and indole derivatives. Nat Commun 2017; 8:775. [PMID: 28974679 PMCID: PMC5626759 DOI: 10.1038/s41467-017-00873-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022] Open
Abstract
Intermolecular [3 + 2] annulation is one of the most straightforward approaches to construct five membered heterocycles. However, it generally requires the use of functionalized substrates. An ideal reaction approach is to achieve dehydrogenative [3 + 2] annulation under oxidant-free conditions. Here we show an electrooxidative [3 + 2] annulation between phenols and N-acetylindoles under undivided electrolytic conditions. Neither external chemical oxidants nor metal catalysts are required to facilitate the dehydrogenation processes. This reaction protocol provides an environmentally friendly way for the selective synthesis of benzofuroindolines. Various N-acetylindoles bearing different C-3 and C-2 substituents are suitable in this electrochemical transformation, furnishing corresponding benzofuroindolines in up to 99% yield.Electrochemical oxidation provides a green alternative to the use of hazardous chemical oxidants and forcing conditions. Here, the authors show the electrocatalytic cross-coupling of phenols and indoles to generate biologically relevant benzofuroindolines in high yields.
Collapse
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, China
| | - Shan Tang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, China
| | - Pengfei Huang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
48
|
Jena BK, Reddy GS, Mohapatra DK. First asymmetric total synthesis of aspergillide D. Org Biomol Chem 2017; 15:1863-1871. [DOI: 10.1039/c6ob02435a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first asymmetric total synthesis of aspergillide D was achieved in a longest linear sequence of 18 steps following Sharpless resolution, Yamaguchi esterification, RCM reaction and Shiina macrolactonization.
Collapse
Affiliation(s)
- Bighnanshu K. Jena
- Natural Products Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - G. Sudhakar Reddy
- Natural Products Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Debendra K. Mohapatra
- Natural Products Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| |
Collapse
|
49
|
Deruer E, Canesi S. One-step formation of dihydrofuranoindoline cores promoted by a hypervalent iodine reagent. Org Biomol Chem 2017; 15:3736-3741. [DOI: 10.1039/c7ob00326a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of aniline derivatives in the presence of a hypervalent iodine reagent and furan produces dihydrofuranoindoline cores in one step.
Collapse
Affiliation(s)
- Elsa Deruer
- Laboratoire de Méthodologie et Synthèse de Produits Naturels
- Université du Québec à Montréal
- Montréal
- Canada
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels
- Université du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|
50
|
Lee S, Park MS, Lim YW. Diversity of Marine-Derived Aspergillus from Tidal Mudflats and Sea Sand in Korea. MYCOBIOLOGY 2016; 44:237-247. [PMID: 28154481 PMCID: PMC5287156 DOI: 10.5941/myco.2016.44.4.237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/09/2016] [Accepted: 10/29/2016] [Indexed: 05/05/2023]
Abstract
Aspergillus (Trichocomaceae, Eurotiales, and Ascomycota) is a genus of well-defined asexual spore-forming fungi that produce valuable compounds such as secondary metabolites and enzymes; however, some species are also responsible for diseases in plants and animals, including humans. To date, 26 Aspergillus species have been reported in Korea, with most species located in terrestrial environments. In our study, Aspergillus species were isolated from mudflats and sea sand along the western and southern coasts of Korea. A total of 84 strains were isolated and identified as 17 Aspergillus species in 11 sections on the basis of both morphological characteristics and sequence analysis of the calmodulin gene (CaM) locus. Commonly isolated species were A. fumigatus (26 strains), A. sydowii (14 strains), and A. terreus (10 strains). The diversity of Aspergillus species isolated from mudflats (13 species) was higher than the diversity of those from sea sand (five species). Four identified species-A. caesiellus, A. montenegroi, A. rhizopodus, and A. tabacinus-are in the first records in Korea. Here, we provide detailed descriptions of the morphological characteristics of these four species.
Collapse
Affiliation(s)
- Seobihn Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|