1
|
Zhang H, Li M, Lvha A, Zhang S. Pimarane diterpenoids: sources, structures and biological activities. Nat Prod Res 2024:1-17. [PMID: 39535055 DOI: 10.1080/14786419.2024.2426071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The pimarane diterpenoids, a widespread class of secondary metabolites, have been found in several dozens of plant species from various families and in organisms from other taxonomic groups. According to the different chiral centres, pimarane diterpenes can be divided into four types, including pimarane, isopimarane, ent-pimarane, and ent-isopimarane. Meanwhile, these compounds possessed many pharmacological activities, such as cytotoxic, anti-inflammatory, and antibacterial activities. Due to their notable structure and biological activities these substances have attracted interest in recent years. A comprehensive account of the structural diversity (368 structures, 117 references) and biological activities of pimarane diterpenes discovered from 2000 until 2023 is given in this review.
Collapse
Affiliation(s)
- Haiqiang Zhang
- Key Laboratory of Evaluation and Transformation of Traditional Chinese Medicine Under Hebei Provincial Administration of Traditional Chinese Medicine, Hebei Provincial Hospital of Chinese Medicine, Shijiazhang, P.R. China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Hebei Provincial Hospital of Chinese Medicine, Shijiazhang, P.R. China
| | - Meng Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, P.R. China
| | - Ayi Lvha
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Shengming Zhang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, P.R. China
| |
Collapse
|
2
|
Bjørklund G, Lysiuk R, Semenova Y, Lenchyk L, Dub N, Doşa MD, Hangan T. Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines. Curr Med Chem 2024; 31:393-409. [PMID: 36698239 DOI: 10.2174/0929867330666230125121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023]
Abstract
Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University , Astana, Kazakhstan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | | | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
3
|
Umer SM, Shamim S, Khan KM, Saleem RSZ. Perplexing Polyphenolics: The Isolations, Syntheses, Reappraisals, and Bioactivities of Flavonoids, Isoflavonoids, and Neoflavonoids from 2016 to 2022. Life (Basel) 2023; 13:life13030736. [PMID: 36983891 PMCID: PMC10058313 DOI: 10.3390/life13030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Flavonoids, isoflavonoids, neoflavonoids, and their various subcategories are polyphenolics-an extensive class of natural products. These compounds are bioactive and display multiple activities, including anticancer, antibacterial, antiviral, antioxidant, and neuroprotective activities. Thus, these compounds can serve as leads for therapeutic agents or targets for complex synthesis; they are coveted and routinely isolated, characterized, biologically evaluated, and synthesized. However, data regarding the compounds' sources, isolation procedures, structural novelties, bioactivities, and synthetic schemes are often dispersed and complex, a dilemma this review aims to address. To serve as an easily accessible guide for researchers wanting to apprise themselves of the latest advancements in this subfield, this review summarizes seventy-six (76) articles published between 2016 and 2022 that detail the isolation and characterization of two hundred and forty-nine (249) novel compounds, the total and semisyntheses of thirteen (13) compounds, and reappraisals of the structures of twenty (20) previously reported compounds and their bioactivities. This article also discusses new synthetic methods and enzymes capable of producing or modifying flavonoids, isoflavonoids, or neoflavonoids.
Collapse
Affiliation(s)
- Syed Muhammad Umer
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| | - Shahbaz Shamim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 31441, Saudi Arabia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| |
Collapse
|
4
|
Nakamura A, Imamiya A, Ikegami Y, Rao F, Yuguchi H, Miki Y, Maegawa T. Selective synthesis of 3-formylbenzofuran and 3-acylbenzofuran using a chalcone rearrangement strategy. RSC Adv 2022; 12:30426-30431. [PMID: 36337936 PMCID: PMC9593264 DOI: 10.1039/d2ra06080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
We developed a method for highly selective synthesis of two benzofuran isomers, by rearranging and subsequently transforming 2-hydroxychalcones. Depending on the reaction conditions, synthesis of 3-formylbenzofurans, unconventional products, and 3-acylbenzofurans was achieved through cyclized 2,3-dihydrobenzofurans obtained from the rearranged products. The facile synthesis of 3-formylbenzofurans facilitated synthesis of the natural product, puerariafuran, from the corresponding chalcone.
Collapse
Affiliation(s)
- Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Akira Imamiya
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Yuichiro Ikegami
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Fei Rao
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Harumi Yuguchi
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Yasuyoshi Miki
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
5
|
Rafiq S, Hao H, Ijaz M, Raza A. Pharmacological Effects of Houttuynia cordata Thunb (H. cordata): A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15091079. [PMID: 36145299 PMCID: PMC9501394 DOI: 10.3390/ph15091079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata) is a rhizomatous, herbaceous, and perennial plant widely distributed in Asia. It has multiple chemical constituents, such as alkaloids, essential oils, phenolic acids, and flavonoids used against various health problems. The essential oils and flavonoids are the main components of H. cordata that play an essential role in disease treatment and traditional health care. Moreover, the leaves and stems of H. cordata have a long medicinal history in China. In addition, H. cordata is used against several health issues, such as cold, cough, fever, pneumonia, mumps, and tumors, due to its anti-inflammatory, anti-bacterial, anti-viral, anti-oxidant, and anti-tumor effects. It protects organs due to its anti-inflammatory activity. H. cordata regulates immunity by enhancing immune barriers of the oral cavity, vagina, and gastrointestinal tract, and shows broad-spectrum activity against liver, lung, breast, and colon tumors. However, there are some gaps to be filled to understand its pathways and mechanisms. Mechanisms such as its interaction with cells, cell membranes, and various drugs are important. Studies in relation to the blood–brain barrier, lipophilicity, cAMP signaling, and skin permeability, including pharmaceutical effects, will be very useful. This review includes the biological and pharmacological activities of H. cordata based on up-to-date research.
Collapse
Affiliation(s)
- Shahzad Rafiq
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-158-7181-2208
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ahmed Raza
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
6
|
The therapeutic potential of Houttuynia cordata: A current review. Heliyon 2022; 8:e10386. [PMID: 36061012 PMCID: PMC9433674 DOI: 10.1016/j.heliyon.2022.e10386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/15/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
|
7
|
Liu J, Yuan S, Yao Y, Wang J, Scalabrino G, Jiang S, Sheridan H. Network Pharmacology and Molecular Docking Elucidate the Underlying Pharmacological Mechanisms of the Herb Houttuynia cordata in Treating Pneumonia Caused by SARS-CoV-2. Viruses 2022; 14:v14071588. [PMID: 35891565 PMCID: PMC9324059 DOI: 10.3390/v14071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Used in Asian countries, including China, Japan, and Thailand, Houttuynia cordata Thumb (H. cordata; Saururaceae, HC) is a traditional herbal medicine that possesses favorable antiviral properties. As a potent folk therapy used to treat pulmonary infections, further research is required to fully elucidate the mechanisms of its pharmacological activities and explore its therapeutic potential for treating pneumonia caused by SARS-CoV-2. This study explores the pharmacological mechanism of HC on pneumonia using a network pharmacological approach combined with reprocessing expression profiling by high-throughput sequencing to demonstrate the therapeutic mechanisms of HC for treating pneumonia at a systemic level. The integration of these analyses suggested that target factors are involved in four signaling pathways, including PI3K-Akt, Jak-STAT, MAPK, and NF-kB. Molecular docking and molecular dynamics simulation were applied to verify these results, indicating a stable combination between four metabolites (Afzelin, Apigenin, Kaempferol, Quercetin) and six targets (DPP4, ELANE, HSP90AA1, IL6, MAPK1, SERPINE1). These natural metabolites have also been reported to bind with ACE2 and 3CLpro of SARS-CoV-2, respectively. The data suggest that HC exerts collective therapeutic effects against pneumonia caused by SARS-CoV-2 and provides a theoretical basis for further study of the active drug-like ingredients and mechanism of HC in treating pneumonia.
Collapse
Affiliation(s)
- Junying Liu
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
| | - Shouli Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China;
| | - Yao Yao
- Biocomputing and Developmental Systems, Lero—The Science Foundation Ireland Research Centre for Software, Department of Computer Science & Information Systems, The University of Limerick, V94T9PX Limerick, Ireland;
| | - Jinfan Wang
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
| | - Gaia Scalabrino
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
- Correspondence: (S.J.); (H.S.)
| | - Helen Sheridan
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
- Correspondence: (S.J.); (H.S.)
| |
Collapse
|
8
|
Woranam K, Mootsikapun P, Senawong G, Prompipak J, Promdee L, Pintaraks K, Ketterman AJ, Senawong T. Safety and immunomodulatory activity of Houttuynia cordata fermentation product in healthy volunteers and its effect on antiretroviral-drug level in rats. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2024152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Khanutsanan Woranam
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Piroon Mootsikapun
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jeerati Prompipak
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Limthong Promdee
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ketsarin Pintaraks
- Diagnostic Clinical Microscopy Unit, Medicine, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Albert J. Ketterman
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Khademi Z, Heravi MM. Applications of Claisen condensations in total synthesis of natural products. An old reaction, a new perspective. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Wu Z, Deng X, Hu Q, Xiao X, Jiang J, Ma X, Wu M. Houttuynia cordata Thunb: An Ethnopharmacological Review. Front Pharmacol 2021; 12:714694. [PMID: 34539401 PMCID: PMC8440972 DOI: 10.3389/fphar.2021.714694] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata; Saururaceae) is widely distributed in Asian regions. It plays an important role in traditional health care and disease treatment, as its aboveground stems and leaves have a long medicinal history in China and are used in the treatment of pneumonia and lung abscess. In clinical treatment, it can usually be combined with other drugs to treat dysentery, cold, fever, and mumps; additionally, H. cordata is an edible plant. This review summarizes detailed information on the phytochemistry and pharmacological effects of H. cordata. By searching the keywords “H. cordata and lung”, “H. cordata and heart”, “H. cordata and liver”, and “H. cordata and inflammation” in PubMed, Web of Science and ScienceDirect, we screened out articles with high correlation in the past ten years, sorted out the research contents, disease models and research methods of the articles, and provided a new perspective on the therapeutic effects of H. cordata. A variety of its chemical constituents are characteristic of medicinal plants, the chemical constituents were isolated from H. cordata, including volatile oils, alkaloids, flavonoids, and phenolic acids. Flavonoids and volatile oils are the main active components. In pharmacological studies, H. cordata showed organ protective activity, such as reducing the release of inflammatory factors to alleviate lung injury. Moreover, H. cordata regulates immunity, enhances the immune barriers of the vagina, oral cavity, and intestinal tract, and combined with the antibacterial and antiviral activity of its extract, effectively reduces pathogen infection. Furthermore, experiments in vivo and in vitro showed significant anti-inflammatory activity, and its chemical derivatives exert potential therapeutic activity against rheumatoid arthritis. Antitumour action is also an important pharmacological activity of H. cordata, and studies have shown that H. cordata has a notable effect on lung tumour, liver tumour, colon tumour, and breast tumour. This review categorizes the biological activities of H. cordata according to modern research papers, and provides insights into disease prevention and treatment of H. cordata.
Collapse
Affiliation(s)
- Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Jiang
- School of Physical Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, China
| |
Collapse
|
11
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
12
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review. Curr Drug Discov Technol 2020; 17:469-483. [PMID: 31309894 DOI: 10.2174/1570163816666190715114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections. METHODS A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: "myelitis", "encephalitis", "meningitis", "meningoencephalitis", "encephalomyelitis", "central nervous system", "brain", "spinal cord", "infection", "virus", "medicinal plants", and "biological compounds". RESULTS The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation. CONCLUSION Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
13
|
Basic M, Elgner F, Bender D, Sabino C, Herrlein ML, Roth H, Glitscher M, Fath A, Kerl T, Schmalz HG, Hildt E. A synthetic derivative of houttuynoid B prevents cell entry of Zika virus. Antiviral Res 2019; 172:104644. [DOI: 10.1016/j.antiviral.2019.104644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/12/2022]
|
14
|
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front Pharmacol 2019; 10:1207. [PMID: 31787892 PMCID: PMC6856223 DOI: 10.3389/fphar.2019.01207] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
As the leading cause of death worldwide, viruses significantly affect global health. Despite the rapid progress in human healthcare, there are few viricidal and antiviral therapies that are efficient enough. The rapid emergence of resistance, and high costs, as well as the related side effects of synthetic antiviral drugs, raise the need to identify novel, effective, and safe alternatives against viral diseases. Nature has been of the most exceptional help and source of inspiration for developing novel multi-target antiviral compounds, affecting several steps of the viral life cycle and host proteins. For that matter and due to safety and efficacy limitations, as well as high resistance rate of conventional therapies, hundreds of natural molecules are preferred over the synthetic drugs. Besides, natural antiviral agents have shown acceptable antiviral value in both preclinical and clinical trials.This is the first review regarding molecular and cellular pathways of the virus life cycle, treatment strategies, and therapeutic targets of several viral diseases with a particular focus on anthocyanins as promising natural compounds for significant antiviral enhancements. Clinical applications and the need to develop nano-formulation of anthocyanins in drug delivery systems are also considered.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
15
|
Yu L, Chen X, Yu Z. Efficacy of Houttuynia eye drops for the treatment of vernal keratoconjunctivitis: A systemic review and meta-analysis protocol. Medicine (Baltimore) 2019; 98:e16196. [PMID: 31261561 PMCID: PMC6617420 DOI: 10.1097/md.0000000000016196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vernal keratoconjunctivitis (VKC) is a common eye disease and can result in permanent decrease or loss of vision. Houttuynia eye drops (HED) is used for the treatment of VKC. However, the clinical evidence of HED has not been well concluded. Herein, we described a proposed systemic review and meta-analysis to evaluate the clinical efficacy of HED for the treatment of VKC. METHODS Six electronic databases (Medline, Embase, the Cochrane database, Chinese National Knowledge Infrastructure, Wanfang database, and Chinese Biology and Medicine database) will be searched for randomized controlled trials (RCTs) which evaluating the clinical efficacy of HED for the treatment of VKC. Studies meet the eligibility criteria will be included. Data of the included studies will be extracted and the quality will also be evaluated. Data synthesis will be performed using RevMan software. Sensitivity analysis and publication bias will also be investigated. RESULTS This study will provide high-quality systemic review and synthesis of RCTs on efficacy of HED for the treatment of VKC. CONCLUSION This systemic review and meta-analysis will conclude the efficacy of HED for the treatment of VKC. REGISTRATION PROSPERO CRD42019124737.
Collapse
Affiliation(s)
- Lingyan Yu
- The Second Affiliated Hospital of Zhejiang University School of Medicine
| | - Xueying Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine
| | - Zhenwei Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Cheng D, Sun L, Zou S, Chen J, Mao H, Zhang Y, Liao N, Zhang R. Antiviral Effects of Houttuynia cordata Polysaccharide Extract on Murine Norovirus-1 (MNV-1)-A Human Norovirus Surrogate. Molecules 2019; 24:molecules24091835. [PMID: 31086065 PMCID: PMC6539669 DOI: 10.3390/molecules24091835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
Houttuynia cordata is an herbal plant rich in polysaccharides and with several pharmacological activities. Human noroviruses (HuNoVs) are the most common cause of foodborne viral gastroenteritis throughout the world. In this study, H. cordata polysaccharide (HP), with a molecular weight of ~43 kDa, was purified from H. cordata water extract (HWE). The polysaccharide HP was composed predominantly of galacturonic acid, galactose, glucose, and xylose in a molar ratio of 1.56:1.49:1.26:1.11. Methylation and NMR analyses revealed that HP was a pectin-like acidic polysaccharide mainly consisting of α-1,4-linked GalpA, β-1,4-linked Galp, β-1,4-linked Glcp, and β-1,4-linked Xylp residues. To evaluate the antiviral activity of H. cordata extracts, we compared the anti-norovirus potential of HP with HWE and ethanol extract (HEE) from H. cordata by plaque assay (plaque forming units (PFU)/mL) for murine norovirus-1 (MNV-1), a surrogate of HuNoVs. Viruses at high (8.09 log10 PFU/mL) or low (4.38 log10 PFU/mL) counts were mixed with 100, 250, and 500 μg/mL of HP, HWE or HEE and incubated for 30 min at room temperature. H. cordata polysaccharide (HP) was more effective than HEE in reducing MNV-1 plaque formation, but less effective than HWE. When MNV-1 was treated with 500 μg/mL HP, the infectivity of MNV-1 decreased to an undetectable level. The selectivity indexes of each sample were 1.95 for HEE, 5.74 for HP, and 16.14 for HWE. The results of decimal reduction time and transmission electron microscopic revealed that HP has anti-viral effects by deforming and inflating virus particles, thereby inhibiting the penetration of viruses in target cells. These findings suggest that HP might have potential as an antiviral agent in the treatment of viral diseases.
Collapse
Affiliation(s)
- Dongqing Cheng
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Liang Sun
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Songyan Zou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Haiyan Mao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Yanjun Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Ningbo Liao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA 94720, USA.
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Gudise VB, Settipalli PC, Reddy EK, Anwar S. Oxa-Michael-Michael Reaction of MBH Alcohol and 2-Arylidene-1,3-indanedione: Regioselective Formal [4+2] Cycloaddition towards Tetrahydrospiropyran Scaffolds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Veera Babu Gudise
- Division of Chemistry; Department of Sciences and Humanities; Vignan's Foundation for Science, Technology and Research (Deemed to be University); Vadlamudi 522 213 Guntur - Andhra Pradesh India
| | - Poorna Chandrasekhar Settipalli
- Division of Chemistry; Department of Sciences and Humanities; Vignan's Foundation for Science, Technology and Research (Deemed to be University); Vadlamudi 522 213 Guntur - Andhra Pradesh India
| | - Eeda Koti Reddy
- Division of Chemistry; Department of Sciences and Humanities; Vignan's Foundation for Science, Technology and Research (Deemed to be University); Vadlamudi 522 213 Guntur - Andhra Pradesh India
| | - Shaik Anwar
- Division of Chemistry; Department of Sciences and Humanities; Vignan's Foundation for Science, Technology and Research (Deemed to be University); Vadlamudi 522 213 Guntur - Andhra Pradesh India
| |
Collapse
|
18
|
Li W, Wang XH, Luo Z, Liu LF, Yan C, Yan CY, Chen GD, Gao H, Duan WJ, Kurihara H, Li YF, He RR. Traditional Chinese Medicine as a Potential Source for HSV-1 Therapy by Acting on Virus or the Susceptibility of Host. Int J Mol Sci 2018; 19:ijms19103266. [PMID: 30347851 PMCID: PMC6213986 DOI: 10.3390/ijms19103266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the most common virus, with an estimated infection rate of 60–95% among the adult population. Once infected, HSV-1 can remain latent in the host for a lifetime and be reactivated in patients with a compromised immune system. Reactivation of latent HSV-1 can also be achieved by other stimuli. Though acyclovir (ACV) is a classic drug for HSV-1 infection, ACV-resistant strains have been found in immune-compromised patients and drug toxicity has also been commonly reported. Therefore, there is an urge to search for new anti-HSV-1 agents. Natural products with potential anti-HSV-1 activity have the advantages of minimal side effects, reduced toxicity, and they exert their effect by various mechanisms. This paper will not only provide a reference for the safe dose of these agents if they are to be used in humans, referring to the interrelated data obtained from in vitro experiments, but also introduce the main pharmacodynamic mechanisms of traditional Chinese medicine (TCM) against HSV-1. Taken together, TCM functions as a potential source for HSV-1 therapy by direct (blocking viral attachment/absorption/penetration/replication) or indirect (reducing the susceptibility to HSV-1 or regulating autophagy) antiviral activities. The potential of these active components in the development of anti-HSV-1 drugs will also be described.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xiao-Hua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhuo Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Li-Fang Liu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chang Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Guo-Dong Chen
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Yang CY, Lin Y, Yuan HX, Yang WP, Wei X, Huang ZL. Nicotabaflavonoidglycoside, the first example of cembranoid and flavonoid heterodimer from Nicotiana tabacum. Fitoterapia 2018; 128:242-246. [PMID: 29852262 DOI: 10.1016/j.fitote.2018.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/17/2022]
Abstract
Nicotabaflavonoidglycoside (1), a novel cembrane-type diterpenoid and flavonoid heterodimer had been isolated from the leaves of Nicotiana tabacum. Its structure was elucidated as (1″S, 6″S) or (1″R, 6″R)-8-[6″-((-)-(1″S, 2″E, 4″Z, 7″E, 11″E)-cembra-2″, 4″, 7″, 11″-tetraenyl)]-rutin by comprehensive analyses of the NMR and HRESIMS spectra. Its absolute configurations of C-1″ and C-6″ were assigned as (1″S, 6″S) by its biogenesis and electronic circular dichroism (ECD). A possible biogenesis involving eliminate reaction of (1S, 2E, 4S, 6R, 7E, 11E)-2, 7, 11-cembratriene-4, 6-diol or its 4R isomer, as well as electrophilic substitution reaction of rutin was postulated.
Collapse
Affiliation(s)
- Cai-Yan Yang
- The pharmaceutical school of Youjiang medical university for nationalities, Baise 533000, China; The key laboratory of Guangxi colleges and universities in Youjiang river drainage area for studying traditional Chinese medicinal herbs (folk medicine), Baise 533000, China.
| | - Yao Lin
- The pharmaceutical school of Youjiang medical university for nationalities, Baise 533000, China; The key laboratory of Guangxi colleges and universities in Youjiang river drainage area for studying traditional Chinese medicinal herbs (folk medicine), Baise 533000, China
| | - Hui-Xiong Yuan
- The affiliated hospital of Youjiang medical university for nationalities, Baise 533000, China
| | - Wen-Pei Yang
- The pharmaceutical school of Youjiang medical university for nationalities, Baise 533000, China
| | - Xian Wei
- The pharmaceutical school of Youjiang medical university for nationalities, Baise 533000, China; The key laboratory of Guangxi colleges and universities in Youjiang river drainage area for studying traditional Chinese medicinal herbs (folk medicine), Baise 533000, China
| | - Zu-Liang Huang
- The pharmaceutical school of Youjiang medical university for nationalities, Baise 533000, China; The key laboratory of Guangxi colleges and universities in Youjiang river drainage area for studying traditional Chinese medicinal herbs (folk medicine), Baise 533000, China
| |
Collapse
|
20
|
Jian J, Fan J, Yang H, Lan P, Li M, Liu P, Gao H, Sun P. Total Synthesis of the Flavonoid Natural Product Houttuynoid A. JOURNAL OF NATURAL PRODUCTS 2018; 81:371-377. [PMID: 29394065 DOI: 10.1021/acs.jnatprod.7b00791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The first total synthesis of the antiviral flavonoid houttuynoid A (1) has been achieved from aryl ketone 6 and benzofuran aldehyde 5 in nine linear steps. The C6-C3-C6 structure of the flavonoid was synthesized by an I2-catalyzed oxa-Michael addition of a chalcone intermediate, generated by the Claisen-Schmidt condensation of 5 and 6. This work provides a method for the synthesis of houttuynoids and provides a reference for the synthesis of the remaining members of the houttuynoid family.
Collapse
Affiliation(s)
- Jie Jian
- Department of Medicinal Chemistry and Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Jilin Fan
- Department of Medicinal Chemistry and Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Hui Yang
- Department of Medicinal Chemistry and Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Ping Lan
- Department of Food Science and Engineering, College of Science and Engineering, Jinan University , Guangzhou 510632, People's Republic of China
| | - Manmei Li
- Department of Medicinal Chemistry and Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Peijun Liu
- Pharmacy School, Zunyi Medical University , Zunyi 563003, People's Republic of China
| | - Hao Gao
- Department of Medicinal Chemistry and Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Pinghua Sun
- Department of Medicinal Chemistry and Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| |
Collapse
|
21
|
Li JJ, Chen GD, Fan HX, Hu D, Zhou ZQ, Lan KH, Zhang HP, Maeda H, Yao XS, Gao H. Houttuynoid M, an Anti-HSV Active Houttuynoid from Houttuynia cordata Featuring a Bis-houttuynin Chain Tethered to a Flavonoid Core. JOURNAL OF NATURAL PRODUCTS 2017; 80:3010-3013. [PMID: 29099182 DOI: 10.1021/acs.jnatprod.7b00620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Houttuynoid M (1), a new houttuynoid, and the related known compound houttuynoid A (2) were isolated from Houttuynia cordata. Their structures were defined using NMR data analysis, HR-MSn experiment, and chemical derivatization. Houttuynoid M is the first example of a houttuynoid with a bis-houttuynin chain tethered to a flavonoid core. A putative biosynthetic pathway of houttuynoid M (1) is proposed. The anti-herpes simplex virus (anti-HSV) activities of 1 and 2 (IC50 values of 17.72 and 12.42 μM, respectively) were evaluated using a plaque formation assay with acyclovir as the positive control.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Hong-Xia Fan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Kang-Hua Lan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Hui-Ping Zhang
- RIKEN Center for Life Science Technologies , Yokohama, Kanagawa 2300045, Japan
| | - Hideaki Maeda
- RIKEN Center for Life Science Technologies , Yokohama, Kanagawa 2300045, Japan
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210023, People's Republic of China
| |
Collapse
|
22
|
Li T, Liu L, Wu H, Chen S, Zhu Q, Gao H, Yu X, Wang Y, Su W, Yao X, Peng T. Anti-herpes simplex virus type 1 activity of Houttuynoid A, a flavonoid from Houttuynia cordata Thunb. Antiviral Res 2017. [PMID: 28629987 DOI: 10.1016/j.antiviral.2017.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early events in herpes simplex virus type 1 (HSV-1) infection reactivate latent human immunodeficiency virus, Epstein-Barr virus, and human papillomavirus in the presence of acyclovir (ACV). The common use of nucleoside analog medications, such as ACV and pencyclovir, has resulted in the emergence of drug-resistant HSV-1 strains in clinical therapy. Therefore, new antiherpetics that can inhibit early events in HSV-1 infection should be developed. An example of this treatment is Houttuynia cordata Thunb. water extract, which can inhibit HSV-1 infection through multiple mechanisms. In this study, the anti-HSV-1 activity of Houttuynoid A, a new type of flavonoid isolated from H. cordata, was investigated. Three different assays confirmed that this compound could exhibit strong in vitro anti-HSV-1 activity. One assay verified that this compound could inhibit HSV-1 multiplication and prevent lesion formation in a HSV-1 infection mouse model. Mechanism analysis revealed that this compound could inactivate HSV-1 infectivity by blocking viral membrane fusion. Moreover, Houttuynoid A exhibited antiviral activities against other alpha herpes viruses, such as HSV-2 and varicella zoster virus (VZV). In conclusion, Houttuynoid A may be a useful antiviral agent for HSV-1.
Collapse
Affiliation(s)
- Ting Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Libao Liu
- Guangdong South China United Vaccine Institute, Guangzhou, China
| | - Hongling Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shaodan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinchang Zhu
- Department of Pharmacy, School of Medicine, Shenzhen University, 3688 Nanhai Boulevard, Nanshan District, Shenzhen, Guangdong, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products and Guangdong Province, Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiongtao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yi Wang
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenhan Su
- Guangdong South China United Vaccine Institute, Guangzhou, China
| | - Xinsheng Yao
- Department of Pharmacy, School of Medicine, Shenzhen University, 3688 Nanhai Boulevard, Nanshan District, Shenzhen, Guangdong, China
| | - Tao Peng
- Guangdong South China United Vaccine Institute, Guangzhou, China; Sino-French Hoffmann Institute of Immunology, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Ahn J, Chae HS, Chin YW, Kim J. Alkaloids from aerial parts of Houttuynia cordata and their anti-inflammatory activity. Bioorg Med Chem Lett 2017; 27:2807-2811. [DOI: 10.1016/j.bmcl.2017.04.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 11/25/2022]
|
24
|
Li D, Liu JP, Han X, Wang YF, Wang CH, Li Z, Wang GC. Chemical Constituents of the Whole Plants of Houttuynia cordata. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1991-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Ma Q, Guo Y, Liu W, Wang Z, Mao W, Zhang X, Yu L, Yang Q, Wei R. Phenylethanoid Glycosides from Houttuynia cordata and Their Hepatoprotective Activities. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1768-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Kerl T, Berger F, Schmalz HG. Total Synthesis of the Antiviral Natural Product Houttuynoid B. Chemistry 2016; 22:2935-8. [DOI: 10.1002/chem.201505118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Thomas Kerl
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Köln Germany
| | - Florian Berger
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Köln Germany
| | - Hans-Günther Schmalz
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Köln Germany
| |
Collapse
|
27
|
Zhuang T, Li F, Huang LR, Liang JY, Qu W. Secondary Metabolites from the Plants of the Family Saururaceae and Their Biological Properties. Chem Biodivers 2015; 12:194-220. [DOI: 10.1002/cbdv.201300342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Indexed: 12/13/2022]
|
28
|
Zhuang T, Liang JY, Sun JB, Wu Y, Huang LR, Qu W. Secondary metabolites from Saururus chinensis and their chemotaxonomic significance. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Abstract
Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chan Hsu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|